Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage
Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient ap...
Saved in:
Published in | Carbon (New York) Vol. 224; p. 118955 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries.
By modulating the pyrolysis temperature, the structure of vascular tissue-derived carbon (VHC) can be controlled. The abundant surface functional groups expedite sodium ion exchange, while the naturally occurring straight-through pore structure shortens the diffusion distance of sodium ions. The combined effect grants VHC with high-rate performances. [Display omitted] |
---|---|
AbstractList | Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries.
By modulating the pyrolysis temperature, the structure of vascular tissue-derived carbon (VHC) can be controlled. The abundant surface functional groups expedite sodium ion exchange, while the naturally occurring straight-through pore structure shortens the diffusion distance of sodium ions. The combined effect grants VHC with high-rate performances. [Display omitted] Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries. |
ArticleNumber | 118955 |
Author | Pan, Guoyu Wang, Fanqi Zhao, Renfei Gao, Yingjie Huang, Zhikun Gu, Yuanfan Cui, Chenghao Sun, Zhuang Zhang, Tao |
Author_xml | – sequence: 1 givenname: Guoyu surname: Pan fullname: Pan, Guoyu organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 2 givenname: Renfei surname: Zhao fullname: Zhao, Renfei organization: Tai’an Institute of Industrial Technology Innovation-Shandong Institutes of Industrial Technology, Tai’an Branch, 28 Zhengyangmen Road, Taian, 271000, PR China – sequence: 3 givenname: Zhikun surname: Huang fullname: Huang, Zhikun organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 4 givenname: Chenghao surname: Cui fullname: Cui, Chenghao organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 5 givenname: Fanqi surname: Wang fullname: Wang, Fanqi organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 6 givenname: Yuanfan surname: Gu fullname: Gu, Yuanfan organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 7 givenname: Yingjie surname: Gao fullname: Gao, Yingjie organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 8 givenname: Zhuang surname: Sun fullname: Sun, Zhuang email: zhuangsun@mail.sic.ac.cn organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China – sequence: 9 givenname: Tao orcidid: 0000-0003-2469-699X surname: Zhang fullname: Zhang, Tao email: taozhang@mail.sic.ac.cn organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China |
BookMark | eNqFkD9PwzAQxS1UJNrCN2DIyJJgx0ljMyChin9SJRZgYLGuzqV1lcbFdor67XEVJgaYTqd77-neb0JGne2QkEtGM0bZ7HqTaXBL22U5zYuMMSHL8oSMmah4yoVkIzKmlIp0luf8jEy838S1EKwYk4938LpvwSXBeN9jWqMze6yTNbg6GWKTLxPWSd8GB-narNaJg4DxtoOlaU04JI11ibe16bepiXIfrIMVnpPTBlqPFz9zSt4e7l_nT-ni5fF5frdINecypAIhj6-UghbAGLKyEBqE4JyjprOaspxXSDWXcsl5VYGc1U1DJa2YAAlA-ZRcDbk7Zz979EFtjdfYttCh7b3irORlWcmcR2kxSLWz3jts1M6ZLbiDYlQdUaqNGjqrI0o1oIy2m182bQKE2DUiMe1_5tvBjJHB3qBTXhvsNNbGoQ6qtubvgG_xbJPR |
CitedBy_id | crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1039_D4TA08291E crossref_primary_10_1016_j_est_2025_116215 crossref_primary_10_1002_adma_202412989 crossref_primary_10_1002_smll_202407861 |
Cites_doi | 10.1149/1.1393348 10.1039/C9GC03284C 10.1021/nl3016957 10.1002/ente.202200612 10.1039/c2ee02781j 10.1021/acs.nanolett.5b01969 10.1016/j.renene.2022.03.023 10.1016/j.nanoen.2013.12.009 10.1111/j.1095-8339.1992.tb00289.x 10.1038/s41524-021-00515-7 10.1002/adfm.201200691 10.1039/D0EE01363C 10.1016/j.fuel.2009.10.022 10.1039/c3ee40847g 10.1039/C4TA05451B 10.3389/fchem.2022.986541 10.1039/D1MA00315A 10.1093/jxb/erw268 10.1021/jf011598c 10.1002/smtd.201800227 10.1021/acssuschemeng.9b05948 10.1016/j.phytochem.2010.03.001 10.1021/acsami.5b09835 10.1038/nature02117 10.1016/j.carbon.2018.06.036 10.1007/s11581-020-03723-1 10.1021/nl401995a |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.carbon.2024.118955 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
ExternalDocumentID | 10_1016_j_carbon_2024_118955 S000862232400174X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE M24 M41 R2- SMS WUQ 7S9 L.6 SSH |
ID | FETCH-LOGICAL-c339t-8ea28145804a11e1548ca88333ec06d01237e0c399b3377a96dff090718a9aa03 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 10:55:37 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Aug 05 03:08:38 EDT 2025 Sat Apr 20 15:59:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomass-derived hard carbon Pyrolysis temperature Sodium-ion battery Pore structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-8ea28145804a11e1548ca88333ec06d01237e0c399b3377a96dff090718a9aa03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2469-699X |
PQID | 3153557923 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153557923 crossref_primary_10_1016_j_carbon_2024_118955 crossref_citationtrail_10_1016_j_carbon_2024_118955 elsevier_sciencedirect_doi_10_1016_j_carbon_2024_118955 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-25 |
PublicationDateYYYYMMDD | 2024-04-25 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Carbon (New York) |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xu, Park, Yoon, Kim, Kang (bib6) 2018; 3 Shen Qiu, Sushko, Han, Shao, Yan, Liang, Mai, Feng, Cao, Ai, Yang, Liu (bib31) 2017; 7 Shao, Xiao, Wang, Engelhard, Chen, Nie, Gu, Saraf, Exarhos, Zhang, Liu (bib25) 2013; 13 Yoshimura, Yasuo, Watanabe, Iigo, Yamamura, Hirunagi, Ebihara (bib23) 2003; 426 Chen, Huang, Zhu, Zhang, Guang, Meng, Liu (bib26) 2020; 8 Wu, Dong, Wang, Xia, Li (bib16) 2022; 189 Trifilo, Raimondo, Savi, Lo Gullo, Nardini (bib18) 2016; 67 Youn, Gao, Kamiyama, Kubota, Komaba, Tateyama (bib27) 2021; 7 Hou, Cui, Li, Gao, Zhu, Gu, Pan, Zhu, Zhang (bib1) 2023 Shi, Liu, Wang, Zhao, Yang, Huang (bib24) 2019; 15 Bommier, Surta, Dolgos, Ji (bib8) 2015; 15 Pan, Hu, Chen (bib4) 2013; 6 Meng, Jia, Yang, Wang (bib29) 2022; 10 Au, Alptekin, Jensen, Olsson, O’Keefe, Smith, Crespo-Ribadeneyra, Headen, Grey, Cai, Drew, Titirici (bib9) 2020; 13 Cao, Xiao, Sushko, Wang, Schwenzer, Xiao, Nie, Saraf, Yang, Liu (bib32) 2012; 12 Li, Xu, Wu, Yu, Wang, Hu, Li, Chen, Huang (bib15) 2015; 3 Stevens, Dahn (bib7) 2000; 147 Zheng, Liu, Yuan, Zhang, Liu, Huang, Guo (bib13) 2016; 6 de la Llave, Borgel, Park, Hwang, Sun, Hartmann, Chesneau, Aurbach (bib5) 2016; 8 Vassilev, Baxter, Andersen, Vassileva (bib22) 2010; 89 Palomares, Serras, Villaluenga, Hueso, Carretero-González, Rojo (bib2) 2012; 5 Thompson, Xia, Hu, Zhao (bib12) 2021; 2 Zhang, Li, Wang, Noori, Mousavi, Xia, Zhang (bib28) 2022 Zhou, Stuart-Williams, Farquhar, Hocart (bib21) 2010; 71 Rowlatt, Henry (bib17) 1992; 110 Sun, Zhang, Sun, Yang, Zhang (bib19) 2020; 22 Beda, Taberna, Simon, Matei Ghimbeu (bib10) 2018; 139 Slater, Kim, Lee, Johnson (bib3) 2013; 23 Zhang, Chen, Peng, Guo, Cheng, Chen, Du, Huang, Xue, Zhang (bib11) 2022; 10 Grabber, Panciera, Hatfield (bib20) 2002; 50 Pei, Cao, Yang, Liu, Zhao, Xu, Guo (bib14) 2020; 26 Kim, Park, Park, Lim, Hong, Kang (bib30) 2014; 4 Shi (10.1016/j.carbon.2024.118955_bib24) 2019; 15 Sun (10.1016/j.carbon.2024.118955_bib19) 2020; 22 Zhou (10.1016/j.carbon.2024.118955_bib21) 2010; 71 Zheng (10.1016/j.carbon.2024.118955_bib13) 2016; 6 Pei (10.1016/j.carbon.2024.118955_bib14) 2020; 26 Zhang (10.1016/j.carbon.2024.118955_bib11) 2022; 10 Meng (10.1016/j.carbon.2024.118955_bib29) 2022; 10 Wu (10.1016/j.carbon.2024.118955_bib16) 2022; 189 Slater (10.1016/j.carbon.2024.118955_bib3) 2013; 23 Youn (10.1016/j.carbon.2024.118955_bib27) 2021; 7 Palomares (10.1016/j.carbon.2024.118955_bib2) 2012; 5 Chen (10.1016/j.carbon.2024.118955_bib26) 2020; 8 Grabber (10.1016/j.carbon.2024.118955_bib20) 2002; 50 de la Llave (10.1016/j.carbon.2024.118955_bib5) 2016; 8 Li (10.1016/j.carbon.2024.118955_bib15) 2015; 3 Shao (10.1016/j.carbon.2024.118955_bib25) 2013; 13 Kim (10.1016/j.carbon.2024.118955_bib30) 2014; 4 Zhang (10.1016/j.carbon.2024.118955_bib28) 2022 Vassilev (10.1016/j.carbon.2024.118955_bib22) 2010; 89 Xu (10.1016/j.carbon.2024.118955_bib6) 2018; 3 Shen Qiu (10.1016/j.carbon.2024.118955_bib31) 2017; 7 Cao (10.1016/j.carbon.2024.118955_bib32) 2012; 12 Yoshimura (10.1016/j.carbon.2024.118955_bib23) 2003; 426 Pan (10.1016/j.carbon.2024.118955_bib4) 2013; 6 Stevens (10.1016/j.carbon.2024.118955_bib7) 2000; 147 Trifilo (10.1016/j.carbon.2024.118955_bib18) 2016; 67 Hou (10.1016/j.carbon.2024.118955_bib1) 2023 Thompson (10.1016/j.carbon.2024.118955_bib12) 2021; 2 Au (10.1016/j.carbon.2024.118955_bib9) 2020; 13 Bommier (10.1016/j.carbon.2024.118955_bib8) 2015; 15 Beda (10.1016/j.carbon.2024.118955_bib10) 2018; 139 Rowlatt (10.1016/j.carbon.2024.118955_bib17) 1992; 110 |
References_xml | – volume: 50 start-page: 2595 year: 2002 end-page: 2600 ident: bib20 article-title: Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes publication-title: J. Agric. Food Chem. – volume: 23 start-page: 947 year: 2013 end-page: 958 ident: bib3 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. – volume: 10 year: 2022 ident: bib11 article-title: Pore structure modification of pitch‐derived hard carbon for enhanced pore filling sodium storage publication-title: Energy Technol. – volume: 147 start-page: 1271 year: 2000 ident: bib7 article-title: High capacity anode materials for rechargeable sodium‐ion batteries publication-title: J. Electrochem. Soc. – volume: 139 start-page: 248 year: 2018 end-page: 257 ident: bib10 article-title: Hard carbons derived from green phenolic resins for Na-ion batteries publication-title: Carbon – volume: 67 start-page: 5029 year: 2016 end-page: 5039 ident: bib18 article-title: The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance publication-title: J. Exp. Bot. – volume: 71 start-page: 982 year: 2010 end-page: 993 ident: bib21 article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls publication-title: Phytochemistry – volume: 3 year: 2018 ident: bib6 article-title: Graphitic carbon materials for advanced sodium‐ion batteries publication-title: Small Methods – volume: 13 start-page: 3469 year: 2020 end-page: 3479 ident: bib9 article-title: A revised mechanistic model for sodium insertion in hard carbons publication-title: Energy Environ. Sci. – volume: 26 start-page: 5535 year: 2020 end-page: 5542 ident: bib14 article-title: Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries publication-title: Ionics – volume: 4 start-page: 97 year: 2014 end-page: 104 ident: bib30 article-title: Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries publication-title: Nano Energy – volume: 6 year: 2016 ident: bib13 article-title: Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode publication-title: Sci. Rep. – year: 2022 ident: bib28 article-title: Recent advances in carbon anodes for sodium-ion batteries publication-title: Chem. Rec. – volume: 6 start-page: 2338 year: 2013 end-page: 2360 ident: bib4 article-title: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage publication-title: Energy Environ. Sci. – volume: 22 start-page: 388 year: 2020 end-page: 396 ident: bib19 article-title: Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium–oxygen batteries publication-title: Green Chem. – volume: 89 start-page: 913 year: 2010 end-page: 933 ident: bib22 article-title: An overview of the chemical composition of biomass publication-title: Fuel – volume: 426 start-page: 178 year: 2003 end-page: 181 ident: bib23 article-title: Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds publication-title: Nature – volume: 8 start-page: 1867 year: 2016 end-page: 1875 ident: bib5 article-title: Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 3909 year: 2013 end-page: 3914 ident: bib25 article-title: Surface-driven sodium ion energy storage in nanocellular carbon foams publication-title: Nano Lett. – volume: 8 start-page: 1497 year: 2020 end-page: 1506 ident: bib26 article-title: Nonignorable influence of oxygen in hard carbon for sodium ion storage publication-title: ACS Sustain. Chem. Eng. – volume: 110 start-page: 161 year: 1992 end-page: 170 ident: bib17 article-title: Architecture of the leaf of the greater reed mace, Typha latifolia L publication-title: Bot. J. Linn. Soc. – volume: 5 start-page: 5884 year: 2012 end-page: 5901 ident: bib2 article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems publication-title: Energy Environ. Sci. – volume: 3 start-page: 71 year: 2015 end-page: 77 ident: bib15 article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries publication-title: J. Mater. Chem. A – year: 2023 ident: bib1 article-title: Lattice‐strain engineering for heterogenous electrocatalytic oxygen evolution reaction publication-title: Adv. Mater. – volume: 15 year: 2019 ident: bib24 article-title: High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator publication-title: Small – volume: 2 start-page: 5881 year: 2021 end-page: 5905 ident: bib12 article-title: A review on biomass-derived hard carbon materials for sodium-ion batteries publication-title: Mater. Adv. – volume: 15 start-page: 5888 year: 2015 end-page: 5892 ident: bib8 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. – volume: 7 year: 2017 ident: bib31 article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage publication-title: Adv. Energy Mater. – volume: 12 start-page: 3783 year: 2012 end-page: 3787 ident: bib32 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. – volume: 10 year: 2022 ident: bib29 article-title: Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review publication-title: Front. Chem. – volume: 189 start-page: 630 year: 2022 end-page: 638 ident: bib16 article-title: Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors publication-title: Renew. Energy – volume: 7 start-page: 48 year: 2021 ident: bib27 article-title: Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery publication-title: npj Comput. Mater. – volume: 15 issue: 41 year: 2019 ident: 10.1016/j.carbon.2024.118955_bib24 article-title: High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator publication-title: Small – volume: 147 start-page: 1271 issue: 147 year: 2000 ident: 10.1016/j.carbon.2024.118955_bib7 article-title: High capacity anode materials for rechargeable sodium‐ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 22 start-page: 388 issue: 2 year: 2020 ident: 10.1016/j.carbon.2024.118955_bib19 article-title: Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium–oxygen batteries publication-title: Green Chem. doi: 10.1039/C9GC03284C – volume: 7 issue: 17 year: 2017 ident: 10.1016/j.carbon.2024.118955_bib31 article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage publication-title: Adv. Energy Mater. – volume: 6 year: 2016 ident: 10.1016/j.carbon.2024.118955_bib13 article-title: Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode publication-title: Sci. Rep. – volume: 12 start-page: 3783 issue: 7 year: 2012 ident: 10.1016/j.carbon.2024.118955_bib32 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 10 issue: 11 year: 2022 ident: 10.1016/j.carbon.2024.118955_bib11 article-title: Pore structure modification of pitch‐derived hard carbon for enhanced pore filling sodium storage publication-title: Energy Technol. doi: 10.1002/ente.202200612 – volume: 5 start-page: 5884 issue: 3 year: 2012 ident: 10.1016/j.carbon.2024.118955_bib2 article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 15 start-page: 5888 issue: 9 year: 2015 ident: 10.1016/j.carbon.2024.118955_bib8 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 189 start-page: 630 year: 2022 ident: 10.1016/j.carbon.2024.118955_bib16 article-title: Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors publication-title: Renew. Energy doi: 10.1016/j.renene.2022.03.023 – volume: 4 start-page: 97 year: 2014 ident: 10.1016/j.carbon.2024.118955_bib30 article-title: Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.009 – volume: 110 start-page: 161 issue: 2 year: 1992 ident: 10.1016/j.carbon.2024.118955_bib17 article-title: Architecture of the leaf of the greater reed mace, Typha latifolia L publication-title: Bot. J. Linn. Soc. doi: 10.1111/j.1095-8339.1992.tb00289.x – volume: 7 start-page: 48 issue: 1 year: 2021 ident: 10.1016/j.carbon.2024.118955_bib27 article-title: Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00515-7 – volume: 23 start-page: 947 issue: 8 year: 2013 ident: 10.1016/j.carbon.2024.118955_bib3 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200691 – volume: 13 start-page: 3469 issue: 10 year: 2020 ident: 10.1016/j.carbon.2024.118955_bib9 article-title: A revised mechanistic model for sodium insertion in hard carbons publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01363C – volume: 89 start-page: 913 issue: 5 year: 2010 ident: 10.1016/j.carbon.2024.118955_bib22 article-title: An overview of the chemical composition of biomass publication-title: Fuel doi: 10.1016/j.fuel.2009.10.022 – volume: 6 start-page: 2338 issue: 8 year: 2013 ident: 10.1016/j.carbon.2024.118955_bib4 article-title: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40847g – year: 2022 ident: 10.1016/j.carbon.2024.118955_bib28 article-title: Recent advances in carbon anodes for sodium-ion batteries publication-title: Chem. Rec. – volume: 3 start-page: 71 issue: 1 year: 2015 ident: 10.1016/j.carbon.2024.118955_bib15 article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05451B – year: 2023 ident: 10.1016/j.carbon.2024.118955_bib1 article-title: Lattice‐strain engineering for heterogenous electrocatalytic oxygen evolution reaction publication-title: Adv. Mater. – volume: 10 year: 2022 ident: 10.1016/j.carbon.2024.118955_bib29 article-title: Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review publication-title: Front. Chem. doi: 10.3389/fchem.2022.986541 – volume: 2 start-page: 5881 issue: 18 year: 2021 ident: 10.1016/j.carbon.2024.118955_bib12 article-title: A review on biomass-derived hard carbon materials for sodium-ion batteries publication-title: Mater. Adv. doi: 10.1039/D1MA00315A – volume: 67 start-page: 5029 issue: 17 year: 2016 ident: 10.1016/j.carbon.2024.118955_bib18 article-title: The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw268 – volume: 50 start-page: 2595 issue: 9 year: 2002 ident: 10.1016/j.carbon.2024.118955_bib20 article-title: Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes publication-title: J. Agric. Food Chem. doi: 10.1021/jf011598c – volume: 3 issue: 4 year: 2018 ident: 10.1016/j.carbon.2024.118955_bib6 article-title: Graphitic carbon materials for advanced sodium‐ion batteries publication-title: Small Methods doi: 10.1002/smtd.201800227 – volume: 8 start-page: 1497 issue: 3 year: 2020 ident: 10.1016/j.carbon.2024.118955_bib26 article-title: Nonignorable influence of oxygen in hard carbon for sodium ion storage publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05948 – volume: 71 start-page: 982 issue: 8–9 year: 2010 ident: 10.1016/j.carbon.2024.118955_bib21 article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.03.001 – volume: 8 start-page: 1867 issue: 3 year: 2016 ident: 10.1016/j.carbon.2024.118955_bib5 article-title: Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09835 – volume: 426 start-page: 178 issue: 6963 year: 2003 ident: 10.1016/j.carbon.2024.118955_bib23 article-title: Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds publication-title: Nature doi: 10.1038/nature02117 – volume: 139 start-page: 248 year: 2018 ident: 10.1016/j.carbon.2024.118955_bib10 article-title: Hard carbons derived from green phenolic resins for Na-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2018.06.036 – volume: 26 start-page: 5535 issue: 11 year: 2020 ident: 10.1016/j.carbon.2024.118955_bib14 article-title: Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries publication-title: Ionics doi: 10.1007/s11581-020-03723-1 – volume: 13 start-page: 3909 issue: 8 year: 2013 ident: 10.1016/j.carbon.2024.118955_bib25 article-title: Surface-driven sodium ion energy storage in nanocellular carbon foams publication-title: Nano Lett. doi: 10.1021/nl401995a |
SSID | ssj0004814 |
Score | 2.4913502 |
Snippet | Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118955 |
SubjectTerms | Biomass-derived hard carbon carbon carbonization electrodes electrolytes Pore structure porosity pyrolysis Pyrolysis temperature sodium Sodium-ion battery |
Title | Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage |
URI | https://dx.doi.org/10.1016/j.carbon.2024.118955 https://www.proquest.com/docview/3153557923 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPrE-SgSvsdtN9nUsxVIVe7JSvIS8Fip1W9qt4MXf7sw-FEUoeNxNsmxmhi8zycwXQq60CKzRXDMVCMWE0Y7pFGKeNAX33BhYtB3uQz6MwuFY3E2CSYP061oYTKussL_E9AKtqzedSpqdxXSKNb7ojqNHgFArJljBLiK08uuP7zQPEZf83njMj73r8rkix8uopZ4jC6ovADviBAv-_l6efgF1sfoM9shu5TbSXvln-6ThsgOy3a9vazskz09VSinNC1EyC6b15izFqipa_gHFTVe6nuVLxZCmmCJNBLQtSq7udwoOLF3N7XT9ykBdFBMnAW6OyHhw89gfsureBGY4T3IWO-XDrIPYE6rbdRiUGIWXCnNnvNCiFxU5z4BrojmPIpWENk09iJK7sUqU8vgxaWbzzJ0QagJo4EZZ7VIRaZPEXuhZX0NUqLQf2xbhtbikqUjF8W6Lmayzx15kOUWJQpalkFuEfY1alKQaG_pHtSbkD-OQgPsbRl7WipOgEDwMUZmbr1eSA9QHAbInnv7762dkB5_wcMkPzkkzX67dBfgouW4XRtgmW73b--HoEzO151E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3gxPiM-a-K1smy77O7REAkqcAJDvDR9bYJBILCYePG3O7MPjcbExOt2u2lnul-_aedByJUWgTWaa6YCoZgw2jGdgM2TJEDPjYFN2-E5ZH_Q6o7E_TgYV0i7jIVBt8oC-3NMz9C6eNIopNlYTCYY44t0HBkBQq0Yb5BNAb8vljG4fv_y8xBRnuAb7_nx9TJ-LnPyMmqp55gG1RcAHlGMEX-_708_kDrbfjo7ZLvgjfQmH9ouqbjZHqm1y3Jt--TpsfAppWkmS2Zhbb06SzGsiuYjoHjqStfTdKkY5immmCcC2hZ5su43CgyWruZ2sn5hoC-KnpOANwdk1LkdtrusKJzADOdxyiKnfJh1EHlCNZsOrRKjsKowd8ZrWaRRofMMcBPNeRiquGWTxAMzuRmpWCmPH5LqbD5zR4SaABq4UVa7RITaxJHX8qyvwSxU2o9snfBSXNIUWcWxuMVUlu5jzzKfokQhy1zIdcI-ey3yrBp_vB-WmpDfVocE4P-j52WpOAkKwdsQNXPz9UpywPogwPSJx__--gWpdYf9nuzdDR5OyBa24E2TH5ySarpcuzMgLKk-zxbkB40T6N8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+tissue-derived+hard+carbon+with+ultra-high+rate+capability+for+sodium-ion+storage&rft.jtitle=Carbon+%28New+York%29&rft.au=Pan%2C+Guoyu&rft.au=Zhao%2C+Renfei&rft.au=Huang%2C+Zhikun&rft.au=Cui%2C+Chenghao&rft.date=2024-04-25&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=224&rft_id=info:doi/10.1016%2Fj.carbon.2024.118955&rft.externalDocID=S000862232400174X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |