Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage

Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient ap...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 224; p. 118955
Main Authors Pan, Guoyu, Zhao, Renfei, Huang, Zhikun, Cui, Chenghao, Wang, Fanqi, Gu, Yuanfan, Gao, Yingjie, Sun, Zhuang, Zhang, Tao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries. By modulating the pyrolysis temperature, the structure of vascular tissue-derived carbon (VHC) can be controlled. The abundant surface functional groups expedite sodium ion exchange, while the naturally occurring straight-through pore structure shortens the diffusion distance of sodium ions. The combined effect grants VHC with high-rate performances. [Display omitted]
AbstractList Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries. By modulating the pyrolysis temperature, the structure of vascular tissue-derived carbon (VHC) can be controlled. The abundant surface functional groups expedite sodium ion exchange, while the naturally occurring straight-through pore structure shortens the diffusion distance of sodium ions. The combined effect grants VHC with high-rate performances. [Display omitted]
Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue may also play an essential role in governing the high-current performance of sodium-ion storage. Herein, we report a facile and efficient approach to fabricate a vascular tissue-derived hard carbon (VHC) by an integrated procedure of leave stripping, carbonization and alkali/acid washing. By meticulously adjusting the pyrolysis temperatures, hierarchical microchannel carbon with abundant turbostratic nanodomains, suitable pore size and special surface functional groups can be obtained, enabling high specific capacity and excellent rate performances. It is believed that the vascular tissue-derived carbon can significantly shorten sodium ion transport paths and further enhance the storage performance on the surface and within the electrode materials, making it a promising candidate for sodium-ion batteries.
ArticleNumber 118955
Author Pan, Guoyu
Wang, Fanqi
Zhao, Renfei
Gao, Yingjie
Huang, Zhikun
Gu, Yuanfan
Cui, Chenghao
Sun, Zhuang
Zhang, Tao
Author_xml – sequence: 1
  givenname: Guoyu
  surname: Pan
  fullname: Pan, Guoyu
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 2
  givenname: Renfei
  surname: Zhao
  fullname: Zhao, Renfei
  organization: Tai’an Institute of Industrial Technology Innovation-Shandong Institutes of Industrial Technology, Tai’an Branch, 28 Zhengyangmen Road, Taian, 271000, PR China
– sequence: 3
  givenname: Zhikun
  surname: Huang
  fullname: Huang, Zhikun
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 4
  givenname: Chenghao
  surname: Cui
  fullname: Cui, Chenghao
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 5
  givenname: Fanqi
  surname: Wang
  fullname: Wang, Fanqi
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 6
  givenname: Yuanfan
  surname: Gu
  fullname: Gu, Yuanfan
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 7
  givenname: Yingjie
  surname: Gao
  fullname: Gao, Yingjie
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 8
  givenname: Zhuang
  surname: Sun
  fullname: Sun, Zhuang
  email: zhuangsun@mail.sic.ac.cn
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
– sequence: 9
  givenname: Tao
  orcidid: 0000-0003-2469-699X
  surname: Zhang
  fullname: Zhang, Tao
  email: taozhang@mail.sic.ac.cn
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, PR China
BookMark eNqFkD9PwzAQxS1UJNrCN2DIyJJgx0ljMyChin9SJRZgYLGuzqV1lcbFdor67XEVJgaYTqd77-neb0JGne2QkEtGM0bZ7HqTaXBL22U5zYuMMSHL8oSMmah4yoVkIzKmlIp0luf8jEy838S1EKwYk4938LpvwSXBeN9jWqMze6yTNbg6GWKTLxPWSd8GB-narNaJg4DxtoOlaU04JI11ibe16bepiXIfrIMVnpPTBlqPFz9zSt4e7l_nT-ni5fF5frdINecypAIhj6-UghbAGLKyEBqE4JyjprOaspxXSDWXcsl5VYGc1U1DJa2YAAlA-ZRcDbk7Zz979EFtjdfYttCh7b3irORlWcmcR2kxSLWz3jts1M6ZLbiDYlQdUaqNGjqrI0o1oIy2m182bQKE2DUiMe1_5tvBjJHB3qBTXhvsNNbGoQ6qtubvgG_xbJPR
CitedBy_id crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1039_D4TA08291E
crossref_primary_10_1016_j_est_2025_116215
crossref_primary_10_1002_adma_202412989
crossref_primary_10_1002_smll_202407861
Cites_doi 10.1149/1.1393348
10.1039/C9GC03284C
10.1021/nl3016957
10.1002/ente.202200612
10.1039/c2ee02781j
10.1021/acs.nanolett.5b01969
10.1016/j.renene.2022.03.023
10.1016/j.nanoen.2013.12.009
10.1111/j.1095-8339.1992.tb00289.x
10.1038/s41524-021-00515-7
10.1002/adfm.201200691
10.1039/D0EE01363C
10.1016/j.fuel.2009.10.022
10.1039/c3ee40847g
10.1039/C4TA05451B
10.3389/fchem.2022.986541
10.1039/D1MA00315A
10.1093/jxb/erw268
10.1021/jf011598c
10.1002/smtd.201800227
10.1021/acssuschemeng.9b05948
10.1016/j.phytochem.2010.03.001
10.1021/acsami.5b09835
10.1038/nature02117
10.1016/j.carbon.2018.06.036
10.1007/s11581-020-03723-1
10.1021/nl401995a
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.carbon.2024.118955
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
ExternalDocumentID 10_1016_j_carbon_2024_118955
S000862232400174X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
M24
M41
R2-
SMS
WUQ
7S9
L.6
SSH
ID FETCH-LOGICAL-c339t-8ea28145804a11e1548ca88333ec06d01237e0c399b3377a96dff090718a9aa03
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 10:55:37 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Aug 05 03:08:38 EDT 2025
Sat Apr 20 15:59:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomass-derived hard carbon
Pyrolysis temperature
Sodium-ion battery
Pore structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-8ea28145804a11e1548ca88333ec06d01237e0c399b3377a96dff090718a9aa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2469-699X
PQID 3153557923
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153557923
crossref_primary_10_1016_j_carbon_2024_118955
crossref_citationtrail_10_1016_j_carbon_2024_118955
elsevier_sciencedirect_doi_10_1016_j_carbon_2024_118955
PublicationCentury 2000
PublicationDate 2024-04-25
PublicationDateYYYYMMDD 2024-04-25
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-25
  day: 25
PublicationDecade 2020
PublicationTitle Carbon (New York)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Park, Yoon, Kim, Kang (bib6) 2018; 3
Shen Qiu, Sushko, Han, Shao, Yan, Liang, Mai, Feng, Cao, Ai, Yang, Liu (bib31) 2017; 7
Shao, Xiao, Wang, Engelhard, Chen, Nie, Gu, Saraf, Exarhos, Zhang, Liu (bib25) 2013; 13
Yoshimura, Yasuo, Watanabe, Iigo, Yamamura, Hirunagi, Ebihara (bib23) 2003; 426
Chen, Huang, Zhu, Zhang, Guang, Meng, Liu (bib26) 2020; 8
Wu, Dong, Wang, Xia, Li (bib16) 2022; 189
Trifilo, Raimondo, Savi, Lo Gullo, Nardini (bib18) 2016; 67
Youn, Gao, Kamiyama, Kubota, Komaba, Tateyama (bib27) 2021; 7
Hou, Cui, Li, Gao, Zhu, Gu, Pan, Zhu, Zhang (bib1) 2023
Shi, Liu, Wang, Zhao, Yang, Huang (bib24) 2019; 15
Bommier, Surta, Dolgos, Ji (bib8) 2015; 15
Pan, Hu, Chen (bib4) 2013; 6
Meng, Jia, Yang, Wang (bib29) 2022; 10
Au, Alptekin, Jensen, Olsson, O’Keefe, Smith, Crespo-Ribadeneyra, Headen, Grey, Cai, Drew, Titirici (bib9) 2020; 13
Cao, Xiao, Sushko, Wang, Schwenzer, Xiao, Nie, Saraf, Yang, Liu (bib32) 2012; 12
Li, Xu, Wu, Yu, Wang, Hu, Li, Chen, Huang (bib15) 2015; 3
Stevens, Dahn (bib7) 2000; 147
Zheng, Liu, Yuan, Zhang, Liu, Huang, Guo (bib13) 2016; 6
de la Llave, Borgel, Park, Hwang, Sun, Hartmann, Chesneau, Aurbach (bib5) 2016; 8
Vassilev, Baxter, Andersen, Vassileva (bib22) 2010; 89
Palomares, Serras, Villaluenga, Hueso, Carretero-González, Rojo (bib2) 2012; 5
Thompson, Xia, Hu, Zhao (bib12) 2021; 2
Zhang, Li, Wang, Noori, Mousavi, Xia, Zhang (bib28) 2022
Zhou, Stuart-Williams, Farquhar, Hocart (bib21) 2010; 71
Rowlatt, Henry (bib17) 1992; 110
Sun, Zhang, Sun, Yang, Zhang (bib19) 2020; 22
Beda, Taberna, Simon, Matei Ghimbeu (bib10) 2018; 139
Slater, Kim, Lee, Johnson (bib3) 2013; 23
Zhang, Chen, Peng, Guo, Cheng, Chen, Du, Huang, Xue, Zhang (bib11) 2022; 10
Grabber, Panciera, Hatfield (bib20) 2002; 50
Pei, Cao, Yang, Liu, Zhao, Xu, Guo (bib14) 2020; 26
Kim, Park, Park, Lim, Hong, Kang (bib30) 2014; 4
Shi (10.1016/j.carbon.2024.118955_bib24) 2019; 15
Sun (10.1016/j.carbon.2024.118955_bib19) 2020; 22
Zhou (10.1016/j.carbon.2024.118955_bib21) 2010; 71
Zheng (10.1016/j.carbon.2024.118955_bib13) 2016; 6
Pei (10.1016/j.carbon.2024.118955_bib14) 2020; 26
Zhang (10.1016/j.carbon.2024.118955_bib11) 2022; 10
Meng (10.1016/j.carbon.2024.118955_bib29) 2022; 10
Wu (10.1016/j.carbon.2024.118955_bib16) 2022; 189
Slater (10.1016/j.carbon.2024.118955_bib3) 2013; 23
Youn (10.1016/j.carbon.2024.118955_bib27) 2021; 7
Palomares (10.1016/j.carbon.2024.118955_bib2) 2012; 5
Chen (10.1016/j.carbon.2024.118955_bib26) 2020; 8
Grabber (10.1016/j.carbon.2024.118955_bib20) 2002; 50
de la Llave (10.1016/j.carbon.2024.118955_bib5) 2016; 8
Li (10.1016/j.carbon.2024.118955_bib15) 2015; 3
Shao (10.1016/j.carbon.2024.118955_bib25) 2013; 13
Kim (10.1016/j.carbon.2024.118955_bib30) 2014; 4
Zhang (10.1016/j.carbon.2024.118955_bib28) 2022
Vassilev (10.1016/j.carbon.2024.118955_bib22) 2010; 89
Xu (10.1016/j.carbon.2024.118955_bib6) 2018; 3
Shen Qiu (10.1016/j.carbon.2024.118955_bib31) 2017; 7
Cao (10.1016/j.carbon.2024.118955_bib32) 2012; 12
Yoshimura (10.1016/j.carbon.2024.118955_bib23) 2003; 426
Pan (10.1016/j.carbon.2024.118955_bib4) 2013; 6
Stevens (10.1016/j.carbon.2024.118955_bib7) 2000; 147
Trifilo (10.1016/j.carbon.2024.118955_bib18) 2016; 67
Hou (10.1016/j.carbon.2024.118955_bib1) 2023
Thompson (10.1016/j.carbon.2024.118955_bib12) 2021; 2
Au (10.1016/j.carbon.2024.118955_bib9) 2020; 13
Bommier (10.1016/j.carbon.2024.118955_bib8) 2015; 15
Beda (10.1016/j.carbon.2024.118955_bib10) 2018; 139
Rowlatt (10.1016/j.carbon.2024.118955_bib17) 1992; 110
References_xml – volume: 50
  start-page: 2595
  year: 2002
  end-page: 2600
  ident: bib20
  article-title: Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes
  publication-title: J. Agric. Food Chem.
– volume: 23
  start-page: 947
  year: 2013
  end-page: 958
  ident: bib3
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2022
  ident: bib11
  article-title: Pore structure modification of pitch‐derived hard carbon for enhanced pore filling sodium storage
  publication-title: Energy Technol.
– volume: 147
  start-page: 1271
  year: 2000
  ident: bib7
  article-title: High capacity anode materials for rechargeable sodium‐ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 139
  start-page: 248
  year: 2018
  end-page: 257
  ident: bib10
  article-title: Hard carbons derived from green phenolic resins for Na-ion batteries
  publication-title: Carbon
– volume: 67
  start-page: 5029
  year: 2016
  end-page: 5039
  ident: bib18
  article-title: The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance
  publication-title: J. Exp. Bot.
– volume: 71
  start-page: 982
  year: 2010
  end-page: 993
  ident: bib21
  article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls
  publication-title: Phytochemistry
– volume: 3
  year: 2018
  ident: bib6
  article-title: Graphitic carbon materials for advanced sodium‐ion batteries
  publication-title: Small Methods
– volume: 13
  start-page: 3469
  year: 2020
  end-page: 3479
  ident: bib9
  article-title: A revised mechanistic model for sodium insertion in hard carbons
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 5535
  year: 2020
  end-page: 5542
  ident: bib14
  article-title: Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
  publication-title: Ionics
– volume: 4
  start-page: 97
  year: 2014
  end-page: 104
  ident: bib30
  article-title: Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries
  publication-title: Nano Energy
– volume: 6
  year: 2016
  ident: bib13
  article-title: Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode
  publication-title: Sci. Rep.
– year: 2022
  ident: bib28
  article-title: Recent advances in carbon anodes for sodium-ion batteries
  publication-title: Chem. Rec.
– volume: 6
  start-page: 2338
  year: 2013
  end-page: 2360
  ident: bib4
  article-title: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 388
  year: 2020
  end-page: 396
  ident: bib19
  article-title: Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium–oxygen batteries
  publication-title: Green Chem.
– volume: 89
  start-page: 913
  year: 2010
  end-page: 933
  ident: bib22
  article-title: An overview of the chemical composition of biomass
  publication-title: Fuel
– volume: 426
  start-page: 178
  year: 2003
  end-page: 181
  ident: bib23
  article-title: Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds
  publication-title: Nature
– volume: 8
  start-page: 1867
  year: 2016
  end-page: 1875
  ident: bib5
  article-title: Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 3909
  year: 2013
  end-page: 3914
  ident: bib25
  article-title: Surface-driven sodium ion energy storage in nanocellular carbon foams
  publication-title: Nano Lett.
– volume: 8
  start-page: 1497
  year: 2020
  end-page: 1506
  ident: bib26
  article-title: Nonignorable influence of oxygen in hard carbon for sodium ion storage
  publication-title: ACS Sustain. Chem. Eng.
– volume: 110
  start-page: 161
  year: 1992
  end-page: 170
  ident: bib17
  article-title: Architecture of the leaf of the greater reed mace, Typha latifolia L
  publication-title: Bot. J. Linn. Soc.
– volume: 5
  start-page: 5884
  year: 2012
  end-page: 5901
  ident: bib2
  article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 71
  year: 2015
  end-page: 77
  ident: bib15
  article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
– year: 2023
  ident: bib1
  article-title: Lattice‐strain engineering for heterogenous electrocatalytic oxygen evolution reaction
  publication-title: Adv. Mater.
– volume: 15
  year: 2019
  ident: bib24
  article-title: High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator
  publication-title: Small
– volume: 2
  start-page: 5881
  year: 2021
  end-page: 5905
  ident: bib12
  article-title: A review on biomass-derived hard carbon materials for sodium-ion batteries
  publication-title: Mater. Adv.
– volume: 15
  start-page: 5888
  year: 2015
  end-page: 5892
  ident: bib8
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
– volume: 7
  year: 2017
  ident: bib31
  article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3783
  year: 2012
  end-page: 3787
  ident: bib32
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
– volume: 10
  year: 2022
  ident: bib29
  article-title: Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review
  publication-title: Front. Chem.
– volume: 189
  start-page: 630
  year: 2022
  end-page: 638
  ident: bib16
  article-title: Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors
  publication-title: Renew. Energy
– volume: 7
  start-page: 48
  year: 2021
  ident: bib27
  article-title: Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery
  publication-title: npj Comput. Mater.
– volume: 15
  issue: 41
  year: 2019
  ident: 10.1016/j.carbon.2024.118955_bib24
  article-title: High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator
  publication-title: Small
– volume: 147
  start-page: 1271
  issue: 147
  year: 2000
  ident: 10.1016/j.carbon.2024.118955_bib7
  article-title: High capacity anode materials for rechargeable sodium‐ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 22
  start-page: 388
  issue: 2
  year: 2020
  ident: 10.1016/j.carbon.2024.118955_bib19
  article-title: Micro versus nanochannels: carbon micro-sieve tubes from biological phloem tissues for lithium–oxygen batteries
  publication-title: Green Chem.
  doi: 10.1039/C9GC03284C
– volume: 7
  issue: 17
  year: 2017
  ident: 10.1016/j.carbon.2024.118955_bib31
  article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  ident: 10.1016/j.carbon.2024.118955_bib13
  article-title: Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3783
  issue: 7
  year: 2012
  ident: 10.1016/j.carbon.2024.118955_bib32
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 10
  issue: 11
  year: 2022
  ident: 10.1016/j.carbon.2024.118955_bib11
  article-title: Pore structure modification of pitch‐derived hard carbon for enhanced pore filling sodium storage
  publication-title: Energy Technol.
  doi: 10.1002/ente.202200612
– volume: 5
  start-page: 5884
  issue: 3
  year: 2012
  ident: 10.1016/j.carbon.2024.118955_bib2
  article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02781j
– volume: 15
  start-page: 5888
  issue: 9
  year: 2015
  ident: 10.1016/j.carbon.2024.118955_bib8
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 189
  start-page: 630
  year: 2022
  ident: 10.1016/j.carbon.2024.118955_bib16
  article-title: Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.03.023
– volume: 4
  start-page: 97
  year: 2014
  ident: 10.1016/j.carbon.2024.118955_bib30
  article-title: Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.009
– volume: 110
  start-page: 161
  issue: 2
  year: 1992
  ident: 10.1016/j.carbon.2024.118955_bib17
  article-title: Architecture of the leaf of the greater reed mace, Typha latifolia L
  publication-title: Bot. J. Linn. Soc.
  doi: 10.1111/j.1095-8339.1992.tb00289.x
– volume: 7
  start-page: 48
  issue: 1
  year: 2021
  ident: 10.1016/j.carbon.2024.118955_bib27
  article-title: Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00515-7
– volume: 23
  start-page: 947
  issue: 8
  year: 2013
  ident: 10.1016/j.carbon.2024.118955_bib3
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200691
– volume: 13
  start-page: 3469
  issue: 10
  year: 2020
  ident: 10.1016/j.carbon.2024.118955_bib9
  article-title: A revised mechanistic model for sodium insertion in hard carbons
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01363C
– volume: 89
  start-page: 913
  issue: 5
  year: 2010
  ident: 10.1016/j.carbon.2024.118955_bib22
  article-title: An overview of the chemical composition of biomass
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.10.022
– volume: 6
  start-page: 2338
  issue: 8
  year: 2013
  ident: 10.1016/j.carbon.2024.118955_bib4
  article-title: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40847g
– year: 2022
  ident: 10.1016/j.carbon.2024.118955_bib28
  article-title: Recent advances in carbon anodes for sodium-ion batteries
  publication-title: Chem. Rec.
– volume: 3
  start-page: 71
  issue: 1
  year: 2015
  ident: 10.1016/j.carbon.2024.118955_bib15
  article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05451B
– year: 2023
  ident: 10.1016/j.carbon.2024.118955_bib1
  article-title: Lattice‐strain engineering for heterogenous electrocatalytic oxygen evolution reaction
  publication-title: Adv. Mater.
– volume: 10
  year: 2022
  ident: 10.1016/j.carbon.2024.118955_bib29
  article-title: Recent advances for SEI of hard carbon anode in sodium-ion batteries: a mini review
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.986541
– volume: 2
  start-page: 5881
  issue: 18
  year: 2021
  ident: 10.1016/j.carbon.2024.118955_bib12
  article-title: A review on biomass-derived hard carbon materials for sodium-ion batteries
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00315A
– volume: 67
  start-page: 5029
  issue: 17
  year: 2016
  ident: 10.1016/j.carbon.2024.118955_bib18
  article-title: The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw268
– volume: 50
  start-page: 2595
  issue: 9
  year: 2002
  ident: 10.1016/j.carbon.2024.118955_bib20
  article-title: Chemical composition and enzymatic degradability of xylem and nonxylem walls isolated from alfalfa internodes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf011598c
– volume: 3
  issue: 4
  year: 2018
  ident: 10.1016/j.carbon.2024.118955_bib6
  article-title: Graphitic carbon materials for advanced sodium‐ion batteries
  publication-title: Small Methods
  doi: 10.1002/smtd.201800227
– volume: 8
  start-page: 1497
  issue: 3
  year: 2020
  ident: 10.1016/j.carbon.2024.118955_bib26
  article-title: Nonignorable influence of oxygen in hard carbon for sodium ion storage
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05948
– volume: 71
  start-page: 982
  issue: 8–9
  year: 2010
  ident: 10.1016/j.carbon.2024.118955_bib21
  article-title: The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.001
– volume: 8
  start-page: 1867
  issue: 3
  year: 2016
  ident: 10.1016/j.carbon.2024.118955_bib5
  article-title: Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09835
– volume: 426
  start-page: 178
  issue: 6963
  year: 2003
  ident: 10.1016/j.carbon.2024.118955_bib23
  article-title: Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds
  publication-title: Nature
  doi: 10.1038/nature02117
– volume: 139
  start-page: 248
  year: 2018
  ident: 10.1016/j.carbon.2024.118955_bib10
  article-title: Hard carbons derived from green phenolic resins for Na-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.036
– volume: 26
  start-page: 5535
  issue: 11
  year: 2020
  ident: 10.1016/j.carbon.2024.118955_bib14
  article-title: Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-020-03723-1
– volume: 13
  start-page: 3909
  issue: 8
  year: 2013
  ident: 10.1016/j.carbon.2024.118955_bib25
  article-title: Surface-driven sodium ion energy storage in nanocellular carbon foams
  publication-title: Nano Lett.
  doi: 10.1021/nl401995a
SSID ssj0004814
Score 2.4913502
Snippet Vascular tissue helps quickly pass the nutrients and water through the plant. Inspiringly, the transport of electrolyte solutions within such biological tissue...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118955
SubjectTerms Biomass-derived hard carbon
carbon
carbonization
electrodes
electrolytes
Pore structure
porosity
pyrolysis
Pyrolysis temperature
sodium
Sodium-ion battery
Title Vascular tissue-derived hard carbon with ultra-high rate capability for sodium-ion storage
URI https://dx.doi.org/10.1016/j.carbon.2024.118955
https://www.proquest.com/docview/3153557923
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPrE-SgSvsdtN9nUsxVIVe7JSvIS8Fip1W9qt4MXf7sw-FEUoeNxNsmxmhi8zycwXQq60CKzRXDMVCMWE0Y7pFGKeNAX33BhYtB3uQz6MwuFY3E2CSYP061oYTKussL_E9AKtqzedSpqdxXSKNb7ojqNHgFArJljBLiK08uuP7zQPEZf83njMj73r8rkix8uopZ4jC6ovADviBAv-_l6efgF1sfoM9shu5TbSXvln-6ThsgOy3a9vazskz09VSinNC1EyC6b15izFqipa_gHFTVe6nuVLxZCmmCJNBLQtSq7udwoOLF3N7XT9ykBdFBMnAW6OyHhw89gfsureBGY4T3IWO-XDrIPYE6rbdRiUGIWXCnNnvNCiFxU5z4BrojmPIpWENk09iJK7sUqU8vgxaWbzzJ0QagJo4EZZ7VIRaZPEXuhZX0NUqLQf2xbhtbikqUjF8W6Lmayzx15kOUWJQpalkFuEfY1alKQaG_pHtSbkD-OQgPsbRl7WipOgEDwMUZmbr1eSA9QHAbInnv7762dkB5_wcMkPzkkzX67dBfgouW4XRtgmW73b--HoEzO151E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3gxPiM-a-K1smy77O7REAkqcAJDvDR9bYJBILCYePG3O7MPjcbExOt2u2lnul-_aedByJUWgTWaa6YCoZgw2jGdgM2TJEDPjYFN2-E5ZH_Q6o7E_TgYV0i7jIVBt8oC-3NMz9C6eNIopNlYTCYY44t0HBkBQq0Yb5BNAb8vljG4fv_y8xBRnuAb7_nx9TJ-LnPyMmqp55gG1RcAHlGMEX-_708_kDrbfjo7ZLvgjfQmH9ouqbjZHqm1y3Jt--TpsfAppWkmS2Zhbb06SzGsiuYjoHjqStfTdKkY5immmCcC2hZ5su43CgyWruZ2sn5hoC-KnpOANwdk1LkdtrusKJzADOdxyiKnfJh1EHlCNZsOrRKjsKowd8ZrWaRRofMMcBPNeRiquGWTxAMzuRmpWCmPH5LqbD5zR4SaABq4UVa7RITaxJHX8qyvwSxU2o9snfBSXNIUWcWxuMVUlu5jzzKfokQhy1zIdcI-ey3yrBp_vB-WmpDfVocE4P-j52WpOAkKwdsQNXPz9UpywPogwPSJx__--gWpdYf9nuzdDR5OyBa24E2TH5ySarpcuzMgLKk-zxbkB40T6N8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+tissue-derived+hard+carbon+with+ultra-high+rate+capability+for+sodium-ion+storage&rft.jtitle=Carbon+%28New+York%29&rft.au=Pan%2C+Guoyu&rft.au=Zhao%2C+Renfei&rft.au=Huang%2C+Zhikun&rft.au=Cui%2C+Chenghao&rft.date=2024-04-25&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=224&rft_id=info:doi/10.1016%2Fj.carbon.2024.118955&rft.externalDocID=S000862232400174X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon