Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning

Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' d...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 222; p. 119798
Main Authors Shao, Yizhe, Liu, Jie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method.
AbstractList Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method.
Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method.
ArticleNumber 119798
Author Liu, Jie
Shao, Yizhe
Author_xml – sequence: 1
  givenname: Yizhe
  surname: Shao
  fullname: Shao, Yizhe
– sequence: 2
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: liujie@hnu.edu.cn
BookMark eNqFkE1rGzEQhkVJoI6Tf5CDjr2sK628kraHQgjpBwRySc5ClkbpmLVkS3KC_32Ubk89tMzAwDDPwPtckLOYIhByzdmKMy4_b1cZYqtVz3qx4nxUo_5AFlyrsWNS92dkwUbJOr7W_CO5KGXLGB-0Wi-If4oOcrUY64kejjZWDOhsxRRpSJn6U7Q7dDRD2adYoNAUWofyK2Wgrxg9rce8wQh0Ywt42ridjRjS5OkENkeMz5fkPNipwNWfuSRP3-4eb3909w_ff97e3HdOiLF2Wo59CDIIDn4TlAQWoPdyUGs1Wjb0bKOFGgLXWkNbadsCOuG1ZMIr5r1Ykk_z331OhyOUanZYHEyTjZCOxQg-CNkzrVU7_TKfupxKyRCMw_o7ds0WJ8OZeVdrtmZWa97Vmlltg9d_wfuMO5tP_8O-zhg0By8I2RSH0Px7zOCq8Qn__eANz7SZBw
CitedBy_id crossref_primary_10_1016_j_tws_2024_112117
crossref_primary_10_1109_ACCESS_2024_3510686
Cites_doi 10.1016/j.cma.2020.113109
10.1016/j.paerosci.2006.10.002
10.1016/j.neucom.2020.10.093
10.5194/wes-5-171-2020
10.1016/j.engstruct.2015.10.043
10.1002/we.1797
10.1007/s00158-023-03537-5
10.1016/j.jweia.2008.01.005
10.1016/j.ymssp.2012.08.012
10.1002/we.497
10.1016/j.cma.2018.07.035
10.1016/j.apm.2020.07.025
10.1016/j.apenergy.2017.05.009
10.1016/j.strusafe.2008.06.020
10.1016/j.finel.2013.01.007
10.1016/j.renene.2015.10.044
10.1126/science.290.5500.2319
10.1002/we.1650
10.1016/j.renene.2014.10.009
10.1016/j.compstruct.2018.09.090
10.1088/1742-6596/1618/4/042040
10.1016/j.renene.2017.07.070
10.1016/j.apm.2020.06.009
10.1016/j.renene.2016.01.010
10.1016/j.apenergy.2021.116913
10.1016/j.apenergy.2009.08.038
10.3390/en3020241
10.1016/j.rser.2016.06.007
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2023.119798
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
ExternalDocumentID 10_1016_j_renene_2023_119798
S0960148123017135
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-8692ff6f31edbf76e0fe2d657479a0520b8375f1888e4798a187c3d8603d70dd3
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 15:55:19 EDT 2025
Tue Jul 01 03:20:48 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Sat Mar 23 16:30:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Dynamic responses
Manifold learning
CDF
Offshore wind turbines
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-8692ff6f31edbf76e0fe2d657479a0520b8375f1888e4798a187c3d8603d70dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153620887
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153620887
crossref_citationtrail_10_1016_j_renene_2023_119798
crossref_primary_10_1016_j_renene_2023_119798
elsevier_sciencedirect_doi_10_1016_j_renene_2023_119798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jonkman J. FAST: an Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal axis Wind Turbines. National Renewable Energy Laboratory, Golden, CO, accessed December 30, 2015.
Stieng, Muskulus (bib20) 2020; 5
Schröder, Laura, Krasimirov, John (bib6) 2020; 1618
Jonkman, Buhl (bib29) 2005
Saranyasoontorn, Manuel (bib34) 2008; 96
Kwon (bib14) 2010; 87
Toft, Svenningsen, Moser, Sørensen, Thøgersen (bib24) 2016; 106
Ferson, Kreinovick, Ginzburg, Sentz (bib25) 2003
Shan, Wang (bib43) 2010
Bai, Jiang, Han, Hu (bib11) 2013; 68
Abdallah, Natarajan, Sørensen (bib22) 2015; 75
Sørensen, Toft (bib19) 2010; 3
Dimitrov, Natarajan, Kelly (bib35) 2015; 18
Ouyang, Liu, Han, Liu, Ni, Zhang (bib13) 2020; 88
Zhao, Liu, He (bib41) 2023; 66
Xu, Yan, Zhang, Zhang, Han, Liu (bib31) 2021; 296
Quan, Nan (bib26) 2022; 142
Jonkman (bib42) 2014
Tenenbaum, Silva, Langford (bib38) 2000; 290
Gentils, Wang, Kolios (bib1) 2017; 199
Murcia, Réthoré, Dimitrov, Natarajan, Sørensen, Graf (bib37) 2018; 119
Update (bib2) 2017
Matthies (bib10) 2007
Cao, Liu, Xie, Jiang, Bi (bib18) 2021; 89
Turbines (bib7) 2005
Jonkman, Butterfield, Musial, Scott (bib28) 2009
Ea, D, C (bib36) 2003; 125
Hansen, Sørensen, Voutsinas, Sørensen, Madsen (bib5) 2006; 42
Mi, Ya, Dongran, Jian, Mei, Xiaofei (bib32) 2021; 229
Naskar, Mukhopadhyay, Sriramula (bib12) 2019; 209
Toft, Svenningsen, Sørensen, Moser, Thøgersen (bib15) 2016; 90
Natarajan, Verelst (bib4) 2012; 15
Meng, Liu, Cao, Yu, Yang (bib17) 2020; 367
Abdallah, Natarajan, Sørensen (bib8) 2016; 87
Vidal, Ma, Sastry, Vidal, Ma, Sastry (bib39) 2016
Kiureghian, Ditlevsen (bib9) 2009; 31
Ivanhoe, Wang, Kolios (bib23) 2020
Jie, Corinna, Tuhfe, Mark, Arne, Gregor (bib21) 2022; 165
Wang, Liu, Kolios (bib3) 2016; 64
Liu, Meng, Xu, Zhang, Jiang (bib16) 2018; 342
Crespo, Kenny, Giesy (bib27) 2013; 37
Lataniotis, Marelli, Sudret (bib40) 2015
He, Li, Wang, Yao (bib44) 2021; 430
Clifton, Daniels, Lehning (bib33) 2014; 17
Cao (10.1016/j.renene.2023.119798_bib18) 2021; 89
Jonkman (10.1016/j.renene.2023.119798_bib29) 2005
Kiureghian (10.1016/j.renene.2023.119798_bib9) 2009; 31
He (10.1016/j.renene.2023.119798_bib44) 2021; 430
Stieng (10.1016/j.renene.2023.119798_bib20) 2020; 5
Matthies (10.1016/j.renene.2023.119798_bib10) 2007
Gentils (10.1016/j.renene.2023.119798_bib1) 2017; 199
Crespo (10.1016/j.renene.2023.119798_bib27) 2013; 37
Lataniotis (10.1016/j.renene.2023.119798_bib40) 2015
Wang (10.1016/j.renene.2023.119798_bib3) 2016; 64
Mi (10.1016/j.renene.2023.119798_bib32) 2021; 229
Dimitrov (10.1016/j.renene.2023.119798_bib35) 2015; 18
Saranyasoontorn (10.1016/j.renene.2023.119798_bib34) 2008; 96
Liu (10.1016/j.renene.2023.119798_bib16) 2018; 342
Tenenbaum (10.1016/j.renene.2023.119798_bib38) 2000; 290
Shan (10.1016/j.renene.2023.119798_bib43) 2010
Turbines (10.1016/j.renene.2023.119798_bib7) 2005
Abdallah (10.1016/j.renene.2023.119798_bib22) 2015; 75
Hansen (10.1016/j.renene.2023.119798_bib5) 2006; 42
Naskar (10.1016/j.renene.2023.119798_bib12) 2019; 209
Meng (10.1016/j.renene.2023.119798_bib17) 2020; 367
Clifton (10.1016/j.renene.2023.119798_bib33) 2014; 17
Natarajan (10.1016/j.renene.2023.119798_bib4) 2012; 15
Ouyang (10.1016/j.renene.2023.119798_bib13) 2020; 88
Ea (10.1016/j.renene.2023.119798_bib36) 2003; 125
Murcia (10.1016/j.renene.2023.119798_bib37) 2018; 119
Toft (10.1016/j.renene.2023.119798_bib24) 2016; 106
Jonkman (10.1016/j.renene.2023.119798_bib42) 2014
Schröder (10.1016/j.renene.2023.119798_bib6) 2020; 1618
Toft (10.1016/j.renene.2023.119798_bib15) 2016; 90
10.1016/j.renene.2023.119798_bib30
Kwon (10.1016/j.renene.2023.119798_bib14) 2010; 87
Jonkman (10.1016/j.renene.2023.119798_bib28) 2009
Update (10.1016/j.renene.2023.119798_bib2) 2017
Ferson (10.1016/j.renene.2023.119798_bib25) 2003
Sørensen (10.1016/j.renene.2023.119798_bib19) 2010; 3
Vidal (10.1016/j.renene.2023.119798_bib39) 2016
Jie (10.1016/j.renene.2023.119798_bib21) 2022; 165
Quan (10.1016/j.renene.2023.119798_bib26) 2022; 142
Xu (10.1016/j.renene.2023.119798_bib31) 2021; 296
Ivanhoe (10.1016/j.renene.2023.119798_bib23) 2020
Zhao (10.1016/j.renene.2023.119798_bib41) 2023; 66
Abdallah (10.1016/j.renene.2023.119798_bib8) 2016; 87
Bai (10.1016/j.renene.2023.119798_bib11) 2013; 68
References_xml – volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: bib38
  article-title: A global geometric framework for non-linear dimensionality reduction
  publication-title: Science
– year: 2014
  ident: bib42
  article-title: Turbsim User's Guide V2. 00.00
– volume: 31
  year: 2009
  ident: bib9
  article-title: Aleatory or epistemic? Does it matter?
  publication-title: Struct. Saf.
– volume: 15
  start-page: 679
  year: 2012
  end-page: 697
  ident: bib4
  article-title: Outlier robustness for wind turbine extrapolated extreme loads
  publication-title: Wind Energy
– volume: 18
  start-page: 1917
  year: 2015
  end-page: 1931
  ident: bib35
  article-title: Model of wind shear conditional on turbulence and its impact on wind turbine loads
  publication-title: Wind Energy
– year: 2009
  ident: bib28
  article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System Development
– year: 2005
  ident: bib29
  article-title: FAST User's Guide
– start-page: 9
  year: 2015
  end-page: 105
  ident: bib40
  article-title: UQLab User Manual–Kriging (Gaussian Process Modelling)
– volume: 142
  year: 2022
  ident: bib26
  article-title: A probability box representation method for power flow analysis considering both interval and probabilistic uncertainties
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2005
  ident: bib7
  article-title: Part 1: Design Requirements, IEC 61400-1
– volume: 5
  start-page: 171
  year: 2020
  end-page: 198
  ident: bib20
  article-title: Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
  publication-title: Wind Energy Sci.
– volume: 296
  year: 2021
  ident: bib31
  article-title: Quantile based probabilistic wind turbine power curve model
  publication-title: Appl. Energy
– volume: 17
  start-page: 1543
  year: 2014
  end-page: 1562
  ident: bib33
  article-title: Effect of winds in a mountain pass on turbine performance
  publication-title: Wind Energy
– year: 2016
  ident: bib39
  article-title: Principal Component Analysis
– volume: 68
  start-page: 52
  year: 2013
  end-page: 62
  ident: bib11
  article-title: Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties
  publication-title: Finite Elem. Anal. Des.
– volume: 119
  year: 2018
  ident: bib37
  article-title: Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates
  publication-title: Renew. Energy
– volume: 66
  start-page: 101
  year: 2023
  ident: bib41
  article-title: A general multi-fidelity metamodeling framework for models with various output correlation
  publication-title: Struct. Multidiscip. Optim.
– volume: 199
  start-page: 187
  year: 2017
  end-page: 204
  ident: bib1
  article-title: Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm
  publication-title: Appl. Energy
– volume: 1618
  year: 2020
  ident: bib6
  article-title: Uncertainty propagation and sensitivity analysis of an artificial neural network used as wind turbine load surrogate model
  publication-title: J. Phys. Conf.
– volume: 430
  start-page: 121
  year: 2021
  end-page: 137
  ident: bib44
  article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression
  publication-title: Neurocomputing
– volume: 90
  start-page: 352
  year: 2016
  end-page: 361
  ident: bib15
  article-title: Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads
  publication-title: Renew. Energy
– volume: 37
  year: 2013
  ident: bib27
  article-title: Reliability analysis of polynomial systems subject to p-box uncertainties
  publication-title: Mech. Syst. Signal Process.
– start-page: 105
  year: 2007
  end-page: 135
  ident: bib10
  article-title: Quantifying Uncertainty: Modern Computational Representation of Probability and Applications. Extreme Man-Made and Natural Hazards in Dynamics of Structures
– volume: 42
  year: 2006
  ident: bib5
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog. Aero. Sci.
– year: 2017
  ident: bib2
  article-title: Global Wind Report
– start-page: 216
  year: 2020
  ident: bib23
  article-title: Generic framework for reliability assessment of offshore wind turbine jacket support structures under stochastic and ti-me dependent variables
  publication-title: Ocean Eng.
– reference: Jonkman J. FAST: an Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal axis Wind Turbines. National Renewable Energy Laboratory, Golden, CO, accessed December 30, 2015.
– volume: 209
  start-page: 940
  year: 2019
  end-page: 967
  ident: bib12
  article-title: Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites
  publication-title: Compos. Struct.
– volume: 87
  start-page: 856
  year: 2010
  end-page: 865
  ident: bib14
  article-title: Uncertainty analysis of wind energy potential assessment
  publication-title: Appl. Energy
– volume: 64
  start-page: 195
  year: 2016
  end-page: 210
  ident: bib3
  article-title: State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling
  publication-title: Renew. Sustain. Energy Rev.
– volume: 342
  year: 2018
  ident: bib16
  article-title: Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 165
  year: 2022
  ident: bib21
  article-title: Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain
  publication-title: Renew. Sustain. Energy Rev.
– year: 2003
  ident: bib25
  article-title: Constructing Probability Boxes and Dempster-Shafer Structures
– volume: 87
  year: 2016
  ident: bib8
  article-title: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability
  publication-title: Renew. Energy
– volume: 106
  year: 2016
  ident: bib24
  article-title: Assessment of wind turbine structural integrity using response surface methodology
  publication-title: Eng. Struct.
– volume: 367
  year: 2020
  ident: bib17
  article-title: A general frame for uncertainty propagation under multimodally distributed random variables
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 125
  year: 2003
  ident: bib36
  article-title: Wind shear and turbulence effects on rotor fatigue and loads control
  publication-title: J. Sol. Energy Eng.
– volume: 229
  year: 2021
  ident: bib32
  article-title: Uncertainty and global sensitivity analysis of levelized cost of energy in wind power generation
  publication-title: Energy Convers. Manag.
– volume: 3
  start-page: 241
  year: 2010
  end-page: 257
  ident: bib19
  article-title: Probabilistic design of wind turbines
  publication-title: Energies
– year: 2010
  ident: bib43
  article-title: Metamodeling for High Dimensional Simulation-Based Design Problems
– volume: 89
  year: 2021
  ident: bib18
  article-title: Non-probabilistic polygonal convex set model for structural uncertainty quantification
  publication-title: Appl. Math. Model.
– volume: 75
  year: 2015
  ident: bib22
  article-title: Impact of uncertainty in airfoil characteristics on wind turbine extreme loads
  publication-title: Renew. Energy
– volume: 96
  start-page: 503
  year: 2008
  end-page: 523
  ident: bib34
  article-title: On the propagation of uncertainty in inflow turbulence to wind turbine loads
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 88
  start-page: 190
  year: 2020
  end-page: 207
  ident: bib13
  article-title: Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model
  publication-title: Appl. Math. Model.
– year: 2005
  ident: 10.1016/j.renene.2023.119798_bib29
– volume: 229
  year: 2021
  ident: 10.1016/j.renene.2023.119798_bib32
  article-title: Uncertainty and global sensitivity analysis of levelized cost of energy in wind power generation
  publication-title: Energy Convers. Manag.
– volume: 367
  year: 2020
  ident: 10.1016/j.renene.2023.119798_bib17
  article-title: A general frame for uncertainty propagation under multimodally distributed random variables
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113109
– volume: 142
  year: 2022
  ident: 10.1016/j.renene.2023.119798_bib26
  article-title: A probability box representation method for power flow analysis considering both interval and probabilistic uncertainties
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 42
  year: 2006
  ident: 10.1016/j.renene.2023.119798_bib5
  article-title: State of the art in wind turbine aerodynamics and aeroelasticity
  publication-title: Prog. Aero. Sci.
  doi: 10.1016/j.paerosci.2006.10.002
– volume: 125
  year: 2003
  ident: 10.1016/j.renene.2023.119798_bib36
  article-title: Wind shear and turbulence effects on rotor fatigue and loads control
  publication-title: J. Sol. Energy Eng.
– volume: 430
  start-page: 121
  year: 2021
  ident: 10.1016/j.renene.2023.119798_bib44
  article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.093
– volume: 5
  start-page: 171
  year: 2020
  ident: 10.1016/j.renene.2023.119798_bib20
  article-title: Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling
  publication-title: Wind Energy Sci.
  doi: 10.5194/wes-5-171-2020
– volume: 106
  year: 2016
  ident: 10.1016/j.renene.2023.119798_bib24
  article-title: Assessment of wind turbine structural integrity using response surface methodology
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.10.043
– volume: 18
  start-page: 1917
  year: 2015
  ident: 10.1016/j.renene.2023.119798_bib35
  article-title: Model of wind shear conditional on turbulence and its impact on wind turbine loads
  publication-title: Wind Energy
  doi: 10.1002/we.1797
– year: 2005
  ident: 10.1016/j.renene.2023.119798_bib7
– volume: 66
  start-page: 101
  year: 2023
  ident: 10.1016/j.renene.2023.119798_bib41
  article-title: A general multi-fidelity metamodeling framework for models with various output correlation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-023-03537-5
– volume: 96
  start-page: 503
  year: 2008
  ident: 10.1016/j.renene.2023.119798_bib34
  article-title: On the propagation of uncertainty in inflow turbulence to wind turbine loads
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2008.01.005
– volume: 37
  year: 2013
  ident: 10.1016/j.renene.2023.119798_bib27
  article-title: Reliability analysis of polynomial systems subject to p-box uncertainties
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.08.012
– start-page: 105
  year: 2007
  ident: 10.1016/j.renene.2023.119798_bib10
– volume: 15
  start-page: 679
  year: 2012
  ident: 10.1016/j.renene.2023.119798_bib4
  article-title: Outlier robustness for wind turbine extrapolated extreme loads
  publication-title: Wind Energy
  doi: 10.1002/we.497
– year: 2017
  ident: 10.1016/j.renene.2023.119798_bib2
– volume: 342
  year: 2018
  ident: 10.1016/j.renene.2023.119798_bib16
  article-title: Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.07.035
– volume: 89
  year: 2021
  ident: 10.1016/j.renene.2023.119798_bib18
  article-title: Non-probabilistic polygonal convex set model for structural uncertainty quantification
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.07.025
– volume: 199
  start-page: 187
  year: 2017
  ident: 10.1016/j.renene.2023.119798_bib1
  article-title: Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.009
– volume: 31
  year: 2009
  ident: 10.1016/j.renene.2023.119798_bib9
  article-title: Aleatory or epistemic? Does it matter?
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.020
– volume: 68
  start-page: 52
  year: 2013
  ident: 10.1016/j.renene.2023.119798_bib11
  article-title: Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2013.01.007
– volume: 87
  year: 2016
  ident: 10.1016/j.renene.2023.119798_bib8
  article-title: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.10.044
– volume: 165
  year: 2022
  ident: 10.1016/j.renene.2023.119798_bib21
  article-title: Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain
  publication-title: Renew. Sustain. Energy Rev.
– volume: 290
  start-page: 2319
  year: 2000
  ident: 10.1016/j.renene.2023.119798_bib38
  article-title: A global geometric framework for non-linear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 17
  start-page: 1543
  year: 2014
  ident: 10.1016/j.renene.2023.119798_bib33
  article-title: Effect of winds in a mountain pass on turbine performance
  publication-title: Wind Energy
  doi: 10.1002/we.1650
– volume: 75
  year: 2015
  ident: 10.1016/j.renene.2023.119798_bib22
  article-title: Impact of uncertainty in airfoil characteristics on wind turbine extreme loads
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.009
– volume: 209
  start-page: 940
  year: 2019
  ident: 10.1016/j.renene.2023.119798_bib12
  article-title: Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.09.090
– year: 2009
  ident: 10.1016/j.renene.2023.119798_bib28
– year: 2003
  ident: 10.1016/j.renene.2023.119798_bib25
– volume: 1618
  year: 2020
  ident: 10.1016/j.renene.2023.119798_bib6
  article-title: Uncertainty propagation and sensitivity analysis of an artificial neural network used as wind turbine load surrogate model
  publication-title: J. Phys. Conf.
  doi: 10.1088/1742-6596/1618/4/042040
– volume: 119
  year: 2018
  ident: 10.1016/j.renene.2023.119798_bib37
  article-title: Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.07.070
– ident: 10.1016/j.renene.2023.119798_bib30
– year: 2016
  ident: 10.1016/j.renene.2023.119798_bib39
– volume: 88
  start-page: 190
  year: 2020
  ident: 10.1016/j.renene.2023.119798_bib13
  article-title: Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.06.009
– volume: 90
  start-page: 352
  year: 2016
  ident: 10.1016/j.renene.2023.119798_bib15
  article-title: Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.010
– year: 2014
  ident: 10.1016/j.renene.2023.119798_bib42
– year: 2010
  ident: 10.1016/j.renene.2023.119798_bib43
– volume: 296
  year: 2021
  ident: 10.1016/j.renene.2023.119798_bib31
  article-title: Quantile based probabilistic wind turbine power curve model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116913
– volume: 87
  start-page: 856
  year: 2010
  ident: 10.1016/j.renene.2023.119798_bib14
  article-title: Uncertainty analysis of wind energy potential assessment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.08.038
– volume: 3
  start-page: 241
  year: 2010
  ident: 10.1016/j.renene.2023.119798_bib19
  article-title: Probabilistic design of wind turbines
  publication-title: Energies
  doi: 10.3390/en3020241
– start-page: 216
  year: 2020
  ident: 10.1016/j.renene.2023.119798_bib23
  article-title: Generic framework for reliability assessment of offshore wind turbine jacket support structures under stochastic and ti-me dependent variables
  publication-title: Ocean Eng.
– start-page: 9
  year: 2015
  ident: 10.1016/j.renene.2023.119798_bib40
– volume: 64
  start-page: 195
  year: 2016
  ident: 10.1016/j.renene.2023.119798_bib3
  article-title: State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.007
SSID ssj0015874
Score 2.4470377
Snippet Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119798
SubjectTerms case studies
CDF
cumulative distribution
Dynamic responses
Manifold learning
Offshore wind turbines
probabilistic models
uncertainty
Uncertainty quantification
wind
wind power
wind turbines
Title Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning
URI https://dx.doi.org/10.1016/j.renene.2023.119798
https://www.proquest.com/docview/3153620887
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1xfRPBad9ukaXpcFpdV0YsueAttHroi7brbRbz4251pWlFBBKGXhkwpk2Qe5JtvCDlNnGBaaBOEBkwglykcqSzFXi8yzEIXCx1hvfP1jRiN-eV9fL9EBm0tDMIqG9vvbXptrZuRbqPN7nQy6d5i8A3BPJhe5HxhWGjOeYK7_Oz9E-YRxtIzMcPkAGe35XM1xgtZIwsky4zYGd6npfI39_TDUNfeZ7hB1puwkfb9n22SJVtskbUvZILbxIzh3-v7_eqNviwyjwKqFU8hMqXG956nM4-KtXNaOnjc_LGcWfoKuTkF9wOJsqXo2gwFOSTHcOWzoU1ziYcdMh6e3w1GQdNDIdCMpVUgRRo5JxwLrcldImzP2ciIGLKINEMMTA4ZauxCSIQtDMkslIlmRooeM0nPGLZLlouysHuEQmAY8owJq6XhCdMgoRPtMi51yvMo7hDWqk7phmAc-1w8qxZJ9qS8whUqXHmFd0jwKTX1BBt_zE_aVVHfNooCH_CH5Em7iArOEF6MZIUtF3PFwOyLCO3t_r-_fkBW4Y17QPchWa5mC3sE8UqVH9cb8pis9C-uRjcfHZ7rnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3itu23aND2KKOtrL7rgLXTz0BVpdR-I_96ZphUVRBB6SjOlTJJvZpjJNwBHqRNcC22C0CAExjLDI5Vn1OtFhnnoEqEjuu980xPdfnx5n9zPwGlzF4bKKmvs95heoXU90q612X4ZDtu35HyjM4_QS5wvPJmFOWKnSlowd3Jx1e19JhMS6cmYcX5AAs0NuqrMi4gjC-LLjPgxpdQy-ZuF-oHVlQE6X4al2nNkJ_7nVmDGFquw-IVPcA1MH3-_SvFP3tnrNPeFQJXuGTqnzPj282zkC2PtmJUOHzd-LEeWvWF4ztACYaxsGVk3w1CO-DFc-WxY3V_iYR3652d3p92gbqMQaM6zSSBFFjknHA-tGbhU2I6zkREJBhJZTmUwAwxSExdiLGxxSOahTDU3UnS4STvG8A1oFWVhN4GhbxjGORdWSxOnXKOETrXLY6mzeBAlW8Ab1Sldc4xTq4tn1RSTPSmvcEUKV17hWxB8Sr14jo0_5qfNqqhve0WhGfhD8rBZRIXHiHIjeWHL6VhxRH4REeRu__vrBzDfvbu5VtcXvasdWMA3sa_v3oXWZDS1e-i-TAb79fb8ADEV7k4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+for+dynamic+responses+of+offshore+wind+turbine+based+on+manifold+learning&rft.jtitle=Renewable+energy&rft.au=Shao%2C+Yizhe&rft.au=Liu%2C+Jie&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=222&rft_id=info:doi/10.1016%2Fj.renene.2023.119798&rft.externalDocID=S0960148123017135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon