Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning
Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' d...
Saved in:
Published in | Renewable energy Vol. 222; p. 119798 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method. |
---|---|
AbstractList | Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method. Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method. |
ArticleNumber | 119798 |
Author | Liu, Jie Shao, Yizhe |
Author_xml | – sequence: 1 givenname: Yizhe surname: Shao fullname: Shao, Yizhe – sequence: 2 givenname: Jie surname: Liu fullname: Liu, Jie email: liujie@hnu.edu.cn |
BookMark | eNqFkE1rGzEQhkVJoI6Tf5CDjr2sK628kraHQgjpBwRySc5ClkbpmLVkS3KC_32Ubk89tMzAwDDPwPtckLOYIhByzdmKMy4_b1cZYqtVz3qx4nxUo_5AFlyrsWNS92dkwUbJOr7W_CO5KGXLGB-0Wi-If4oOcrUY64kejjZWDOhsxRRpSJn6U7Q7dDRD2adYoNAUWofyK2Wgrxg9rce8wQh0Ywt42ridjRjS5OkENkeMz5fkPNipwNWfuSRP3-4eb3909w_ff97e3HdOiLF2Wo59CDIIDn4TlAQWoPdyUGs1Wjb0bKOFGgLXWkNbadsCOuG1ZMIr5r1Ykk_z331OhyOUanZYHEyTjZCOxQg-CNkzrVU7_TKfupxKyRCMw_o7ds0WJ8OZeVdrtmZWa97Vmlltg9d_wfuMO5tP_8O-zhg0By8I2RSH0Px7zOCq8Qn__eANz7SZBw |
CitedBy_id | crossref_primary_10_1016_j_tws_2024_112117 crossref_primary_10_1109_ACCESS_2024_3510686 |
Cites_doi | 10.1016/j.cma.2020.113109 10.1016/j.paerosci.2006.10.002 10.1016/j.neucom.2020.10.093 10.5194/wes-5-171-2020 10.1016/j.engstruct.2015.10.043 10.1002/we.1797 10.1007/s00158-023-03537-5 10.1016/j.jweia.2008.01.005 10.1016/j.ymssp.2012.08.012 10.1002/we.497 10.1016/j.cma.2018.07.035 10.1016/j.apm.2020.07.025 10.1016/j.apenergy.2017.05.009 10.1016/j.strusafe.2008.06.020 10.1016/j.finel.2013.01.007 10.1016/j.renene.2015.10.044 10.1126/science.290.5500.2319 10.1002/we.1650 10.1016/j.renene.2014.10.009 10.1016/j.compstruct.2018.09.090 10.1088/1742-6596/1618/4/042040 10.1016/j.renene.2017.07.070 10.1016/j.apm.2020.06.009 10.1016/j.renene.2016.01.010 10.1016/j.apenergy.2021.116913 10.1016/j.apenergy.2009.08.038 10.3390/en3020241 10.1016/j.rser.2016.06.007 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2023.119798 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
ExternalDocumentID | 10_1016_j_renene_2023_119798 S0960148123017135 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-8692ff6f31edbf76e0fe2d657479a0520b8375f1888e4798a187c3d8603d70dd3 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 15:55:19 EDT 2025 Tue Jul 01 03:20:48 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Sat Mar 23 16:30:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Uncertainty quantification Dynamic responses Manifold learning CDF Offshore wind turbines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-8692ff6f31edbf76e0fe2d657479a0520b8375f1888e4798a187c3d8603d70dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153620887 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153620887 crossref_citationtrail_10_1016_j_renene_2023_119798 crossref_primary_10_1016_j_renene_2023_119798 elsevier_sciencedirect_doi_10_1016_j_renene_2023_119798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jonkman J. FAST: an Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal axis Wind Turbines. National Renewable Energy Laboratory, Golden, CO, accessed December 30, 2015. Stieng, Muskulus (bib20) 2020; 5 Schröder, Laura, Krasimirov, John (bib6) 2020; 1618 Jonkman, Buhl (bib29) 2005 Saranyasoontorn, Manuel (bib34) 2008; 96 Kwon (bib14) 2010; 87 Toft, Svenningsen, Moser, Sørensen, Thøgersen (bib24) 2016; 106 Ferson, Kreinovick, Ginzburg, Sentz (bib25) 2003 Shan, Wang (bib43) 2010 Bai, Jiang, Han, Hu (bib11) 2013; 68 Abdallah, Natarajan, Sørensen (bib22) 2015; 75 Sørensen, Toft (bib19) 2010; 3 Dimitrov, Natarajan, Kelly (bib35) 2015; 18 Ouyang, Liu, Han, Liu, Ni, Zhang (bib13) 2020; 88 Zhao, Liu, He (bib41) 2023; 66 Xu, Yan, Zhang, Zhang, Han, Liu (bib31) 2021; 296 Quan, Nan (bib26) 2022; 142 Jonkman (bib42) 2014 Tenenbaum, Silva, Langford (bib38) 2000; 290 Gentils, Wang, Kolios (bib1) 2017; 199 Murcia, Réthoré, Dimitrov, Natarajan, Sørensen, Graf (bib37) 2018; 119 Update (bib2) 2017 Matthies (bib10) 2007 Cao, Liu, Xie, Jiang, Bi (bib18) 2021; 89 Turbines (bib7) 2005 Jonkman, Butterfield, Musial, Scott (bib28) 2009 Ea, D, C (bib36) 2003; 125 Hansen, Sørensen, Voutsinas, Sørensen, Madsen (bib5) 2006; 42 Mi, Ya, Dongran, Jian, Mei, Xiaofei (bib32) 2021; 229 Naskar, Mukhopadhyay, Sriramula (bib12) 2019; 209 Toft, Svenningsen, Sørensen, Moser, Thøgersen (bib15) 2016; 90 Natarajan, Verelst (bib4) 2012; 15 Meng, Liu, Cao, Yu, Yang (bib17) 2020; 367 Abdallah, Natarajan, Sørensen (bib8) 2016; 87 Vidal, Ma, Sastry, Vidal, Ma, Sastry (bib39) 2016 Kiureghian, Ditlevsen (bib9) 2009; 31 Ivanhoe, Wang, Kolios (bib23) 2020 Jie, Corinna, Tuhfe, Mark, Arne, Gregor (bib21) 2022; 165 Wang, Liu, Kolios (bib3) 2016; 64 Liu, Meng, Xu, Zhang, Jiang (bib16) 2018; 342 Crespo, Kenny, Giesy (bib27) 2013; 37 Lataniotis, Marelli, Sudret (bib40) 2015 He, Li, Wang, Yao (bib44) 2021; 430 Clifton, Daniels, Lehning (bib33) 2014; 17 Cao (10.1016/j.renene.2023.119798_bib18) 2021; 89 Jonkman (10.1016/j.renene.2023.119798_bib29) 2005 Kiureghian (10.1016/j.renene.2023.119798_bib9) 2009; 31 He (10.1016/j.renene.2023.119798_bib44) 2021; 430 Stieng (10.1016/j.renene.2023.119798_bib20) 2020; 5 Matthies (10.1016/j.renene.2023.119798_bib10) 2007 Gentils (10.1016/j.renene.2023.119798_bib1) 2017; 199 Crespo (10.1016/j.renene.2023.119798_bib27) 2013; 37 Lataniotis (10.1016/j.renene.2023.119798_bib40) 2015 Wang (10.1016/j.renene.2023.119798_bib3) 2016; 64 Mi (10.1016/j.renene.2023.119798_bib32) 2021; 229 Dimitrov (10.1016/j.renene.2023.119798_bib35) 2015; 18 Saranyasoontorn (10.1016/j.renene.2023.119798_bib34) 2008; 96 Liu (10.1016/j.renene.2023.119798_bib16) 2018; 342 Tenenbaum (10.1016/j.renene.2023.119798_bib38) 2000; 290 Shan (10.1016/j.renene.2023.119798_bib43) 2010 Turbines (10.1016/j.renene.2023.119798_bib7) 2005 Abdallah (10.1016/j.renene.2023.119798_bib22) 2015; 75 Hansen (10.1016/j.renene.2023.119798_bib5) 2006; 42 Naskar (10.1016/j.renene.2023.119798_bib12) 2019; 209 Meng (10.1016/j.renene.2023.119798_bib17) 2020; 367 Clifton (10.1016/j.renene.2023.119798_bib33) 2014; 17 Natarajan (10.1016/j.renene.2023.119798_bib4) 2012; 15 Ouyang (10.1016/j.renene.2023.119798_bib13) 2020; 88 Ea (10.1016/j.renene.2023.119798_bib36) 2003; 125 Murcia (10.1016/j.renene.2023.119798_bib37) 2018; 119 Toft (10.1016/j.renene.2023.119798_bib24) 2016; 106 Jonkman (10.1016/j.renene.2023.119798_bib42) 2014 Schröder (10.1016/j.renene.2023.119798_bib6) 2020; 1618 Toft (10.1016/j.renene.2023.119798_bib15) 2016; 90 10.1016/j.renene.2023.119798_bib30 Kwon (10.1016/j.renene.2023.119798_bib14) 2010; 87 Jonkman (10.1016/j.renene.2023.119798_bib28) 2009 Update (10.1016/j.renene.2023.119798_bib2) 2017 Ferson (10.1016/j.renene.2023.119798_bib25) 2003 Sørensen (10.1016/j.renene.2023.119798_bib19) 2010; 3 Vidal (10.1016/j.renene.2023.119798_bib39) 2016 Jie (10.1016/j.renene.2023.119798_bib21) 2022; 165 Quan (10.1016/j.renene.2023.119798_bib26) 2022; 142 Xu (10.1016/j.renene.2023.119798_bib31) 2021; 296 Ivanhoe (10.1016/j.renene.2023.119798_bib23) 2020 Zhao (10.1016/j.renene.2023.119798_bib41) 2023; 66 Abdallah (10.1016/j.renene.2023.119798_bib8) 2016; 87 Bai (10.1016/j.renene.2023.119798_bib11) 2013; 68 |
References_xml | – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: bib38 article-title: A global geometric framework for non-linear dimensionality reduction publication-title: Science – year: 2014 ident: bib42 article-title: Turbsim User's Guide V2. 00.00 – volume: 31 year: 2009 ident: bib9 article-title: Aleatory or epistemic? Does it matter? publication-title: Struct. Saf. – volume: 15 start-page: 679 year: 2012 end-page: 697 ident: bib4 article-title: Outlier robustness for wind turbine extrapolated extreme loads publication-title: Wind Energy – volume: 18 start-page: 1917 year: 2015 end-page: 1931 ident: bib35 article-title: Model of wind shear conditional on turbulence and its impact on wind turbine loads publication-title: Wind Energy – year: 2009 ident: bib28 article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System Development – year: 2005 ident: bib29 article-title: FAST User's Guide – start-page: 9 year: 2015 end-page: 105 ident: bib40 article-title: UQLab User Manual–Kriging (Gaussian Process Modelling) – volume: 142 year: 2022 ident: bib26 article-title: A probability box representation method for power flow analysis considering both interval and probabilistic uncertainties publication-title: Int. J. Electr. Power Energy Syst. – year: 2005 ident: bib7 article-title: Part 1: Design Requirements, IEC 61400-1 – volume: 5 start-page: 171 year: 2020 end-page: 198 ident: bib20 article-title: Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling publication-title: Wind Energy Sci. – volume: 296 year: 2021 ident: bib31 article-title: Quantile based probabilistic wind turbine power curve model publication-title: Appl. Energy – volume: 17 start-page: 1543 year: 2014 end-page: 1562 ident: bib33 article-title: Effect of winds in a mountain pass on turbine performance publication-title: Wind Energy – year: 2016 ident: bib39 article-title: Principal Component Analysis – volume: 68 start-page: 52 year: 2013 end-page: 62 ident: bib11 article-title: Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties publication-title: Finite Elem. Anal. Des. – volume: 119 year: 2018 ident: bib37 article-title: Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates publication-title: Renew. Energy – volume: 66 start-page: 101 year: 2023 ident: bib41 article-title: A general multi-fidelity metamodeling framework for models with various output correlation publication-title: Struct. Multidiscip. Optim. – volume: 199 start-page: 187 year: 2017 end-page: 204 ident: bib1 article-title: Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm publication-title: Appl. Energy – volume: 1618 year: 2020 ident: bib6 article-title: Uncertainty propagation and sensitivity analysis of an artificial neural network used as wind turbine load surrogate model publication-title: J. Phys. Conf. – volume: 430 start-page: 121 year: 2021 end-page: 137 ident: bib44 article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression publication-title: Neurocomputing – volume: 90 start-page: 352 year: 2016 end-page: 361 ident: bib15 article-title: Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads publication-title: Renew. Energy – volume: 37 year: 2013 ident: bib27 article-title: Reliability analysis of polynomial systems subject to p-box uncertainties publication-title: Mech. Syst. Signal Process. – start-page: 105 year: 2007 end-page: 135 ident: bib10 article-title: Quantifying Uncertainty: Modern Computational Representation of Probability and Applications. Extreme Man-Made and Natural Hazards in Dynamics of Structures – volume: 42 year: 2006 ident: bib5 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog. Aero. Sci. – year: 2017 ident: bib2 article-title: Global Wind Report – start-page: 216 year: 2020 ident: bib23 article-title: Generic framework for reliability assessment of offshore wind turbine jacket support structures under stochastic and ti-me dependent variables publication-title: Ocean Eng. – reference: Jonkman J. FAST: an Aeroelastic Computer-Aided Engineering (CAE) Tool for Horizontal axis Wind Turbines. National Renewable Energy Laboratory, Golden, CO, accessed December 30, 2015. – volume: 209 start-page: 940 year: 2019 end-page: 967 ident: bib12 article-title: Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites publication-title: Compos. Struct. – volume: 87 start-page: 856 year: 2010 end-page: 865 ident: bib14 article-title: Uncertainty analysis of wind energy potential assessment publication-title: Appl. Energy – volume: 64 start-page: 195 year: 2016 end-page: 210 ident: bib3 article-title: State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling publication-title: Renew. Sustain. Energy Rev. – volume: 342 year: 2018 ident: bib16 article-title: Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions publication-title: Comput. Methods Appl. Mech. Eng. – volume: 165 year: 2022 ident: bib21 article-title: Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain publication-title: Renew. Sustain. Energy Rev. – year: 2003 ident: bib25 article-title: Constructing Probability Boxes and Dempster-Shafer Structures – volume: 87 year: 2016 ident: bib8 article-title: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability publication-title: Renew. Energy – volume: 106 year: 2016 ident: bib24 article-title: Assessment of wind turbine structural integrity using response surface methodology publication-title: Eng. Struct. – volume: 367 year: 2020 ident: bib17 article-title: A general frame for uncertainty propagation under multimodally distributed random variables publication-title: Comput. Methods Appl. Mech. Eng. – volume: 125 year: 2003 ident: bib36 article-title: Wind shear and turbulence effects on rotor fatigue and loads control publication-title: J. Sol. Energy Eng. – volume: 229 year: 2021 ident: bib32 article-title: Uncertainty and global sensitivity analysis of levelized cost of energy in wind power generation publication-title: Energy Convers. Manag. – volume: 3 start-page: 241 year: 2010 end-page: 257 ident: bib19 article-title: Probabilistic design of wind turbines publication-title: Energies – year: 2010 ident: bib43 article-title: Metamodeling for High Dimensional Simulation-Based Design Problems – volume: 89 year: 2021 ident: bib18 article-title: Non-probabilistic polygonal convex set model for structural uncertainty quantification publication-title: Appl. Math. Model. – volume: 75 year: 2015 ident: bib22 article-title: Impact of uncertainty in airfoil characteristics on wind turbine extreme loads publication-title: Renew. Energy – volume: 96 start-page: 503 year: 2008 end-page: 523 ident: bib34 article-title: On the propagation of uncertainty in inflow turbulence to wind turbine loads publication-title: J. Wind Eng. Ind. Aerod. – volume: 88 start-page: 190 year: 2020 end-page: 207 ident: bib13 article-title: Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model publication-title: Appl. Math. Model. – year: 2005 ident: 10.1016/j.renene.2023.119798_bib29 – volume: 229 year: 2021 ident: 10.1016/j.renene.2023.119798_bib32 article-title: Uncertainty and global sensitivity analysis of levelized cost of energy in wind power generation publication-title: Energy Convers. Manag. – volume: 367 year: 2020 ident: 10.1016/j.renene.2023.119798_bib17 article-title: A general frame for uncertainty propagation under multimodally distributed random variables publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113109 – volume: 142 year: 2022 ident: 10.1016/j.renene.2023.119798_bib26 article-title: A probability box representation method for power flow analysis considering both interval and probabilistic uncertainties publication-title: Int. J. Electr. Power Energy Syst. – volume: 42 year: 2006 ident: 10.1016/j.renene.2023.119798_bib5 article-title: State of the art in wind turbine aerodynamics and aeroelasticity publication-title: Prog. Aero. Sci. doi: 10.1016/j.paerosci.2006.10.002 – volume: 125 year: 2003 ident: 10.1016/j.renene.2023.119798_bib36 article-title: Wind shear and turbulence effects on rotor fatigue and loads control publication-title: J. Sol. Energy Eng. – volume: 430 start-page: 121 year: 2021 ident: 10.1016/j.renene.2023.119798_bib44 article-title: Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.093 – volume: 5 start-page: 171 year: 2020 ident: 10.1016/j.renene.2023.119798_bib20 article-title: Reliability-based design optimization of offshore wind turbine support structures using analytical sensitivities and factorized uncertainty modeling publication-title: Wind Energy Sci. doi: 10.5194/wes-5-171-2020 – volume: 106 year: 2016 ident: 10.1016/j.renene.2023.119798_bib24 article-title: Assessment of wind turbine structural integrity using response surface methodology publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.10.043 – volume: 18 start-page: 1917 year: 2015 ident: 10.1016/j.renene.2023.119798_bib35 article-title: Model of wind shear conditional on turbulence and its impact on wind turbine loads publication-title: Wind Energy doi: 10.1002/we.1797 – year: 2005 ident: 10.1016/j.renene.2023.119798_bib7 – volume: 66 start-page: 101 year: 2023 ident: 10.1016/j.renene.2023.119798_bib41 article-title: A general multi-fidelity metamodeling framework for models with various output correlation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-023-03537-5 – volume: 96 start-page: 503 year: 2008 ident: 10.1016/j.renene.2023.119798_bib34 article-title: On the propagation of uncertainty in inflow turbulence to wind turbine loads publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2008.01.005 – volume: 37 year: 2013 ident: 10.1016/j.renene.2023.119798_bib27 article-title: Reliability analysis of polynomial systems subject to p-box uncertainties publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.08.012 – start-page: 105 year: 2007 ident: 10.1016/j.renene.2023.119798_bib10 – volume: 15 start-page: 679 year: 2012 ident: 10.1016/j.renene.2023.119798_bib4 article-title: Outlier robustness for wind turbine extrapolated extreme loads publication-title: Wind Energy doi: 10.1002/we.497 – year: 2017 ident: 10.1016/j.renene.2023.119798_bib2 – volume: 342 year: 2018 ident: 10.1016/j.renene.2023.119798_bib16 article-title: Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.07.035 – volume: 89 year: 2021 ident: 10.1016/j.renene.2023.119798_bib18 article-title: Non-probabilistic polygonal convex set model for structural uncertainty quantification publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.07.025 – volume: 199 start-page: 187 year: 2017 ident: 10.1016/j.renene.2023.119798_bib1 article-title: Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.009 – volume: 31 year: 2009 ident: 10.1016/j.renene.2023.119798_bib9 article-title: Aleatory or epistemic? Does it matter? publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2008.06.020 – volume: 68 start-page: 52 year: 2013 ident: 10.1016/j.renene.2023.119798_bib11 article-title: Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2013.01.007 – volume: 87 year: 2016 ident: 10.1016/j.renene.2023.119798_bib8 article-title: Influence of the control system on wind turbine loads during power production in extreme turbulence: structural reliability publication-title: Renew. Energy doi: 10.1016/j.renene.2015.10.044 – volume: 165 year: 2022 ident: 10.1016/j.renene.2023.119798_bib21 article-title: Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain publication-title: Renew. Sustain. Energy Rev. – volume: 290 start-page: 2319 year: 2000 ident: 10.1016/j.renene.2023.119798_bib38 article-title: A global geometric framework for non-linear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 17 start-page: 1543 year: 2014 ident: 10.1016/j.renene.2023.119798_bib33 article-title: Effect of winds in a mountain pass on turbine performance publication-title: Wind Energy doi: 10.1002/we.1650 – volume: 75 year: 2015 ident: 10.1016/j.renene.2023.119798_bib22 article-title: Impact of uncertainty in airfoil characteristics on wind turbine extreme loads publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.009 – volume: 209 start-page: 940 year: 2019 ident: 10.1016/j.renene.2023.119798_bib12 article-title: Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.09.090 – year: 2009 ident: 10.1016/j.renene.2023.119798_bib28 – year: 2003 ident: 10.1016/j.renene.2023.119798_bib25 – volume: 1618 year: 2020 ident: 10.1016/j.renene.2023.119798_bib6 article-title: Uncertainty propagation and sensitivity analysis of an artificial neural network used as wind turbine load surrogate model publication-title: J. Phys. Conf. doi: 10.1088/1742-6596/1618/4/042040 – volume: 119 year: 2018 ident: 10.1016/j.renene.2023.119798_bib37 article-title: Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates publication-title: Renew. Energy doi: 10.1016/j.renene.2017.07.070 – ident: 10.1016/j.renene.2023.119798_bib30 – year: 2016 ident: 10.1016/j.renene.2023.119798_bib39 – volume: 88 start-page: 190 year: 2020 ident: 10.1016/j.renene.2023.119798_bib13 article-title: Correlation propagation for uncertainty analysis of structures based on a non-probabilistic ellipsoidal model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.06.009 – volume: 90 start-page: 352 year: 2016 ident: 10.1016/j.renene.2023.119798_bib15 article-title: Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.010 – year: 2014 ident: 10.1016/j.renene.2023.119798_bib42 – year: 2010 ident: 10.1016/j.renene.2023.119798_bib43 – volume: 296 year: 2021 ident: 10.1016/j.renene.2023.119798_bib31 article-title: Quantile based probabilistic wind turbine power curve model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116913 – volume: 87 start-page: 856 year: 2010 ident: 10.1016/j.renene.2023.119798_bib14 article-title: Uncertainty analysis of wind energy potential assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.08.038 – volume: 3 start-page: 241 year: 2010 ident: 10.1016/j.renene.2023.119798_bib19 article-title: Probabilistic design of wind turbines publication-title: Energies doi: 10.3390/en3020241 – start-page: 216 year: 2020 ident: 10.1016/j.renene.2023.119798_bib23 article-title: Generic framework for reliability assessment of offshore wind turbine jacket support structures under stochastic and ti-me dependent variables publication-title: Ocean Eng. – start-page: 9 year: 2015 ident: 10.1016/j.renene.2023.119798_bib40 – volume: 64 start-page: 195 year: 2016 ident: 10.1016/j.renene.2023.119798_bib3 article-title: State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.007 |
SSID | ssj0015874 |
Score | 2.4470377 |
Snippet | Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119798 |
SubjectTerms | case studies CDF cumulative distribution Dynamic responses Manifold learning Offshore wind turbines probabilistic models uncertainty Uncertainty quantification wind wind power wind turbines |
Title | Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning |
URI | https://dx.doi.org/10.1016/j.renene.2023.119798 https://www.proquest.com/docview/3153620887 |
Volume | 222 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT1xfRPBad9ukaXpcFpdV0YsueAttHroi7brbRbz4251pWlFBBKGXhkwpk2Qe5JtvCDlNnGBaaBOEBkwglykcqSzFXi8yzEIXCx1hvfP1jRiN-eV9fL9EBm0tDMIqG9vvbXptrZuRbqPN7nQy6d5i8A3BPJhe5HxhWGjOeYK7_Oz9E-YRxtIzMcPkAGe35XM1xgtZIwsky4zYGd6npfI39_TDUNfeZ7hB1puwkfb9n22SJVtskbUvZILbxIzh3-v7_eqNviwyjwKqFU8hMqXG956nM4-KtXNaOnjc_LGcWfoKuTkF9wOJsqXo2gwFOSTHcOWzoU1ziYcdMh6e3w1GQdNDIdCMpVUgRRo5JxwLrcldImzP2ciIGLKINEMMTA4ZauxCSIQtDMkslIlmRooeM0nPGLZLlouysHuEQmAY8owJq6XhCdMgoRPtMi51yvMo7hDWqk7phmAc-1w8qxZJ9qS8whUqXHmFd0jwKTX1BBt_zE_aVVHfNooCH_CH5Em7iArOEF6MZIUtF3PFwOyLCO3t_r-_fkBW4Y17QPchWa5mC3sE8UqVH9cb8pis9C-uRjcfHZ7rnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YlvI3itu23aND2KKOtrL7rgLXTz0BVpdR-I_96ZphUVRBB6SjOlTJJvZpjJNwBHqRNcC22C0CAExjLDI5Vn1OtFhnnoEqEjuu980xPdfnx5n9zPwGlzF4bKKmvs95heoXU90q612X4ZDtu35HyjM4_QS5wvPJmFOWKnSlowd3Jx1e19JhMS6cmYcX5AAs0NuqrMi4gjC-LLjPgxpdQy-ZuF-oHVlQE6X4al2nNkJ_7nVmDGFquw-IVPcA1MH3-_SvFP3tnrNPeFQJXuGTqnzPj282zkC2PtmJUOHzd-LEeWvWF4ztACYaxsGVk3w1CO-DFc-WxY3V_iYR3652d3p92gbqMQaM6zSSBFFjknHA-tGbhU2I6zkREJBhJZTmUwAwxSExdiLGxxSOahTDU3UnS4STvG8A1oFWVhN4GhbxjGORdWSxOnXKOETrXLY6mzeBAlW8Ab1Sldc4xTq4tn1RSTPSmvcEUKV17hWxB8Sr14jo0_5qfNqqhve0WhGfhD8rBZRIXHiHIjeWHL6VhxRH4REeRu__vrBzDfvbu5VtcXvasdWMA3sa_v3oXWZDS1e-i-TAb79fb8ADEV7k4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+for+dynamic+responses+of+offshore+wind+turbine+based+on+manifold+learning&rft.jtitle=Renewable+energy&rft.au=Shao%2C+Yizhe&rft.au=Liu%2C+Jie&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=222&rft_id=info:doi/10.1016%2Fj.renene.2023.119798&rft.externalDocID=S0960148123017135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |