How do crystal shapes of nano-ceria determine its ketonization performance during biomass pyrolysis?
Catalytic pyrolysis of biomass over CeO2 to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst structure has long been overlooked. In this work, nano-CeO2 with different crystal shapes, namely nanorods (R-CeO2), nano-polyhedra (P-CeO2), a...
Saved in:
Published in | Fuel processing technology Vol. 241; p. 107584 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalytic pyrolysis of biomass over CeO2 to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst structure has long been overlooked. In this work, nano-CeO2 with different crystal shapes, namely nanorods (R-CeO2), nano-polyhedra (P-CeO2), and nanocubes (C-CeO2), were synthesized and then tested in catalytic ketonization of xylan. Results showed that among all the three catalysts, C-CeO2 produced the highest yield of ketones. Characterization results revealed that C-CeO2 presented the lowest content of oxygen vacancies while exhibiting the highest proportion of {100} facets, proving that the {100} facets made a greater contribution to the total yield of ketones. On the other hand, P-CeO2 and R-CeO2 displayed a better selectivity to linear ketones, which was beneficial to improving the product quality. The relative contents of {111} facets of these catalysts were higher than C-CeO2, demonstrating that the {111} facets could selectively produce linear ketones. The proposed mechanism indicated that P-CeO2 and R-CeO2 principally enhanced the ketonic deoxygenation reactions, while C-CeO2 also promoted the recyclization reaction, producing more cyclic ketones. These findings disclose that the {111} facets of CeO2 are more favorable to producing valuable linear ketones.
[Display omitted]
•The relationship between CeO2 crystal shapes and ketonization ability was established.•CeO2 nanocubes produced the highest yield of ketones during xylan pyrolysis.•{100} facets of CeO2 promoted the recyclization reaction to produce cyclic ketones.•CeO2 nanorods and nano-polyhedra showed a better selectivity to linear ketones.•{111} facets were responsible for the selectivity of nanorods and nano-polyhedra. |
---|---|
AbstractList | Catalytic pyrolysis of biomass over CeO₂ to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst structure has long been overlooked. In this work, nano-CeO₂ with different crystal shapes, namely nanorods (R-CeO₂), nano-polyhedra (P-CeO₂), and nanocubes (C-CeO₂), were synthesized and then tested in catalytic ketonization of xylan. Results showed that among all the three catalysts, C-CeO₂ produced the highest yield of ketones. Characterization results revealed that C-CeO₂ presented the lowest content of oxygen vacancies while exhibiting the highest proportion of {100} facets, proving that the {100} facets made a greater contribution to the total yield of ketones. On the other hand, P-CeO₂ and R-CeO₂ displayed a better selectivity to linear ketones, which was beneficial to improving the product quality. The relative contents of {111} facets of these catalysts were higher than C-CeO₂, demonstrating that the {111} facets could selectively produce linear ketones. The proposed mechanism indicated that P-CeO₂ and R-CeO₂ principally enhanced the ketonic deoxygenation reactions, while C-CeO₂ also promoted the recyclization reaction, producing more cyclic ketones. These findings disclose that the {111} facets of CeO₂ are more favorable to producing valuable linear ketones. Catalytic pyrolysis of biomass over CeO2 to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst structure has long been overlooked. In this work, nano-CeO2 with different crystal shapes, namely nanorods (R-CeO2), nano-polyhedra (P-CeO2), and nanocubes (C-CeO2), were synthesized and then tested in catalytic ketonization of xylan. Results showed that among all the three catalysts, C-CeO2 produced the highest yield of ketones. Characterization results revealed that C-CeO2 presented the lowest content of oxygen vacancies while exhibiting the highest proportion of {100} facets, proving that the {100} facets made a greater contribution to the total yield of ketones. On the other hand, P-CeO2 and R-CeO2 displayed a better selectivity to linear ketones, which was beneficial to improving the product quality. The relative contents of {111} facets of these catalysts were higher than C-CeO2, demonstrating that the {111} facets could selectively produce linear ketones. The proposed mechanism indicated that P-CeO2 and R-CeO2 principally enhanced the ketonic deoxygenation reactions, while C-CeO2 also promoted the recyclization reaction, producing more cyclic ketones. These findings disclose that the {111} facets of CeO2 are more favorable to producing valuable linear ketones. [Display omitted] •The relationship between CeO2 crystal shapes and ketonization ability was established.•CeO2 nanocubes produced the highest yield of ketones during xylan pyrolysis.•{100} facets of CeO2 promoted the recyclization reaction to produce cyclic ketones.•CeO2 nanorods and nano-polyhedra showed a better selectivity to linear ketones.•{111} facets were responsible for the selectivity of nanorods and nano-polyhedra. |
ArticleNumber | 107584 |
Author | Lam, Jason Chun-Ho Ding, Kuan Zhang, Shu Wan, Yiling Zhong, Daoxu |
Author_xml | – sequence: 1 givenname: Yiling surname: Wan fullname: Wan, Yiling organization: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China – sequence: 2 givenname: Kuan surname: Ding fullname: Ding, Kuan email: dingk@njfu.edu.cn organization: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China – sequence: 3 givenname: Jason Chun-Ho surname: Lam fullname: Lam, Jason Chun-Ho organization: School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region – sequence: 4 givenname: Daoxu surname: Zhong fullname: Zhong, Daoxu email: zdx_hky@126.com organization: Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China – sequence: 5 givenname: Shu surname: Zhang fullname: Zhang, Shu organization: Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China |
BookMark | eNqF0LFOHDEQgGELgcQd8AYULtPsxV57b70pQBFKQqSTaKC2fPY48WXXXjy-oOPpWbKpKKAaaTT_FN-SHMcUgZBLzlac8fXn3crvx5zsqmZ1Pa3aRskjsuCqFVXLlTomCyZaVQlVs1OyRNwxxpqmaxfE3aYn6hK1-YDF9BR_mxGQJk-jiamykIOhDgrkIUSgoSD9AyXF8GxKSJGOkH3Kg4kWqNvnEH_RbUiDQaTjIaf-gAGvz8mJNz3Cxf95Rh6-f7u_ua02dz9-3nzdVFaIrlSKczBSGOm9XUsLtvNO-HarZN0Y1XEQYFsnOXNbw7q67hy0srHA157VTm3FGfk0_50wHveARQ8BLfS9iZD2qAVvhBJyiqZTOZ_anBAzeD3mMJh80JzpV1S90zOqfkXVM-qUfXmT2VD-SZRsQv9RfDXHMBn8DZA12gCTnAsZbNEuhfcfvAB5oJol |
CitedBy_id | crossref_primary_10_1016_j_joei_2025_102057 crossref_primary_10_1021_acsanm_3c05593 crossref_primary_10_1016_j_jaap_2023_106321 crossref_primary_10_1016_j_jaap_2024_106761 crossref_primary_10_1016_j_fuel_2025_135082 crossref_primary_10_1021_acssuschemeng_3c00486 crossref_primary_10_1021_acsanm_3c01498 crossref_primary_10_1016_j_jaap_2024_106936 crossref_primary_10_1016_j_biombioe_2025_107639 |
Cites_doi | 10.1039/C4GC02238F 10.1039/C9GC04246F 10.1016/j.apcatb.2012.10.030 10.1016/j.energy.2013.01.059 10.1016/j.apcata.2021.118469 10.1002/cssc.201600654 10.1016/j.biortech.2019.01.015 10.1021/ef300047a 10.1016/j.apcatb.2014.02.029 10.1016/j.fuel.2012.11.052 10.1002/cctc.201800999 10.1021/jp055584b 10.1016/j.molcata.2004.10.042 10.1016/j.cplett.2016.06.025 10.1016/j.energy.2021.121090 10.1016/j.fuel.2015.06.077 10.1016/S0169-4332(99)00577-2 10.1039/C6GC03511F 10.1016/j.apcatb.2013.05.021 10.1016/j.rser.2022.112607 10.1016/j.apsusc.2005.07.024 10.1016/j.jiec.2017.06.049 10.1016/j.fuproc.2014.10.021 10.1021/ie301714x 10.1016/j.biombioe.2022.106473 10.1016/j.comptc.2017.08.014 10.1016/j.fuproc.2016.08.021 10.1016/j.apcata.2018.08.008 10.1021/acssuschemeng.9b05574 10.1039/jm9940400853 10.1016/S0920-5861(03)00399-7 10.1002/aic.14038 10.1016/j.apcata.2013.06.003 10.1016/j.apcatb.2018.02.035 10.1016/j.molcata.2011.06.011 10.1016/j.fuproc.2020.106585 10.1016/j.biortech.2021.125519 10.1016/j.rser.2012.04.028 10.1016/j.apcata.2013.10.047 10.1016/j.apcata.2013.08.052 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fuproc.2022.107584 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2022_107584 S0378382022004246 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-811ea43a4ffc64cec9fd3f7b8425a891e3ec7d410dba09229de745ce16f02d8b3 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Fri Jul 11 00:58:25 EDT 2025 Tue Jul 01 03:04:42 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Fri Feb 23 02:37:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystal shape Biomass pyrolysis Ketonization Nano-ceria |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-811ea43a4ffc64cec9fd3f7b8425a891e3ec7d410dba09229de745ce16f02d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153834745 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153834745 crossref_primary_10_1016_j_fuproc_2022_107584 crossref_citationtrail_10_1016_j_fuproc_2022_107584 elsevier_sciencedirect_doi_10_1016_j_fuproc_2022_107584 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Orozco, Renz, Corma (bb0130) 2017; 19 Xiu, Shahbazi (bb0020) 2012; 16 Kadarwati, Hu, Gunawan, Westerhof, Gholizadeh, Hasan, Li (bb0070) 2017; 155 Hakim, Shanks, Dumesic (bb0105) 2013; 142-143 Lykaki, Pachatouridou, Carabineiro, Iliopoulou, Andriopoulou, Kallithrakas-Kontos, Boghosian, Konsolakis (bb0170) 2018; 230 Duan, Feng, Dong, Chen, Zhang, Wan, Wang, Wang, Xiao, Liu, Ruan (bb0030) 2021; 232 Hronec, Fulajtárova, Mičušik (bb0205) 2013; 468 Mante, Rodriguez, Senanayake, Babu (bb0095) 2015; 17 Wang, Mourant, Hu, Zhang, Lievens, Li (bb0190) 2013; 108 Luo, Kong, Ma, Wang, Huang, Zhao (bb0050) 2019; 8 Huang, He, Wu, Tong (bb0195) 2016; 658 Nakajima, Nameta, Mishima (bb0085) 1994; 4 Torrente-Murciano, Gilbank, Puertolas, Garcia, Solsona, Chadwick (bb0140) 2013; 132-133 Biller, Sharma, Kunwar, Ross (bb0065) 2015; 159 Hu, Zheng, Yan, Xiao, Liu (bb0025) 2013; 52 Yamada, Segawa, Sato, Kojima, Sato (bb0110) 2011; 346 Almutairi, Kozhevnikova, Kozhevnikov (bb0120) 2018; 565 Nagashima, Sato, Takahashi, Sodesawa (bb0075) 2005; 227 Gong, Shinozaki, Shi, Qian (bb0090) 2012; 26 Wan, Pham, Zhang, Lobban, Resasco, Mallinson (bb0100) 2013; 59 Tabandeh, Cheng, Centi, Show, Chen, Ling, Ong, Ng, Juan, Lam (bb0040) 2022; 523 Liu, Wu, Zhang, Xiao (bb0005) 2021; 338 Mai, Sun, Zhang, Si, Feng, Zhang, Liu, Yan (bb0155) 2005; 109 Han, Fan, Zheng, Qian (bb0165) 2017; 39 Li, Liu, Xu, Li (bb0200) 2017; 1117 Ke, Wu, Zhou, Xiong, Yang, Zhang, Wang, Dai, Zou, Liu, Ruan, Wang (bb0010) 2022; 165 Wang, Wang, Wang (bb0145) 2022; 630 Cao, Xiang, Su, Wang, Hu, Sun (bb0175) 2015; 135 Graça, Lopes, Cerqueira, Ribeiro (bb0035) 2013; 52 Gliński, Zalewski, Burno, Jerzak (bb0115) 2014; 470 Gnanamani, Martinelli, Badoga, Hopps, Davis (bb0135) 2018; 10 Shao, Liu, Xiang, Li, Zhang, Xiao (bb0015) 2022; 162 Holgado, Alvarez, Munuera (bb0180) 2000; 161 Snell, Hakim, Dumesic, Shanks (bb0150) 2013; 464-465 Kong, Liu, Gao, Wang, Dai (bb0045) 2019; 276 Kay Lup, Abnisa, Wan Daud, Aroua (bb0060) 2017; 56 Qiu, Liu, Zhao, Ma, Yao (bb0185) 2006; 252 Hendren, Dooley (bb0080) 2003; 85 Orozco, Renz, Corma (bb0125) 2016; 9 Luo, Qin, Chen, Hui, Zhao (bb0055) 2020; 22 Ding, Zhou, Wan, Huang, Zhang, Hu, Zhang, Zhang (bb0160) 2021; 211 Hronec, Fulajtárova, Soták (bb0210) 2014; 154-155 Hendren (10.1016/j.fuproc.2022.107584_bb0080) 2003; 85 Huang (10.1016/j.fuproc.2022.107584_bb0195) 2016; 658 Wang (10.1016/j.fuproc.2022.107584_bb0190) 2013; 108 Luo (10.1016/j.fuproc.2022.107584_bb0050) 2019; 8 Nakajima (10.1016/j.fuproc.2022.107584_bb0085) 1994; 4 Torrente-Murciano (10.1016/j.fuproc.2022.107584_bb0140) 2013; 132-133 Orozco (10.1016/j.fuproc.2022.107584_bb0130) 2017; 19 Wang (10.1016/j.fuproc.2022.107584_bb0145) 2022; 630 Gnanamani (10.1016/j.fuproc.2022.107584_bb0135) 2018; 10 Han (10.1016/j.fuproc.2022.107584_bb0165) 2017; 39 Duan (10.1016/j.fuproc.2022.107584_bb0030) 2021; 232 Xiu (10.1016/j.fuproc.2022.107584_bb0020) 2012; 16 Mante (10.1016/j.fuproc.2022.107584_bb0095) 2015; 17 Almutairi (10.1016/j.fuproc.2022.107584_bb0120) 2018; 565 Qiu (10.1016/j.fuproc.2022.107584_bb0185) 2006; 252 Tabandeh (10.1016/j.fuproc.2022.107584_bb0040) 2022; 523 Orozco (10.1016/j.fuproc.2022.107584_bb0125) 2016; 9 Snell (10.1016/j.fuproc.2022.107584_bb0150) 2013; 464-465 Ke (10.1016/j.fuproc.2022.107584_bb0010) 2022; 165 Luo (10.1016/j.fuproc.2022.107584_bb0055) 2020; 22 Li (10.1016/j.fuproc.2022.107584_bb0200) 2017; 1117 Kay Lup (10.1016/j.fuproc.2022.107584_bb0060) 2017; 56 Kadarwati (10.1016/j.fuproc.2022.107584_bb0070) 2017; 155 Gliński (10.1016/j.fuproc.2022.107584_bb0115) 2014; 470 Kong (10.1016/j.fuproc.2022.107584_bb0045) 2019; 276 Wan (10.1016/j.fuproc.2022.107584_bb0100) 2013; 59 Holgado (10.1016/j.fuproc.2022.107584_bb0180) 2000; 161 Cao (10.1016/j.fuproc.2022.107584_bb0175) 2015; 135 Ding (10.1016/j.fuproc.2022.107584_bb0160) 2021; 211 Hakim (10.1016/j.fuproc.2022.107584_bb0105) 2013; 142-143 Hronec (10.1016/j.fuproc.2022.107584_bb0205) 2013; 468 Nagashima (10.1016/j.fuproc.2022.107584_bb0075) 2005; 227 Hronec (10.1016/j.fuproc.2022.107584_bb0210) 2014; 154-155 Biller (10.1016/j.fuproc.2022.107584_bb0065) 2015; 159 Liu (10.1016/j.fuproc.2022.107584_bb0005) 2021; 338 Yamada (10.1016/j.fuproc.2022.107584_bb0110) 2011; 346 Mai (10.1016/j.fuproc.2022.107584_bb0155) 2005; 109 Hu (10.1016/j.fuproc.2022.107584_bb0025) 2013; 52 Gong (10.1016/j.fuproc.2022.107584_bb0090) 2012; 26 Lykaki (10.1016/j.fuproc.2022.107584_bb0170) 2018; 230 Graça (10.1016/j.fuproc.2022.107584_bb0035) 2013; 52 Shao (10.1016/j.fuproc.2022.107584_bb0015) 2022; 162 |
References_xml | – volume: 165 year: 2022 ident: bb0010 article-title: Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods publication-title: Renew. Sust. Energ. Rev. – volume: 1117 start-page: 130 year: 2017 end-page: 140 ident: bb0200 article-title: A theoretical study on the mechanism of xylobiose during pyrolysis process publication-title: Comput. Theor. Chem. – volume: 10 start-page: 4629 year: 2018 end-page: 4635 ident: bb0135 article-title: Dehydration of 1,5-Pentanediol over CeO publication-title: ChemCatChem – volume: 162 year: 2022 ident: bb0015 article-title: Insight into the selective production of aldehydes and ketones by catalytic upgrading of biomass pyrolysis vapor over ZrO2:Cellulose and xylan publication-title: Biomass Bioenergy – volume: 52 start-page: 275 year: 2013 end-page: 287 ident: bb0035 article-title: Bio-oils upgrading for second generation biofuels publication-title: Ind. Eng. Chem. Res. – volume: 155 start-page: 261 year: 2017 end-page: 268 ident: bb0070 article-title: Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts publication-title: Fuel Process. Technol. – volume: 9 start-page: 2430 year: 2016 end-page: 2442 ident: bb0125 article-title: Carbon-carbon bond formation and hydrogen production in the ketonization of aldehydes publication-title: ChemSusChem – volume: 52 start-page: 119 year: 2013 end-page: 125 ident: bb0025 article-title: Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization publication-title: Energy – volume: 56 start-page: 1 year: 2017 end-page: 34 ident: bb0060 article-title: A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds publication-title: J. Ind. Eng. Chem. – volume: 232 year: 2021 ident: bb0030 article-title: Improving bio-oil quality from low-density polyethylene pyrolysis: effects of varying activation and pyrolysis parameters publication-title: Energy – volume: 464-465 start-page: 288 year: 2013 end-page: 295 ident: bb0150 article-title: Catalysis with ceria nanocrystals: bio-oil model compound ketonization publication-title: Appl. Catal. A Gen. – volume: 39 start-page: 35 year: 2017 end-page: 39 ident: bb0165 article-title: Effect of temperature on pyrolysis products of xylan publication-title: Chem. Adhes. – volume: 8 start-page: 2158 year: 2019 end-page: 2166 ident: bb0050 article-title: Liquefaction and hydrodeoxygenation of polymeric lignin using a hierarchical Ni microreactor catalyst publication-title: ACS Sustain. Chem. Eng. – volume: 565 start-page: 135 year: 2018 end-page: 145 ident: bb0120 article-title: Ketonisation of acetic acid on metal oxides: catalyst activity, stability and mechanistic insights publication-title: Appl. Catal. A Gen. – volume: 154-155 start-page: 294 year: 2014 end-page: 300 ident: bb0210 article-title: Highly selective rearrangement of furfuryl alcohol to cyclopentanone publication-title: Appl. Catal. B Environ. – volume: 161 start-page: 301 year: 2000 end-page: 315 ident: bb0180 article-title: Study of CeO publication-title: Appl. Surf. Sci. – volume: 338 year: 2021 ident: bb0005 article-title: Fast pyrolysis of holocellulose for the preparation of long-chain ether fuel precursors: effect of holocellulose types publication-title: Bioresour. Technol. – volume: 17 start-page: 2362 year: 2015 end-page: 2368 ident: bb0095 article-title: Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors publication-title: Green Chem. – volume: 59 start-page: 2275 year: 2013 end-page: 2285 ident: bb0100 article-title: Direct catalytic upgrading of biomass pyrolysis vapors by a dual function Ru/TiO publication-title: AICHE J. – volume: 22 start-page: 1842 year: 2020 end-page: 1850 ident: bb0055 article-title: Selective conversion of lignin to ethylbenzene publication-title: Green Chem. – volume: 132-133 start-page: 116 year: 2013 end-page: 122 ident: bb0140 article-title: Shape-dependency activity of nanostructured CeO publication-title: Appl. Catal. B Environ. – volume: 468 start-page: 426 year: 2013 end-page: 431 ident: bb0205 article-title: Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone publication-title: Appl. Catal. A Gen. – volume: 85 start-page: 333 year: 2003 end-page: 351 ident: bb0080 article-title: Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones publication-title: Catal. Today – volume: 658 start-page: 114 year: 2016 end-page: 124 ident: bb0195 article-title: Thermal degradation reaction mechanism of xylose: a DFT study publication-title: Chem. Phys. Lett. – volume: 159 start-page: 197 year: 2015 end-page: 205 ident: bb0065 article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae publication-title: Fuel – volume: 109 start-page: 24380 year: 2005 end-page: 24385 ident: bb0155 article-title: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes publication-title: J. Phys. Chem. B – volume: 108 start-page: 439 year: 2013 end-page: 444 ident: bb0190 article-title: Formation of coke during the pyrolysis of bio-oil publication-title: Fuel – volume: 26 start-page: 2394 year: 2012 end-page: 2399 ident: bb0090 article-title: Hydrotreating of jatropha oil over alumina based catalysts publication-title: Energy Fuel – volume: 346 start-page: 79 year: 2011 end-page: 86 ident: bb0110 article-title: Catalytic performance of rare earth oxides in ketonization of acetic acid publication-title: J. Mol. Catal. A Chem. – volume: 16 start-page: 4406 year: 2012 end-page: 4414 ident: bb0020 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sust. Energ. Rev. – volume: 211 year: 2021 ident: bb0160 article-title: Ketonization of xylose over CeO publication-title: Fuel Process. Technol. – volume: 276 start-page: 310 year: 2019 end-page: 317 ident: bb0045 article-title: Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst publication-title: Bioresour. Technol. – volume: 470 start-page: 278 year: 2014 end-page: 284 ident: bb0115 article-title: Catalytic ketonization over metal oxide catalysts. XIII. Comparative measurements of activity of oxides of 32 chemical elements in ketonization of propanoic acid publication-title: Appl. Catal. A Gen. – volume: 142-143 start-page: 368 year: 2013 end-page: 376 ident: bb0105 article-title: Catalytic upgrading of the light fraction of a simulated bio-oil over CeZrOx catalyst publication-title: Appl. Catal. B Environ. – volume: 523 year: 2022 ident: bb0040 article-title: Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production publication-title: Mol. Catal. – volume: 630 year: 2022 ident: bb0145 article-title: Room temperature HCHO oxidation over the Pt/CeO publication-title: Appl. Catal. A Gen. – volume: 19 start-page: 1555 year: 2017 end-page: 1569 ident: bb0130 article-title: Cerium oxide as a catalyst for the ketonization of aldehydes: mechanistic insights and a convenient way to alkanes without the consumption of external hydrogen publication-title: Green Chem. – volume: 4 start-page: 853 year: 1994 end-page: 858 ident: bb0085 article-title: A highly active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water vapour publication-title: J. Mater. Chem. – volume: 135 start-page: 66 year: 2015 end-page: 72 ident: bb0175 article-title: Ag modified Mn–Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature publication-title: Fuel Process. Technol. – volume: 252 start-page: 4931 year: 2006 end-page: 4935 ident: bb0185 article-title: Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder publication-title: Appl. Surf. Sci. – volume: 230 start-page: 18 year: 2018 end-page: 28 ident: bb0170 article-title: Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO publication-title: Appl. Catal. B Environ. – volume: 227 start-page: 231 year: 2005 end-page: 239 ident: bb0075 article-title: Ketonization of carboxylic acids over CeO publication-title: J. Mol. Catal. A Chem. – volume: 17 start-page: 2362 year: 2015 ident: 10.1016/j.fuproc.2022.107584_bb0095 article-title: Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors publication-title: Green Chem. doi: 10.1039/C4GC02238F – volume: 22 start-page: 1842 year: 2020 ident: 10.1016/j.fuproc.2022.107584_bb0055 article-title: Selective conversion of lignin to ethylbenzene publication-title: Green Chem. doi: 10.1039/C9GC04246F – volume: 132-133 start-page: 116 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0140 article-title: Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.10.030 – volume: 52 start-page: 119 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0025 article-title: Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization publication-title: Energy doi: 10.1016/j.energy.2013.01.059 – volume: 630 year: 2022 ident: 10.1016/j.fuproc.2022.107584_bb0145 article-title: Room temperature HCHO oxidation over the Pt/CeO2 catalysts with different oxygen mobilities by changing ceria shapes publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2021.118469 – volume: 9 start-page: 2430 year: 2016 ident: 10.1016/j.fuproc.2022.107584_bb0125 article-title: Carbon-carbon bond formation and hydrogen production in the ketonization of aldehydes publication-title: ChemSusChem doi: 10.1002/cssc.201600654 – volume: 276 start-page: 310 year: 2019 ident: 10.1016/j.fuproc.2022.107584_bb0045 article-title: Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.015 – volume: 26 start-page: 2394 year: 2012 ident: 10.1016/j.fuproc.2022.107584_bb0090 article-title: Hydrotreating of jatropha oil over alumina based catalysts publication-title: Energy Fuel doi: 10.1021/ef300047a – volume: 39 start-page: 35 year: 2017 ident: 10.1016/j.fuproc.2022.107584_bb0165 article-title: Effect of temperature on pyrolysis products of xylan publication-title: Chem. Adhes. – volume: 154-155 start-page: 294 year: 2014 ident: 10.1016/j.fuproc.2022.107584_bb0210 article-title: Highly selective rearrangement of furfuryl alcohol to cyclopentanone publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.029 – volume: 108 start-page: 439 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0190 article-title: Formation of coke during the pyrolysis of bio-oil publication-title: Fuel doi: 10.1016/j.fuel.2012.11.052 – volume: 10 start-page: 4629 year: 2018 ident: 10.1016/j.fuproc.2022.107584_bb0135 article-title: Dehydration of 1,5-Pentanediol over CeO2-MeOx catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201800999 – volume: 109 start-page: 24380 year: 2005 ident: 10.1016/j.fuproc.2022.107584_bb0155 article-title: Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes publication-title: J. Phys. Chem. B doi: 10.1021/jp055584b – volume: 227 start-page: 231 year: 2005 ident: 10.1016/j.fuproc.2022.107584_bb0075 article-title: Ketonization of carboxylic acids over CeO2-based composite oxides publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2004.10.042 – volume: 658 start-page: 114 year: 2016 ident: 10.1016/j.fuproc.2022.107584_bb0195 article-title: Thermal degradation reaction mechanism of xylose: a DFT study publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.06.025 – volume: 232 year: 2021 ident: 10.1016/j.fuproc.2022.107584_bb0030 article-title: Improving bio-oil quality from low-density polyethylene pyrolysis: effects of varying activation and pyrolysis parameters publication-title: Energy doi: 10.1016/j.energy.2021.121090 – volume: 159 start-page: 197 year: 2015 ident: 10.1016/j.fuproc.2022.107584_bb0065 article-title: Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae publication-title: Fuel doi: 10.1016/j.fuel.2015.06.077 – volume: 161 start-page: 301 year: 2000 ident: 10.1016/j.fuproc.2022.107584_bb0180 article-title: Study of CeO2 XPS spectra by factor analysis: reduction of CeO2 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(99)00577-2 – volume: 19 start-page: 1555 year: 2017 ident: 10.1016/j.fuproc.2022.107584_bb0130 article-title: Cerium oxide as a catalyst for the ketonization of aldehydes: mechanistic insights and a convenient way to alkanes without the consumption of external hydrogen publication-title: Green Chem. doi: 10.1039/C6GC03511F – volume: 142-143 start-page: 368 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0105 article-title: Catalytic upgrading of the light fraction of a simulated bio-oil over CeZrOx catalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.05.021 – volume: 165 year: 2022 ident: 10.1016/j.fuproc.2022.107584_bb0010 article-title: Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2022.112607 – volume: 252 start-page: 4931 year: 2006 ident: 10.1016/j.fuproc.2022.107584_bb0185 article-title: Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2005.07.024 – volume: 56 start-page: 1 year: 2017 ident: 10.1016/j.fuproc.2022.107584_bb0060 article-title: A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.06.049 – volume: 135 start-page: 66 year: 2015 ident: 10.1016/j.fuproc.2022.107584_bb0175 article-title: Ag modified Mn–Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.10.021 – volume: 52 start-page: 275 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0035 article-title: Bio-oils upgrading for second generation biofuels publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie301714x – volume: 162 year: 2022 ident: 10.1016/j.fuproc.2022.107584_bb0015 article-title: Insight into the selective production of aldehydes and ketones by catalytic upgrading of biomass pyrolysis vapor over ZrO2:Cellulose and xylan publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2022.106473 – volume: 1117 start-page: 130 year: 2017 ident: 10.1016/j.fuproc.2022.107584_bb0200 article-title: A theoretical study on the mechanism of xylobiose during pyrolysis process publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2017.08.014 – volume: 155 start-page: 261 year: 2017 ident: 10.1016/j.fuproc.2022.107584_bb0070 article-title: Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.08.021 – volume: 565 start-page: 135 year: 2018 ident: 10.1016/j.fuproc.2022.107584_bb0120 article-title: Ketonisation of acetic acid on metal oxides: catalyst activity, stability and mechanistic insights publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2018.08.008 – volume: 8 start-page: 2158 year: 2019 ident: 10.1016/j.fuproc.2022.107584_bb0050 article-title: Liquefaction and hydrodeoxygenation of polymeric lignin using a hierarchical Ni microreactor catalyst publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05574 – volume: 4 start-page: 853 issue: 6 year: 1994 ident: 10.1016/j.fuproc.2022.107584_bb0085 article-title: A highly active and highly selective oxide catalyst for the conversion of ethanol to acetone in the presence of water vapour publication-title: J. Mater. Chem. doi: 10.1039/jm9940400853 – volume: 85 start-page: 333 year: 2003 ident: 10.1016/j.fuproc.2022.107584_bb0080 article-title: Kinetics of catalyzed acid/acid and acid/aldehyde condensation reactions to non-symmetric ketones publication-title: Catal. Today doi: 10.1016/S0920-5861(03)00399-7 – volume: 59 start-page: 2275 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0100 article-title: Direct catalytic upgrading of biomass pyrolysis vapors by a dual function Ru/TiO2 catalyst publication-title: AICHE J. doi: 10.1002/aic.14038 – volume: 464-465 start-page: 288 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0150 article-title: Catalysis with ceria nanocrystals: bio-oil model compound ketonization publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.06.003 – volume: 230 start-page: 18 year: 2018 ident: 10.1016/j.fuproc.2022.107584_bb0170 article-title: Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO2 catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.02.035 – volume: 523 year: 2022 ident: 10.1016/j.fuproc.2022.107584_bb0040 article-title: Recent advancement in deoxygenation of fatty acids via homogeneous catalysis for biofuel production publication-title: Mol. Catal. – volume: 346 start-page: 79 year: 2011 ident: 10.1016/j.fuproc.2022.107584_bb0110 article-title: Catalytic performance of rare earth oxides in ketonization of acetic acid publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2011.06.011 – volume: 211 year: 2021 ident: 10.1016/j.fuproc.2022.107584_bb0160 article-title: Ketonization of xylose over CeO2 to produce mono-functional ketones publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2020.106585 – volume: 338 year: 2021 ident: 10.1016/j.fuproc.2022.107584_bb0005 article-title: Fast pyrolysis of holocellulose for the preparation of long-chain ether fuel precursors: effect of holocellulose types publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125519 – volume: 16 start-page: 4406 year: 2012 ident: 10.1016/j.fuproc.2022.107584_bb0020 article-title: Bio-oil production and upgrading research: a review publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2012.04.028 – volume: 470 start-page: 278 year: 2014 ident: 10.1016/j.fuproc.2022.107584_bb0115 article-title: Catalytic ketonization over metal oxide catalysts. XIII. Comparative measurements of activity of oxides of 32 chemical elements in ketonization of propanoic acid publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.10.047 – volume: 468 start-page: 426 year: 2013 ident: 10.1016/j.fuproc.2022.107584_bb0205 article-title: Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.08.052 |
SSID | ssj0005597 |
Score | 2.439817 |
Snippet | Catalytic pyrolysis of biomass over CeO2 to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst... Catalytic pyrolysis of biomass over CeO₂ to prepare ketonic chemicals is an important way to achieve carbon emission reduction, whereas the role of catalyst... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107584 |
SubjectTerms | biomass Biomass pyrolysis carbon catalysts Crystal shape fuels Ketonization Nano-ceria nanorods oxygen product quality pyrolysis xylan |
Title | How do crystal shapes of nano-ceria determine its ketonization performance during biomass pyrolysis? |
URI | https://dx.doi.org/10.1016/j.fuproc.2022.107584 https://www.proquest.com/docview/3153834745 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-SgSvaTeb7OskpVhWxV600FvYvLBadpd2i_TibzfZhy-QgtcwCbuT2ZlvmflmALhyuM8llxrZzgWI-lKgKMQC-cTlOlSY85Ih9zD24wm9m3rTFhg2XBhbVln7_sqnl966XunX2uzns1n_0SFBSEwAc90yf2fbblMaWCvvvX8r8_DKAStWGFnphj5X1njplQ0TPXuGWTLQmf4Vnn456jL6jPbAbg0b4aB6sn3QUukB2PnWTPAQyDh7gzKDYrE2iG8Ol89JrpYw0zBN0gwJa2pQ1tUvCs6KJXxVBvnVREyYf1EIYEVehJabb8A1zNeLrGxdcn0EJqObp2GM6hkKSBASFSjEWCWUJFRr4VOhRKQl0QG32bckjLAiSgSSYkfyxIlcN5IqoJ5Q2NeOK0NOjkE7zVJ1AiAnkfYExuYHkBsYo0MdOsrACSF1YmBe0AGkUR0TdYNxO-dizppKshdWKZxZhbNK4R2APnflVYONDfJBcyvsh6EwEwM27LxsLpGZb8gmRpJUZaslI9btE2pe_PTfp5-BbTuJvipPOwftYrFSFwavFLxbGmQXbA1u7-PxB8T67RM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcigcUEtBLNDWlbiajWPndUKrVVEosBdYaW9W_BLbrpJoH0L777ETB2ilCqlXy2Ml48nMF818MwDngYiFEspg17kAs1hJnKVE4piGwqSaCNEw5O7GcT5hP6fRdAtGHRfGlVV639_69MZb-5WB1-agns0G9wFNUmoDWBg2-bt4G3Zcd6qoBzvD65t8_FrpETUzVtx-7AQ6Bl1T5mXWLlJcuGPskkXP7F8R6i9f3QSgq4-w75EjGrYP9wm2dHkAe2_6CX4GlVdPSFVILjYW9M3R8rGo9RJVBpVFWWHprA0pXwCj0Wy1RL-1BX-ei4nqVxYBavmLyNHzLb5G9WZRNd1LLg9hcvXjYZRjP0YBS0qzFU4J0QWjBTNGxkxqmRlFTSJcAq5IM6KploliJFCiCLIwzJROWCQ1iU0QqlTQI-iVVamPAQmamUgSYv8BhUUyJjVpoC2ikMoUFuklfaCd6rj0PcbdqIs574rJfvFW4dwpnLcK7wN-karbHhvv7E-6W-F_2Aq3YeAdye_dJXL7GbncSFHqar3k1Hl-yuyLn_z36d_gQ_5wd8tvr8c3p7DrBtO31Wpn0Fst1vqLhS8r8dWb5zPiwe_E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+crystal+shapes+of+nano-ceria+determine+its+ketonization+performance+during+biomass+pyrolysis%3F&rft.jtitle=Fuel+processing+technology&rft.au=Wan%2C+Yiling&rft.au=Ding%2C+Kuan&rft.au=Lam%2C+Jason+Chun-Ho&rft.au=Zhong%2C+Daoxu&rft.date=2023-03-01&rft.issn=0378-3820&rft.volume=241+p.107584-&rft_id=info:doi/10.1016%2Fj.fuproc.2022.107584&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |