A photocatalytic degradation self-cleaning composite membrane for oil-water separation inspired by light-trapping effect of moth-eye
Membrane separation technology with superwetting surfaces is ideal for treating water pollution. However, the fouling problem of membranes limits their practical application in this field. Membranes with self-cleaning property during the separation are the key to solve this problem. In this study, i...
Saved in:
Published in | Journal of membrane science Vol. 669; p. 121337 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane separation technology with superwetting surfaces is ideal for treating water pollution. However, the fouling problem of membranes limits their practical application in this field. Membranes with self-cleaning property during the separation are the key to solve this problem. In this study, inspired by the light-trapping effect of the moth-eye, a kind of composite membrane with efficient self-cleaning by photocatalytic degradation was proposed. The composite membrane is based on polyvinyl alcohol cross-linked tannic acid (PVA-TA) and its photocatalytic function is achieved by doping magnetic titanium dioxide nanoparticles (MTiO2) as well as MXene. Meanwhile, its surface was constructed by magnetically controlled self-assembly method using MTiO2 to mimic the moth-eye structure. The composite membrane has superhydrophilic/underwater superoleophobic, excellent oil-water separation efficiency (99.85%) and long service life (64 cycles). In addition, due to the light-trapping effect of the bionic moth-eye structure and the redox reaction at the interface of MTiO2-MXene composites under sunlight irradiation, the membrane can achieve efficient and convenient photocatalytic degradation self-cleaning by sunlight irradiation. This study will provide new insights into the self-cleaning method of oil-water separation materials.
[Display omitted]
•Construction of high light absorption efficiency surface by magnetron self-assembly method inspired by the light-trapping effect of moth-eye structure.•Redox reaction occur at the interface of MTiO2 and MXene composite under sunlight irradiation.•The composite membrane shows excellent oil-water separation performance and long service life.•The composite membrane has excellent sunlight-catalyzed degradation self-cleaning property. |
---|---|
AbstractList | Membrane separation technology with superwetting surfaces is ideal for treating water pollution. However, the fouling problem of membranes limits their practical application in this field. Membranes with self-cleaning property during the separation are the key to solve this problem. In this study, inspired by the light-trapping effect of the moth-eye, a kind of composite membrane with efficient self-cleaning by photocatalytic degradation was proposed. The composite membrane is based on polyvinyl alcohol cross-linked tannic acid (PVA-TA) and its photocatalytic function is achieved by doping magnetic titanium dioxide nanoparticles (MTiO2) as well as MXene. Meanwhile, its surface was constructed by magnetically controlled self-assembly method using MTiO2 to mimic the moth-eye structure. The composite membrane has superhydrophilic/underwater superoleophobic, excellent oil-water separation efficiency (99.85%) and long service life (64 cycles). In addition, due to the light-trapping effect of the bionic moth-eye structure and the redox reaction at the interface of MTiO2-MXene composites under sunlight irradiation, the membrane can achieve efficient and convenient photocatalytic degradation self-cleaning by sunlight irradiation. This study will provide new insights into the self-cleaning method of oil-water separation materials.
[Display omitted]
•Construction of high light absorption efficiency surface by magnetron self-assembly method inspired by the light-trapping effect of moth-eye structure.•Redox reaction occur at the interface of MTiO2 and MXene composite under sunlight irradiation.•The composite membrane shows excellent oil-water separation performance and long service life.•The composite membrane has excellent sunlight-catalyzed degradation self-cleaning property. Membrane separation technology with superwetting surfaces is ideal for treating water pollution. However, the fouling problem of membranes limits their practical application in this field. Membranes with self-cleaning property during the separation are the key to solve this problem. In this study, inspired by the light-trapping effect of the moth-eye, a kind of composite membrane with efficient self-cleaning by photocatalytic degradation was proposed. The composite membrane is based on polyvinyl alcohol cross-linked tannic acid (PVA-TA) and its photocatalytic function is achieved by doping magnetic titanium dioxide nanoparticles (MTiO₂) as well as MXene. Meanwhile, its surface was constructed by magnetically controlled self-assembly method using MTiO₂ to mimic the moth-eye structure. The composite membrane has superhydrophilic/underwater superoleophobic, excellent oil-water separation efficiency (99.85%) and long service life (64 cycles). In addition, due to the light-trapping effect of the bionic moth-eye structure and the redox reaction at the interface of MTiO₂-MXene composites under sunlight irradiation, the membrane can achieve efficient and convenient photocatalytic degradation self-cleaning by sunlight irradiation. This study will provide new insights into the self-cleaning method of oil-water separation materials. |
ArticleNumber | 121337 |
Author | Li, Zhaoxin Jiang, Shuyue Yin, Liang Zhang, Haifeng Chen, Liang Sang, Shengtian |
Author_xml | – sequence: 1 givenname: Zhaoxin surname: Li fullname: Li, Zhaoxin email: 21B921018@stu.hit.edu.cn organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 2 givenname: Liang surname: Yin fullname: Yin, Liang email: yinliang2003@126.com organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 3 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue email: jiangshuyue@163.com organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 4 givenname: Liang surname: Chen fullname: Chen, Liang email: cliang@hit.edu.cn organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 5 givenname: Shengtian surname: Sang fullname: Sang, Shengtian email: stsang@hit.edu.cn organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China – sequence: 6 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng email: zhanghf@hit.edu.cn organization: MEMS Center, Harbin Institute of Technology, Harbin, 150001, PR China |
BookMark | eNqFkD1PHDEURa0IpCyEf0DhMo039nh2PlJEQigQJCSapLbsN8-7XnnGE9ubaHt-eLwMFUWoXnPufbrngpxNYUJCrgVfCy6aL_v1iGMCt654Va1FJaRsP5CV6FrJpKjkGVlx2TaslV33kVyktOdctLzrV-T5hs67kAPorP0xO6ADbqMedHZhogm9ZeBRT27aUgjjHJLLSMs7E_WE1IZIg_Psr84YCz7ruCTdlGYXcaDmSL3b7jLLUc_zqQatRcg0WDqGvGN4xE_k3Gqf8Or1XpJfd99_3v5gj0_3D7c3jwyk7DNrhx6wMbK2urZGbwBM3TW9qAH1IMygG1PZWm_qTthe8h4qMEb3PW8K2FSNvCSfl945ht8HTFmNLgF6X6aEQ1JSbGRby05uCvp1QSGGlCJaBS6_TCs7nFeCq5N6tVeLenVSrxb1JVy_Cc_RjToe34t9W2JYHPxxGFUhcAIciknIagju_wX_ALGxpgQ |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e15580 crossref_primary_10_1680_jsuin_23_00070 crossref_primary_10_1016_j_seppur_2023_125181 crossref_primary_10_1016_j_seppur_2025_132579 crossref_primary_10_1016_j_memsci_2024_122466 crossref_primary_10_3390_su16145993 crossref_primary_10_1016_j_jwpe_2024_104969 crossref_primary_10_1016_j_microc_2025_113413 crossref_primary_10_1016_j_cej_2024_148971 crossref_primary_10_1016_j_ces_2024_120808 crossref_primary_10_1016_j_desal_2024_118019 crossref_primary_10_3390_agronomy14122753 crossref_primary_10_1016_j_mtchem_2024_102303 crossref_primary_10_3390_w16131767 crossref_primary_10_3390_nano13121855 crossref_primary_10_1016_j_cej_2023_147356 crossref_primary_10_1016_j_diamond_2023_110574 crossref_primary_10_3390_membranes14120264 crossref_primary_10_1088_2631_7990_ad3f59 crossref_primary_10_1016_j_cej_2023_145579 crossref_primary_10_1016_j_jece_2023_111670 crossref_primary_10_1002_smll_202308091 crossref_primary_10_1016_j_ccr_2024_216089 crossref_primary_10_1002_smll_202311427 crossref_primary_10_1016_j_memsci_2023_121922 crossref_primary_10_1016_j_seppur_2024_127052 crossref_primary_10_1016_j_cej_2023_144904 crossref_primary_10_1016_j_partic_2024_08_009 crossref_primary_10_1016_j_seppur_2023_125088 crossref_primary_10_1016_j_seppur_2024_128317 |
Cites_doi | 10.1016/j.jcis.2021.12.160 10.1016/j.memsci.2020.118587 10.1016/j.jece.2020.104957 10.1016/j.memsci.2021.119755 10.1016/j.jenvman.2020.110906 10.1021/acsnano.2c04750 10.1016/j.jece.2020.104937 10.1016/j.apsusc.2021.152150 10.1021/acssuschemeng.0c00360 10.1016/j.seppur.2021.120123 10.1002/adma.201502695 10.1038/477412a 10.1002/adma.202001265 10.1016/j.seppur.2022.121605 10.1016/j.apsusc.2022.152476 10.1016/j.watres.2019.03.021 10.1038/s41467-022-32820-0 10.1016/j.cej.2021.131668 10.1002/adma.201706539 10.1016/j.jcis.2022.01.079 10.1002/adfm.202104701 10.1016/j.jhazmat.2021.125424 10.1039/C4EE01299B 10.1021/cr5001892 10.1021/acsami.0c12646 10.1016/j.seppur.2021.118606 10.1016/j.carbpol.2020.117220 10.1016/j.seppur.2022.121836 10.1126/science.1216852 10.1016/j.cej.2021.128498 10.1038/s41467-021-26661-6 10.1038/532435a 10.1021/acsami.0c09059 10.1039/C9TA00521H 10.1021/ie50320a024 10.1007/s40820-019-0309-6 10.1016/j.cej.2022.138204 10.1021/acsami.2c05327 10.1016/S1872-2067(19)63496-0 10.1039/C8EN01291A 10.1021/acsami.0c01013 10.1016/j.cej.2019.02.017 10.1016/j.cej.2020.127177 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2022.121337 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
ExternalDocumentID | 10_1016_j_memsci_2022_121337 S0376738822010821 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-7d9ce6b34fa4fba5ccb486914cead1bda6b2f4a5481f9309c2cbba9906cb46263 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Aug 22 20:37:11 EDT 2025 Tue Jul 01 02:49:59 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oil-water separation Photocatalytic degradation Self-cleaning Light-trapping Redox reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-7d9ce6b34fa4fba5ccb486914cead1bda6b2f4a5481f9309c2cbba9906cb46263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153743835 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153743835 crossref_citationtrail_10_1016_j_memsci_2022_121337 crossref_primary_10_1016_j_memsci_2022_121337 elsevier_sciencedirect_doi_10_1016_j_memsci_2022_121337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-05 |
PublicationDateYYYYMMDD | 2023-03-05 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Liu, Vogelbacher, Li (bib25) 2022; 19 Sholl, Lively (bib5) 2016; 532 Yang, Li, Xie, Wu, Jia, Yang, Song, Zhang (bib46) 2020; 8 Wenzel (bib34) 1936; 28 Sun, Wei, Zhang, Bi, Huang, Ji, Liu, Zhao (bib43) 2022 Zeng, You, Du, Zhang, Ding, Xu, Liu, Chen, Pan (bib17) 2021; 412 Wei, Qin, Chen, Li, Wen, Ji, Li, An (bib42) 2019; 6 Zhang, Liu, Gao, Chen, Xu, Lin, Feng (bib1) 2015; 27 Izadpanah, Sarrafzadeh, Rezaei-DashtArzhandi, Vojoudi (bib20) 2021; 9 Sun, Zhan, Feng, Yang, Dong, Liu, Chen, Chen (bib40) 2022; 633 Gholamian, Hamzehloo, Farrokhnia (bib21) 2021; 9 Sun, Han, Gao, Li, Jing, Yu, Wang (bib22) 2022; 13 Feng, Yu, Sun, Shan, Long, Li (bib28) 2021; 266 Murali, Reddy Modigunta, Park, Lee, Rawal, Lee, In, Park (bib14) 2022; 16 Cai, Chen, Li, Xu, Li, He, Lu (bib36) 2020; 32 Paul, Upadhaya, Purkayastha, Krishna (bib48) 2022; 583 Li, Sang, Jiang, Chen, Zhang (bib26) 2022; 14 Zhu, Liu, Hou, Zhang, Li, Wang, Wang, Fu (bib13) 2020; 12 Grant, Saphores, Feldman, Hamilton, Fletcher, Cook, Stewardson, Sanders, Levin, Ambrose, Deletic, Brown, Jiang, Rosso, Cooper, Marusic (bib3) 2012; 337 Xie, Cui, Yang, Chen, Dai, Lang, Li, Yan (bib11) 2019; 7 Yu, Chen, Li, Wen, Liu, Li, An (bib41) 2020; 41 Sun, Qiu, Liang, Xue, Zhang, Yang, Cui, Tian (bib31) 2021; 406 Feng, Zhan, Yang, Sun, Dong, Chiao, Liu, Chen, Chen (bib44) 2022; 612 Chen, Meng, Tian, Wang, Zhu, Zheng, Wang (bib7) 2020; 616 Lin, Zeng, Yan, Luo, Cheng, Zhao, Li (bib12) 2022; 427 Zhou, Xu, Liu, Zhang, Wang, Chen, Zhang, Fan (bib23) 2018; 28 Piao, Zhao, Liu, Zhang, Huang, Liu, Xiao (bib32) 2022; 450 Bi, Huang, Wang, Wang, Wu, Yang, Lu, Hao (bib18) 2019; 366 Yang, Song, Li, Chen, Zhou, Zhou, Chen (bib24) 2018; 30 Tanudjaja, Hejase, Tarabara, Fane, Chew (bib4) 2019; 156 Sun, Meng, Dall’Agnese, Dall’Agnese, Duan, Gao, Chen, Wang (bib38) 2019; 11 Temur, Eryiğit, Doğan, Çepni, Demir (bib16) 2022; 581 Wang, Zhao, Hu, Fan, Zhang, Wang (bib29) 2020; 12 Gopinath, Madhav, Krishnan, Malolan, Rangarajan (bib15) 2020; 270 Nosonovsky (bib35) 2011; 477 Zou, Zhao, Zhang, Lv, Qiu, Zhang (bib39) 2021; 413 Ma, Li, Zhang, Gao, Cui, Huang, Fu (bib6) 2020; 12 Bai, Jia, Liu, Wang, Lin, Huang, Liu, Liu (bib9) 2021; 31 Chen, Dong, Xue, Yang, Wang, Yang, Zhu, Wu, Yao, Luo, Zou (bib37) 2021; 12 Zhu, Liu, Chen, Sadrzadeh, Xu, Gan, Huang, Ma, Yang, Zhou (bib45) 2021; 640 Chen, Zhan, Sun, Feng, Yang, Dong, Chen, Zhang (bib30) 2022; 298 Wang, Li, Lv, Zhang, Guo (bib2) 2014; 7 Chen, Guo, Bian, Ji, Wang, Zhang, Cui, Tian (bib33) 2022; 613 Schneider, Matsuoka, Takeuchi, Zhang, Horiuchi, Anpo, Bahnemann (bib10) 2014; 114 Xiao, Li, Hu, Zhu, Yu, Xiao, Wang, Yang (bib19) 2022; 300 You, Song, Liu, Yang, Qiu, Zang, Liu, Chen (bib8) 2020; 537 Wang, Zhao, Wahid, Zhao, Qin, Bai, Xie, Zhong, Jia (bib27) 2021; 253 Yang, Gui, Li, Qing, Wang, Ma, You, Li (bib47) 2022; 282 Izadpanah (10.1016/j.memsci.2022.121337_bib20) 2021; 9 Wei (10.1016/j.memsci.2022.121337_bib42) 2019; 6 Lin (10.1016/j.memsci.2022.121337_bib12) 2022; 427 Gopinath (10.1016/j.memsci.2022.121337_bib15) 2020; 270 Chen (10.1016/j.memsci.2022.121337_bib37) 2021; 12 Ma (10.1016/j.memsci.2022.121337_bib6) 2020; 12 Wang (10.1016/j.memsci.2022.121337_bib25) 2022; 19 Wang (10.1016/j.memsci.2022.121337_bib27) 2021; 253 Sun (10.1016/j.memsci.2022.121337_bib31) 2021; 406 Nosonovsky (10.1016/j.memsci.2022.121337_bib35) 2011; 477 Zhu (10.1016/j.memsci.2022.121337_bib13) 2020; 12 Zhou (10.1016/j.memsci.2022.121337_bib23) 2018; 28 Sun (10.1016/j.memsci.2022.121337_bib22) 2022; 13 Chen (10.1016/j.memsci.2022.121337_bib30) 2022; 298 Chen (10.1016/j.memsci.2022.121337_bib7) 2020; 616 Yang (10.1016/j.memsci.2022.121337_bib24) 2018; 30 Piao (10.1016/j.memsci.2022.121337_bib32) 2022; 450 Wenzel (10.1016/j.memsci.2022.121337_bib34) 1936; 28 Zou (10.1016/j.memsci.2022.121337_bib39) 2021; 413 Bai (10.1016/j.memsci.2022.121337_bib9) 2021; 31 Cai (10.1016/j.memsci.2022.121337_bib36) 2020; 32 Yang (10.1016/j.memsci.2022.121337_bib46) 2020; 8 Xiao (10.1016/j.memsci.2022.121337_bib19) 2022; 300 Gholamian (10.1016/j.memsci.2022.121337_bib21) 2021; 9 Grant (10.1016/j.memsci.2022.121337_bib3) 2012; 337 Wang (10.1016/j.memsci.2022.121337_bib29) 2020; 12 Chen (10.1016/j.memsci.2022.121337_bib33) 2022; 613 Zhu (10.1016/j.memsci.2022.121337_bib45) 2021; 640 You (10.1016/j.memsci.2022.121337_bib8) 2020; 537 Sholl (10.1016/j.memsci.2022.121337_bib5) 2016; 532 Feng (10.1016/j.memsci.2022.121337_bib44) 2022; 612 Zhang (10.1016/j.memsci.2022.121337_bib1) 2015; 27 Paul (10.1016/j.memsci.2022.121337_bib48) 2022; 583 Xie (10.1016/j.memsci.2022.121337_bib11) 2019; 7 Temur (10.1016/j.memsci.2022.121337_bib16) 2022; 581 Yu (10.1016/j.memsci.2022.121337_bib41) 2020; 41 Schneider (10.1016/j.memsci.2022.121337_bib10) 2014; 114 Sun (10.1016/j.memsci.2022.121337_bib38) 2019; 11 Sun (10.1016/j.memsci.2022.121337_bib40) 2022; 633 Bi (10.1016/j.memsci.2022.121337_bib18) 2019; 366 Sun (10.1016/j.memsci.2022.121337_bib43) 2022 Li (10.1016/j.memsci.2022.121337_bib26) 2022; 14 Zeng (10.1016/j.memsci.2022.121337_bib17) 2021; 412 Yang (10.1016/j.memsci.2022.121337_bib47) 2022; 282 Feng (10.1016/j.memsci.2022.121337_bib28) 2021; 266 Wang (10.1016/j.memsci.2022.121337_bib2) 2014; 7 Murali (10.1016/j.memsci.2022.121337_bib14) 2022; 16 Tanudjaja (10.1016/j.memsci.2022.121337_bib4) 2019; 156 |
References_xml | – volume: 633 year: 2022 ident: bib40 article-title: Assembly of MXene/ZnO heterojunction onto electrospun poly(arylene ether nitrile) fibrous membrane for favorable oil/water separation with high permeability and synergetic antifouling performance publication-title: J. Membr. Sci. – volume: 640 year: 2021 ident: bib45 article-title: Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification publication-title: J. Membr. Sci. – volume: 613 start-page: 644 year: 2022 end-page: 651 ident: bib33 article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 34999 year: 2020 end-page: 35010 ident: bib6 article-title: Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 13370 year: 2022 end-page: 13429 ident: bib14 article-title: A review on MXene synthesis, stability, and photocatalytic applications publication-title: ACS Nano – volume: 31 year: 2021 ident: bib9 article-title: A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation publication-title: Adv. Funct. Mater. – volume: 412 year: 2021 ident: bib17 article-title: Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of aquatic naphthalene under sunlight irradiation publication-title: Chem. Eng. J. – volume: 300 year: 2022 ident: bib19 article-title: Construction of in-situ carbon-doped TiO2 decorated Fe3O4 heterojunction and their enhanced photocatalytic oxidation of As(III) under visible light publication-title: Separ. Purif. Technol. – volume: 7 start-page: 2831 year: 2014 end-page: 2867 ident: bib2 article-title: Photocatalytic organic pollutants degradation in metal-organic frameworks publication-title: Energy Environ. Sci. – volume: 28 year: 2018 ident: bib23 article-title: Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation publication-title: Adv. Funct. Mater. – volume: 253 year: 2021 ident: bib27 article-title: Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation publication-title: Carbohydr. Polym. – volume: 114 start-page: 9919 year: 2014 end-page: 9986 ident: bib10 article-title: Understanding TiO2 photocatalysis: mechanisms and materials publication-title: Chem. Rev. – volume: 581 year: 2022 ident: bib16 article-title: Electrochemical fabrication and reductive doping of electrochemically reduced graphene oxide decorated with TiO2 electrode with highly enhanced photoresponse under visible light publication-title: Appl. Surf. Sci. – volume: 270 year: 2020 ident: bib15 article-title: Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: a review publication-title: J. Environ. Manag. – volume: 30 year: 2018 ident: bib24 article-title: Recent progress in biomimetic additive manufacturing technology: from materials to functional structures publication-title: Adv. Mater. – volume: 298 year: 2022 ident: bib30 article-title: Anchoring the TiO2@crumpled graphene oxide core-shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil-water emulsion publication-title: Separ. Purif. Technol. – volume: 19 year: 2022 ident: bib25 article-title: Bioinspired multiscale optical structures towards efficient light management in optoelectronic devices, Mater publication-title: Today Nano – volume: 156 start-page: 347 year: 2019 end-page: 365 ident: bib4 article-title: Membrane-based separation for oily wastewater: a practical perspective publication-title: Water Res. – volume: 616 year: 2020 ident: bib7 article-title: Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance publication-title: J. Membr. Sci. – volume: 450 year: 2022 ident: bib32 article-title: Ultra-low power light driven lycopodium-like nanofiber membrane reinforced by PET braid tube with robust pollutants removal and regeneration capacity based on photo-Fenton catalysis publication-title: Chem. Eng. J. – volume: 32 year: 2020 ident: bib36 article-title: A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux publication-title: Adv. Mater. – volume: 13 start-page: 5077 year: 2022 ident: bib22 article-title: Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator publication-title: Nat. Commun. – volume: 366 start-page: 50 year: 2019 end-page: 61 ident: bib18 article-title: Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nano tube composites for simultaneous removal of Pb(II) and rhodamine B publication-title: Chem. Eng. J. – volume: 583 year: 2022 ident: bib48 article-title: ZnO/WO3.H2O micro-nanostructures coated mesh for efficient separation of oil-water mixture publication-title: Appl. Surf. Sci. – volume: 266 year: 2021 ident: bib28 article-title: 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance publication-title: Separ. Purif. Technol. – volume: 12 start-page: 50113 year: 2020 end-page: 50125 ident: bib13 article-title: Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting publication-title: ACS Appl. Mater. Interfaces – volume: 406 year: 2021 ident: bib31 article-title: The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis publication-title: Chem. Eng. J. – volume: 27 start-page: 7349 year: 2015 ident: bib1 article-title: A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion publication-title: Adv. Mater. – volume: 532 start-page: 435 year: 2016 end-page: 437 ident: bib5 article-title: Seven chemical separations to change the world publication-title: Nature – volume: 537 year: 2020 ident: bib8 article-title: A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation publication-title: Appl. Surf. Sci. – volume: 9 year: 2021 ident: bib20 article-title: Aquatic center sewage reclamation and water reuse, using an integrated system combining adsorption, RO membrane system, and TiO2/Fe3O4 photocatalytic oxidation publication-title: J. Environ. Chem. Eng. – volume: 612 start-page: 156 year: 2022 end-page: 170 ident: bib44 article-title: Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics publication-title: J. Colloid Interface Sci. – volume: 337 start-page: 681 year: 2012 end-page: 686 ident: bib3 article-title: Taking the "Waste" out of "Wastewater" for human water security and ecosystem sustainability publication-title: Science – volume: 6 start-page: 959 year: 2019 end-page: 969 ident: bib42 article-title: Photocatalytic ozonation mechanism of gaseous n-hexane on MOx-TiO2-foam nickel composite (M = Cu, Mn, Ag): unveiling the role of OH and O-2(-) publication-title: Environ. Sci-Nano. – year: 2022 ident: bib43 article-title: Adsorption coupling photocatalytic removal of gaseous n-hexane by phosphorus-doped g-C3N4/TiO2/Zn(OAc)(2)-ACF composites publication-title: Environ. Sci. Pollut. Res. – volume: 7 start-page: 8491 year: 2019 end-page: 8502 ident: bib11 article-title: Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation publication-title: J. Mater. Chem. – volume: 11 start-page: 79 year: 2019 end-page: 101 ident: bib38 article-title: 2D MXenes as co-catalysts in photocatalysis: synthetic methods publication-title: Nano-Micro Lett. – volume: 9 year: 2021 ident: bib21 article-title: Enhanced visible-light photocatalysis of TiO2/Fe3O4/BiOI nanocomposites as magnetically recoverable for the degradation of dye pollutants publication-title: J. Environ. Chem. Eng. – volume: 12 start-page: 40176 year: 2020 end-page: 40185 ident: bib29 article-title: 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic no pollutant removal ability publication-title: ACS Appl. Mater. Interfaces – volume: 427 year: 2022 ident: bib12 article-title: Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: oil/water separation and dyes removal publication-title: Chem. Eng. J. – volume: 14 start-page: 26057 year: 2022 end-page: 26067 ident: bib26 article-title: A self-detecting and self-cleaning biomimetic porous metal-based hydrogel for oil/water separation publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: bib34 article-title: Chemistry, Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. – volume: 8 start-page: 5347 year: 2020 end-page: 5359 ident: bib46 article-title: Environmentally safe and porous MS@TiO2@PPy monoliths with superior visible-light photocatalytic properties for rapid oil-water separation and water purification publication-title: ACS Sustain. Chem. Eng. – volume: 12 start-page: 6363 year: 2021 ident: bib37 article-title: Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces publication-title: Nat. Commun. – volume: 413 year: 2021 ident: bib39 article-title: Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation publication-title: J. Hazard Mater. – volume: 282 year: 2022 ident: bib47 article-title: Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction publication-title: Separ. Purif. Technol. – volume: 477 start-page: 412 year: 2011 end-page: 413 ident: bib35 article-title: Materials science slippery when wetted publication-title: Nature – volume: 41 start-page: 1603 year: 2020 end-page: 1612 ident: bib41 article-title: In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane publication-title: Chin. J. Catal. – volume: 612 start-page: 156 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib44 article-title: Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.160 – volume: 616 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib7 article-title: Fabrication of a superhydrophilic PVDF-g-PAA@FeOOH ultrafiltration membrane with visible light photo-fenton self-cleaning performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118587 – volume: 9 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib20 article-title: Aquatic center sewage reclamation and water reuse, using an integrated system combining adsorption, RO membrane system, and TiO2/Fe3O4 photocatalytic oxidation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104957 – volume: 640 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib45 article-title: Robust superhydrophilic and underwater superoleophobic membrane optimized by Cu doping modified metal-organic frameworks for oil-water separation and water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119755 – year: 2022 ident: 10.1016/j.memsci.2022.121337_bib43 article-title: Adsorption coupling photocatalytic removal of gaseous n-hexane by phosphorus-doped g-C3N4/TiO2/Zn(OAc)(2)-ACF composites publication-title: Environ. Sci. Pollut. Res. – volume: 537 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib8 article-title: A facile route for the fabrication of a superhydrophilic and underwater superoleophobic phosphorylated PVA-coated mesh for both oil/water immiscible mixture and emulsion separation publication-title: Appl. Surf. Sci. – volume: 270 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib15 article-title: Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110906 – volume: 16 start-page: 13370 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib14 article-title: A review on MXene synthesis, stability, and photocatalytic applications publication-title: ACS Nano doi: 10.1021/acsnano.2c04750 – volume: 9 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib21 article-title: Enhanced visible-light photocatalysis of TiO2/Fe3O4/BiOI nanocomposites as magnetically recoverable for the degradation of dye pollutants publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104937 – volume: 581 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib16 article-title: Electrochemical fabrication and reductive doping of electrochemically reduced graphene oxide decorated with TiO2 electrode with highly enhanced photoresponse under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.152150 – volume: 8 start-page: 5347 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib46 article-title: Environmentally safe and porous MS@TiO2@PPy monoliths with superior visible-light photocatalytic properties for rapid oil-water separation and water purification publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00360 – volume: 282 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib47 article-title: Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.120123 – volume: 27 start-page: 7349 year: 2015 ident: 10.1016/j.memsci.2022.121337_bib1 article-title: A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion publication-title: Adv. Mater. doi: 10.1002/adma.201502695 – volume: 477 start-page: 412 year: 2011 ident: 10.1016/j.memsci.2022.121337_bib35 article-title: Materials science slippery when wetted publication-title: Nature doi: 10.1038/477412a – volume: 32 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib36 article-title: A self-cleaning heterostructured membrane for efficient oil-in-water emulsion separation with stable flux publication-title: Adv. Mater. doi: 10.1002/adma.202001265 – volume: 298 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib30 article-title: Anchoring the TiO2@crumpled graphene oxide core-shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil-water emulsion publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2022.121605 – volume: 583 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib48 article-title: ZnO/WO3.H2O micro-nanostructures coated mesh for efficient separation of oil-water mixture publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152476 – volume: 156 start-page: 347 year: 2019 ident: 10.1016/j.memsci.2022.121337_bib4 article-title: Membrane-based separation for oily wastewater: a practical perspective publication-title: Water Res. doi: 10.1016/j.watres.2019.03.021 – volume: 13 start-page: 5077 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib22 article-title: Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator publication-title: Nat. Commun. doi: 10.1038/s41467-022-32820-0 – volume: 427 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib12 article-title: Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: oil/water separation and dyes removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131668 – volume: 19 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib25 article-title: Bioinspired multiscale optical structures towards efficient light management in optoelectronic devices, Mater publication-title: Today Nano – volume: 30 year: 2018 ident: 10.1016/j.memsci.2022.121337_bib24 article-title: Recent progress in biomimetic additive manufacturing technology: from materials to functional structures publication-title: Adv. Mater. doi: 10.1002/adma.201706539 – volume: 613 start-page: 644 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib33 article-title: Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.079 – volume: 31 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib9 article-title: A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104701 – volume: 413 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib39 article-title: Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2021.125424 – volume: 7 start-page: 2831 year: 2014 ident: 10.1016/j.memsci.2022.121337_bib2 article-title: Photocatalytic organic pollutants degradation in metal-organic frameworks publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01299B – volume: 114 start-page: 9919 year: 2014 ident: 10.1016/j.memsci.2022.121337_bib10 article-title: Understanding TiO2 photocatalysis: mechanisms and materials publication-title: Chem. Rev. doi: 10.1021/cr5001892 – volume: 12 start-page: 50113 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib13 article-title: Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12646 – volume: 266 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib28 article-title: 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2021.118606 – volume: 253 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib27 article-title: Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117220 – volume: 300 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib19 article-title: Construction of in-situ carbon-doped TiO2 decorated Fe3O4 heterojunction and their enhanced photocatalytic oxidation of As(III) under visible light publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2022.121836 – volume: 337 start-page: 681 year: 2012 ident: 10.1016/j.memsci.2022.121337_bib3 article-title: Taking the "Waste" out of "Wastewater" for human water security and ecosystem sustainability publication-title: Science doi: 10.1126/science.1216852 – volume: 412 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib17 article-title: Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of aquatic naphthalene under sunlight irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128498 – volume: 12 start-page: 6363 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib37 article-title: Faradaic junction and isoenergetic charge transfer mechanism on semiconductor/semiconductor interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-021-26661-6 – volume: 633 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib40 article-title: Assembly of MXene/ZnO heterojunction onto electrospun poly(arylene ether nitrile) fibrous membrane for favorable oil/water separation with high permeability and synergetic antifouling performance publication-title: J. Membr. Sci. – volume: 532 start-page: 435 year: 2016 ident: 10.1016/j.memsci.2022.121337_bib5 article-title: Seven chemical separations to change the world publication-title: Nature doi: 10.1038/532435a – volume: 12 start-page: 34999 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib6 article-title: Biomimetic durable multifunctional self-cleaning nanofibrous membrane with outstanding oil/water separation, photodegradation of organic contaminants, and antibacterial performances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09059 – volume: 7 start-page: 8491 year: 2019 ident: 10.1016/j.memsci.2022.121337_bib11 article-title: Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation publication-title: J. Mater. Chem. doi: 10.1039/C9TA00521H – volume: 28 start-page: 988 year: 1936 ident: 10.1016/j.memsci.2022.121337_bib34 article-title: Chemistry, Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 11 start-page: 79 year: 2019 ident: 10.1016/j.memsci.2022.121337_bib38 article-title: 2D MXenes as co-catalysts in photocatalysis: synthetic methods publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0309-6 – volume: 450 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib32 article-title: Ultra-low power light driven lycopodium-like nanofiber membrane reinforced by PET braid tube with robust pollutants removal and regeneration capacity based on photo-Fenton catalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138204 – volume: 28 year: 2018 ident: 10.1016/j.memsci.2022.121337_bib23 article-title: Bio-inspired photonic materials: prototypes and structural effect designs for applications in solar energy manipulation publication-title: Adv. Funct. Mater. – volume: 14 start-page: 26057 year: 2022 ident: 10.1016/j.memsci.2022.121337_bib26 article-title: A self-detecting and self-cleaning biomimetic porous metal-based hydrogel for oil/water separation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05327 – volume: 41 start-page: 1603 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib41 article-title: In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63496-0 – volume: 6 start-page: 959 year: 2019 ident: 10.1016/j.memsci.2022.121337_bib42 article-title: Photocatalytic ozonation mechanism of gaseous n-hexane on MOx-TiO2-foam nickel composite (M = Cu, Mn, Ag): unveiling the role of OH and O-2(-) publication-title: Environ. Sci-Nano. doi: 10.1039/C8EN01291A – volume: 12 start-page: 40176 year: 2020 ident: 10.1016/j.memsci.2022.121337_bib29 article-title: 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic no pollutant removal ability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01013 – volume: 366 start-page: 50 year: 2019 ident: 10.1016/j.memsci.2022.121337_bib18 article-title: Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nano tube composites for simultaneous removal of Pb(II) and rhodamine B publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.017 – volume: 406 year: 2021 ident: 10.1016/j.memsci.2022.121337_bib31 article-title: The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127177 |
SSID | ssj0017089 |
Score | 2.5514464 |
Snippet | Membrane separation technology with superwetting surfaces is ideal for treating water pollution. However, the fouling problem of membranes limits their... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121337 |
SubjectTerms | asymmetric membranes crosslinking durability hydrophilicity irradiation Light-trapping magnetism nanoparticles Oil-water separation photocatalysis Photocatalytic degradation polyvinyl alcohol Redox reaction redox reactions Self-cleaning solar radiation tannins titanium dioxide water pollution |
Title | A photocatalytic degradation self-cleaning composite membrane for oil-water separation inspired by light-trapping effect of moth-eye |
URI | https://dx.doi.org/10.1016/j.memsci.2022.121337 https://www.proquest.com/docview/3153743835 |
Volume | 669 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-iFz2IX4_nJxG8xm232bQ9LqKsil5U8BbyMX1vH2u7rBXZiyf_cGfSVnwiCF7LJITMdGaS_OY3jB3FEJnMeRCY23shTe5FVmRKeOsiR4xtPtRWXV2r0Z28uB_cL7CTrhaGYJWt7298evDW7Zdeu5u96Xjcu4mIiCTBDJEedLNQTC5lSlZ-_PIO84jTKLTBI2FB0l35XMB4PcADTo2nxH6faBYS6ob-dXj65KhD9DlbY6tt2siHzcrW2QKUG2zlA5ngJnsd8unfqq7Chcwc5bgnIoimZxJ_hEkhcKihexBOQHJCawHHteF5uQSOySuvxhPxjMnnDMUbTnAcOS7pMR48t3M-CbQj9cwQq8Mf3oBBeFVwUriAOWyxu7PT25ORaHssCJckeS1SnztQNpGFkYU1A-eszFQeS4cmFltvlO0X0uC5Ji7yJMpd31lrMIQpFCQmm19ssaxK-M04OFVkxvk8zpyMjM-UcrmV4FNQ4GW6zZJua7VrCcipD8ZEd0izf7pRiCaF6EYh20y8j5o2BBzfyKed1vR_hqQxRnwz8rBTssZ_jB5OcPurp0edYFhIidN1sPPj2XfZMnWqD_C1wR5brGdPsI_5TG0PgsEesKXh-eXo-g3YcPn2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMUSjESHM0msddJDhwqaLWljwut1JvxYwKLtslqN1W1F078I_5gZ5ykAoRUCanXxBM5M_bM2P78DWNvUkhs4QMIzO2DULYMoqgKLYLziSfGthDvVh0e6cmJ-nQ6Pl1jv4a7MASr7H1_59Ojt-6fjHptjubT6ehzQkQkEjNEOtAtsrRHVu7D6gLXbcv3ex_RyG-zbHfn-MNE9KUFhJeybEUeSg_aSVVZVTk79t6pQpep8qjZ1AWrXVYpi-l8WpUyKX3mnbPouTU2JAIX_O4tdluhu6CyCe9-XOFK0jyJdfeod4K6N9zXi6CyMzjDf8FlaZYRr4Ok8uv_jod_RYYY7nYfsPt9nsq3O1U8ZGtQP2L3fmMvfMx-bvP5t6Zt4g7QCtvxQMwTXZEmvoRZJVDU0sYLJ-Q6wcOAY99wgV4Dx2yZN9OZuMBsd4HNOxJylJzWdPoPgbsVn0Wek3ZhiUbiK-_QJ7ypOI0wASt4wk5uRPNP2Xrd1PCMcfC6KqwPZVp4ldhQaO1LpyDkoCGofIPJQbXG94znVHhjZgZo23fTGcSQQUxnkA0mrqTmHePHNe3zwWrmj5FrMChdI_l6MLLBSU0nNaj-5nxpJMahnEhkx8__--uv2J3J8eGBOdg72n_B7uIbGbFz40223i7O4SUmU63bioOXsy83PVsuAdqgN6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+photocatalytic+degradation+self-cleaning+composite+membrane+for+oil-water+separation+inspired+by+light-trapping+effect+of+moth-eye&rft.jtitle=Journal+of+membrane+science&rft.au=Li%2C+Zhaoxin&rft.au=Yin%2C+Liang&rft.au=Jiang%2C+Shuyue&rft.au=Chen%2C+Liang&rft.date=2023-03-05&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=669&rft_id=info:doi/10.1016%2Fj.memsci.2022.121337&rft.externalDocID=S0376738822010821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |