Fate and stabilization of labile carbon in a sandy boreal forest soil – A question of nitrogen availability?

Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address...

Full description

Saved in:
Bibliographic Details
Published inApplied soil ecology : a section of Agriculture, ecosystems & environment Vol. 191; p. 105052
Main Authors Meyer, Nele, Sietiö, Outi-Maaria, Adamczyk, Sylwia, Ambus, Per, Biasi, Christina, Glaser, Bruno, Kalu, Subin, Martin, Angela, Mganga, Kevin Z., Olin, Miikka, Seppänen, Aino, Shrestha, Rashmi, Karhu, Kristiina
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added 13C glucose to the soil and measured 13C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars as biomarker for microbial necromass. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added 13C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of 13C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and microbial necromass (1.5 %) after 1 year. N fertilization increased bacterial growth on 13C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues. •Recovery of added 13C glucose was measured in soil, MBC, DOC, PLFA, and amino sugars.•Around 40 % of added 13C glucose was mineralized after one day.•Trees and fertilization increased the long-term stabilization of glucose-derived C.•No long-term stabilization of glucose-derived C in soils with C or N deficiency•Trees increased soil symbiotrophs and fertilization increased bacterial growth.
AbstractList Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added 13C glucose to the soil and measured 13C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars as biomarker for microbial necromass. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added 13C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of 13C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and microbial necromass (1.5 %) after 1 year. N fertilization increased bacterial growth on 13C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues. •Recovery of added 13C glucose was measured in soil, MBC, DOC, PLFA, and amino sugars.•Around 40 % of added 13C glucose was mineralized after one day.•Trees and fertilization increased the long-term stabilization of glucose-derived C.•No long-term stabilization of glucose-derived C in soils with C or N deficiency•Trees increased soil symbiotrophs and fertilization increased bacterial growth.
Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added ¹³C glucose to the soil and measured ¹³C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added ¹³C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of ¹³C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and amino sugars (2 %) after 1 year. N fertilization increased bacterial growth on ¹³C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues.
ArticleNumber 105052
Author Kalu, Subin
Biasi, Christina
Meyer, Nele
Karhu, Kristiina
Sietiö, Outi-Maaria
Mganga, Kevin Z.
Olin, Miikka
Martin, Angela
Seppänen, Aino
Glaser, Bruno
Adamczyk, Sylwia
Ambus, Per
Shrestha, Rashmi
Author_xml – sequence: 1
  givenname: Nele
  surname: Meyer
  fullname: Meyer, Nele
  email: nele.meyer@em.uni-frankfurt.de
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 2
  givenname: Outi-Maaria
  surname: Sietiö
  fullname: Sietiö, Outi-Maaria
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 3
  givenname: Sylwia
  surname: Adamczyk
  fullname: Adamczyk, Sylwia
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 4
  givenname: Per
  surname: Ambus
  fullname: Ambus, Per
  organization: University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark
– sequence: 5
  givenname: Christina
  surname: Biasi
  fullname: Biasi, Christina
  organization: University of Eastern Finland, Biogeochemistry Research Group, Kuopio, Finland
– sequence: 6
  givenname: Bruno
  surname: Glaser
  fullname: Glaser, Bruno
  organization: Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Department of Soil Biogeochemistry, Halle, Germany
– sequence: 7
  givenname: Subin
  surname: Kalu
  fullname: Kalu, Subin
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 8
  givenname: Angela
  surname: Martin
  fullname: Martin, Angela
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 9
  givenname: Kevin Z.
  surname: Mganga
  fullname: Mganga, Kevin Z.
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 10
  givenname: Miikka
  surname: Olin
  fullname: Olin, Miikka
  organization: University of Helsinki, Department of Food and Nutrition, Helsinki, Finland
– sequence: 11
  givenname: Aino
  surname: Seppänen
  fullname: Seppänen, Aino
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
– sequence: 12
  givenname: Rashmi
  surname: Shrestha
  fullname: Shrestha, Rashmi
  organization: University of Helsinki, Department of Microbiology, Helsinki, Finland
– sequence: 13
  givenname: Kristiina
  surname: Karhu
  fullname: Karhu, Kristiina
  organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland
BookMark eNqFkL1OBCEURonRxHX1DSwobWZlYGeGsdAY419iYqM1ucNcDJsRVkCTtfIdfEOfRHbHykKrG26-8wFnj2w775CQw5LNSlbWx4sZLKO3w4wzLvKqYhXfIpNSNqJgvOHbZMJa3halaMUu2YtxwViOSDEh7goSUnA9jQk6O9h3SNY76g0d1mekGkKXF9ZRoDEHV7TzAWGgJo-Y6Ppi-vXxSc_py2te_NDOpuCfMFNvYDdVNq3O9smOgSHiwc-cksery4eLm-Lu_vr24vyu0EK0qWj6WmqYS2F4JaE2c-RQSTS96UTbIecope4ElJ1uZNWj6ZiWKKp5DVjzEsWUHI29y-A3r1LPNmocBnDoX6PiUjY1q1pZ5eh8jOrgYwxo1DLYZwgrVTK11qsWatSr1nrVqDdjJ78wbdPGXQr5w__BpyOM2cGbxaCitug09jagTqr39u-Cb6ainWU
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105395
crossref_primary_10_1016_j_geoderma_2024_117107
Cites_doi 10.5194/bg-12-5929-2015
10.1111/nph.13208
10.1016/S0038-0717(03)00015-4
10.1111/1365-2745.13385
10.1016/j.soilbio.2015.10.017
10.1016/j.soilbio.2020.108059
10.1128/AEM.01043-13
10.1093/femsec/fiz209
10.1016/0038-0717(87)90052-6
10.1016/0038-0717(95)00100-X
10.1128/AEM.01541-09
10.1111/nph.15040
10.1146/annurev-micro-102215-095748
10.1034/j.1600-0706.2000.890203.x
10.1016/j.soilbio.2016.05.001
10.1093/nar/gks1219
10.1111/j.1365-2389.2010.01244.x
10.1016/0167-7012(91)90018-L
10.1016/j.soilbio.2016.12.004
10.1016/j.geoderma.2020.114470
10.1016/0038-0717(90)90189-7
10.1038/ngeo617
10.1007/BF00384433
10.1016/j.soilbio.2020.107929
10.1016/0048-9697(92)90084-6
10.1016/j.soilbio.2020.107720
10.1016/j.soilbio.2003.08.019
10.1016/j.soilbio.2022.108615
10.1016/S0038-0717(98)00040-6
10.3389/fpls.2019.01658
10.1890/06-1847.1
10.1016/j.soilbio.2019.05.017
10.1016/S0038-0717(99)00162-5
10.1038/nrmicro2386-c1
10.1007/BF00340575
10.1023/A:1016125726789
10.1016/j.apsoil.2017.03.006
10.1002/rcm.6814
10.1016/j.pedobi.2009.12.001
10.1016/j.soilbio.2020.107762
10.1016/j.soilbio.2014.06.026
10.1038/nmicrobiol.2016.242
10.1046/j.1469-8137.2003.00704.x
10.1002/jpln.201600451
10.1111/j.1365-2486.2006.01186.x
10.3389/fmicb.2021.679793
10.1016/S0038-0717(01)00079-7
10.1111/ele.12631
10.1007/s10533-020-00720-4
10.5194/bg-14-271-2017
10.1016/j.soilbio.2021.108422
10.1111/gcb.12374
10.1007/s10533-011-9658-z
10.1016/j.soilbio.2005.09.002
10.1016/j.femsre.2004.11.005
10.1111/j.1574-6941.2012.01437.x
10.1111/1462-2920.13023
10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
10.1016/j.mib.2017.06.008
10.1016/j.soilbio.2015.09.005
10.1016/j.soilbio.2016.03.008
10.1023/A:1019650226585
10.1111/gcb.14962
10.1111/j.1574-6968.2010.02069.x
10.1016/j.soilbio.2010.05.007
10.1038/nmicrobiol.2017.105
10.1111/gcb.14781
10.3354/ame01753
10.1007/s00374-002-0466-4
10.1016/S0038-0717(03)00123-8
10.1016/j.soilbio.2003.10.013
10.1016/j.soilbio.2018.01.024
10.1016/j.funeco.2015.06.006
10.1016/j.soilbio.2019.107687
10.1093/nar/gkt1209
10.1007/s42832-020-0052-4
10.1111/2041-210X.13434
10.1111/nph.13849
10.1016/j.soilbio.2021.108500
10.1016/0038-0717(96)00117-4
10.1038/233133a0
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apsoil.2023.105052
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Ecology
EISSN 1873-0272
ExternalDocumentID 10_1016_j_apsoil_2023_105052
S0929139323002500
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
UHS
UNMZH
WUQ
XPP
Y6R
ZMT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-7d68ca483f258a6f4e2a58efdfb39be22e88cb3a1bc785defb0c8e3546ae621e3
IEDL.DBID .~1
ISSN 0929-1393
IngestDate Wed Jul 02 04:49:54 EDT 2025
Tue Jul 01 03:25:46 EDT 2025
Thu Apr 24 23:01:05 EDT 2025
Fri Feb 23 02:35:47 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microbial carbon pump
Microbial necromass
Microbial nitrogen mining
Nitrogen limitation, Pinus sylvestris
Microbial community
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-7d68ca483f258a6f4e2a58efdfb39be22e88cb3a1bc785defb0c8e3546ae621e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2887605985
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2887605985
crossref_primary_10_1016_j_apsoil_2023_105052
crossref_citationtrail_10_1016_j_apsoil_2023_105052
elsevier_sciencedirect_doi_10_1016_j_apsoil_2023_105052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied soil ecology : a section of Agriculture, ecosystems & environment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Frostegård, Bååth (bb2000) 1996; 22
Glaser, Turrión, Alef (bb0175) 2004; 36
Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Lehndorff, Mikutta, Peth, Prechtel, Ray, Kögel-Knabner (bb0475) 2018; 181
Six, Conant, Paul, Paustian (bb0425) 2002; 241
Dong, Song, Yin, Liu, Li, Fan (bb0105) 2021; 12
Meyer, Welp, Rodionov, Borchard, Martius, Amelung (bb0325) 2018; 119
Karhu, Hilasvuori, Fritze, Biasi, Nykänen, Liski, Vanhala, Heinonsalo, Pumpanen (bb0235) 2016; 99
Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bb0045) 2013; 81
Insam (bb0215) 1990; 22
Wang, Wang, Pei, Xia, Peng, Sun, Wang, Gao, Chen, Liu, Dai, Jiang, Fang, Liang, Wu, Bai (bb0490) 2020; 141
Clemmensen, Finlay, Dahlberg, Stenlid, Wardle, Lindahl (bb0080) 2015; 205
Geyer, Schnecker, Grandy, Richter, Frey (bb0165) 2020; 151
Mikryukov (bb0330) 2017
Sparling, Vojvodić-Vuković, Schipper (bb0440) 1998; 30
Tan (bb0470) 2014
Lindahl, Taylor, Finlay (bb0295) 2002; 242
Read, Perez-Moreno (bb0390) 2003; 157
Moorhead, Sinsabaugh (bb0340) 2006; 76
Parada, Needham, Fuhrman (bb0370) 2016; 18
Glaser, Millar, Blum (bb0180) 2006; 12
Abarenkov, Zirk, Piirmann, Pöhönen, Ivanov, Nilsson, Kõljalg (bb0005) 2021
Maillard, Schilling, Andrews, Schreiner, Kennedy (bb0300) 2020; 96
Craine, Morrow, Fierer (bb0085) 2007; 88
Faust, Heinze, Ngosong, Sradnick, Oltmanns, Raupp, Geisseler, Joergensen (bb0125) 2017; 114
Kallenbach, Grandy, Frey, Diefendorf (bb0230) 2015; 91
Sietiö, Tuomivirta, Santalahti, Kiheri, Timonen, Sun, Fritze, Heinonsalo (bb0420) 2018; 218
Strickland, Rousk (bb0450) 2010; 42
de Boer, Folman, Summerbell, Boddy (bb0050) 2005; 29
Buckeridge, La Rosa, Mason, Whitaker, McNamara, Grant, Ostle (bb0060) 2020; 149
Brabcová, Nováková, Davidová, Baldrian (bb0055) 2016; 210
Gunina, Dippold, Glaser, Kuzyakov (bb0195) 2017; 14
Karhu, Alaei, Li, Merilä, Ostonen, Bengtson (bb0240) 2022; 167
Baldrian (bb0025) 2017; 37
Pietikäinen, Kiikkilä, Fritze (bb0375) 2000; 89
Martens (bb0310) 2000; 32
Wang, An, Liang, Liu, Kuzyakov (bb0485) 2021; 162
Nordgren (bb0355) 1992; 13
Yilmaz, Parfrey, Yarza, Gerken, Pruesse, Quast, Schweer, Peplies, Ludwig, Glöckner (bb0500) 2014; 42
Vance, Brookes, Jenkinson (bb0480) 1987; 19
R Core Team (bb0385) 2019
Schimel, Weintraub (bb0410) 2003; 35
Chen, Ma, Tian, Xiao, Jiang, Xing, Zou, Zhou, Shen, Zheng, Ji, He, Zhu, Liu, Fang (bb0075) 2020; 151
Schäfer, Jäckel, Kämpfer (bb0400) 2010; 311
Baldrian (bb0030) 2017; 41
Fernandez, Langley, Chapman, McCormack, Koide (bb0135) 2016; 93
Carini, Marsden, Leff, Morgan, Strickland, Fierer (bb0070) 2016; 2
Cui, Zhu, Xu, Liu, Jones, Kuzyakov, Shibistova, Wu, Ge (bb0090) 2020; 142
Roberts (bb0395) 2016
Frostegård, Tunlid, Bååth (bb0155) 1996; 28
Ohlson, Dahlberg, Økland, Brown, Halvorsen (bb0360) 2009; 2
Liang, Balser (bb0280) 2011; 9
Fontaine, Mariotti, Abbadie (bb0145) 2003; 35
Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara, Simpson, Solymos, Stevens, Szoecs, Wagner (bb0365) 2017
Dippold, Boesel, Gunina, Kuzyakov, Glaser (bb0100) 2014; 28
Marx, Wood, Jarvis (bb0315) 2001; 33
Fernandez, Koide (bb0130) 2014; 77
Liang, Amelung, Lehmann, Kästner (bb0290) 2019; 25
Fischer, Ingwersen, Kuzyakov (bb0140) 2010; 61
Frostegård, Tunlid, Bååth (bb0150) 1991; 14
Jenkinson (bb0220) 1988
Soong, Fuchslueger, Marañon-Jimenez, Torn, Janssens, Penuelas, Richter (bb0435) 2020; 26
Meier, Finzi, Phillips (bb0320) 2017; 106
Stuart, Plett (bb0455) 2020; 10
Zhang, Amelung (bb0510) 1996; 28
Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler, Magnusson, Moeller, Schwartz, Venables (bb0495) 2016
Ihrmark, Bödeker, Cruz-Martinez, Friberg, Kubartova, Schenck, Strid, Stenlid, Brandström-Durling, Clemmensen, Lindahl (bb0210) 2012; 82
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (bb0380) 2012; 41
Smith, Read (bb0430) 2008
Basler, Dippold, Helfrich, Dyckmans (bb0035) 2015; 12
Schloss, Westcott, Ryabin, Hall, Hartmann, Hollister, Lesniewski, Oakley, Parks, Robinson, Sahl, Stres, Thallinger, Van Horn, Weber (bb0415) 2009; 75
Lewin, Carlos, Chevrette, Horn, McDonald, Stankey, Fox, Currie (bb0265) 2016; 8
Kozich, Westcott, Baxter, Highlander, Schloss (bb0255) 2013; 79
Griepentrog, Bodé, Boeckx, Hagedorn, Heim, Schmidt (bb0185) 2014; 20
Averill, Hawkes (bb0020) 2016; 19
Talbot, Treseder (bb0460) 2010; 53
Appuhn, Joergensen (bb0015) 2006; 38
Schielzeth, Dingemanse, Nakagawa, Westneat, Allegue, Teplitsky, Réale, Dochtermann, Garamszegi, Araya-Ajoy (bb0405) 2020; 11
Apprill, McNally, Parsons, Weber (bb0010) 2015; 75
Jones (bb0225) 2015
Fan, Yang, Zhong, Yang, Lin, Guo, Chen, Yang (bb0120) 2020; 375
Miltner, Bombach, Schmidt-Brücken, Kästner (bb0335) 2012; 111
Li, Wilson, He, Zhang, Zhou, Schaeffer (bb0270) 2019; 135
Liang, Schimel, Jastrow (bb0285) 2017; 2
Spohn, Pötsch, Eichorst, Woebken, Wanek, Richter (bb0445) 2016; 97
Zech, Ziegler, Kögel-Knabner, Haumaier (bb0505) 1992; 117–118
Gadgil, Gadgil (bb0160) 1971; 233
Beidler, Phillips, Andrews, Maillard, Mushinski, Kennedy (bb0040) 2020; 108
Glaser, Lehmann, Zech (bb0170) 2002; 35
Liang (bb0275) 2020; 2
Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (bb0345) 2016; 20
Hu, Huang, Zhou, Liu, Dijkstra (bb0205) 2022; 165
Klamer, Bååth (bb0245) 2004; 36
Ni, Liao, Tan, Wang, Peng, Yue, Wu, Yang (bb0350) 2020; 143
Geyer (10.1016/j.apsoil.2023.105052_bb0165) 2020; 151
Roberts (10.1016/j.apsoil.2023.105052_bb0395) 2016
Dippold (10.1016/j.apsoil.2023.105052_bb0100) 2014; 28
Nordgren (10.1016/j.apsoil.2023.105052_bb0355) 1992; 13
Sietiö (10.1016/j.apsoil.2023.105052_bb0420) 2018; 218
Frostegård (10.1016/j.apsoil.2023.105052_bb0155) 1996; 28
Gunina (10.1016/j.apsoil.2023.105052_bb0195) 2017; 14
Vance (10.1016/j.apsoil.2023.105052_bb0480) 1987; 19
Cui (10.1016/j.apsoil.2023.105052_bb0090) 2020; 142
Nguyen (10.1016/j.apsoil.2023.105052_bb0345) 2016; 20
Jones (10.1016/j.apsoil.2023.105052_bb0225) 2015
Glaser (10.1016/j.apsoil.2023.105052_bb0180) 2006; 12
Griepentrog (10.1016/j.apsoil.2023.105052_bb0185) 2014; 20
Ohlson (10.1016/j.apsoil.2023.105052_bb0360) 2009; 2
Maillard (10.1016/j.apsoil.2023.105052_bb0300) 2020; 96
Fischer (10.1016/j.apsoil.2023.105052_bb0140) 2010; 61
Baldrian (10.1016/j.apsoil.2023.105052_bb0030) 2017; 41
Kozich (10.1016/j.apsoil.2023.105052_bb0255) 2013; 79
Meier (10.1016/j.apsoil.2023.105052_bb0320) 2017; 106
Wang (10.1016/j.apsoil.2023.105052_bb0485) 2021; 162
Clemmensen (10.1016/j.apsoil.2023.105052_bb0080) 2015; 205
Glaser (10.1016/j.apsoil.2023.105052_bb0175) 2004; 36
Totsche (10.1016/j.apsoil.2023.105052_bb0475) 2018; 181
Kallenbach (10.1016/j.apsoil.2023.105052_bb0230) 2015; 91
Quast (10.1016/j.apsoil.2023.105052_bb0380) 2012; 41
Carini (10.1016/j.apsoil.2023.105052_bb0070) 2016; 2
Liang (10.1016/j.apsoil.2023.105052_bb0285) 2017; 2
Baldrian (10.1016/j.apsoil.2023.105052_bb0025) 2017; 37
Li (10.1016/j.apsoil.2023.105052_bb0270) 2019; 135
Six (10.1016/j.apsoil.2023.105052_bb0425) 2002; 241
Tan (10.1016/j.apsoil.2023.105052_bb0470) 2014
Miltner (10.1016/j.apsoil.2023.105052_bb0335) 2012; 111
Abarenkov (10.1016/j.apsoil.2023.105052_bb0005) 2021
Lewin (10.1016/j.apsoil.2023.105052_bb0265) 2016; 8
Chen (10.1016/j.apsoil.2023.105052_bb0075) 2020; 151
Dong (10.1016/j.apsoil.2023.105052_bb0105) 2021; 12
Wang (10.1016/j.apsoil.2023.105052_bb0490) 2020; 141
de Boer (10.1016/j.apsoil.2023.105052_bb0050) 2005; 29
Insam (10.1016/j.apsoil.2023.105052_bb0215) 1990; 22
Fan (10.1016/j.apsoil.2023.105052_bb0120) 2020; 375
Gadgil (10.1016/j.apsoil.2023.105052_bb0160) 1971; 233
Yilmaz (10.1016/j.apsoil.2023.105052_bb0500) 2014; 42
Klamer (10.1016/j.apsoil.2023.105052_bb0245) 2004; 36
Oksanen (10.1016/j.apsoil.2023.105052_bb0365) 2017
Karhu (10.1016/j.apsoil.2023.105052_bb0235) 2016; 99
Karhu (10.1016/j.apsoil.2023.105052_bb0240) 2022; 167
Apprill (10.1016/j.apsoil.2023.105052_bb0010) 2015; 75
Beidler (10.1016/j.apsoil.2023.105052_bb0040) 2020; 108
Schimel (10.1016/j.apsoil.2023.105052_bb0410) 2003; 35
Faust (10.1016/j.apsoil.2023.105052_bb0125) 2017; 114
Mikryukov (10.1016/j.apsoil.2023.105052_bb0330) 2017
Fernandez (10.1016/j.apsoil.2023.105052_bb0130) 2014; 77
Glaser (10.1016/j.apsoil.2023.105052_bb0170) 2002; 35
Meyer (10.1016/j.apsoil.2023.105052_bb0325) 2018; 119
Frostegård (10.1016/j.apsoil.2023.105052_bb2000) 1996; 22
Zhang (10.1016/j.apsoil.2023.105052_bb0510) 1996; 28
Averill (10.1016/j.apsoil.2023.105052_bb0020) 2016; 19
Buckeridge (10.1016/j.apsoil.2023.105052_bb0060) 2020; 149
Frostegård (10.1016/j.apsoil.2023.105052_bb0150) 1991; 14
Liang (10.1016/j.apsoil.2023.105052_bb0280) 2011; 9
Brabcová (10.1016/j.apsoil.2023.105052_bb0055) 2016; 210
Craine (10.1016/j.apsoil.2023.105052_bb0085) 2007; 88
Schloss (10.1016/j.apsoil.2023.105052_bb0415) 2009; 75
Strickland (10.1016/j.apsoil.2023.105052_bb0450) 2010; 42
Zech (10.1016/j.apsoil.2023.105052_bb0505) 1992; 117–118
Liang (10.1016/j.apsoil.2023.105052_bb0275) 2020; 2
Marx (10.1016/j.apsoil.2023.105052_bb0315) 2001; 33
Pietikäinen (10.1016/j.apsoil.2023.105052_bb0375) 2000; 89
Schielzeth (10.1016/j.apsoil.2023.105052_bb0405) 2020; 11
Smith (10.1016/j.apsoil.2023.105052_bb0430) 2008
Basler (10.1016/j.apsoil.2023.105052_bb0035) 2015; 12
Lindahl (10.1016/j.apsoil.2023.105052_bb0295) 2002; 242
Soong (10.1016/j.apsoil.2023.105052_bb0435) 2020; 26
Talbot (10.1016/j.apsoil.2023.105052_bb0460) 2010; 53
Appuhn (10.1016/j.apsoil.2023.105052_bb0015) 2006; 38
Fontaine (10.1016/j.apsoil.2023.105052_bb0145) 2003; 35
Read (10.1016/j.apsoil.2023.105052_bb0390) 2003; 157
Hu (10.1016/j.apsoil.2023.105052_bb0205) 2022; 165
Martens (10.1016/j.apsoil.2023.105052_bb0310) 2000; 32
Schäfer (10.1016/j.apsoil.2023.105052_bb0400) 2010; 311
Spohn (10.1016/j.apsoil.2023.105052_bb0445) 2016; 97
R Core Team (10.1016/j.apsoil.2023.105052_bb0385) 2019
Parada (10.1016/j.apsoil.2023.105052_bb0370) 2016; 18
Ihrmark (10.1016/j.apsoil.2023.105052_bb0210) 2012; 82
Warnes (10.1016/j.apsoil.2023.105052_bb0495) 2016
Fernandez (10.1016/j.apsoil.2023.105052_bb0135) 2016; 93
Bell (10.1016/j.apsoil.2023.105052_bb0045) 2013; 81
Liang (10.1016/j.apsoil.2023.105052_bb0290) 2019; 25
Moorhead (10.1016/j.apsoil.2023.105052_bb0340) 2006; 76
Sparling (10.1016/j.apsoil.2023.105052_bb0440) 1998; 30
Ni (10.1016/j.apsoil.2023.105052_bb0350) 2020; 143
Stuart (10.1016/j.apsoil.2023.105052_bb0455) 2020; 10
Jenkinson (10.1016/j.apsoil.2023.105052_bb0220) 1988
References_xml – volume: 2
  start-page: 241
  year: 2020
  end-page: 254
  ident: bb0275
  article-title: Soil microbial carbon pump: mechanism and appraisal
  publication-title: Soil Ecol. Lett.
– volume: 135
  start-page: 369
  year: 2019
  end-page: 378
  ident: bb0270
  article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming
  publication-title: Soil Biol. Biochem.
– volume: 89
  start-page: 231
  year: 2000
  end-page: 242
  ident: bb0375
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
– volume: 10
  start-page: 1658
  year: 2020
  ident: bb0455
  article-title: Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses
  publication-title: Front. Plant Sci.
– volume: 36
  start-page: 57
  year: 2004
  end-page: 65
  ident: bb0245
  article-title: Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9
  publication-title: Soil Biol. Biochem.
– volume: 81
  year: 2013
  ident: bb0045
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: J. Vis. Exp.
– volume: 2
  start-page: 692
  year: 2009
  end-page: 695
  ident: bb0360
  article-title: The charcoal carbon pool in boreal forest soils
  publication-title: Nat. Geosci.
– volume: 28
  start-page: 569
  year: 2014
  end-page: 576
  ident: bb0100
  article-title: Improved δ
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 91
  start-page: 279
  year: 2015
  end-page: 290
  ident: bb0230
  article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation
  publication-title: Soil Biol. Biochem.
– year: 2017
  ident: bb0330
  article-title: metagMisc: Miscellaneous Functions for Metagenomic Analysis
– volume: 11
  start-page: 1141
  year: 2020
  end-page: 1152
  ident: bb0405
  article-title: Robustness of linear mixed-effects models to violations of distributional assumptions
  publication-title: Methods Ecol. Evol.
– year: 2014
  ident: bb0470
  article-title: Humic Matter in Soil and the Environment: Principles and Controversies
– volume: 151
  year: 2020
  ident: bb0075
  article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests
  publication-title: Soil Biol. Biochem.
– volume: 114
  start-page: 82
  year: 2017
  end-page: 89
  ident: bb0125
  article-title: Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization
  publication-title: Appl. Soil Ecol.
– volume: 2
  start-page: 17105
  year: 2017
  ident: bb0285
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 26
  start-page: 1953
  year: 2020
  end-page: 1961
  ident: bb0435
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Glob. Chang. Biol.
– volume: 12
  start-page: 1521
  year: 2006
  end-page: 1531
  ident: bb0180
  article-title: Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO
  publication-title: Glob. Chang. Biol.
– volume: 14
  start-page: 271
  year: 2017
  end-page: 283
  ident: bb0195
  article-title: Turnover of microbial groups and cell components in soil:
  publication-title: Biogeosciences
– volume: 77
  start-page: 150
  year: 2014
  end-page: 157
  ident: bb0130
  article-title: Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter
  publication-title: Soil Biol. Biochem.
– volume: 20
  start-page: 241
  year: 2016
  end-page: 248
  ident: bb0345
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecol.
– volume: 2
  start-page: 1
  year: 2016
  end-page: 6
  ident: bb0070
  article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity
  publication-title: Nat. Microbiol.
– volume: 35
  start-page: 549
  year: 2003
  end-page: 563
  ident: bb0410
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model
  publication-title: Soil Biol. Biochem.
– volume: 42
  start-page: D643
  year: 2014
  end-page: D648
  ident: bb0500
  article-title: The SILVA and “all-species living tree project (LTP)” taxonomic frameworks
  publication-title: Nucleic Acids Res.
– volume: 12
  start-page: 1674
  year: 2021
  ident: bb0105
  article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil
  publication-title: Front. Microbiol.
– volume: 375
  year: 2020
  ident: bb0120
  article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest
  publication-title: Geoderma
– volume: 76
  start-page: 151
  year: 2006
  end-page: 174
  ident: bb0340
  article-title: A theoretical model of litter decay and microbial interaction
  publication-title: Ecol. Monogr.
– volume: 28
  start-page: 55
  year: 1996
  end-page: 63
  ident: bb0155
  article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 399
  year: 2004
  end-page: 407
  ident: bb0175
  article-title: Amino sugars and muramic acid - biomarkers for soil microbial community structure analysis
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 361
  year: 2000
  end-page: 369
  ident: bb0310
  article-title: Plant residue biochemistry regulates soil carbon cycling and carbon sequestration
  publication-title: Soil Biol. Biochem.
– volume: 142
  year: 2020
  ident: bb0090
  article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming
  publication-title: Soil Biol. Biochem.
– volume: 35
  start-page: 837
  year: 2003
  end-page: 843
  ident: bb0145
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biol. Biochem.
– volume: 210
  start-page: 1369
  year: 2016
  end-page: 1381
  ident: bb0055
  article-title: Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community
  publication-title: New Phytol.
– volume: 38
  start-page: 40
  year: 2006
  end-page: 51
  ident: bb0015
  article-title: Microbial colonisation of roots as a function of plant species
  publication-title: Soil Biol. Biochem.
– volume: 108
  start-page: 1845
  year: 2020
  end-page: 1859
  ident: bb0040
  article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types
  publication-title: J. Ecol.
– volume: 37
  start-page: 128
  year: 2017
  end-page: 134
  ident: bb0025
  article-title: Microbial activity and the dynamics of ecosystem processes in forest soils
  publication-title: Curr. Opin. Microbiol.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bb0170
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol. Fertil. Soils
– volume: 33
  start-page: 1633
  year: 2001
  end-page: 1640
  ident: bb0315
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biol. Biochem.
– volume: 30
  start-page: 1469
  year: 1998
  end-page: 1472
  ident: bb0440
  article-title: Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 20
  start-page: 327
  year: 2014
  end-page: 340
  ident: bb0185
  article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions
  publication-title: Glob. Chang. Biol.
– volume: 151
  start-page: 237
  year: 2020
  end-page: 249
  ident: bb0165
  article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency
  publication-title: Biogeochemistry
– volume: 97
  start-page: 168
  year: 2016
  end-page: 175
  ident: bb0445
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland
  publication-title: Soil Biol. Biochem.
– volume: 162
  year: 2021
  ident: bb0485
  article-title: Microbial necromass as the source of soil organic carbon in global ecosystems
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 937
  year: 2016
  end-page: 947
  ident: bb0020
  article-title: Ectomycorrhizal fungi slow soil carbon cycling
  publication-title: Ecol. Lett.
– volume: 9
  start-page: 75
  year: 2011
  ident: bb0280
  article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy
  publication-title: Nat. Rev. Microbiol.
– volume: 106
  start-page: 119
  year: 2017
  end-page: 128
  ident: bb0320
  article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools
  publication-title: Soil Biol. Biochem.
– volume: 41
  start-page: D590
  year: 2012
  end-page: D596
  ident: bb0380
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
– volume: 13
  start-page: 195
  year: 1992
  end-page: 199
  ident: bb0355
  article-title: A method for determining microbially available N and P in an organic soil
  publication-title: Biol. Fertil. Soils
– year: 2008
  ident: bb0430
  article-title: Mycorrhizal Symbiosis
– volume: 14
  start-page: 151
  year: 1991
  end-page: 163
  ident: bb0150
  article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content
  publication-title: J. Microbiol. Methods
– volume: 233
  start-page: 133
  year: 1971
  ident: bb0160
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
– volume: 149
  year: 2020
  ident: bb0060
  article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil
  publication-title: Soil Biol. Biochem.
– volume: 165
  year: 2022
  ident: bb0205
  article-title: Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: a global meta-analysis
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 235
  year: 2016
  end-page: 254
  ident: bb0265
  article-title: Evolution and ecology of actinobacteria and their bioenergy applications
  publication-title: Annu. Rev. Microbiol.
– volume: 28
  start-page: 1201
  year: 1996
  end-page: 1206
  ident: bb0510
  article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils
  publication-title: Soil Biol. Biochem.
– year: 2017
  ident: bb0365
  article-title: vegan: Community Ecology Package
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  ident: bb0415
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
– volume: 111
  start-page: 41
  year: 2012
  end-page: 55
  ident: bb0335
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
– volume: 181
  start-page: 104
  year: 2018
  end-page: 136
  ident: bb0475
  article-title: Microaggregates in soils
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 22
  start-page: 525
  year: 1990
  end-page: 532
  ident: bb0215
  article-title: Are the soil microbial biomass and basal respiration governed by the climatic regime?
  publication-title: Soil Biol. Biochem.
– volume: 117–118
  start-page: 155
  year: 1992
  end-page: 174
  ident: bb0505
  article-title: Humic substances distribution and transformation in forest soils
  publication-title: Sci. Total Environ.
– volume: 205
  start-page: 1525
  year: 2015
  end-page: 1536
  ident: bb0080
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests
  publication-title: New Phytol.
– volume: 241
  start-page: 155
  year: 2002
  end-page: 176
  ident: bb0425
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
– volume: 93
  start-page: 38
  year: 2016
  end-page: 49
  ident: bb0135
  article-title: The decomposition of ectomycorrhizal fungal necromass
  publication-title: Soil Biol. Biochem.
– volume: 53
  start-page: 169
  year: 2010
  end-page: 179
  ident: bb0460
  article-title: Controls over mycorrhizal uptake of organic nitrogen
  publication-title: Pedobiologia
– volume: 12
  start-page: 5929
  year: 2015
  end-page: 5940
  ident: bb0035
  article-title: Microbial carbon recycling – an underestimated process controlling soil carbon dynamics – part 1: a long-term laboratory incubation experiment
  publication-title: Biogeosciences
– volume: 22
  start-page: 59
  year: 1996
  end-page: 65
  ident: bb2000
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biol. Fertil. Soils
– volume: 41
  start-page: 109
  year: 2017
  end-page: 130
  ident: bb0030
  article-title: Forest microbiome: diversity, complexity and dynamics
  publication-title: FEMS Microbiol. Rev.
– volume: 82
  start-page: 666
  year: 2012
  end-page: 677
  ident: bb0210
  article-title: New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities
  publication-title: FEMS Microbiol. Ecol.
– volume: 311
  start-page: 103
  year: 2010
  end-page: 112
  ident: bb0400
  article-title: Development of a new PCR primer system for selective amplification of Actinobacteria
  publication-title: FEMS Microbiol. Lett.
– volume: 79
  start-page: 5112
  year: 2013
  end-page: 5120
  ident: bb0255
  article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform
  publication-title: Appl. Environ. Microbiol.
– volume: 96
  start-page: fiz209
  year: 2020
  ident: bb0300
  article-title: Functional convergence in the decomposition of fungal necromass in soil and wood
  publication-title: FEMS Microbiol. Ecol.
– volume: 18
  start-page: 1403
  year: 2016
  end-page: 1414
  ident: bb0370
  article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ. Microbiol.
– volume: 157
  start-page: 475
  year: 2003
  end-page: 492
  ident: bb0390
  article-title: Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?
  publication-title: New Phytol.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bb0480
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 218
  start-page: 738
  year: 2018
  end-page: 751
  ident: bb0420
  article-title: Ericoid plant species and
  publication-title: New Phytol.
– volume: 141
  year: 2020
  ident: bb0490
  article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition
  publication-title: Soil Biol. Biochem.
– volume: 61
  start-page: 504
  year: 2010
  end-page: 513
  ident: bb0140
  article-title: Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil
  publication-title: Eur. J. Soil Sci.
– volume: 242
  start-page: 123
  year: 2002
  end-page: 135
  ident: bb0295
  article-title: Defining nutritional constraints on carbon cycling in boreal forests – towards a less “phytocentric” perspective
  publication-title: Plant Soil
– start-page: 368
  year: 1988
  end-page: 386
  ident: bb0220
  article-title: The determination of microbial biomass carbon and nitrogen in soil
  publication-title: Advances in Nitrogen Cycling in Agricultural Ecosystems
– year: 2019
  ident: bb0385
  article-title: R: A Language and Environment for Statistical Computing
– year: 2021
  ident: bb0005
  article-title: UNITE Mothur Release for Fungi 2. Version 10.05.2021. Unite Community
– volume: 143
  year: 2020
  ident: bb0350
  article-title: A quantitative assessment of amino sugars in soil profiles
  publication-title: Soil Biol. Biochem.
– start-page: 769
  year: 2015
  end-page: 775
  ident: bb0225
  article-title: A comprehensive survey of soil rhizobiales diversity using high-throughput DNA sequencing
  publication-title: Biological Nitrogen Fixation
– volume: 25
  start-page: 3578
  year: 2019
  end-page: 3590
  ident: bb0290
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
– volume: 119
  start-page: 152
  year: 2018
  end-page: 161
  ident: bb0325
  article-title: Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil
  publication-title: Soil Biol. Biochem.
– volume: 75
  start-page: 129
  year: 2015
  end-page: 137
  ident: bb0010
  article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton
  publication-title: Aquat. Microb. Ecol.
– year: 2016
  ident: bb0495
  article-title: gplots: Various R Programming Tools for Plotting Data
– volume: 29
  start-page: 795
  year: 2005
  end-page: 811
  ident: bb0050
  article-title: Living in a fungal world: impact of fungi on soil bacterial niche development
  publication-title: FEMS Microbiol. Rev.
– volume: 42
  start-page: 1385
  year: 2010
  end-page: 1395
  ident: bb0450
  article-title: Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications
  publication-title: Soil Biol. Biochem.
– year: 2016
  ident: bb0395
  article-title: labdsv: Ordination and Multivariate Analysis for Ecology
– volume: 99
  start-page: 104
  year: 2016
  end-page: 107
  ident: bb0235
  article-title: Priming effect increases with depth in a boreal forest soil
  publication-title: Soil Biol. Biochem.
– volume: 88
  start-page: 2105
  year: 2007
  end-page: 2113
  ident: bb0085
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
– volume: 167
  year: 2022
  ident: bb0240
  article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios
  publication-title: Soil Biol. Biochem.
– volume: 12
  start-page: 5929
  year: 2015
  ident: 10.1016/j.apsoil.2023.105052_bb0035
  article-title: Microbial carbon recycling – an underestimated process controlling soil carbon dynamics – part 1: a long-term laboratory incubation experiment
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-5929-2015
– volume: 205
  start-page: 1525
  year: 2015
  ident: 10.1016/j.apsoil.2023.105052_bb0080
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests
  publication-title: New Phytol.
  doi: 10.1111/nph.13208
– volume: 35
  start-page: 549
  year: 2003
  ident: 10.1016/j.apsoil.2023.105052_bb0410
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00015-4
– volume: 108
  start-page: 1845
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0040
  article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13385
– volume: 93
  start-page: 38
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0135
  article-title: The decomposition of ectomycorrhizal fungal necromass
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.017
– volume: 151
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0075
  article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108059
– volume: 79
  start-page: 5112
  year: 2013
  ident: 10.1016/j.apsoil.2023.105052_bb0255
  article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01043-13
– year: 2008
  ident: 10.1016/j.apsoil.2023.105052_bb0430
– start-page: 368
  year: 1988
  ident: 10.1016/j.apsoil.2023.105052_bb0220
  article-title: The determination of microbial biomass carbon and nitrogen in soil
– volume: 81
  year: 2013
  ident: 10.1016/j.apsoil.2023.105052_bb0045
  article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities
  publication-title: J. Vis. Exp.
– volume: 96
  start-page: fiz209
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0300
  article-title: Functional convergence in the decomposition of fungal necromass in soil and wood
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiz209
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.apsoil.2023.105052_bb0480
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 28
  start-page: 55
  year: 1996
  ident: 10.1016/j.apsoil.2023.105052_bb0155
  article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00100-X
– year: 2021
  ident: 10.1016/j.apsoil.2023.105052_bb0005
– volume: 75
  start-page: 7537
  year: 2009
  ident: 10.1016/j.apsoil.2023.105052_bb0415
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01541-09
– year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0330
– volume: 218
  start-page: 738
  year: 2018
  ident: 10.1016/j.apsoil.2023.105052_bb0420
  article-title: Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil
  publication-title: New Phytol.
  doi: 10.1111/nph.15040
– year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0395
– volume: 8
  start-page: 235
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0265
  article-title: Evolution and ecology of actinobacteria and their bioenergy applications
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-102215-095748
– volume: 89
  start-page: 231
  year: 2000
  ident: 10.1016/j.apsoil.2023.105052_bb0375
  article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2000.890203.x
– volume: 99
  start-page: 104
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0235
  article-title: Priming effect increases with depth in a boreal forest soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.05.001
– volume: 41
  start-page: D590
  year: 2012
  ident: 10.1016/j.apsoil.2023.105052_bb0380
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 61
  start-page: 504
  year: 2010
  ident: 10.1016/j.apsoil.2023.105052_bb0140
  article-title: Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01244.x
– volume: 14
  start-page: 151
  year: 1991
  ident: 10.1016/j.apsoil.2023.105052_bb0150
  article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content
  publication-title: J. Microbiol. Methods
  doi: 10.1016/0167-7012(91)90018-L
– volume: 106
  start-page: 119
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0320
  article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.12.004
– volume: 375
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0120
  article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114470
– volume: 22
  start-page: 525
  year: 1990
  ident: 10.1016/j.apsoil.2023.105052_bb0215
  article-title: Are the soil microbial biomass and basal respiration governed by the climatic regime?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90189-7
– volume: 2
  start-page: 692
  year: 2009
  ident: 10.1016/j.apsoil.2023.105052_bb0360
  article-title: The charcoal carbon pool in boreal forest soils
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo617
– year: 2014
  ident: 10.1016/j.apsoil.2023.105052_bb0470
– volume: 22
  start-page: 59
  year: 1996
  ident: 10.1016/j.apsoil.2023.105052_bb2000
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00384433
– volume: 149
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0060
  article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107929
– volume: 117–118
  start-page: 155
  year: 1992
  ident: 10.1016/j.apsoil.2023.105052_bb0505
  article-title: Humic substances distribution and transformation in forest soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(92)90084-6
– volume: 142
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0090
  article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107720
– volume: 36
  start-page: 57
  year: 2004
  ident: 10.1016/j.apsoil.2023.105052_bb0245
  article-title: Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.08.019
– volume: 167
  year: 2022
  ident: 10.1016/j.apsoil.2023.105052_bb0240
  article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2022.108615
– volume: 30
  start-page: 1469
  year: 1998
  ident: 10.1016/j.apsoil.2023.105052_bb0440
  article-title: Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(98)00040-6
– volume: 10
  start-page: 1658
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0455
  article-title: Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01658
– volume: 88
  start-page: 2105
  year: 2007
  ident: 10.1016/j.apsoil.2023.105052_bb0085
  article-title: Microbial nitrogen limitation increases decomposition
  publication-title: Ecology
  doi: 10.1890/06-1847.1
– volume: 135
  start-page: 369
  year: 2019
  ident: 10.1016/j.apsoil.2023.105052_bb0270
  article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.017
– volume: 32
  start-page: 361
  year: 2000
  ident: 10.1016/j.apsoil.2023.105052_bb0310
  article-title: Plant residue biochemistry regulates soil carbon cycling and carbon sequestration
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00162-5
– volume: 9
  start-page: 75
  year: 2011
  ident: 10.1016/j.apsoil.2023.105052_bb0280
  article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2386-c1
– volume: 13
  start-page: 195
  year: 1992
  ident: 10.1016/j.apsoil.2023.105052_bb0355
  article-title: A method for determining microbially available N and P in an organic soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/BF00340575
– volume: 241
  start-page: 155
  year: 2002
  ident: 10.1016/j.apsoil.2023.105052_bb0425
  article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils
  publication-title: Plant Soil
  doi: 10.1023/A:1016125726789
– volume: 114
  start-page: 82
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0125
  article-title: Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2017.03.006
– volume: 28
  start-page: 569
  year: 2014
  ident: 10.1016/j.apsoil.2023.105052_bb0100
  article-title: Improved δ13C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.6814
– volume: 53
  start-page: 169
  year: 2010
  ident: 10.1016/j.apsoil.2023.105052_bb0460
  article-title: Controls over mycorrhizal uptake of organic nitrogen
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2009.12.001
– volume: 143
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0350
  article-title: A quantitative assessment of amino sugars in soil profiles
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107762
– volume: 77
  start-page: 150
  year: 2014
  ident: 10.1016/j.apsoil.2023.105052_bb0130
  article-title: Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.06.026
– volume: 2
  start-page: 1
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0070
  article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2016.242
– volume: 157
  start-page: 475
  year: 2003
  ident: 10.1016/j.apsoil.2023.105052_bb0390
  article-title: Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00704.x
– volume: 181
  start-page: 104
  year: 2018
  ident: 10.1016/j.apsoil.2023.105052_bb0475
  article-title: Microaggregates in soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201600451
– volume: 12
  start-page: 1521
  year: 2006
  ident: 10.1016/j.apsoil.2023.105052_bb0180
  article-title: Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01186.x
– volume: 12
  start-page: 1674
  year: 2021
  ident: 10.1016/j.apsoil.2023.105052_bb0105
  article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.679793
– volume: 33
  start-page: 1633
  year: 2001
  ident: 10.1016/j.apsoil.2023.105052_bb0315
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00079-7
– volume: 19
  start-page: 937
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0020
  article-title: Ectomycorrhizal fungi slow soil carbon cycling
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12631
– volume: 151
  start-page: 237
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0165
  article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-020-00720-4
– volume: 14
  start-page: 271
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0195
  article-title: Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers
  publication-title: Biogeosciences
  doi: 10.5194/bg-14-271-2017
– start-page: 769
  year: 2015
  ident: 10.1016/j.apsoil.2023.105052_bb0225
  article-title: A comprehensive survey of soil rhizobiales diversity using high-throughput DNA sequencing
– volume: 162
  year: 2021
  ident: 10.1016/j.apsoil.2023.105052_bb0485
  article-title: Microbial necromass as the source of soil organic carbon in global ecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108422
– volume: 20
  start-page: 327
  year: 2014
  ident: 10.1016/j.apsoil.2023.105052_bb0185
  article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12374
– volume: 111
  start-page: 41
  year: 2012
  ident: 10.1016/j.apsoil.2023.105052_bb0335
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– volume: 38
  start-page: 40
  year: 2006
  ident: 10.1016/j.apsoil.2023.105052_bb0015
  article-title: Microbial colonisation of roots as a function of plant species
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.09.002
– volume: 29
  start-page: 795
  year: 2005
  ident: 10.1016/j.apsoil.2023.105052_bb0050
  article-title: Living in a fungal world: impact of fungi on soil bacterial niche development
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.11.005
– volume: 82
  start-page: 666
  year: 2012
  ident: 10.1016/j.apsoil.2023.105052_bb0210
  article-title: New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2012.01437.x
– volume: 18
  start-page: 1403
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0370
  article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13023
– volume: 76
  start-page: 151
  year: 2006
  ident: 10.1016/j.apsoil.2023.105052_bb0340
  article-title: A theoretical model of litter decay and microbial interaction
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2
– year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0365
– volume: 37
  start-page: 128
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0025
  article-title: Microbial activity and the dynamics of ecosystem processes in forest soils
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.06.008
– volume: 91
  start-page: 279
  year: 2015
  ident: 10.1016/j.apsoil.2023.105052_bb0230
  article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.09.005
– year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0495
– volume: 41
  start-page: 109
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0030
  article-title: Forest microbiome: diversity, complexity and dynamics
  publication-title: FEMS Microbiol. Rev.
– year: 2019
  ident: 10.1016/j.apsoil.2023.105052_bb0385
– volume: 97
  start-page: 168
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0445
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.008
– volume: 242
  start-page: 123
  year: 2002
  ident: 10.1016/j.apsoil.2023.105052_bb0295
  article-title: Defining nutritional constraints on carbon cycling in boreal forests – towards a less “phytocentric” perspective
  publication-title: Plant Soil
  doi: 10.1023/A:1019650226585
– volume: 26
  start-page: 1953
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0435
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14962
– volume: 311
  start-page: 103
  year: 2010
  ident: 10.1016/j.apsoil.2023.105052_bb0400
  article-title: Development of a new PCR primer system for selective amplification of Actinobacteria
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2010.02069.x
– volume: 42
  start-page: 1385
  year: 2010
  ident: 10.1016/j.apsoil.2023.105052_bb0450
  article-title: Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.05.007
– volume: 2
  start-page: 17105
  year: 2017
  ident: 10.1016/j.apsoil.2023.105052_bb0285
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 25
  start-page: 3578
  year: 2019
  ident: 10.1016/j.apsoil.2023.105052_bb0290
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14781
– volume: 75
  start-page: 129
  year: 2015
  ident: 10.1016/j.apsoil.2023.105052_bb0010
  article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton
  publication-title: Aquat. Microb. Ecol.
  doi: 10.3354/ame01753
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.apsoil.2023.105052_bb0170
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 35
  start-page: 837
  year: 2003
  ident: 10.1016/j.apsoil.2023.105052_bb0145
  article-title: The priming effect of organic matter: a question of microbial competition?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00123-8
– volume: 36
  start-page: 399
  year: 2004
  ident: 10.1016/j.apsoil.2023.105052_bb0175
  article-title: Amino sugars and muramic acid - biomarkers for soil microbial community structure analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.10.013
– volume: 119
  start-page: 152
  year: 2018
  ident: 10.1016/j.apsoil.2023.105052_bb0325
  article-title: Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.01.024
– volume: 20
  start-page: 241
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0345
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2015.06.006
– volume: 141
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0490
  article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107687
– volume: 42
  start-page: D643
  year: 2014
  ident: 10.1016/j.apsoil.2023.105052_bb0500
  article-title: The SILVA and “all-species living tree project (LTP)” taxonomic frameworks
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1209
– volume: 2
  start-page: 241
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0275
  article-title: Soil microbial carbon pump: mechanism and appraisal
  publication-title: Soil Ecol. Lett.
  doi: 10.1007/s42832-020-0052-4
– volume: 11
  start-page: 1141
  year: 2020
  ident: 10.1016/j.apsoil.2023.105052_bb0405
  article-title: Robustness of linear mixed-effects models to violations of distributional assumptions
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13434
– volume: 210
  start-page: 1369
  year: 2016
  ident: 10.1016/j.apsoil.2023.105052_bb0055
  article-title: Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community
  publication-title: New Phytol.
  doi: 10.1111/nph.13849
– volume: 165
  year: 2022
  ident: 10.1016/j.apsoil.2023.105052_bb0205
  article-title: Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: a global meta-analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108500
– volume: 28
  start-page: 1201
  year: 1996
  ident: 10.1016/j.apsoil.2023.105052_bb0510
  article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(96)00117-4
– volume: 233
  start-page: 133
  year: 1971
  ident: 10.1016/j.apsoil.2023.105052_bb0160
  article-title: Mycorrhiza and litter decomposition
  publication-title: Nature
  doi: 10.1038/233133a0
SSID ssj0005283
Score 2.4134674
Snippet Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105052
SubjectTerms bacterial growth
boreal forests
community structure
enzymes
forest soils
glucose
greenhouse experimentation
labile carbon
microbial biomass
Microbial carbon pump
microbial communities
Microbial community
Microbial necromass
Microbial nitrogen mining
mineralization
necromass
nitrogen
Nitrogen limitation, Pinus sylvestris
phospholipids
Pinus sylvestris
Podzols
soil ecology
supply balance
trees
Title Fate and stabilization of labile carbon in a sandy boreal forest soil – A question of nitrogen availability?
URI https://dx.doi.org/10.1016/j.apsoil.2023.105052
https://www.proquest.com/docview/2887605985
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhodAeQpu2NE0TVOjVWa9k-XEqy5Jlm7ahtAnkJvQYF5fFXnY3gb2E_of8w_ySzFh2aAIh0JNlMTKDZjzzCc2DsU9GCBs7ym5XrogS6x3aQTmMVA4uw1Fm256R30_S6VlyfK7ON9i4z4WhsMrO9geb3lrrbmbQ7eZgXlWDXzF6dsQvEkE0OXI6tydJRlp-ePVvmEcoxYnEEVH36XNtjJeZL5uKLiCEpIa3sRKPuacHhrr1PpOXbLuDjXwUOHvFNqDeYS9Gvxdd6QzYYc9CW8k1jo7aUtTr16yeIJTkpvYcQSCFwYakS96UfEbvwJ1ZWJyoam74EgnXHJUCwSNHMIt8cOKc3_y95iPeMtatRkOwaFD3uLk01SzU-l5_fsPOJken42nUdViInJTFKsp8mlNZc1kKlZu0TEAYlFLpSysLC0JAnjsrzdCi4JSHEuWag1RJaiAVQ5Bv2Wbd1PCOcYVAKpYGIEeH72MwCFS8z3whQDkk3mWy31jtuvLj1AVjpvs4sz86iEOTOHQQxy6L7lbNQ_mNJ-izXmb6nhpp9BBPrPzYi1jjH0bXJqaG5mKpBdphPPQVuXr_31_fY8_pLSQxfmCbq8UF7COaWdmDVl0P2NZo_PPbD3p--To9uQUvt_c6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB6CQ2l7CG3a0jzaqtDr4rVk7eMUTIhxmsSXJpCb0GO2bDC7xnYKvvU_5B_2l3S00pa2UAK9abWjZdDMznxC8wD4pDk3qfXZ7dKWydg4S3ZQjBJZoM1plJuuZ-TVPJvdjD_fytsdOO1zYXxYZbT9waZ31jrODONuDpd1PfySkmcn_CIIRHtHTuf2XV-dSg5gd3J-MZv_FukRqnESfeIX9Bl0XZiXXq7b2t9BcOF73qaS_8tD_WWrOwc0fQF7ETmySWDuJexgsw_PJ19XsXoG7sOT0FlyS6Ozrhr19hU0U0KTTDeOEQ70kbAh75K1FVv4Z2RWrwxN1A3TbE2EW0Z6QfiREZ4lPpjnnP34_sAmrGMsriZbsGpJ_Zj-putFKPe9PXkNN9Oz69NZEpssJFaIcpPkLit8ZXNRcVnorBoj1ySoylVGlAY5x6KwRuiRIdlJhxWJtkAhx5nGjI9QvIFB0zb4FpgkLJUKjViQz3cpasIqzuWu5CgtER-A6DdW2ViB3DfCWKg-1OxOBXEoLw4VxHEAya9Vy1CB4xH6vJeZ-kOTFDmJR1Z-7EWs6CfzNye6wfZ-rTiZYjr3lYU8_O-vf4Cns-urS3V5Pr84gmf-TchpPIbBZnWP7wjcbMz7qLw_AeKu-FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fate+and+stabilization+of+labile+carbon+in+a+sandy+boreal+forest+soil+%E2%80%93+A+question+of+nitrogen+availability%3F&rft.jtitle=Applied+soil+ecology+%3A+a+section+of+Agriculture%2C+ecosystems+%26+environment&rft.au=Meyer%2C+Nele&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.au=Adamczyk%2C+Sylwia&rft.au=Ambus%2C+Per&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0929-1393&rft.eissn=1873-0272&rft.volume=191&rft_id=info:doi/10.1016%2Fj.apsoil.2023.105052&rft.externalDocID=S0929139323002500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-1393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-1393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-1393&client=summon