Fate and stabilization of labile carbon in a sandy boreal forest soil – A question of nitrogen availability?
Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address...
Saved in:
Published in | Applied soil ecology : a section of Agriculture, ecosystems & environment Vol. 191; p. 105052 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added 13C glucose to the soil and measured 13C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars as biomarker for microbial necromass. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added 13C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of 13C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and microbial necromass (1.5 %) after 1 year. N fertilization increased bacterial growth on 13C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues.
•Recovery of added 13C glucose was measured in soil, MBC, DOC, PLFA, and amino sugars.•Around 40 % of added 13C glucose was mineralized after one day.•Trees and fertilization increased the long-term stabilization of glucose-derived C.•No long-term stabilization of glucose-derived C in soils with C or N deficiency•Trees increased soil symbiotrophs and fertilization increased bacterial growth. |
---|---|
AbstractList | Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added 13C glucose to the soil and measured 13C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars as biomarker for microbial necromass. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added 13C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of 13C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and microbial necromass (1.5 %) after 1 year. N fertilization increased bacterial growth on 13C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues.
•Recovery of added 13C glucose was measured in soil, MBC, DOC, PLFA, and amino sugars.•Around 40 % of added 13C glucose was mineralized after one day.•Trees and fertilization increased the long-term stabilization of glucose-derived C.•No long-term stabilization of glucose-derived C in soils with C or N deficiency•Trees increased soil symbiotrophs and fertilization increased bacterial growth. Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial necromass as part of stable soil organic matter (SOM). However, the underlying factors and mechanisms are currently highly debated. To address this knowledge gap, we conducted a 1-year greenhouse experiment including four treatments: (1) bare soil, (2) bare soil and nitrogen (N) fertilization, (3) soil planted with a tree, and (4) tree and N. The boreal forest soil was a sandy and nutrient-poor Podzol taken from 0 to 20 cm depth and trees were Pinus sylvestris. We hypothesized that: (1) originally labile C does not accumulate under N-deficient conditions, as microbial residues may be intensely recycled for N acquisition and (2) differences in N supply and demand change the functionality and composition of the microbial community, which will be reflected in the stabilization of microbial C. We added ¹³C glucose to the soil and measured ¹³C recovery to trace the fate of added C in soil, microbial biomass (MBC), dissolved organic C (DOC), phospholipid fatty acids (PLFA), and amino sugars. We also analyzed microbial community structure and enzyme activities. Around 40 % of the added C was mineralized after one day. Mineralization of the added C continued for 6 months, but stabilized thereafter. After 1 year, the treatment with both tree and N fertilization had the highest amount of added ¹³C (34 %) remaining in soil compared to the other treatments (18 %). The recovery of ¹³C in DOC was <1 % from the 3rd day onwards, but remained higher in MBC (2 %) and amino sugars (2 %) after 1 year. N fertilization increased bacterial growth on ¹³C-glucose and abundance of gram-positive bacteria, while trees increased the abundance of symbiotrophic fungi. The formation of more stable C in the treatment with both tree and N indicates that under those conditions, recycling of microbial necromass for N acquisition is lower and the changed microbial composition leaves behind more stable residues. |
ArticleNumber | 105052 |
Author | Kalu, Subin Biasi, Christina Meyer, Nele Karhu, Kristiina Sietiö, Outi-Maaria Mganga, Kevin Z. Olin, Miikka Martin, Angela Seppänen, Aino Glaser, Bruno Adamczyk, Sylwia Ambus, Per Shrestha, Rashmi |
Author_xml | – sequence: 1 givenname: Nele surname: Meyer fullname: Meyer, Nele email: nele.meyer@em.uni-frankfurt.de organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 2 givenname: Outi-Maaria surname: Sietiö fullname: Sietiö, Outi-Maaria organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 3 givenname: Sylwia surname: Adamczyk fullname: Adamczyk, Sylwia organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 4 givenname: Per surname: Ambus fullname: Ambus, Per organization: University of Copenhagen, Department of Geosciences and Natural Resource Management, Copenhagen, Denmark – sequence: 5 givenname: Christina surname: Biasi fullname: Biasi, Christina organization: University of Eastern Finland, Biogeochemistry Research Group, Kuopio, Finland – sequence: 6 givenname: Bruno surname: Glaser fullname: Glaser, Bruno organization: Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Department of Soil Biogeochemistry, Halle, Germany – sequence: 7 givenname: Subin surname: Kalu fullname: Kalu, Subin organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 8 givenname: Angela surname: Martin fullname: Martin, Angela organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 9 givenname: Kevin Z. surname: Mganga fullname: Mganga, Kevin Z. organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 10 givenname: Miikka surname: Olin fullname: Olin, Miikka organization: University of Helsinki, Department of Food and Nutrition, Helsinki, Finland – sequence: 11 givenname: Aino surname: Seppänen fullname: Seppänen, Aino organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland – sequence: 12 givenname: Rashmi surname: Shrestha fullname: Shrestha, Rashmi organization: University of Helsinki, Department of Microbiology, Helsinki, Finland – sequence: 13 givenname: Kristiina surname: Karhu fullname: Karhu, Kristiina organization: University of Helsinki, Department of Forest Sciences, Helsinki, Finland |
BookMark | eNqFkL1OBCEURonRxHX1DSwobWZlYGeGsdAY419iYqM1ucNcDJsRVkCTtfIdfEOfRHbHykKrG26-8wFnj2w775CQw5LNSlbWx4sZLKO3w4wzLvKqYhXfIpNSNqJgvOHbZMJa3halaMUu2YtxwViOSDEh7goSUnA9jQk6O9h3SNY76g0d1mekGkKXF9ZRoDEHV7TzAWGgJo-Y6Ppi-vXxSc_py2te_NDOpuCfMFNvYDdVNq3O9smOgSHiwc-cksery4eLm-Lu_vr24vyu0EK0qWj6WmqYS2F4JaE2c-RQSTS96UTbIecope4ElJ1uZNWj6ZiWKKp5DVjzEsWUHI29y-A3r1LPNmocBnDoX6PiUjY1q1pZ5eh8jOrgYwxo1DLYZwgrVTK11qsWatSr1nrVqDdjJ78wbdPGXQr5w__BpyOM2cGbxaCitug09jagTqr39u-Cb6ainWU |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105395 crossref_primary_10_1016_j_geoderma_2024_117107 |
Cites_doi | 10.5194/bg-12-5929-2015 10.1111/nph.13208 10.1016/S0038-0717(03)00015-4 10.1111/1365-2745.13385 10.1016/j.soilbio.2015.10.017 10.1016/j.soilbio.2020.108059 10.1128/AEM.01043-13 10.1093/femsec/fiz209 10.1016/0038-0717(87)90052-6 10.1016/0038-0717(95)00100-X 10.1128/AEM.01541-09 10.1111/nph.15040 10.1146/annurev-micro-102215-095748 10.1034/j.1600-0706.2000.890203.x 10.1016/j.soilbio.2016.05.001 10.1093/nar/gks1219 10.1111/j.1365-2389.2010.01244.x 10.1016/0167-7012(91)90018-L 10.1016/j.soilbio.2016.12.004 10.1016/j.geoderma.2020.114470 10.1016/0038-0717(90)90189-7 10.1038/ngeo617 10.1007/BF00384433 10.1016/j.soilbio.2020.107929 10.1016/0048-9697(92)90084-6 10.1016/j.soilbio.2020.107720 10.1016/j.soilbio.2003.08.019 10.1016/j.soilbio.2022.108615 10.1016/S0038-0717(98)00040-6 10.3389/fpls.2019.01658 10.1890/06-1847.1 10.1016/j.soilbio.2019.05.017 10.1016/S0038-0717(99)00162-5 10.1038/nrmicro2386-c1 10.1007/BF00340575 10.1023/A:1016125726789 10.1016/j.apsoil.2017.03.006 10.1002/rcm.6814 10.1016/j.pedobi.2009.12.001 10.1016/j.soilbio.2020.107762 10.1016/j.soilbio.2014.06.026 10.1038/nmicrobiol.2016.242 10.1046/j.1469-8137.2003.00704.x 10.1002/jpln.201600451 10.1111/j.1365-2486.2006.01186.x 10.3389/fmicb.2021.679793 10.1016/S0038-0717(01)00079-7 10.1111/ele.12631 10.1007/s10533-020-00720-4 10.5194/bg-14-271-2017 10.1016/j.soilbio.2021.108422 10.1111/gcb.12374 10.1007/s10533-011-9658-z 10.1016/j.soilbio.2005.09.002 10.1016/j.femsre.2004.11.005 10.1111/j.1574-6941.2012.01437.x 10.1111/1462-2920.13023 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 10.1016/j.mib.2017.06.008 10.1016/j.soilbio.2015.09.005 10.1016/j.soilbio.2016.03.008 10.1023/A:1019650226585 10.1111/gcb.14962 10.1111/j.1574-6968.2010.02069.x 10.1016/j.soilbio.2010.05.007 10.1038/nmicrobiol.2017.105 10.1111/gcb.14781 10.3354/ame01753 10.1007/s00374-002-0466-4 10.1016/S0038-0717(03)00123-8 10.1016/j.soilbio.2003.10.013 10.1016/j.soilbio.2018.01.024 10.1016/j.funeco.2015.06.006 10.1016/j.soilbio.2019.107687 10.1093/nar/gkt1209 10.1007/s42832-020-0052-4 10.1111/2041-210X.13434 10.1111/nph.13849 10.1016/j.soilbio.2021.108500 10.1016/0038-0717(96)00117-4 10.1038/233133a0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apsoil.2023.105052 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1873-0272 |
ExternalDocumentID | 10_1016_j_apsoil_2023_105052 S0929139323002500 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE J1W KCYFY KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPCBC SSA SSJ SSZ T5K UHS UNMZH WUQ XPP Y6R ZMT ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-7d68ca483f258a6f4e2a58efdfb39be22e88cb3a1bc785defb0c8e3546ae621e3 |
IEDL.DBID | .~1 |
ISSN | 0929-1393 |
IngestDate | Wed Jul 02 04:49:54 EDT 2025 Tue Jul 01 03:25:46 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Fri Feb 23 02:35:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial carbon pump Microbial necromass Microbial nitrogen mining Nitrogen limitation, Pinus sylvestris Microbial community |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-7d68ca483f258a6f4e2a58efdfb39be22e88cb3a1bc785defb0c8e3546ae621e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2887605985 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2887605985 crossref_primary_10_1016_j_apsoil_2023_105052 crossref_citationtrail_10_1016_j_apsoil_2023_105052 elsevier_sciencedirect_doi_10_1016_j_apsoil_2023_105052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied soil ecology : a section of Agriculture, ecosystems & environment |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Frostegård, Bååth (bb2000) 1996; 22 Glaser, Turrión, Alef (bb0175) 2004; 36 Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Lehndorff, Mikutta, Peth, Prechtel, Ray, Kögel-Knabner (bb0475) 2018; 181 Six, Conant, Paul, Paustian (bb0425) 2002; 241 Dong, Song, Yin, Liu, Li, Fan (bb0105) 2021; 12 Meyer, Welp, Rodionov, Borchard, Martius, Amelung (bb0325) 2018; 119 Karhu, Hilasvuori, Fritze, Biasi, Nykänen, Liski, Vanhala, Heinonsalo, Pumpanen (bb0235) 2016; 99 Bell, Fricks, Rocca, Steinweg, McMahon, Wallenstein (bb0045) 2013; 81 Insam (bb0215) 1990; 22 Wang, Wang, Pei, Xia, Peng, Sun, Wang, Gao, Chen, Liu, Dai, Jiang, Fang, Liang, Wu, Bai (bb0490) 2020; 141 Clemmensen, Finlay, Dahlberg, Stenlid, Wardle, Lindahl (bb0080) 2015; 205 Geyer, Schnecker, Grandy, Richter, Frey (bb0165) 2020; 151 Mikryukov (bb0330) 2017 Sparling, Vojvodić-Vuković, Schipper (bb0440) 1998; 30 Tan (bb0470) 2014 Lindahl, Taylor, Finlay (bb0295) 2002; 242 Read, Perez-Moreno (bb0390) 2003; 157 Moorhead, Sinsabaugh (bb0340) 2006; 76 Parada, Needham, Fuhrman (bb0370) 2016; 18 Glaser, Millar, Blum (bb0180) 2006; 12 Abarenkov, Zirk, Piirmann, Pöhönen, Ivanov, Nilsson, Kõljalg (bb0005) 2021 Maillard, Schilling, Andrews, Schreiner, Kennedy (bb0300) 2020; 96 Craine, Morrow, Fierer (bb0085) 2007; 88 Faust, Heinze, Ngosong, Sradnick, Oltmanns, Raupp, Geisseler, Joergensen (bb0125) 2017; 114 Kallenbach, Grandy, Frey, Diefendorf (bb0230) 2015; 91 Sietiö, Tuomivirta, Santalahti, Kiheri, Timonen, Sun, Fritze, Heinonsalo (bb0420) 2018; 218 Strickland, Rousk (bb0450) 2010; 42 de Boer, Folman, Summerbell, Boddy (bb0050) 2005; 29 Buckeridge, La Rosa, Mason, Whitaker, McNamara, Grant, Ostle (bb0060) 2020; 149 Brabcová, Nováková, Davidová, Baldrian (bb0055) 2016; 210 Gunina, Dippold, Glaser, Kuzyakov (bb0195) 2017; 14 Karhu, Alaei, Li, Merilä, Ostonen, Bengtson (bb0240) 2022; 167 Baldrian (bb0025) 2017; 37 Pietikäinen, Kiikkilä, Fritze (bb0375) 2000; 89 Martens (bb0310) 2000; 32 Wang, An, Liang, Liu, Kuzyakov (bb0485) 2021; 162 Nordgren (bb0355) 1992; 13 Yilmaz, Parfrey, Yarza, Gerken, Pruesse, Quast, Schweer, Peplies, Ludwig, Glöckner (bb0500) 2014; 42 Vance, Brookes, Jenkinson (bb0480) 1987; 19 R Core Team (bb0385) 2019 Schimel, Weintraub (bb0410) 2003; 35 Chen, Ma, Tian, Xiao, Jiang, Xing, Zou, Zhou, Shen, Zheng, Ji, He, Zhu, Liu, Fang (bb0075) 2020; 151 Schäfer, Jäckel, Kämpfer (bb0400) 2010; 311 Baldrian (bb0030) 2017; 41 Fernandez, Langley, Chapman, McCormack, Koide (bb0135) 2016; 93 Carini, Marsden, Leff, Morgan, Strickland, Fierer (bb0070) 2016; 2 Cui, Zhu, Xu, Liu, Jones, Kuzyakov, Shibistova, Wu, Ge (bb0090) 2020; 142 Roberts (bb0395) 2016 Frostegård, Tunlid, Bååth (bb0155) 1996; 28 Ohlson, Dahlberg, Økland, Brown, Halvorsen (bb0360) 2009; 2 Liang, Balser (bb0280) 2011; 9 Fontaine, Mariotti, Abbadie (bb0145) 2003; 35 Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara, Simpson, Solymos, Stevens, Szoecs, Wagner (bb0365) 2017 Dippold, Boesel, Gunina, Kuzyakov, Glaser (bb0100) 2014; 28 Marx, Wood, Jarvis (bb0315) 2001; 33 Fernandez, Koide (bb0130) 2014; 77 Liang, Amelung, Lehmann, Kästner (bb0290) 2019; 25 Fischer, Ingwersen, Kuzyakov (bb0140) 2010; 61 Frostegård, Tunlid, Bååth (bb0150) 1991; 14 Jenkinson (bb0220) 1988 Soong, Fuchslueger, Marañon-Jimenez, Torn, Janssens, Penuelas, Richter (bb0435) 2020; 26 Meier, Finzi, Phillips (bb0320) 2017; 106 Stuart, Plett (bb0455) 2020; 10 Zhang, Amelung (bb0510) 1996; 28 Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler, Magnusson, Moeller, Schwartz, Venables (bb0495) 2016 Ihrmark, Bödeker, Cruz-Martinez, Friberg, Kubartova, Schenck, Strid, Stenlid, Brandström-Durling, Clemmensen, Lindahl (bb0210) 2012; 82 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (bb0380) 2012; 41 Smith, Read (bb0430) 2008 Basler, Dippold, Helfrich, Dyckmans (bb0035) 2015; 12 Schloss, Westcott, Ryabin, Hall, Hartmann, Hollister, Lesniewski, Oakley, Parks, Robinson, Sahl, Stres, Thallinger, Van Horn, Weber (bb0415) 2009; 75 Lewin, Carlos, Chevrette, Horn, McDonald, Stankey, Fox, Currie (bb0265) 2016; 8 Kozich, Westcott, Baxter, Highlander, Schloss (bb0255) 2013; 79 Griepentrog, Bodé, Boeckx, Hagedorn, Heim, Schmidt (bb0185) 2014; 20 Averill, Hawkes (bb0020) 2016; 19 Talbot, Treseder (bb0460) 2010; 53 Appuhn, Joergensen (bb0015) 2006; 38 Schielzeth, Dingemanse, Nakagawa, Westneat, Allegue, Teplitsky, Réale, Dochtermann, Garamszegi, Araya-Ajoy (bb0405) 2020; 11 Apprill, McNally, Parsons, Weber (bb0010) 2015; 75 Jones (bb0225) 2015 Fan, Yang, Zhong, Yang, Lin, Guo, Chen, Yang (bb0120) 2020; 375 Miltner, Bombach, Schmidt-Brücken, Kästner (bb0335) 2012; 111 Li, Wilson, He, Zhang, Zhou, Schaeffer (bb0270) 2019; 135 Liang, Schimel, Jastrow (bb0285) 2017; 2 Spohn, Pötsch, Eichorst, Woebken, Wanek, Richter (bb0445) 2016; 97 Zech, Ziegler, Kögel-Knabner, Haumaier (bb0505) 1992; 117–118 Gadgil, Gadgil (bb0160) 1971; 233 Beidler, Phillips, Andrews, Maillard, Mushinski, Kennedy (bb0040) 2020; 108 Glaser, Lehmann, Zech (bb0170) 2002; 35 Liang (bb0275) 2020; 2 Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (bb0345) 2016; 20 Hu, Huang, Zhou, Liu, Dijkstra (bb0205) 2022; 165 Klamer, Bååth (bb0245) 2004; 36 Ni, Liao, Tan, Wang, Peng, Yue, Wu, Yang (bb0350) 2020; 143 Geyer (10.1016/j.apsoil.2023.105052_bb0165) 2020; 151 Roberts (10.1016/j.apsoil.2023.105052_bb0395) 2016 Dippold (10.1016/j.apsoil.2023.105052_bb0100) 2014; 28 Nordgren (10.1016/j.apsoil.2023.105052_bb0355) 1992; 13 Sietiö (10.1016/j.apsoil.2023.105052_bb0420) 2018; 218 Frostegård (10.1016/j.apsoil.2023.105052_bb0155) 1996; 28 Gunina (10.1016/j.apsoil.2023.105052_bb0195) 2017; 14 Vance (10.1016/j.apsoil.2023.105052_bb0480) 1987; 19 Cui (10.1016/j.apsoil.2023.105052_bb0090) 2020; 142 Nguyen (10.1016/j.apsoil.2023.105052_bb0345) 2016; 20 Jones (10.1016/j.apsoil.2023.105052_bb0225) 2015 Glaser (10.1016/j.apsoil.2023.105052_bb0180) 2006; 12 Griepentrog (10.1016/j.apsoil.2023.105052_bb0185) 2014; 20 Ohlson (10.1016/j.apsoil.2023.105052_bb0360) 2009; 2 Maillard (10.1016/j.apsoil.2023.105052_bb0300) 2020; 96 Fischer (10.1016/j.apsoil.2023.105052_bb0140) 2010; 61 Baldrian (10.1016/j.apsoil.2023.105052_bb0030) 2017; 41 Kozich (10.1016/j.apsoil.2023.105052_bb0255) 2013; 79 Meier (10.1016/j.apsoil.2023.105052_bb0320) 2017; 106 Wang (10.1016/j.apsoil.2023.105052_bb0485) 2021; 162 Clemmensen (10.1016/j.apsoil.2023.105052_bb0080) 2015; 205 Glaser (10.1016/j.apsoil.2023.105052_bb0175) 2004; 36 Totsche (10.1016/j.apsoil.2023.105052_bb0475) 2018; 181 Kallenbach (10.1016/j.apsoil.2023.105052_bb0230) 2015; 91 Quast (10.1016/j.apsoil.2023.105052_bb0380) 2012; 41 Carini (10.1016/j.apsoil.2023.105052_bb0070) 2016; 2 Liang (10.1016/j.apsoil.2023.105052_bb0285) 2017; 2 Baldrian (10.1016/j.apsoil.2023.105052_bb0025) 2017; 37 Li (10.1016/j.apsoil.2023.105052_bb0270) 2019; 135 Six (10.1016/j.apsoil.2023.105052_bb0425) 2002; 241 Tan (10.1016/j.apsoil.2023.105052_bb0470) 2014 Miltner (10.1016/j.apsoil.2023.105052_bb0335) 2012; 111 Abarenkov (10.1016/j.apsoil.2023.105052_bb0005) 2021 Lewin (10.1016/j.apsoil.2023.105052_bb0265) 2016; 8 Chen (10.1016/j.apsoil.2023.105052_bb0075) 2020; 151 Dong (10.1016/j.apsoil.2023.105052_bb0105) 2021; 12 Wang (10.1016/j.apsoil.2023.105052_bb0490) 2020; 141 de Boer (10.1016/j.apsoil.2023.105052_bb0050) 2005; 29 Insam (10.1016/j.apsoil.2023.105052_bb0215) 1990; 22 Fan (10.1016/j.apsoil.2023.105052_bb0120) 2020; 375 Gadgil (10.1016/j.apsoil.2023.105052_bb0160) 1971; 233 Yilmaz (10.1016/j.apsoil.2023.105052_bb0500) 2014; 42 Klamer (10.1016/j.apsoil.2023.105052_bb0245) 2004; 36 Oksanen (10.1016/j.apsoil.2023.105052_bb0365) 2017 Karhu (10.1016/j.apsoil.2023.105052_bb0235) 2016; 99 Karhu (10.1016/j.apsoil.2023.105052_bb0240) 2022; 167 Apprill (10.1016/j.apsoil.2023.105052_bb0010) 2015; 75 Beidler (10.1016/j.apsoil.2023.105052_bb0040) 2020; 108 Schimel (10.1016/j.apsoil.2023.105052_bb0410) 2003; 35 Faust (10.1016/j.apsoil.2023.105052_bb0125) 2017; 114 Mikryukov (10.1016/j.apsoil.2023.105052_bb0330) 2017 Fernandez (10.1016/j.apsoil.2023.105052_bb0130) 2014; 77 Glaser (10.1016/j.apsoil.2023.105052_bb0170) 2002; 35 Meyer (10.1016/j.apsoil.2023.105052_bb0325) 2018; 119 Frostegård (10.1016/j.apsoil.2023.105052_bb2000) 1996; 22 Zhang (10.1016/j.apsoil.2023.105052_bb0510) 1996; 28 Averill (10.1016/j.apsoil.2023.105052_bb0020) 2016; 19 Buckeridge (10.1016/j.apsoil.2023.105052_bb0060) 2020; 149 Frostegård (10.1016/j.apsoil.2023.105052_bb0150) 1991; 14 Liang (10.1016/j.apsoil.2023.105052_bb0280) 2011; 9 Brabcová (10.1016/j.apsoil.2023.105052_bb0055) 2016; 210 Craine (10.1016/j.apsoil.2023.105052_bb0085) 2007; 88 Schloss (10.1016/j.apsoil.2023.105052_bb0415) 2009; 75 Strickland (10.1016/j.apsoil.2023.105052_bb0450) 2010; 42 Zech (10.1016/j.apsoil.2023.105052_bb0505) 1992; 117–118 Liang (10.1016/j.apsoil.2023.105052_bb0275) 2020; 2 Marx (10.1016/j.apsoil.2023.105052_bb0315) 2001; 33 Pietikäinen (10.1016/j.apsoil.2023.105052_bb0375) 2000; 89 Schielzeth (10.1016/j.apsoil.2023.105052_bb0405) 2020; 11 Smith (10.1016/j.apsoil.2023.105052_bb0430) 2008 Basler (10.1016/j.apsoil.2023.105052_bb0035) 2015; 12 Lindahl (10.1016/j.apsoil.2023.105052_bb0295) 2002; 242 Soong (10.1016/j.apsoil.2023.105052_bb0435) 2020; 26 Talbot (10.1016/j.apsoil.2023.105052_bb0460) 2010; 53 Appuhn (10.1016/j.apsoil.2023.105052_bb0015) 2006; 38 Fontaine (10.1016/j.apsoil.2023.105052_bb0145) 2003; 35 Read (10.1016/j.apsoil.2023.105052_bb0390) 2003; 157 Hu (10.1016/j.apsoil.2023.105052_bb0205) 2022; 165 Martens (10.1016/j.apsoil.2023.105052_bb0310) 2000; 32 Schäfer (10.1016/j.apsoil.2023.105052_bb0400) 2010; 311 Spohn (10.1016/j.apsoil.2023.105052_bb0445) 2016; 97 R Core Team (10.1016/j.apsoil.2023.105052_bb0385) 2019 Parada (10.1016/j.apsoil.2023.105052_bb0370) 2016; 18 Ihrmark (10.1016/j.apsoil.2023.105052_bb0210) 2012; 82 Warnes (10.1016/j.apsoil.2023.105052_bb0495) 2016 Fernandez (10.1016/j.apsoil.2023.105052_bb0135) 2016; 93 Bell (10.1016/j.apsoil.2023.105052_bb0045) 2013; 81 Liang (10.1016/j.apsoil.2023.105052_bb0290) 2019; 25 Moorhead (10.1016/j.apsoil.2023.105052_bb0340) 2006; 76 Sparling (10.1016/j.apsoil.2023.105052_bb0440) 1998; 30 Ni (10.1016/j.apsoil.2023.105052_bb0350) 2020; 143 Stuart (10.1016/j.apsoil.2023.105052_bb0455) 2020; 10 Jenkinson (10.1016/j.apsoil.2023.105052_bb0220) 1988 |
References_xml | – volume: 2 start-page: 241 year: 2020 end-page: 254 ident: bb0275 article-title: Soil microbial carbon pump: mechanism and appraisal publication-title: Soil Ecol. Lett. – volume: 135 start-page: 369 year: 2019 end-page: 378 ident: bb0270 article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming publication-title: Soil Biol. Biochem. – volume: 89 start-page: 231 year: 2000 end-page: 242 ident: bb0375 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos – volume: 10 start-page: 1658 year: 2020 ident: bb0455 article-title: Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses publication-title: Front. Plant Sci. – volume: 36 start-page: 57 year: 2004 end-page: 65 ident: bb0245 article-title: Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9 publication-title: Soil Biol. Biochem. – volume: 81 year: 2013 ident: bb0045 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: J. Vis. Exp. – volume: 2 start-page: 692 year: 2009 end-page: 695 ident: bb0360 article-title: The charcoal carbon pool in boreal forest soils publication-title: Nat. Geosci. – volume: 28 start-page: 569 year: 2014 end-page: 576 ident: bb0100 article-title: Improved δ publication-title: Rapid Commun. Mass Spectrom. – volume: 91 start-page: 279 year: 2015 end-page: 290 ident: bb0230 article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation publication-title: Soil Biol. Biochem. – year: 2017 ident: bb0330 article-title: metagMisc: Miscellaneous Functions for Metagenomic Analysis – volume: 11 start-page: 1141 year: 2020 end-page: 1152 ident: bb0405 article-title: Robustness of linear mixed-effects models to violations of distributional assumptions publication-title: Methods Ecol. Evol. – year: 2014 ident: bb0470 article-title: Humic Matter in Soil and the Environment: Principles and Controversies – volume: 151 year: 2020 ident: bb0075 article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests publication-title: Soil Biol. Biochem. – volume: 114 start-page: 82 year: 2017 end-page: 89 ident: bb0125 article-title: Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization publication-title: Appl. Soil Ecol. – volume: 2 start-page: 17105 year: 2017 ident: bb0285 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 26 start-page: 1953 year: 2020 end-page: 1961 ident: bb0435 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Glob. Chang. Biol. – volume: 12 start-page: 1521 year: 2006 end-page: 1531 ident: bb0180 article-title: Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO publication-title: Glob. Chang. Biol. – volume: 14 start-page: 271 year: 2017 end-page: 283 ident: bb0195 article-title: Turnover of microbial groups and cell components in soil: publication-title: Biogeosciences – volume: 77 start-page: 150 year: 2014 end-page: 157 ident: bb0130 article-title: Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter publication-title: Soil Biol. Biochem. – volume: 20 start-page: 241 year: 2016 end-page: 248 ident: bb0345 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol. – volume: 2 start-page: 1 year: 2016 end-page: 6 ident: bb0070 article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity publication-title: Nat. Microbiol. – volume: 35 start-page: 549 year: 2003 end-page: 563 ident: bb0410 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model publication-title: Soil Biol. Biochem. – volume: 42 start-page: D643 year: 2014 end-page: D648 ident: bb0500 article-title: The SILVA and “all-species living tree project (LTP)” taxonomic frameworks publication-title: Nucleic Acids Res. – volume: 12 start-page: 1674 year: 2021 ident: bb0105 article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil publication-title: Front. Microbiol. – volume: 375 year: 2020 ident: bb0120 article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest publication-title: Geoderma – volume: 76 start-page: 151 year: 2006 end-page: 174 ident: bb0340 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecol. Monogr. – volume: 28 start-page: 55 year: 1996 end-page: 63 ident: bb0155 article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals publication-title: Soil Biol. Biochem. – volume: 36 start-page: 399 year: 2004 end-page: 407 ident: bb0175 article-title: Amino sugars and muramic acid - biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. – volume: 32 start-page: 361 year: 2000 end-page: 369 ident: bb0310 article-title: Plant residue biochemistry regulates soil carbon cycling and carbon sequestration publication-title: Soil Biol. Biochem. – volume: 142 year: 2020 ident: bb0090 article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming publication-title: Soil Biol. Biochem. – volume: 35 start-page: 837 year: 2003 end-page: 843 ident: bb0145 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biol. Biochem. – volume: 210 start-page: 1369 year: 2016 end-page: 1381 ident: bb0055 article-title: Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community publication-title: New Phytol. – volume: 38 start-page: 40 year: 2006 end-page: 51 ident: bb0015 article-title: Microbial colonisation of roots as a function of plant species publication-title: Soil Biol. Biochem. – volume: 108 start-page: 1845 year: 2020 end-page: 1859 ident: bb0040 article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types publication-title: J. Ecol. – volume: 37 start-page: 128 year: 2017 end-page: 134 ident: bb0025 article-title: Microbial activity and the dynamics of ecosystem processes in forest soils publication-title: Curr. Opin. Microbiol. – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bb0170 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review publication-title: Biol. Fertil. Soils – volume: 33 start-page: 1633 year: 2001 end-page: 1640 ident: bb0315 article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils publication-title: Soil Biol. Biochem. – volume: 30 start-page: 1469 year: 1998 end-page: 1472 ident: bb0440 article-title: Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C publication-title: Soil Biol. Biochem. – volume: 20 start-page: 327 year: 2014 end-page: 340 ident: bb0185 article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions publication-title: Glob. Chang. Biol. – volume: 151 start-page: 237 year: 2020 end-page: 249 ident: bb0165 article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency publication-title: Biogeochemistry – volume: 97 start-page: 168 year: 2016 end-page: 175 ident: bb0445 article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland publication-title: Soil Biol. Biochem. – volume: 162 year: 2021 ident: bb0485 article-title: Microbial necromass as the source of soil organic carbon in global ecosystems publication-title: Soil Biol. Biochem. – volume: 19 start-page: 937 year: 2016 end-page: 947 ident: bb0020 article-title: Ectomycorrhizal fungi slow soil carbon cycling publication-title: Ecol. Lett. – volume: 9 start-page: 75 year: 2011 ident: bb0280 article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy publication-title: Nat. Rev. Microbiol. – volume: 106 start-page: 119 year: 2017 end-page: 128 ident: bb0320 article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools publication-title: Soil Biol. Biochem. – volume: 41 start-page: D590 year: 2012 end-page: D596 ident: bb0380 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. – volume: 13 start-page: 195 year: 1992 end-page: 199 ident: bb0355 article-title: A method for determining microbially available N and P in an organic soil publication-title: Biol. Fertil. Soils – year: 2008 ident: bb0430 article-title: Mycorrhizal Symbiosis – volume: 14 start-page: 151 year: 1991 end-page: 163 ident: bb0150 article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content publication-title: J. Microbiol. Methods – volume: 233 start-page: 133 year: 1971 ident: bb0160 article-title: Mycorrhiza and litter decomposition publication-title: Nature – volume: 149 year: 2020 ident: bb0060 article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil publication-title: Soil Biol. Biochem. – volume: 165 year: 2022 ident: bb0205 article-title: Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: a global meta-analysis publication-title: Soil Biol. Biochem. – volume: 8 start-page: 235 year: 2016 end-page: 254 ident: bb0265 article-title: Evolution and ecology of actinobacteria and their bioenergy applications publication-title: Annu. Rev. Microbiol. – volume: 28 start-page: 1201 year: 1996 end-page: 1206 ident: bb0510 article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils publication-title: Soil Biol. Biochem. – year: 2017 ident: bb0365 article-title: vegan: Community Ecology Package – volume: 75 start-page: 7537 year: 2009 end-page: 7541 ident: bb0415 article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl. Environ. Microbiol. – volume: 111 start-page: 41 year: 2012 end-page: 55 ident: bb0335 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry – volume: 181 start-page: 104 year: 2018 end-page: 136 ident: bb0475 article-title: Microaggregates in soils publication-title: J. Plant Nutr. Soil Sci. – volume: 22 start-page: 525 year: 1990 end-page: 532 ident: bb0215 article-title: Are the soil microbial biomass and basal respiration governed by the climatic regime? publication-title: Soil Biol. Biochem. – volume: 117–118 start-page: 155 year: 1992 end-page: 174 ident: bb0505 article-title: Humic substances distribution and transformation in forest soils publication-title: Sci. Total Environ. – volume: 205 start-page: 1525 year: 2015 end-page: 1536 ident: bb0080 article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests publication-title: New Phytol. – volume: 241 start-page: 155 year: 2002 end-page: 176 ident: bb0425 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil – volume: 93 start-page: 38 year: 2016 end-page: 49 ident: bb0135 article-title: The decomposition of ectomycorrhizal fungal necromass publication-title: Soil Biol. Biochem. – volume: 53 start-page: 169 year: 2010 end-page: 179 ident: bb0460 article-title: Controls over mycorrhizal uptake of organic nitrogen publication-title: Pedobiologia – volume: 12 start-page: 5929 year: 2015 end-page: 5940 ident: bb0035 article-title: Microbial carbon recycling – an underestimated process controlling soil carbon dynamics – part 1: a long-term laboratory incubation experiment publication-title: Biogeosciences – volume: 22 start-page: 59 year: 1996 end-page: 65 ident: bb2000 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biol. Fertil. Soils – volume: 41 start-page: 109 year: 2017 end-page: 130 ident: bb0030 article-title: Forest microbiome: diversity, complexity and dynamics publication-title: FEMS Microbiol. Rev. – volume: 82 start-page: 666 year: 2012 end-page: 677 ident: bb0210 article-title: New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities publication-title: FEMS Microbiol. Ecol. – volume: 311 start-page: 103 year: 2010 end-page: 112 ident: bb0400 article-title: Development of a new PCR primer system for selective amplification of Actinobacteria publication-title: FEMS Microbiol. Lett. – volume: 79 start-page: 5112 year: 2013 end-page: 5120 ident: bb0255 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl. Environ. Microbiol. – volume: 96 start-page: fiz209 year: 2020 ident: bb0300 article-title: Functional convergence in the decomposition of fungal necromass in soil and wood publication-title: FEMS Microbiol. Ecol. – volume: 18 start-page: 1403 year: 2016 end-page: 1414 ident: bb0370 article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ. Microbiol. – volume: 157 start-page: 475 year: 2003 end-page: 492 ident: bb0390 article-title: Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? publication-title: New Phytol. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bb0480 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 218 start-page: 738 year: 2018 end-page: 751 ident: bb0420 article-title: Ericoid plant species and publication-title: New Phytol. – volume: 141 year: 2020 ident: bb0490 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. – volume: 61 start-page: 504 year: 2010 end-page: 513 ident: bb0140 article-title: Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil publication-title: Eur. J. Soil Sci. – volume: 242 start-page: 123 year: 2002 end-page: 135 ident: bb0295 article-title: Defining nutritional constraints on carbon cycling in boreal forests – towards a less “phytocentric” perspective publication-title: Plant Soil – start-page: 368 year: 1988 end-page: 386 ident: bb0220 article-title: The determination of microbial biomass carbon and nitrogen in soil publication-title: Advances in Nitrogen Cycling in Agricultural Ecosystems – year: 2019 ident: bb0385 article-title: R: A Language and Environment for Statistical Computing – year: 2021 ident: bb0005 article-title: UNITE Mothur Release for Fungi 2. Version 10.05.2021. Unite Community – volume: 143 year: 2020 ident: bb0350 article-title: A quantitative assessment of amino sugars in soil profiles publication-title: Soil Biol. Biochem. – start-page: 769 year: 2015 end-page: 775 ident: bb0225 article-title: A comprehensive survey of soil rhizobiales diversity using high-throughput DNA sequencing publication-title: Biological Nitrogen Fixation – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: bb0290 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. – volume: 119 start-page: 152 year: 2018 end-page: 161 ident: bb0325 article-title: Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil publication-title: Soil Biol. Biochem. – volume: 75 start-page: 129 year: 2015 end-page: 137 ident: bb0010 article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton publication-title: Aquat. Microb. Ecol. – year: 2016 ident: bb0495 article-title: gplots: Various R Programming Tools for Plotting Data – volume: 29 start-page: 795 year: 2005 end-page: 811 ident: bb0050 article-title: Living in a fungal world: impact of fungi on soil bacterial niche development publication-title: FEMS Microbiol. Rev. – volume: 42 start-page: 1385 year: 2010 end-page: 1395 ident: bb0450 article-title: Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications publication-title: Soil Biol. Biochem. – year: 2016 ident: bb0395 article-title: labdsv: Ordination and Multivariate Analysis for Ecology – volume: 99 start-page: 104 year: 2016 end-page: 107 ident: bb0235 article-title: Priming effect increases with depth in a boreal forest soil publication-title: Soil Biol. Biochem. – volume: 88 start-page: 2105 year: 2007 end-page: 2113 ident: bb0085 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 167 year: 2022 ident: bb0240 article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios publication-title: Soil Biol. Biochem. – volume: 12 start-page: 5929 year: 2015 ident: 10.1016/j.apsoil.2023.105052_bb0035 article-title: Microbial carbon recycling – an underestimated process controlling soil carbon dynamics – part 1: a long-term laboratory incubation experiment publication-title: Biogeosciences doi: 10.5194/bg-12-5929-2015 – volume: 205 start-page: 1525 year: 2015 ident: 10.1016/j.apsoil.2023.105052_bb0080 article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests publication-title: New Phytol. doi: 10.1111/nph.13208 – volume: 35 start-page: 549 year: 2003 ident: 10.1016/j.apsoil.2023.105052_bb0410 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00015-4 – volume: 108 start-page: 1845 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0040 article-title: Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types publication-title: J. Ecol. doi: 10.1111/1365-2745.13385 – volume: 93 start-page: 38 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0135 article-title: The decomposition of ectomycorrhizal fungal necromass publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.10.017 – volume: 151 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0075 article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.108059 – volume: 79 start-page: 5112 year: 2013 ident: 10.1016/j.apsoil.2023.105052_bb0255 article-title: Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01043-13 – year: 2008 ident: 10.1016/j.apsoil.2023.105052_bb0430 – start-page: 368 year: 1988 ident: 10.1016/j.apsoil.2023.105052_bb0220 article-title: The determination of microbial biomass carbon and nitrogen in soil – volume: 81 year: 2013 ident: 10.1016/j.apsoil.2023.105052_bb0045 article-title: High-throughput fluorometric measurement of potential soil extracellular enzyme activities publication-title: J. Vis. Exp. – volume: 96 start-page: fiz209 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0300 article-title: Functional convergence in the decomposition of fungal necromass in soil and wood publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiz209 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.apsoil.2023.105052_bb0480 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 28 start-page: 55 year: 1996 ident: 10.1016/j.apsoil.2023.105052_bb0155 article-title: Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00100-X – year: 2021 ident: 10.1016/j.apsoil.2023.105052_bb0005 – volume: 75 start-page: 7537 year: 2009 ident: 10.1016/j.apsoil.2023.105052_bb0415 article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01541-09 – year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0330 – volume: 218 start-page: 738 year: 2018 ident: 10.1016/j.apsoil.2023.105052_bb0420 article-title: Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil publication-title: New Phytol. doi: 10.1111/nph.15040 – year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0395 – volume: 8 start-page: 235 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0265 article-title: Evolution and ecology of actinobacteria and their bioenergy applications publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-102215-095748 – volume: 89 start-page: 231 year: 2000 ident: 10.1016/j.apsoil.2023.105052_bb0375 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – volume: 99 start-page: 104 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0235 article-title: Priming effect increases with depth in a boreal forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.05.001 – volume: 41 start-page: D590 year: 2012 ident: 10.1016/j.apsoil.2023.105052_bb0380 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 61 start-page: 504 year: 2010 ident: 10.1016/j.apsoil.2023.105052_bb0140 article-title: Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2010.01244.x – volume: 14 start-page: 151 year: 1991 ident: 10.1016/j.apsoil.2023.105052_bb0150 article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content publication-title: J. Microbiol. Methods doi: 10.1016/0167-7012(91)90018-L – volume: 106 start-page: 119 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0320 article-title: Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.12.004 – volume: 375 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0120 article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114470 – volume: 22 start-page: 525 year: 1990 ident: 10.1016/j.apsoil.2023.105052_bb0215 article-title: Are the soil microbial biomass and basal respiration governed by the climatic regime? publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90189-7 – volume: 2 start-page: 692 year: 2009 ident: 10.1016/j.apsoil.2023.105052_bb0360 article-title: The charcoal carbon pool in boreal forest soils publication-title: Nat. Geosci. doi: 10.1038/ngeo617 – year: 2014 ident: 10.1016/j.apsoil.2023.105052_bb0470 – volume: 22 start-page: 59 year: 1996 ident: 10.1016/j.apsoil.2023.105052_bb2000 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biol. Fertil. Soils doi: 10.1007/BF00384433 – volume: 149 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0060 article-title: Sticky dead microbes: rapid abiotic retention of microbial necromass in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107929 – volume: 117–118 start-page: 155 year: 1992 ident: 10.1016/j.apsoil.2023.105052_bb0505 article-title: Humic substances distribution and transformation in forest soils publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(92)90084-6 – volume: 142 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0090 article-title: Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107720 – volume: 36 start-page: 57 year: 2004 ident: 10.1016/j.apsoil.2023.105052_bb0245 article-title: Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2ω6,9 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.08.019 – volume: 167 year: 2022 ident: 10.1016/j.apsoil.2023.105052_bb0240 article-title: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108615 – volume: 30 start-page: 1469 year: 1998 ident: 10.1016/j.apsoil.2023.105052_bb0440 article-title: Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(98)00040-6 – volume: 10 start-page: 1658 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0455 article-title: Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01658 – volume: 88 start-page: 2105 year: 2007 ident: 10.1016/j.apsoil.2023.105052_bb0085 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology doi: 10.1890/06-1847.1 – volume: 135 start-page: 369 year: 2019 ident: 10.1016/j.apsoil.2023.105052_bb0270 article-title: Physical, biochemical, and microbial controls on amino sugar accumulation in soils under long-term cover cropping and no-tillage farming publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.017 – volume: 32 start-page: 361 year: 2000 ident: 10.1016/j.apsoil.2023.105052_bb0310 article-title: Plant residue biochemistry regulates soil carbon cycling and carbon sequestration publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00162-5 – volume: 9 start-page: 75 year: 2011 ident: 10.1016/j.apsoil.2023.105052_bb0280 article-title: Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2386-c1 – volume: 13 start-page: 195 year: 1992 ident: 10.1016/j.apsoil.2023.105052_bb0355 article-title: A method for determining microbially available N and P in an organic soil publication-title: Biol. Fertil. Soils doi: 10.1007/BF00340575 – volume: 241 start-page: 155 year: 2002 ident: 10.1016/j.apsoil.2023.105052_bb0425 article-title: Stabilization mechanisms of soil organic matter: implications for C-saturation of soils publication-title: Plant Soil doi: 10.1023/A:1016125726789 – volume: 114 start-page: 82 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0125 article-title: Effect of biodynamic soil amendments on microbial communities in comparison with inorganic fertilization publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.03.006 – volume: 28 start-page: 569 year: 2014 ident: 10.1016/j.apsoil.2023.105052_bb0100 article-title: Improved δ13C analysis of amino sugars in soil by ion chromatography-oxidation-isotope ratio mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.6814 – volume: 53 start-page: 169 year: 2010 ident: 10.1016/j.apsoil.2023.105052_bb0460 article-title: Controls over mycorrhizal uptake of organic nitrogen publication-title: Pedobiologia doi: 10.1016/j.pedobi.2009.12.001 – volume: 143 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0350 article-title: A quantitative assessment of amino sugars in soil profiles publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107762 – volume: 77 start-page: 150 year: 2014 ident: 10.1016/j.apsoil.2023.105052_bb0130 article-title: Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.06.026 – volume: 2 start-page: 1 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0070 article-title: Relic DNA is abundant in soil and obscures estimates of soil microbial diversity publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.242 – volume: 157 start-page: 475 year: 2003 ident: 10.1016/j.apsoil.2023.105052_bb0390 article-title: Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00704.x – volume: 181 start-page: 104 year: 2018 ident: 10.1016/j.apsoil.2023.105052_bb0475 article-title: Microaggregates in soils publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201600451 – volume: 12 start-page: 1521 year: 2006 ident: 10.1016/j.apsoil.2023.105052_bb0180 article-title: Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2006.01186.x – volume: 12 start-page: 1674 year: 2021 ident: 10.1016/j.apsoil.2023.105052_bb0105 article-title: Decomposition of microbial necromass is divergent at the individual taxonomic level in soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.679793 – volume: 33 start-page: 1633 year: 2001 ident: 10.1016/j.apsoil.2023.105052_bb0315 article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00079-7 – volume: 19 start-page: 937 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0020 article-title: Ectomycorrhizal fungi slow soil carbon cycling publication-title: Ecol. Lett. doi: 10.1111/ele.12631 – volume: 151 start-page: 237 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0165 article-title: Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency publication-title: Biogeochemistry doi: 10.1007/s10533-020-00720-4 – volume: 14 start-page: 271 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0195 article-title: Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers publication-title: Biogeosciences doi: 10.5194/bg-14-271-2017 – start-page: 769 year: 2015 ident: 10.1016/j.apsoil.2023.105052_bb0225 article-title: A comprehensive survey of soil rhizobiales diversity using high-throughput DNA sequencing – volume: 162 year: 2021 ident: 10.1016/j.apsoil.2023.105052_bb0485 article-title: Microbial necromass as the source of soil organic carbon in global ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108422 – volume: 20 start-page: 327 year: 2014 ident: 10.1016/j.apsoil.2023.105052_bb0185 article-title: Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12374 – volume: 111 start-page: 41 year: 2012 ident: 10.1016/j.apsoil.2023.105052_bb0335 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 38 start-page: 40 year: 2006 ident: 10.1016/j.apsoil.2023.105052_bb0015 article-title: Microbial colonisation of roots as a function of plant species publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.09.002 – volume: 29 start-page: 795 year: 2005 ident: 10.1016/j.apsoil.2023.105052_bb0050 article-title: Living in a fungal world: impact of fungi on soil bacterial niche development publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.11.005 – volume: 82 start-page: 666 year: 2012 ident: 10.1016/j.apsoil.2023.105052_bb0210 article-title: New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2012.01437.x – volume: 18 start-page: 1403 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0370 article-title: Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13023 – volume: 76 start-page: 151 year: 2006 ident: 10.1016/j.apsoil.2023.105052_bb0340 article-title: A theoretical model of litter decay and microbial interaction publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2 – year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0365 – volume: 37 start-page: 128 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0025 article-title: Microbial activity and the dynamics of ecosystem processes in forest soils publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.06.008 – volume: 91 start-page: 279 year: 2015 ident: 10.1016/j.apsoil.2023.105052_bb0230 article-title: Microbial physiology and necromass regulate agricultural soil carbon accumulation publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.09.005 – year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0495 – volume: 41 start-page: 109 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0030 article-title: Forest microbiome: diversity, complexity and dynamics publication-title: FEMS Microbiol. Rev. – year: 2019 ident: 10.1016/j.apsoil.2023.105052_bb0385 – volume: 97 start-page: 168 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0445 article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.008 – volume: 242 start-page: 123 year: 2002 ident: 10.1016/j.apsoil.2023.105052_bb0295 article-title: Defining nutritional constraints on carbon cycling in boreal forests – towards a less “phytocentric” perspective publication-title: Plant Soil doi: 10.1023/A:1019650226585 – volume: 26 start-page: 1953 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0435 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14962 – volume: 311 start-page: 103 year: 2010 ident: 10.1016/j.apsoil.2023.105052_bb0400 article-title: Development of a new PCR primer system for selective amplification of Actinobacteria publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2010.02069.x – volume: 42 start-page: 1385 year: 2010 ident: 10.1016/j.apsoil.2023.105052_bb0450 article-title: Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.05.007 – volume: 2 start-page: 17105 year: 2017 ident: 10.1016/j.apsoil.2023.105052_bb0285 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 25 start-page: 3578 year: 2019 ident: 10.1016/j.apsoil.2023.105052_bb0290 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14781 – volume: 75 start-page: 129 year: 2015 ident: 10.1016/j.apsoil.2023.105052_bb0010 article-title: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame01753 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.apsoil.2023.105052_bb0170 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0466-4 – volume: 35 start-page: 837 year: 2003 ident: 10.1016/j.apsoil.2023.105052_bb0145 article-title: The priming effect of organic matter: a question of microbial competition? publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00123-8 – volume: 36 start-page: 399 year: 2004 ident: 10.1016/j.apsoil.2023.105052_bb0175 article-title: Amino sugars and muramic acid - biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.10.013 – volume: 119 start-page: 152 year: 2018 ident: 10.1016/j.apsoil.2023.105052_bb0325 article-title: Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.01.024 – volume: 20 start-page: 241 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0345 article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild publication-title: Fungal Ecol. doi: 10.1016/j.funeco.2015.06.006 – volume: 141 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0490 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107687 – volume: 42 start-page: D643 year: 2014 ident: 10.1016/j.apsoil.2023.105052_bb0500 article-title: The SILVA and “all-species living tree project (LTP)” taxonomic frameworks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1209 – volume: 2 start-page: 241 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0275 article-title: Soil microbial carbon pump: mechanism and appraisal publication-title: Soil Ecol. Lett. doi: 10.1007/s42832-020-0052-4 – volume: 11 start-page: 1141 year: 2020 ident: 10.1016/j.apsoil.2023.105052_bb0405 article-title: Robustness of linear mixed-effects models to violations of distributional assumptions publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13434 – volume: 210 start-page: 1369 year: 2016 ident: 10.1016/j.apsoil.2023.105052_bb0055 article-title: Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community publication-title: New Phytol. doi: 10.1111/nph.13849 – volume: 165 year: 2022 ident: 10.1016/j.apsoil.2023.105052_bb0205 article-title: Nitrogen addition increases microbial necromass in croplands and bacterial necromass in forests: a global meta-analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108500 – volume: 28 start-page: 1201 year: 1996 ident: 10.1016/j.apsoil.2023.105052_bb0510 article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(96)00117-4 – volume: 233 start-page: 133 year: 1971 ident: 10.1016/j.apsoil.2023.105052_bb0160 article-title: Mycorrhiza and litter decomposition publication-title: Nature doi: 10.1038/233133a0 |
SSID | ssj0005283 |
Score | 2.4134674 |
Snippet | Labile carbon (C) fractions, such as sugars, may persist in soil due to their incorporation into microbial biomass and are ultimately stabilized as microbial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105052 |
SubjectTerms | bacterial growth boreal forests community structure enzymes forest soils glucose greenhouse experimentation labile carbon microbial biomass Microbial carbon pump microbial communities Microbial community Microbial necromass Microbial nitrogen mining mineralization necromass nitrogen Nitrogen limitation, Pinus sylvestris phospholipids Pinus sylvestris Podzols soil ecology supply balance trees |
Title | Fate and stabilization of labile carbon in a sandy boreal forest soil – A question of nitrogen availability? |
URI | https://dx.doi.org/10.1016/j.apsoil.2023.105052 https://www.proquest.com/docview/2887605985 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhodAeQpu2NE0TVOjVWa9k-XEqy5Jlm7ahtAnkJvQYF5fFXnY3gb2E_of8w_ySzFh2aAIh0JNlMTKDZjzzCc2DsU9GCBs7ym5XrogS6x3aQTmMVA4uw1Fm256R30_S6VlyfK7ON9i4z4WhsMrO9geb3lrrbmbQ7eZgXlWDXzF6dsQvEkE0OXI6tydJRlp-ePVvmEcoxYnEEVH36XNtjJeZL5uKLiCEpIa3sRKPuacHhrr1PpOXbLuDjXwUOHvFNqDeYS9Gvxdd6QzYYc9CW8k1jo7aUtTr16yeIJTkpvYcQSCFwYakS96UfEbvwJ1ZWJyoam74EgnXHJUCwSNHMIt8cOKc3_y95iPeMtatRkOwaFD3uLk01SzU-l5_fsPOJken42nUdViInJTFKsp8mlNZc1kKlZu0TEAYlFLpSysLC0JAnjsrzdCi4JSHEuWag1RJaiAVQ5Bv2Wbd1PCOcYVAKpYGIEeH72MwCFS8z3whQDkk3mWy31jtuvLj1AVjpvs4sz86iEOTOHQQxy6L7lbNQ_mNJ-izXmb6nhpp9BBPrPzYi1jjH0bXJqaG5mKpBdphPPQVuXr_31_fY8_pLSQxfmCbq8UF7COaWdmDVl0P2NZo_PPbD3p--To9uQUvt_c6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB6CQ2l7CG3a0jzaqtDr4rVk7eMUTIhxmsSXJpCb0GO2bDC7xnYKvvU_5B_2l3S00pa2UAK9abWjZdDMznxC8wD4pDk3qfXZ7dKWydg4S3ZQjBJZoM1plJuuZ-TVPJvdjD_fytsdOO1zYXxYZbT9waZ31jrODONuDpd1PfySkmcn_CIIRHtHTuf2XV-dSg5gd3J-MZv_FukRqnESfeIX9Bl0XZiXXq7b2t9BcOF73qaS_8tD_WWrOwc0fQF7ETmySWDuJexgsw_PJ19XsXoG7sOT0FlyS6Ozrhr19hU0U0KTTDeOEQ70kbAh75K1FVv4Z2RWrwxN1A3TbE2EW0Z6QfiREZ4lPpjnnP34_sAmrGMsriZbsGpJ_Zj-putFKPe9PXkNN9Oz69NZEpssJFaIcpPkLit8ZXNRcVnorBoj1ySoylVGlAY5x6KwRuiRIdlJhxWJtkAhx5nGjI9QvIFB0zb4FpgkLJUKjViQz3cpasIqzuWu5CgtER-A6DdW2ViB3DfCWKg-1OxOBXEoLw4VxHEAya9Vy1CB4xH6vJeZ-kOTFDmJR1Z-7EWs6CfzNye6wfZ-rTiZYjr3lYU8_O-vf4Cns-urS3V5Pr84gmf-TchpPIbBZnWP7wjcbMz7qLw_AeKu-FY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fate+and+stabilization+of+labile+carbon+in+a+sandy+boreal+forest+soil+%E2%80%93+A+question+of+nitrogen+availability%3F&rft.jtitle=Applied+soil+ecology+%3A+a+section+of+Agriculture%2C+ecosystems+%26+environment&rft.au=Meyer%2C+Nele&rft.au=Sieti%C3%B6%2C+Outi-Maaria&rft.au=Adamczyk%2C+Sylwia&rft.au=Ambus%2C+Per&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0929-1393&rft.eissn=1873-0272&rft.volume=191&rft_id=info:doi/10.1016%2Fj.apsoil.2023.105052&rft.externalDocID=S0929139323002500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-1393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-1393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-1393&client=summon |