Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. [Display omitted] •Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES.•The superhydrophobic surface exhibited a CA o...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 386; pp. 115 - 124
Main Authors Jia, Shanshan, Liu, Ming, Wu, Yiqiang, Luo, Sha, Qing, Yan, Chen, Haibo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2016
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2016.06.004

Cover

Loading…
Abstract Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. [Display omitted] •Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES.•The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°.•The superhydrophobic surface showed a durable and robust wear-resistance performance. In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.
AbstractList In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154 degree and water slide angle close to 0 degree . Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.
Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. [Display omitted] •Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES.•The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°.•The superhydrophobic surface showed a durable and robust wear-resistance performance. In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.
Author Chen, Haibo
Luo, Sha
Liu, Ming
Wu, Yiqiang
Qing, Yan
Jia, Shanshan
Author_xml – sequence: 1
  givenname: Shanshan
  surname: Jia
  fullname: Jia, Shanshan
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 2
  givenname: Ming
  surname: Liu
  fullname: Liu, Ming
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 3
  givenname: Yiqiang
  surname: Wu
  fullname: Wu, Yiqiang
  email: wuyq0506@126.com
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 4
  givenname: Sha
  surname: Luo
  fullname: Luo, Sha
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 5
  givenname: Yan
  surname: Qing
  fullname: Qing, Yan
  email: qingyan0429@163.com
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 6
  givenname: Haibo
  surname: Chen
  fullname: Chen, Haibo
  organization: College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
BookMark eNqFkUFv1DAQhS3USmxb_gEHH7lkseNkk3BAQlVbkCpxoO3Vsifj7qyycfAkVPsz-Md4WU4cQBrJGr957_C9C3E2xhGFeKvVWiu9eb9bu4kXhnWZt7XKo6pXYqXbxhR13VZnYpWFrqiMKV-LC-adUrrM6kr8vHVAA0o39pLBDc7nZUo4ueRmiqOMQW7peTsc5Au6VCRk4tmNgJKXCdP20Kc4baMnyB8puCxk10uMOW_xPOcYZLkwjc-SaSBwcnRjzPkzwZClfewpEPbSH-TTw823K3Ee3MD45s97KR5vbx6uPxf3X---XH-6L8CYbi4a6H3ngncVaNeZYFQIUKt2Ezrwtat7X5rgS2zLSisImzb4DjdNp6FpdGe8uRTvTrlTit8X5NnuiQGHwY0YF7a6NZldW3VVPq1Op5Aic8Jgp0R7lw5WK3tswO7sqQF7bMCqPOpo-_CXDWj-TTVToeF_5o8nM2YGPwiTZSDM3HtKCLPtI_074BeMZKuc
CitedBy_id crossref_primary_10_1007_s11998_024_01028_w
crossref_primary_10_1021_acsami_1c09959
crossref_primary_10_1515_hf_2020_0219
crossref_primary_10_1007_s11998_022_00628_8
crossref_primary_10_1016_j_ijbiomac_2024_130025
crossref_primary_10_1007_s00339_019_2551_7
crossref_primary_10_1007_s00226_021_01269_7
crossref_primary_10_1088_1755_1315_963_1_012023
crossref_primary_10_1007_s10853_017_1613_5
crossref_primary_10_1002_app_51227
crossref_primary_10_1016_j_memsci_2022_121000
crossref_primary_10_1016_j_vacuum_2022_111049
crossref_primary_10_3390_polym14153062
crossref_primary_10_3390_coatings13050877
crossref_primary_10_1007_s10570_021_04175_0
crossref_primary_10_1039_C9RA03700D
crossref_primary_10_3390_polym15040951
crossref_primary_10_1088_1755_1315_217_1_012011
crossref_primary_10_1016_j_colsurfa_2017_05_064
crossref_primary_10_1021_acs_iecr_9b00052
crossref_primary_10_1039_C9TA05185F
crossref_primary_10_1021_acsami_9b20081
crossref_primary_10_1007_s10570_020_03288_2
crossref_primary_10_1016_j_jcis_2018_02_065
crossref_primary_10_1016_j_matlet_2017_05_126
crossref_primary_10_3390_coatings9090556
crossref_primary_10_1007_s00107_022_01793_8
crossref_primary_10_1016_j_apsusc_2019_144568
crossref_primary_10_1016_j_colsurfa_2021_128219
crossref_primary_10_1088_1757_899X_301_1_012051
crossref_primary_10_3390_polym14102077
crossref_primary_10_1080_17480272_2024_2338481
crossref_primary_10_1016_j_seppur_2022_120854
crossref_primary_10_1016_j_clay_2020_105872
crossref_primary_10_3390_coatings10090847
crossref_primary_10_1021_acsanm_3c02787
crossref_primary_10_3390_polym12081757
crossref_primary_10_1049_bsb2_12037
crossref_primary_10_3390_coatings11121514
crossref_primary_10_1007_s12221_024_00556_x
crossref_primary_10_1016_j_porgcoat_2018_08_025
crossref_primary_10_1016_j_surfcoat_2024_131287
crossref_primary_10_1007_s42235_021_0044_9
crossref_primary_10_1016_j_indcrop_2021_113952
crossref_primary_10_1016_j_matchemphys_2017_07_070
crossref_primary_10_1016_j_colcom_2020_100264
crossref_primary_10_3390_coatings8110414
crossref_primary_10_1016_j_clay_2024_107642
crossref_primary_10_1016_j_cej_2017_07_023
crossref_primary_10_1007_s00107_021_01710_5
crossref_primary_10_1016_j_apsusc_2018_10_017
crossref_primary_10_14504_ajr_8_3_4
crossref_primary_10_1515_hf_2020_0048
crossref_primary_10_1088_2053_1591_ab28fb
crossref_primary_10_1016_j_jallcom_2017_12_252
crossref_primary_10_1016_j_matdes_2018_03_010
crossref_primary_10_1016_j_surfcoat_2018_04_010
crossref_primary_10_1016_j_cej_2019_02_162
crossref_primary_10_1016_j_porgcoat_2021_106523
crossref_primary_10_1515_hf_2017_0117
crossref_primary_10_1016_j_tsf_2018_12_016
crossref_primary_10_3390_coatings11030327
crossref_primary_10_1016_j_cjche_2021_12_017
crossref_primary_10_1016_j_porgcoat_2019_105384
crossref_primary_10_1134_S1560090423700860
Cites_doi 10.1016/j.matdes.2015.07.016
10.1002/adma.200290020
10.1002/adma.201100410
10.1002/app.32844
10.1016/j.apsusc.2011.04.071
10.1021/la0469194
10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
10.1016/j.apsusc.2010.08.075
10.1016/j.jcis.2005.11.064
10.1016/S0040-6090(98)01045-1
10.1016/j.apsusc.2011.08.100
10.1039/c1jm12513c
10.1021/la062301d
10.1021/la950418o
10.1021/jp9036952
10.1016/j.apsusc.2008.03.004
10.1016/j.surfcoat.2013.12.028
10.1016/j.apsusc.2015.01.024
10.1039/c0jm04546b
10.1016/j.dyepig.2004.07.005
10.1039/b914462e
10.1016/j.apsusc.2015.06.016
10.1039/c3ta00125c
10.1016/j.apsusc.2011.08.077
10.1021/ma051560r
10.1557/JMR.1992.2230
10.1016/j.apsusc.2013.05.043
10.1039/C5RA03070F
10.1021/ma0511189
10.1002/adma.200306281
10.1021/la800157t
10.1063/1.2731434
10.1007/s10971-009-2107-y
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.apsusc.2016.06.004
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 124
ExternalDocumentID 10_1016_j_apsusc_2016_06_004
S0169433216312223
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c339t-7cdb9afba4c1a93f30ffc5086f9cb5a5db23fb2e82410cf68fb9e6791c77193b3
IEDL.DBID AIKHN
ISSN 0169-4332
IngestDate Fri Sep 05 07:55:10 EDT 2025
Tue Jul 01 02:08:30 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Fri Feb 23 02:23:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Durability
Wear resistance
Wood substrates
Superhydrophobic surface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-7cdb9afba4c1a93f30ffc5086f9cb5a5db23fb2e82410cf68fb9e6791c77193b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835588494
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1835588494
crossref_primary_10_1016_j_apsusc_2016_06_004
crossref_citationtrail_10_1016_j_apsusc_2016_06_004
elsevier_sciencedirect_doi_10_1016_j_apsusc_2016_06_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nosonovsky (bib0025) 2007; 23
Chang, Tu, Wang, Liu (bib0110) 2015; 5
Ding, Zhou, Gu, Wu (bib0105) 2011; 21
Hsieh, Chang, Lin (bib0100) 2011; 257
Zhu, Chu, Wang, Chen, Lin, Liu, Pan (bib0180) 2013; 1
Hsieh, Wu, Chen (bib0165) 2009; 113
Wang, Liu, Liu, Zhang, Li, Wang (bib0085) 2011; 258
Vinogradova, Estrada, Moreno (bib0145) 2006; 298
Chen, Cai, Tsai, Chen, Xiong, Yu, Ren (bib0160) 2007; 90
Wang, Dai, Wu (bib0060) 2008; 254
Wang, Chen, Kang, Yang, Yua, Zhang (bib0070) 2010; 257
Liu, Wang, Zhang, Ma, Wang, Li (bib0075) 2013; 280
Liu, Qing, Wu, Liang, Luo (bib0080) 2015; 330
Wang, Piao, Lucas (bib0095) 2011; 119
Zhao, Shi, Wang, Zhang (bib0050) 2005; 21
Zhao, Xie, Weng, Wang, Zhang, Xu (bib0040) 2005; 38
Hong, Kim, Park (bib0140) 1998; 332
Liu, Liu, Latthe, Gao, An, Yoon, Liu, Xing (bib0030) 2015; 351
Li, Li, Gao, Koshizaki (bib0065) 2009; 19
Parrill (bib0135) 1992; 7
Barata, Neves, Neto, Trindad (bib0125) 2005; 65
Feng, Li, Li, Li, Zhang, Zhai, Song, Liu, Jiang, Zhu (bib0015) 2002; 14
Liang, Hu, Wu, Chen (bib0155) 2014; 240
Zhu, Zhang, Men, Yang, Wang, Xu, Zhou, Xue (bib0175) 2011; 21
Onda, Shibuichi, Satoh, Tsujii (bib0020) 1996; 12
Sun, Lu, Liu (bib0090) 2011; 46
Hübert, Unger, Bücker (bib0130) 2010; 53
Li, Zhang, Wang (bib0035) 2008; 24
Pandey (bib0150) 1999; 71
Xie, Xu, Feng, Jiang, Tang, Luo, Han (bib0055) 2004; 16
Jin, Yao, Li, Fan, Sun (bib0120) 2015; 85
Jin, Li, Han, Wang, Yao, Sun (bib0170) 2015; 6
Ma, Mao, Gupta, Gleason, Rutledge (bib0045) 2005; 38
Hill (bib0005) 2007
Liu, Wang, Shi, Wang (bib0010) 2011; 258
Deng, Mammen, Zhao, Lellig, Mullen, Li, Butt, Vollmer (bib0115) 2011; 23
Hong (10.1016/j.apsusc.2016.06.004_bib0140) 1998; 332
Wang (10.1016/j.apsusc.2016.06.004_bib0095) 2011; 119
Sun (10.1016/j.apsusc.2016.06.004_bib0090) 2011; 46
Hill (10.1016/j.apsusc.2016.06.004_bib0005) 2007
Barata (10.1016/j.apsusc.2016.06.004_bib0125) 2005; 65
Parrill (10.1016/j.apsusc.2016.06.004_bib0135) 1992; 7
Liu (10.1016/j.apsusc.2016.06.004_bib0010) 2011; 258
Liu (10.1016/j.apsusc.2016.06.004_bib0030) 2015; 351
Wang (10.1016/j.apsusc.2016.06.004_bib0085) 2011; 258
Deng (10.1016/j.apsusc.2016.06.004_bib0115) 2011; 23
Onda (10.1016/j.apsusc.2016.06.004_bib0020) 1996; 12
Li (10.1016/j.apsusc.2016.06.004_bib0065) 2009; 19
Chang (10.1016/j.apsusc.2016.06.004_bib0110) 2015; 5
Zhao (10.1016/j.apsusc.2016.06.004_bib0050) 2005; 21
Zhu (10.1016/j.apsusc.2016.06.004_bib0175) 2011; 21
Zhao (10.1016/j.apsusc.2016.06.004_bib0040) 2005; 38
Wang (10.1016/j.apsusc.2016.06.004_bib0060) 2008; 254
Hsieh (10.1016/j.apsusc.2016.06.004_bib0165) 2009; 113
Pandey (10.1016/j.apsusc.2016.06.004_bib0150) 1999; 71
Zhu (10.1016/j.apsusc.2016.06.004_bib0180) 2013; 1
Jin (10.1016/j.apsusc.2016.06.004_bib0170) 2015; 6
Feng (10.1016/j.apsusc.2016.06.004_bib0015) 2002; 14
Ding (10.1016/j.apsusc.2016.06.004_bib0105) 2011; 21
Liu (10.1016/j.apsusc.2016.06.004_bib0075) 2013; 280
Nosonovsky (10.1016/j.apsusc.2016.06.004_bib0025) 2007; 23
Vinogradova (10.1016/j.apsusc.2016.06.004_bib0145) 2006; 298
Liang (10.1016/j.apsusc.2016.06.004_bib0155) 2014; 240
Ma (10.1016/j.apsusc.2016.06.004_bib0045) 2005; 38
Liu (10.1016/j.apsusc.2016.06.004_bib0080) 2015; 330
Jin (10.1016/j.apsusc.2016.06.004_bib0120) 2015; 85
Hübert (10.1016/j.apsusc.2016.06.004_bib0130) 2010; 53
Wang (10.1016/j.apsusc.2016.06.004_bib0070) 2010; 257
Chen (10.1016/j.apsusc.2016.06.004_bib0160) 2007; 90
Li (10.1016/j.apsusc.2016.06.004_bib0035) 2008; 24
Hsieh (10.1016/j.apsusc.2016.06.004_bib0100) 2011; 257
Xie (10.1016/j.apsusc.2016.06.004_bib0055) 2004; 16
References_xml – volume: 53
  start-page: 384
  year: 2010
  end-page: 389
  ident: bib0130
  article-title: Sol–gel derived TiO
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 298
  start-page: 209
  year: 2006
  end-page: 212
  ident: bib0145
  article-title: Colloidal aggregation phenomena: spatial structuring of TEOS-derived silica aerogels
  publication-title: J. Colloid Interf. Sci.
– volume: 38
  start-page: 8996
  year: 2005
  end-page: 8999
  ident: bib0040
  article-title: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution
  publication-title: Macromolecules
– volume: 21
  start-page: 4713
  year: 2005
  end-page: 4716
  ident: bib0050
  article-title: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces
  publication-title: Langmuir
– volume: 280
  start-page: 686
  year: 2013
  end-page: 692
  ident: bib0075
  article-title: Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 15793
  year: 2011
  end-page: 15797
  ident: bib0175
  article-title: Robust superhydrophobic surfaces with mechanical durability and easy repairability
  publication-title: J. Mater. Chem.
– volume: 14
  start-page: 1857
  year: 2002
  end-page: 1860
  ident: bib0015
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5585
  year: 2008
  end-page: 5590
  ident: bib0035
  article-title: Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process
  publication-title: Langmuir
– volume: 90
  start-page: 173108
  year: 2007
  ident: bib0160
  article-title: Dropwise condensation on superhydrophobic surfaces with two-tier roughness
  publication-title: Appl. Phys. Lett.
– volume: 351
  start-page: 897
  year: 2015
  end-page: 903
  ident: bib0030
  article-title: Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane
  publication-title: Appl. Surf. Sci.
– volume: 119
  start-page: 1667
  year: 2011
  end-page: 1672
  ident: bib0095
  article-title: Synthesis and characterization of superhydrophobic wood surfaces
  publication-title: J. Appl. Polym. Sci.
– volume: 85
  start-page: 205
  year: 2015
  end-page: 210
  ident: bib0120
  article-title: Fabrication, superhydrophobicity, and microwave absorbing properties of the magnetic γ-Fe
  publication-title: Mater. Des.
– volume: 38
  start-page: 9742
  year: 2005
  end-page: 9748
  ident: bib0045
  article-title: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition
  publication-title: Macromolecules
– volume: 16
  start-page: 302
  year: 2004
  end-page: 305
  ident: bib0055
  article-title: Facile creation of a super-amphiphobic coating surface with bionic microstructure
  publication-title: Adv. Mater.
– volume: 23
  start-page: 2962
  year: 2011
  end-page: 2965
  ident: bib0115
  article-title: Transparent. thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules
  publication-title: Adv. Mater.
– volume: 257
  start-page: 1473
  year: 2010
  end-page: 1477
  ident: bib0070
  article-title: Preparation of superhydrophobic poly (methyl methacrylate)-silicon dioxide nanocomposite films
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 7706
  year: 2011
  end-page: 7712
  ident: bib0090
  article-title: Growth of hydrophobic TiO
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 1401
  year: 2015
  end-page: 1404
  ident: bib0170
  article-title: Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity
  publication-title: J. Alloy. Compd.
– volume: 65
  start-page: 125
  year: 2005
  end-page: 127
  ident: bib0125
  article-title: Growth of BiVO4 particles in cellulosic fibres by in situ reaction
  publication-title: Dyes Pigm.
– volume: 1
  start-page: 5386
  year: 2013
  end-page: 5393
  ident: bib0180
  article-title: Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 8366
  year: 2009
  end-page: 8371
  ident: bib0065
  article-title: Ordered Co
  publication-title: J. Mater. Chem.
– volume: 330
  start-page: 332
  year: 2015
  end-page: 338
  ident: bib0080
  article-title: Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process
  publication-title: Appl. Surf. Sci.
– volume: 240
  start-page: 145
  year: 2014
  end-page: 153
  ident: bib0155
  article-title: Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution
  publication-title: Surf. Coat. Technol.
– volume: 113
  start-page: 13683
  year: 2009
  end-page: 13688
  ident: bib0165
  article-title: Contact angle hysteresis and work of adhesion of oil droplets on nanosphere stacking layers
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 30647
  year: 2015
  end-page: 30653
  ident: bib0110
  article-title: Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles
  publication-title: RSC Adv.
– volume: 332
  start-page: 449
  year: 1998
  end-page: 454
  ident: bib0140
  article-title: The effect of sol viscosity on the sol–gel derived low density SiO
  publication-title: Thin Solid Films
– volume: 71
  start-page: 1969
  year: 1999
  end-page: 1975
  ident: bib0150
  article-title: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy
  publication-title: J. Appl. Polym. Sci.
– volume: 12
  start-page: 2125
  year: 1996
  end-page: 2127
  ident: bib0020
  article-title: Super-water-repellent fractal surfaces
  publication-title: Langmuir
– volume: 7
  start-page: 2230
  year: 1992
  end-page: 2239
  ident: bib0135
  article-title: Transmission infrared study of acid-catalyzed sol-gel silica coatings during room ambient drying
  publication-title: J. Mater. Res.
– volume: 257
  start-page: 7997
  year: 2011
  end-page: 8002
  ident: bib0100
  article-title: Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 6161
  year: 2011
  end-page: 6164
  ident: bib0105
  article-title: A facile and large-area fabrication method of superhydrophobic self-cleaning fluorinated polysiloxane/TiO
  publication-title: J. Mater. Chem.
– year: 2007
  ident: bib0005
  article-title: Wood Modification: Chemical, Thermal and Other Processes
– volume: 258
  start-page: 806
  year: 2011
  end-page: 810
  ident: bib0085
  article-title: Fabrication of superhydrophobic wood surface by a sol–gel process
  publication-title: Appl. Surf. Sci.
– volume: 258
  start-page: 761
  year: 2011
  end-page: 765
  ident: bib0010
  article-title: Fabrication of superhydrophobic wood surfaces via a solution-immersion process
  publication-title: Appl. Surf. Sci.
– volume: 254
  start-page: 5599
  year: 2008
  end-page: 5601
  ident: bib0060
  article-title: Fabrication of superhydrophobic surfaces on aluminum
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 3157
  year: 2007
  end-page: 3161
  ident: bib0025
  article-title: Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces
  publication-title: Langmuir
– volume: 85
  start-page: 205
  year: 2015
  ident: 10.1016/j.apsusc.2016.06.004_bib0120
  article-title: Fabrication, superhydrophobicity, and microwave absorbing properties of the magnetic γ-Fe2O3/bamboo composites
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.016
– volume: 14
  start-page: 1857
  year: 2002
  ident: 10.1016/j.apsusc.2016.06.004_bib0015
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– volume: 23
  start-page: 2962
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0115
  article-title: Transparent. thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100410
– volume: 119
  start-page: 1667
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0095
  article-title: Synthesis and characterization of superhydrophobic wood surfaces
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32844
– volume: 257
  start-page: 7997
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0100
  article-title: Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.071
– volume: 21
  start-page: 4713
  year: 2005
  ident: 10.1016/j.apsusc.2016.06.004_bib0050
  article-title: Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces
  publication-title: Langmuir
  doi: 10.1021/la0469194
– volume: 71
  start-page: 1969
  year: 1999
  ident: 10.1016/j.apsusc.2016.06.004_bib0150
  article-title: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
– volume: 257
  start-page: 1473
  year: 2010
  ident: 10.1016/j.apsusc.2016.06.004_bib0070
  article-title: Preparation of superhydrophobic poly (methyl methacrylate)-silicon dioxide nanocomposite films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.08.075
– volume: 298
  start-page: 209
  year: 2006
  ident: 10.1016/j.apsusc.2016.06.004_bib0145
  article-title: Colloidal aggregation phenomena: spatial structuring of TEOS-derived silica aerogels
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2005.11.064
– volume: 332
  start-page: 449
  year: 1998
  ident: 10.1016/j.apsusc.2016.06.004_bib0140
  article-title: The effect of sol viscosity on the sol–gel derived low density SiO2 film for intermetal dielectric application
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(98)01045-1
– volume: 258
  start-page: 806
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0085
  article-title: Fabrication of superhydrophobic wood surface by a sol–gel process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.08.100
– year: 2007
  ident: 10.1016/j.apsusc.2016.06.004_bib0005
– volume: 21
  start-page: 15793
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0175
  article-title: Robust superhydrophobic surfaces with mechanical durability and easy repairability
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12513c
– volume: 23
  start-page: 3157
  year: 2007
  ident: 10.1016/j.apsusc.2016.06.004_bib0025
  article-title: Multiscale Roughness and Stability of Superhydrophobic Biomimetic Interfaces
  publication-title: Langmuir
  doi: 10.1021/la062301d
– volume: 12
  start-page: 2125
  year: 1996
  ident: 10.1016/j.apsusc.2016.06.004_bib0020
  article-title: Super-water-repellent fractal surfaces
  publication-title: Langmuir
  doi: 10.1021/la950418o
– volume: 113
  start-page: 13683
  year: 2009
  ident: 10.1016/j.apsusc.2016.06.004_bib0165
  article-title: Contact angle hysteresis and work of adhesion of oil droplets on nanosphere stacking layers
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9036952
– volume: 254
  start-page: 5599
  year: 2008
  ident: 10.1016/j.apsusc.2016.06.004_bib0060
  article-title: Fabrication of superhydrophobic surfaces on aluminum
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.03.004
– volume: 240
  start-page: 145
  year: 2014
  ident: 10.1016/j.apsusc.2016.06.004_bib0155
  article-title: Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.12.028
– volume: 330
  start-page: 332
  year: 2015
  ident: 10.1016/j.apsusc.2016.06.004_bib0080
  article-title: Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.01.024
– volume: 21
  start-page: 6161
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0105
  article-title: A facile and large-area fabrication method of superhydrophobic self-cleaning fluorinated polysiloxane/TiO2 nanocomposite coatings with long-term durability
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04546b
– volume: 65
  start-page: 125
  year: 2005
  ident: 10.1016/j.apsusc.2016.06.004_bib0125
  article-title: Growth of BiVO4 particles in cellulosic fibres by in situ reaction
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2004.07.005
– volume: 19
  start-page: 8366
  year: 2009
  ident: 10.1016/j.apsusc.2016.06.004_bib0065
  article-title: Ordered Co3O4 hierarchical nanorod arrays: tunable superhydrophilicity without UV irradiation and transition to superhydrophobicity
  publication-title: J. Mater. Chem.
  doi: 10.1039/b914462e
– volume: 6
  start-page: 1401
  year: 2015
  ident: 10.1016/j.apsusc.2016.06.004_bib0170
  article-title: Silver mirror reaction as an approach to construct a durable, robust superhydrophobic surface of bamboo timber with high conductivity
  publication-title: J. Alloy. Compd.
– volume: 351
  start-page: 897
  year: 2015
  ident: 10.1016/j.apsusc.2016.06.004_bib0030
  article-title: Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.06.016
– volume: 1
  start-page: 5386
  year: 2013
  ident: 10.1016/j.apsusc.2016.06.004_bib0180
  article-title: Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta00125c
– volume: 258
  start-page: 761
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0010
  article-title: Fabrication of superhydrophobic wood surfaces via a solution-immersion process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.08.077
– volume: 38
  start-page: 8996
  year: 2005
  ident: 10.1016/j.apsusc.2016.06.004_bib0040
  article-title: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution
  publication-title: Macromolecules
  doi: 10.1021/ma051560r
– volume: 7
  start-page: 2230
  year: 1992
  ident: 10.1016/j.apsusc.2016.06.004_bib0135
  article-title: Transmission infrared study of acid-catalyzed sol-gel silica coatings during room ambient drying
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1992.2230
– volume: 46
  start-page: 7706
  year: 2011
  ident: 10.1016/j.apsusc.2016.06.004_bib0090
  article-title: Growth of hydrophobic TiO2 on wood surface using a hydrothermal method
  publication-title: J. Mater. Chem.
– volume: 280
  start-page: 686
  year: 2013
  ident: 10.1016/j.apsusc.2016.06.004_bib0075
  article-title: Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.05.043
– volume: 5
  start-page: 30647
  year: 2015
  ident: 10.1016/j.apsusc.2016.06.004_bib0110
  article-title: Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03070F
– volume: 38
  start-page: 9742
  year: 2005
  ident: 10.1016/j.apsusc.2016.06.004_bib0045
  article-title: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition
  publication-title: Macromolecules
  doi: 10.1021/ma0511189
– volume: 16
  start-page: 302
  year: 2004
  ident: 10.1016/j.apsusc.2016.06.004_bib0055
  article-title: Facile creation of a super-amphiphobic coating surface with bionic microstructure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306281
– volume: 24
  start-page: 5585
  year: 2008
  ident: 10.1016/j.apsusc.2016.06.004_bib0035
  article-title: Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process
  publication-title: Langmuir
  doi: 10.1021/la800157t
– volume: 90
  start-page: 173108
  year: 2007
  ident: 10.1016/j.apsusc.2016.06.004_bib0160
  article-title: Dropwise condensation on superhydrophobic surfaces with two-tier roughness
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2731434
– volume: 53
  start-page: 384
  year: 2010
  ident: 10.1016/j.apsusc.2016.06.004_bib0130
  article-title: Sol–gel derived TiO2 wood composites
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-009-2107-y
SSID ssj0012873
Score 2.4563646
Snippet Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. [Display omitted]...
In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Boiling
Contact angle
Durability
Nanoparticles
Nanostructure
Silicon dioxide
Substrates
Superhydrophobic surface
Wear resistance
Wood
Wood substrates
Title Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES
URI https://dx.doi.org/10.1016/j.apsusc.2016.06.004
https://www.proquest.com/docview/1835588494
Volume 386
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscEE9RHpWRuIZdx4mzPlZVVwuIXtqi3izbsWlQSaJkV2gv_Af-MTOJUwFCqsQxThwlnvHMN_bMZ4C3mQjC8oVPLKelG--zZJmjLkvrjclKWZrhjKVPZ3J9mX24yq_24GSqhaG0ymj7R5s-WOvYMo-jOW-ran5OPCLEvoWIgpOX24eDVCiZz-Dg-P3H9dntZgIGBWKk-FZUIJROFXRDmpfBYLQnLkMuByLPeGLbPzzUX7Z6cECrh_AgIkd2PH7cI9jz9WO4_xuf4BP4uTIOZzkzdcl6HHwqi2Jt50d-76ZmTWDET3yzY99RwxMMtQk-4j-zftv67npXdk173djKYUMXDN7AXpSWg9d2oNj1PaNc-S-sr2i9j9Wmxrg7ptexb01ZBUS1zO7Y54vT86dwuTq9OFkn8cyFxAmhNknhSqtMsCZz3CgU5CIEhyBOBuVsbvLSpiLY1C_R8y9ckMtglZeF4q4oEAta8QxmdVP758CcEQ4BSO6FMtnCKBuk5XaJihFSXjp3CGIaZ-0iITmdi3Gjp8yzr3qUjibp6CEBLzuE5LZXOxJy3PF8MYlQ_6FYGn3GHT3fTBLXOOdoI8XUvtn2Gs1gTgW-Knvx329_Cffoisoaef4KZptu618jvtnYI9h_94MfRS3-BQQF_-w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AeEOUhWgo1Etew67WTrI9V1dVCH5duUW-Wx7FpqpJEya6qvfQ_8I-ZyaMChFSJY_yIEs94Zmx_85mxT0oGCWLsIxC0deO9iqYx6nIC3lqVJZlt71g6O0_ml-rrVXy1wY6GXBiCVfa2v7PprbXuS0b9aI6qPB9dEI8IsW9hRCHIyz1hWyqWKeH6Pt8_4DzwE7pjZmxN6UGTIX-uBXlZXIo2xGQokpbGs7-v7R_-6S9L3bqf2Qv2vI8b-WH3aTtswxcv2fZvbIKv2M-ZdTjHuS0y3uDQU1IUr2rfsXuXBS8DJ3bi2zW_Q_2OcKFNwSP-MW9Wla-v11ldVtcl5A4L6mCxAnsRKAefoSXY9Q0npPx33uS028cLW-CquwfX8R9llgeMaTms-bfF8cVrdjk7XhzNo_7GhchJqZdR6jLQNoBVTliNYhyH4DCES4J2ENs4g4kMMPFT9PtjF5JpAO2TVAuXphgJgnzDNouy8G8Zd1Y6DD9iL7VVY6shJCBgimoRJiJzbpfJYZyN6-nI6VaMWzPgzm5MJx1D0jEt_E7tsuihV9XRcTzSPh1EaP5QK4Me45GeHweJG5xxdIxiC1-uGoNGMKb0Xq32_vvtB-zpfHF2ak6_nJ-8Y8-ohhIcRbzPNpf1yr_HSGcJH1pN_gU5dADG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+scalable+preparation+of+highly+wear-resistance+superhydrophobic+surface+on+wood+substrates+using+silica+nanoparticles+modified+by+VTES&rft.jtitle=Applied+surface+science&rft.au=Jia%2C+Shanshan&rft.au=Liu%2C+Ming&rft.au=Wu%2C+Yiqiang&rft.au=Luo%2C+Sha&rft.date=2016-11-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=386&rft.spage=115&rft.epage=124&rft_id=info:doi/10.1016%2Fj.apsusc.2016.06.004&rft.externalDocID=S0169433216312223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon