Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction

This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 215; p. 118993
Main Authors Yang, Dazhi, Yang, Guoming, Liu, Bai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered. •Ensemble NWP forecasts are post-processed into quantiles using ten methods.•A framework for combining quantiles is proposed.•Quantiles from ten models are combined via a linear program.•Combining quantiles is found effective with respect to ECMWF forecasts.
AbstractList This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered. •Ensemble NWP forecasts are post-processed into quantiles using ten methods.•A framework for combining quantiles is proposed.•Quantiles from ten models are combined via a linear program.•Combining quantiles is found effective with respect to ECMWF forecasts.
This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered.
ArticleNumber 118993
Author Liu, Bai
Yang, Dazhi
Yang, Guoming
Author_xml – sequence: 1
  givenname: Dazhi
  orcidid: 0000-0003-2162-6873
  surname: Yang
  fullname: Yang, Dazhi
  email: yangadazhi.nus@gmail.com
– sequence: 2
  givenname: Guoming
  surname: Yang
  fullname: Yang, Guoming
– sequence: 3
  givenname: Bai
  surname: Liu
  fullname: Liu, Bai
BookMark eNqFkLtKBDEUQFOs4O7qH1iktJkxj3laCLL4AsFGOyFkMjeaJZPsJhnFv3eWsbJQbnGbcy6Xs0IL5x0gdEZJTgmtLrZ5ADdNzgjjOaVN2_IFWpK2IhktGnqMVjFuCaFlUxdL9LrxQ2eccW94P0qXjIWIvcZKWtMFmaDH0VsZsPYBlIwpYh38gMFFGDoL2I0DBDPh-BNkeoeAdwF6o5Lx7gQdaWkjnP7sNXq5vXne3GePT3cPm-vHTHHepqxmZS8LWfclK4H0RU2g4oyxWtJKArStImUDmjaaVx1TtOkop6ovKs71xLR8jc7nu7vg9yPEJAYTFVgrHfgxCtY0dcXLltEJvZxRFXyMAbRQJsnDsylIYwUl4pBRbMWcURwyijnjJBe_5F0wgwxf_2lXswZTgw8DQURlwKkp09Q0id6bvw98A1ohlBU
CitedBy_id crossref_primary_10_1016_j_solener_2024_112801
crossref_primary_10_3390_app14135769
crossref_primary_10_1063_5_0172315
crossref_primary_10_3390_drones8030080
crossref_primary_10_1016_j_eneco_2024_107934
crossref_primary_10_1016_j_rser_2024_114655
Cites_doi 10.1016/j.ijforecast.2019.03.009
10.1016/j.solener.2019.08.044
10.1002/qj.2521
10.1016/j.solener.2019.10.041
10.1287/deca.2016.0340
10.1111/j.1467-9868.2007.00587.x
10.1198/jbes.2010.08110
10.1016/j.solener.2015.11.041
10.1063/1.5087588
10.1016/j.ijforecast.2015.11.013
10.1016/j.solener.2018.06.107
10.1016/j.rser.2021.111909
10.1016/j.ijforecast.2015.11.011
10.1016/j.solener.2020.05.082
10.1002/qj.2183
10.1016/j.rser.2023.113171
10.1002/wene.365
10.1016/j.solener.2021.05.050
10.1214/10-AOS827
10.1175/2009MWR3046.1
10.1016/j.cageo.2010.07.005
10.1175/MWR2906.1
10.1198/016214506000001437
10.1093/imanum/20.3.389
10.1016/j.rser.2021.111736
10.1016/j.rser.2021.110735
10.1175/MWR2904.1
10.1038/nature14956
10.1016/0169-2070(89)90012-5
10.1016/j.solener.2018.02.011
10.1287/deca.2019.0391
10.1175/MWR-D-15-0260.1
10.1063/5.0010003
10.3390/en10101591
10.1146/annurev-statistics-032921-020240
10.3390/en11071763
10.1016/j.rser.2022.112348
10.1109/OAJPE.2020.3029979
10.1080/10618600.2014.913516
10.1016/j.rser.2018.08.023
10.1016/j.solener.2016.04.016
10.1016/j.solener.2022.10.062
10.1016/j.ijforecast.2004.05.002
10.1016/j.solener.2020.05.020
10.1016/j.energy.2020.117743
10.1016/j.rser.2022.112821
10.1080/09603107.2011.523179
10.1214/13-EJS823
10.1109/TSG.2018.2833869
10.1063/1.5134731
10.1002/for.3980110806
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2023.118993
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2023_118993
S0960148123008996
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-725da4a7d525e0d470e632227a16aee99c058ef18f36b2c18b131cd4633f7a193
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Mon Jul 21 09:50:00 EDT 2025
Thu Apr 24 23:10:41 EDT 2025
Tue Jul 01 03:20:43 EDT 2025
Sat Aug 31 16:00:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords QR
CQRA
SQA
European Centre for Medium-Range Weather Forecasts
CDF
QRF
NWP
QRNN
Combining quantiles
GHI
QRL
SURFRAD
Calibration
EMOS
CRPS
IGN
Ensemble numerical weather prediction
PDF
Solar forecasting
ECMWF
BMA
NSRDB
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-725da4a7d525e0d470e632227a16aee99c058ef18f36b2c18b131cd4633f7a193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2162-6873
PQID 2887635921
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2887635921
crossref_citationtrail_10_1016_j_renene_2023_118993
crossref_primary_10_1016_j_renene_2023_118993
elsevier_sciencedirect_doi_10_1016_j_renene_2023_118993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Nowotarski, Hong, Weron (b26) 2017; 8
Yang, Yagli, Srinivasan (b34) 2022; 153
Raftery, Gneiting, Balabdaoui, Polakowski (b7) 2005; 133
Hibon, Evgeniou (b47) 2005; 21
Yang, Dong (b51) 2018; 166
Wallis (b17) 2011; 21
Osborne, Presnell, Turlach (b33) 2000; 20
Taillardat, Mestre, Zamo, Naveau (b36) 2016; 144
Koenker (b8) 2005
Hong, Fan (b25) 2016; 32
Gneiting, Ranjan (b27) 2011; 29
Hastie, Tibshirani, Friedman (b32) 2009
Gneiting, Ranjan (b21) 2013; 7
Yang, van der Meer, Munkhammar (b11) 2020; 206
Wang, Zhang, Tan, Hong, Kirschen, Kang (b24) 2019; 10
Baran, Lerch (b44) 2015; 141
Meinshausen (b15) 2006; 7
Gneiting, Wolffram, Resin, Kraus, Bracher, Dimitriadis, Hagenmeyer, Jordan, Lerch, Phipps, Schienle (b58) 2023; 10
Hong, Pinson, Wang, Weron, Yang, Zareipour (b3) 2020; 7
Yang, Gueymard (b10) 2021; 225
Gneiting, Balabdaoui, Raftery (b23) 2007; 69
Yang, Wu, Kleissl (b50) 2019; 35
Gneiting, Raftery, Westveld, Goldman (b6) 2005; 133
Messner (b42) 2018
Gneiting, Raftery (b22) 2007; 102
Mayer, Yang (b28) 2023; 175
Nash (b59) 1990
Lauret, David, Pinson (b57) 2019; 194
Nagy, Barta, Kazi, Borbély, Simon (b37) 2016; 32
Yang, Perez (b56) 2019; 11
Bauer, Thorpe, Brunet (b1) 2015; 525
Yang, Wang, Gueymard, Hong, Kleissl, Huang, Perez, Perez, Bright, Xia, van der Meer, Peters (b2) 2022; 161
Armstrong (b16) 2001
Gaba, Tsetlin, Winkler (b20) 2017; 14
Massidda, Marrocu (b35) 2018; 11
Scheuerer (b45) 2014; 140
Yang, Gueymard (b39) 2020; 208
Yang (b55) 2018; 97
Lauret, David, Pedro (b31) 2017; 10
Sperati, Alessandrini, Delle Monache (b41) 2016; 133
Belloni, Chernozhukov (b12) 2011; 39
Dewangan, Singh, Chakrabarti (b49) 2020; 202
Sanfilippo, Martin-Pomares, Mohandes, Perez-Astudillo, Bachour (b52) 2016; 125
Fraley, Raftery, Gneiting (b43) 2010; 138
Wang, Yang, Hong, Kleissl (b53) 2022; 248
Bakker, Whan, Knap, Schmeits (b30) 2019; 191
Clemen (b18) 1989; 5
Yang (b38) 2020; 12
Mayer, Yang (b29) 2022; 168
Yang (b40) 2020; 12
Palm, Zellner (b48) 1992; 11
Yang, van der Meer (b5) 2021; 140
Peng, Wang (b13) 2015; 24
Cannon (b14) 2011; 37
Yuen, Baran, Fraley, Gneiting, Lerch, Scheuerer, Thorarinsdottir (b46) 2018
Sweeney, Bessa, Browell, Pinson (b4) 2020; 9
Winkler, Grushka-Cockayne, Lichtendahl, Jose (b19) 2019; 16
Yagli, Yang, Srinivasan (b9) 2022; 155
Yang (b54) 2018; 171
Hibon (10.1016/j.renene.2023.118993_b47) 2005; 21
Yang (10.1016/j.renene.2023.118993_b56) 2019; 11
Clemen (10.1016/j.renene.2023.118993_b18) 1989; 5
Mayer (10.1016/j.renene.2023.118993_b28) 2023; 175
Yang (10.1016/j.renene.2023.118993_b34) 2022; 153
Osborne (10.1016/j.renene.2023.118993_b33) 2000; 20
Meinshausen (10.1016/j.renene.2023.118993_b15) 2006; 7
Yang (10.1016/j.renene.2023.118993_b40) 2020; 12
Scheuerer (10.1016/j.renene.2023.118993_b45) 2014; 140
Hong (10.1016/j.renene.2023.118993_b25) 2016; 32
Taillardat (10.1016/j.renene.2023.118993_b36) 2016; 144
Bauer (10.1016/j.renene.2023.118993_b1) 2015; 525
Yang (10.1016/j.renene.2023.118993_b2) 2022; 161
Hastie (10.1016/j.renene.2023.118993_b32) 2009
Gneiting (10.1016/j.renene.2023.118993_b27) 2011; 29
Lauret (10.1016/j.renene.2023.118993_b31) 2017; 10
Sanfilippo (10.1016/j.renene.2023.118993_b52) 2016; 125
Wallis (10.1016/j.renene.2023.118993_b17) 2011; 21
Wang (10.1016/j.renene.2023.118993_b53) 2022; 248
Raftery (10.1016/j.renene.2023.118993_b7) 2005; 133
Yagli (10.1016/j.renene.2023.118993_b9) 2022; 155
Gneiting (10.1016/j.renene.2023.118993_b21) 2013; 7
Bakker (10.1016/j.renene.2023.118993_b30) 2019; 191
Dewangan (10.1016/j.renene.2023.118993_b49) 2020; 202
Sperati (10.1016/j.renene.2023.118993_b41) 2016; 133
Lauret (10.1016/j.renene.2023.118993_b57) 2019; 194
Yang (10.1016/j.renene.2023.118993_b5) 2021; 140
Sweeney (10.1016/j.renene.2023.118993_b4) 2020; 9
Mayer (10.1016/j.renene.2023.118993_b29) 2022; 168
Yang (10.1016/j.renene.2023.118993_b50) 2019; 35
Hong (10.1016/j.renene.2023.118993_b3) 2020; 7
Cannon (10.1016/j.renene.2023.118993_b14) 2011; 37
Messner (10.1016/j.renene.2023.118993_b42) 2018
Gneiting (10.1016/j.renene.2023.118993_b23) 2007; 69
Belloni (10.1016/j.renene.2023.118993_b12) 2011; 39
Armstrong (10.1016/j.renene.2023.118993_b16) 2001
Yang (10.1016/j.renene.2023.118993_b38) 2020; 12
Yang (10.1016/j.renene.2023.118993_b39) 2020; 208
Liu (10.1016/j.renene.2023.118993_b26) 2017; 8
Fraley (10.1016/j.renene.2023.118993_b43) 2010; 138
Yang (10.1016/j.renene.2023.118993_b55) 2018; 97
Massidda (10.1016/j.renene.2023.118993_b35) 2018; 11
Nagy (10.1016/j.renene.2023.118993_b37) 2016; 32
Yang (10.1016/j.renene.2023.118993_b10) 2021; 225
Gneiting (10.1016/j.renene.2023.118993_b22) 2007; 102
Yang (10.1016/j.renene.2023.118993_b11) 2020; 206
Yang (10.1016/j.renene.2023.118993_b51) 2018; 166
Gaba (10.1016/j.renene.2023.118993_b20) 2017; 14
Winkler (10.1016/j.renene.2023.118993_b19) 2019; 16
Koenker (10.1016/j.renene.2023.118993_b8) 2005
Yang (10.1016/j.renene.2023.118993_b54) 2018; 171
Yuen (10.1016/j.renene.2023.118993_b46) 2018
Palm (10.1016/j.renene.2023.118993_b48) 1992; 11
Baran (10.1016/j.renene.2023.118993_b44) 2015; 141
Peng (10.1016/j.renene.2023.118993_b13) 2015; 24
Wang (10.1016/j.renene.2023.118993_b24) 2019; 10
Nash (10.1016/j.renene.2023.118993_b59) 1990
Gneiting (10.1016/j.renene.2023.118993_b6) 2005; 133
Gneiting (10.1016/j.renene.2023.118993_b58) 2023; 10
References_xml – volume: 39
  start-page: 82
  year: 2011
  end-page: 130
  ident: b12
  article-title: -Penalized quantile regression in high-dimensional sparse models
  publication-title: Ann. Statist.
– volume: 194
  start-page: 254
  year: 2019
  end-page: 271
  ident: b57
  article-title: Verification of solar irradiance probabilistic forecasts
  publication-title: Sol. Energy
– volume: 8
  start-page: 730
  year: 2017
  end-page: 737
  ident: b26
  article-title: Probabilistic load forecasting via quantile regression averaging on sister forecasts
  publication-title: IEEE Trans. Smart Grid
– volume: 69
  start-page: 243
  year: 2007
  end-page: 268
  ident: b23
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 291
  year: 2018
  end-page: 329
  ident: b42
  article-title: Ensemble postprocessing with r
  publication-title: Statistical Postprocessing of Ensemble Forecasts
– volume: 125
  start-page: 77
  year: 2016
  end-page: 85
  ident: b52
  article-title: An adaptive multi-modeling approach to solar nowcasting
  publication-title: Sol. Energy
– volume: 9
  year: 2020
  ident: b4
  article-title: The future of forecasting for renewable energy
  publication-title: WIREs Energy Environ.
– volume: 206
  start-page: 628
  year: 2020
  end-page: 639
  ident: b11
  article-title: Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California
  publication-title: Sol. Energy
– volume: 11
  start-page: 1763
  year: 2018
  ident: b35
  article-title: Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting
  publication-title: Energies
– volume: 12
  year: 2020
  ident: b38
  article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit
  publication-title: J. Renew. Sustain. Energy
– volume: 140
  year: 2021
  ident: b5
  article-title: Post-processing in solar forecasting: Ten overarching thinking tools
  publication-title: Renew. Sustain. Energy Rev.
– volume: 32
  start-page: 914
  year: 2016
  end-page: 938
  ident: b25
  article-title: Probabilistic electric load forecasting: A tutorial review
  publication-title: Int. J. Forecast.
– volume: 12
  year: 2020
  ident: b40
  article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance
  publication-title: J. Renew. Sustain. Energy
– volume: 24
  start-page: 676
  year: 2015
  end-page: 694
  ident: b13
  article-title: An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression
  publication-title: J. Comput. Graph. Statist.
– volume: 16
  start-page: 239
  year: 2019
  end-page: 260
  ident: b19
  article-title: Probability forecasts and their combination: A research perspective
  publication-title: Decis. Anal.
– volume: 21
  start-page: 15
  year: 2005
  end-page: 24
  ident: b47
  article-title: To combine or not to combine: selecting among forecasts and their combinations
  publication-title: Int. J. Forecast.
– volume: 202
  year: 2020
  ident: b49
  article-title: Combining forecasts of day-ahead solar power
  publication-title: Energy
– volume: 133
  start-page: 1098
  year: 2005
  end-page: 1118
  ident: b6
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mon. Weather Rev.
– volume: 144
  start-page: 2375
  year: 2016
  end-page: 2393
  ident: b36
  article-title: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics
  publication-title: Mon. Weather Rev.
– volume: 166
  start-page: 529
  year: 2018
  end-page: 541
  ident: b51
  article-title: Operational photovoltaics power forecasting using seasonal time series ensemble
  publication-title: Sol. Energy
– volume: 171
  start-page: A3
  year: 2018
  end-page: A12
  ident: b54
  article-title: SolarData: An R package for easy access of publicly available solar datasets
  publication-title: Sol. Energy
– volume: 29
  start-page: 411
  year: 2011
  end-page: 422
  ident: b27
  article-title: Comparing density forecasts using threshold-and quantile-weighted scoring rules
  publication-title: J. Bus. Econom. Statist.
– volume: 11
  start-page: 687
  year: 1992
  end-page: 701
  ident: b48
  article-title: To combine or not to combine? issues of combining forecasts
  publication-title: J. Forecast.
– volume: 133
  start-page: 437
  year: 2016
  end-page: 450
  ident: b41
  article-title: An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting
  publication-title: Sol. Energy
– volume: 175
  year: 2023
  ident: b28
  article-title: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting
  publication-title: Renew. Sustain. Energy Rev.
– volume: 20
  start-page: 389
  year: 2000
  end-page: 403
  ident: b33
  article-title: A new approach to variable selection in least squares problems
  publication-title: IMA J. Numer. Anal.
– volume: 102
  start-page: 359
  year: 2007
  end-page: 378
  ident: b22
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Amer. Statist. Assoc.
– volume: 97
  start-page: 152
  year: 2018
  end-page: 155
  ident: b55
  article-title: A correct validation of the National Solar Radiation Data Base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
– year: 2005
  ident: b8
  article-title: Quantile Regression
– year: 2009
  ident: b32
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– year: 1990
  ident: b59
  article-title: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation
– volume: 10
  start-page: 14.1
  year: 2023
  end-page: 14.25
  ident: b58
  article-title: Model diagnostics and forecast evaluation for quantiles
  publication-title: Annu. Rev. Stat. Appl.
– volume: 153
  year: 2022
  ident: b34
  article-title: Sub-minute probabilistic solar forecasting for real-time stochastic simulations
  publication-title: Renew. Sustain. Energy Rev.
– volume: 35
  start-page: 1499
  year: 2019
  end-page: 1519
  ident: b50
  article-title: Operational solar forecasting for the real-time market
  publication-title: Int. J. Forecast.
– volume: 37
  start-page: 1277
  year: 2011
  end-page: 1284
  ident: b14
  article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling
  publication-title: Comput. Geosci.
– volume: 10
  start-page: 3664
  year: 2019
  end-page: 3674
  ident: b24
  article-title: Combining probabilistic load forecasts
  publication-title: IEEE Trans. Smart Grid
– volume: 21
  start-page: 33
  year: 2011
  end-page: 41
  ident: b17
  article-title: Combining forecasts – forty years later
  publication-title: Appl. Financial Econ.
– volume: 191
  start-page: 138
  year: 2019
  end-page: 150
  ident: b30
  article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation
  publication-title: Sol. Energy
– volume: 7
  start-page: 376
  year: 2020
  end-page: 388
  ident: b3
  article-title: Energy forecasting: A review and outlook
  publication-title: IEEE Open Access J. Power Energy
– volume: 11
  year: 2019
  ident: b56
  article-title: Can we gauge forecasts using satellite-derived solar irradiance?
  publication-title: J. Renew. Sustain. Energy
– volume: 161
  year: 2022
  ident: b2
  article-title: A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality
  publication-title: Renew. Sustain. Energy Rev.
– volume: 133
  start-page: 1155
  year: 2005
  end-page: 1174
  ident: b7
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 20
  ident: b20
  article-title: Combining interval forecasts
  publication-title: Decis. Anal.
– volume: 7
  start-page: 1747
  year: 2013
  end-page: 1782
  ident: b21
  article-title: Combining predictive distributions
  publication-title: Electron. J. Stat.
– volume: 10
  start-page: 1591
  year: 2017
  ident: b31
  article-title: Probabilistic solar forecasting using quantile regression models
  publication-title: Energies
– volume: 141
  start-page: 2289
  year: 2015
  end-page: 2299
  ident: b44
  article-title: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 5
  start-page: 559
  year: 1989
  end-page: 583
  ident: b18
  article-title: Combining forecasts: A review and annotated bibliography
  publication-title: Int. J. Forecast.
– volume: 525
  start-page: 47
  year: 2015
  end-page: 55
  ident: b1
  article-title: The quiet revolution of numerical weather prediction
  publication-title: Nature
– volume: 248
  start-page: 64
  year: 2022
  end-page: 75
  ident: b53
  article-title: An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting
  publication-title: Sol. Energy
– volume: 168
  year: 2022
  ident: b29
  article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains
  publication-title: Renew. Sustain. Energy Rev.
– volume: 155
  year: 2022
  ident: b9
  article-title: Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 983
  year: 2006
  end-page: 999
  ident: b15
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 1087
  year: 2016
  end-page: 1093
  ident: b37
  article-title: GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
  publication-title: Int. J. Forecast.
– volume: 140
  start-page: 1086
  year: 2014
  end-page: 1096
  ident: b45
  article-title: Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 138
  start-page: 190
  year: 2010
  end-page: 202
  ident: b43
  article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging
  publication-title: Mon. Weather Rev.
– volume: 208
  start-page: 591
  year: 2020
  end-page: 603
  ident: b39
  article-title: Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance
  publication-title: Sol. Energy
– year: 2018
  ident: b46
  article-title: ensembleMOS: Ensemble model output statistics
– volume: 225
  start-page: 427
  year: 2021
  end-page: 443
  ident: b10
  article-title: Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation
  publication-title: Sol. Energy
– start-page: 417
  year: 2001
  end-page: 439
  ident: b16
  article-title: Combining forecasts
  publication-title: Principles of Forecasting
– volume: 35
  start-page: 1499
  issue: 4
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b50
  article-title: Operational solar forecasting for the real-time market
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2019.03.009
– year: 2009
  ident: 10.1016/j.renene.2023.118993_b32
– volume: 191
  start-page: 138
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b30
  article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.08.044
– volume: 141
  start-page: 2289
  issue: 691
  year: 2015
  ident: 10.1016/j.renene.2023.118993_b44
  article-title: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2521
– volume: 194
  start-page: 254
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b57
  article-title: Verification of solar irradiance probabilistic forecasts
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.041
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.renene.2023.118993_b20
  article-title: Combining interval forecasts
  publication-title: Decis. Anal.
  doi: 10.1287/deca.2016.0340
– volume: 69
  start-page: 243
  issue: 2
  year: 2007
  ident: 10.1016/j.renene.2023.118993_b23
  article-title: Probabilistic forecasts, calibration and sharpness
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2007.00587.x
– volume: 29
  start-page: 411
  issue: 3
  year: 2011
  ident: 10.1016/j.renene.2023.118993_b27
  article-title: Comparing density forecasts using threshold-and quantile-weighted scoring rules
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1198/jbes.2010.08110
– volume: 125
  start-page: 77
  year: 2016
  ident: 10.1016/j.renene.2023.118993_b52
  article-title: An adaptive multi-modeling approach to solar nowcasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.11.041
– volume: 11
  issue: 2
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b56
  article-title: Can we gauge forecasts using satellite-derived solar irradiance?
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5087588
– volume: 32
  start-page: 1087
  issue: 3
  year: 2016
  ident: 10.1016/j.renene.2023.118993_b37
  article-title: GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.11.013
– volume: 171
  start-page: A3
  year: 2018
  ident: 10.1016/j.renene.2023.118993_b54
  article-title: SolarData: An R package for easy access of publicly available solar datasets
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.06.107
– volume: 155
  year: 2022
  ident: 10.1016/j.renene.2023.118993_b9
  article-title: Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111909
– volume: 32
  start-page: 914
  issue: 3
  year: 2016
  ident: 10.1016/j.renene.2023.118993_b25
  article-title: Probabilistic electric load forecasting: A tutorial review
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.11.011
– volume: 208
  start-page: 591
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b39
  article-title: Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.082
– volume: 140
  start-page: 1086
  issue: 680
  year: 2014
  ident: 10.1016/j.renene.2023.118993_b45
  article-title: Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2183
– volume: 175
  year: 2023
  ident: 10.1016/j.renene.2023.118993_b28
  article-title: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113171
– volume: 9
  issue: 2
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b4
  article-title: The future of forecasting for renewable energy
  publication-title: WIREs Energy Environ.
  doi: 10.1002/wene.365
– volume: 225
  start-page: 427
  year: 2021
  ident: 10.1016/j.renene.2023.118993_b10
  article-title: Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.05.050
– volume: 39
  start-page: 82
  issue: 1
  year: 2011
  ident: 10.1016/j.renene.2023.118993_b12
  article-title: ℓ1-Penalized quantile regression in high-dimensional sparse models
  publication-title: Ann. Statist.
  doi: 10.1214/10-AOS827
– volume: 138
  start-page: 190
  issue: 1
  year: 2010
  ident: 10.1016/j.renene.2023.118993_b43
  article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging
  publication-title: Mon. Weather Rev.
  doi: 10.1175/2009MWR3046.1
– volume: 37
  start-page: 1277
  issue: 9
  year: 2011
  ident: 10.1016/j.renene.2023.118993_b14
  article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.07.005
– volume: 133
  start-page: 1155
  issue: 5
  year: 2005
  ident: 10.1016/j.renene.2023.118993_b7
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2906.1
– volume: 102
  start-page: 359
  issue: 477
  year: 2007
  ident: 10.1016/j.renene.2023.118993_b22
  article-title: Strictly proper scoring rules, prediction, and estimation
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214506000001437
– volume: 20
  start-page: 389
  issue: 3
  year: 2000
  ident: 10.1016/j.renene.2023.118993_b33
  article-title: A new approach to variable selection in least squares problems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/20.3.389
– volume: 153
  year: 2022
  ident: 10.1016/j.renene.2023.118993_b34
  article-title: Sub-minute probabilistic solar forecasting for real-time stochastic simulations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111736
– volume: 140
  year: 2021
  ident: 10.1016/j.renene.2023.118993_b5
  article-title: Post-processing in solar forecasting: Ten overarching thinking tools
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.110735
– volume: 133
  start-page: 1098
  issue: 5
  year: 2005
  ident: 10.1016/j.renene.2023.118993_b6
  article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR2904.1
– volume: 525
  start-page: 47
  issue: 7567
  year: 2015
  ident: 10.1016/j.renene.2023.118993_b1
  article-title: The quiet revolution of numerical weather prediction
  publication-title: Nature
  doi: 10.1038/nature14956
– volume: 5
  start-page: 559
  issue: 4
  year: 1989
  ident: 10.1016/j.renene.2023.118993_b18
  article-title: Combining forecasts: A review and annotated bibliography
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(89)90012-5
– volume: 166
  start-page: 529
  year: 2018
  ident: 10.1016/j.renene.2023.118993_b51
  article-title: Operational photovoltaics power forecasting using seasonal time series ensemble
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.02.011
– volume: 16
  start-page: 239
  issue: 4
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b19
  article-title: Probability forecasts and their combination: A research perspective
  publication-title: Decis. Anal.
  doi: 10.1287/deca.2019.0391
– volume: 144
  start-page: 2375
  issue: 6
  year: 2016
  ident: 10.1016/j.renene.2023.118993_b36
  article-title: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-15-0260.1
– volume: 12
  issue: 3
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b38
  article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/5.0010003
– volume: 10
  start-page: 1591
  issue: 10
  year: 2017
  ident: 10.1016/j.renene.2023.118993_b31
  article-title: Probabilistic solar forecasting using quantile regression models
  publication-title: Energies
  doi: 10.3390/en10101591
– volume: 10
  start-page: 14.1
  issue: 1
  year: 2023
  ident: 10.1016/j.renene.2023.118993_b58
  article-title: Model diagnostics and forecast evaluation for quantiles
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-032921-020240
– volume: 11
  start-page: 1763
  issue: 7
  year: 2018
  ident: 10.1016/j.renene.2023.118993_b35
  article-title: Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting
  publication-title: Energies
  doi: 10.3390/en11071763
– volume: 7
  start-page: 983
  issue: 35
  year: 2006
  ident: 10.1016/j.renene.2023.118993_b15
  article-title: Quantile regression forests
  publication-title: J. Mach. Learn. Res.
– volume: 161
  year: 2022
  ident: 10.1016/j.renene.2023.118993_b2
  article-title: A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112348
– volume: 7
  start-page: 376
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b3
  article-title: Energy forecasting: A review and outlook
  publication-title: IEEE Open Access J. Power Energy
  doi: 10.1109/OAJPE.2020.3029979
– volume: 24
  start-page: 676
  issue: 3
  year: 2015
  ident: 10.1016/j.renene.2023.118993_b13
  article-title: An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2014.913516
– year: 2018
  ident: 10.1016/j.renene.2023.118993_b46
– volume: 97
  start-page: 152
  year: 2018
  ident: 10.1016/j.renene.2023.118993_b55
  article-title: A correct validation of the National Solar Radiation Data Base (NSRDB)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.08.023
– volume: 133
  start-page: 437
  year: 2016
  ident: 10.1016/j.renene.2023.118993_b41
  article-title: An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.04.016
– start-page: 417
  year: 2001
  ident: 10.1016/j.renene.2023.118993_b16
  article-title: Combining forecasts
– volume: 248
  start-page: 64
  year: 2022
  ident: 10.1016/j.renene.2023.118993_b53
  article-title: An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.10.062
– volume: 21
  start-page: 15
  issue: 1
  year: 2005
  ident: 10.1016/j.renene.2023.118993_b47
  article-title: To combine or not to combine: selecting among forecasts and their combinations
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2004.05.002
– volume: 206
  start-page: 628
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b11
  article-title: Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.020
– volume: 202
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b49
  article-title: Combining forecasts of day-ahead solar power
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117743
– volume: 168
  year: 2022
  ident: 10.1016/j.renene.2023.118993_b29
  article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112821
– volume: 8
  start-page: 730
  issue: 2
  year: 2017
  ident: 10.1016/j.renene.2023.118993_b26
  article-title: Probabilistic load forecasting via quantile regression averaging on sister forecasts
  publication-title: IEEE Trans. Smart Grid
– volume: 21
  start-page: 33
  issue: 1–2
  year: 2011
  ident: 10.1016/j.renene.2023.118993_b17
  article-title: Combining forecasts – forty years later
  publication-title: Appl. Financial Econ.
  doi: 10.1080/09603107.2011.523179
– year: 1990
  ident: 10.1016/j.renene.2023.118993_b59
– year: 2005
  ident: 10.1016/j.renene.2023.118993_b8
– volume: 7
  start-page: 1747
  issue: none
  year: 2013
  ident: 10.1016/j.renene.2023.118993_b21
  article-title: Combining predictive distributions
  publication-title: Electron. J. Stat.
  doi: 10.1214/13-EJS823
– volume: 10
  start-page: 3664
  issue: 4
  year: 2019
  ident: 10.1016/j.renene.2023.118993_b24
  article-title: Combining probabilistic load forecasts
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2833869
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.renene.2023.118993_b40
  article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.5134731
– start-page: 291
  year: 2018
  ident: 10.1016/j.renene.2023.118993_b42
  article-title: Ensemble postprocessing with r
– volume: 11
  start-page: 687
  issue: 8
  year: 1992
  ident: 10.1016/j.renene.2023.118993_b48
  article-title: To combine or not to combine? issues of combining forecasts
  publication-title: J. Forecast.
  doi: 10.1002/for.3980110806
SSID ssj0015874
Score 2.480011
Snippet This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118993
SubjectTerms Calibration
Combining quantiles
Ensemble numerical weather prediction
European Centre for Medium-Range Weather Forecasts
light intensity
linear programming
prediction
regression analysis
solar energy
Solar forecasting
weather forecasting
Title Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction
URI https://dx.doi.org/10.1016/j.renene.2023.118993
https://www.proquest.com/docview/2887635921
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahvayHsXYb7bYGDXZVY_2yrGMpC1nHetkCORSELEvQkjlp7LBb__bqWXZpCyWwo82TMO9Jnz_x3vuE0DetmeTeB6KCqIigThGrvSZMsjwIW-g8QHPyr6t8NheXC7kYoYuhFwbKKnvsT5jeoXX_ZtJ7c7K-uZn8BvIdyXyE3gxyVyC7LYSCVX52_1jmQWWRlJijMQHroX2uq_EC1cgaxDIZj9gRJ-Gv_Z5eAHX395m-Q2972ojP05cdopGvj9DBEzHB9-g6bu2yu-4B322jv-J2b_Aq4BgEOBJHZokbOMfiSFO9s03bYOgtwfEc6_-WS4_rbcreLPG_xAvxegNpHAjdBzSffv9zMSP93QnEca5bopisrLCqkkz6rBIq8zkkVZSlufVea5fJwgdaBJ6XzNGipJy6SuSch2ij-Ue0V69qf4xw4FmoaClDxXMRXLBSy1LKylHpnBTqBPHBZcb1wuJwv8XSDBVktyY52oCjTXL0CSKPo9ZJWGOHvRqiYZ4tEBOxf8fIr0PwTNw7kBCxtV9tG8OKTo9PM_rpv2f_jN7AU6rv-4L22s3Wn0ae0pbjbiGO0f75j5-zqwccU-li
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHtofRJ06cKvYq1JEu2jiE0bJpkL00gh4KQZQlStt5tvEv_fmcsO7SFEujVemC-kT6NmJlPAB-tlVrFmHiVypaXIlTc22i51NKk0tfWJCpOPl-axWX5-Upf7cHRVAtDaZUj92dOH9h6_DIf0Zxvrq_nX8j5Rmceqbeg2JW5B_ukTqVnsH94crpY3gYTdJ3FmLE_pwFTBd2Q5kXCkR3pZUqF9IHzqH-dUH9x9XAAHT-GR6PnyA7zzz2Bvdg9hYe_6Qk-g6-4u5vhxQf2Y4eQ4Y7v2ToxtAPditG5ZD1dZRl6qjH4ftszKi9heJWN35tVZN0uB3BW7Gd2DdnmhiI5ZL3ncHn86eJowcfnE3hQym55JXXrS1-1WupYtGVVRENxlcoL42O0NhS6jknUSZlGBlE3QonQlkaphH2segGzbt3Fl8CSKlIrGp1aZcoUktdWN1q3QegQEPMDUBNkLoza4vTExcpNSWTfXAbaEdAuA30A_HbUJmtr3NG_mqzh_lgjDun_jpEfJuM53D4UE_FdXO96J-tBks9K8eq_Z38P9xcX52fu7GR5-hoeUEtO93sDs-3NLr5Ft2XbvBuX5S8dV-wT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+quantiles+of+calibrated+solar+forecasts+from+ensemble+numerical+weather+prediction&rft.jtitle=Renewable+energy&rft.au=Yang%2C+Dazhi&rft.au=Yang%2C+Guoming&rft.au=Liu%2C+Bai&rft.date=2023-10-01&rft.issn=0960-1481&rft.volume=215&rft.spage=118993&rft_id=info:doi/10.1016%2Fj.renene.2023.118993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2023_118993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon