Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction
This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble...
Saved in:
Published in | Renewable energy Vol. 215; p. 118993 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered.
•Ensemble NWP forecasts are post-processed into quantiles using ten methods.•A framework for combining quantiles is proposed.•Quantiles from ten models are combined via a linear program.•Combining quantiles is found effective with respect to ECMWF forecasts. |
---|---|
AbstractList | This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered.
•Ensemble NWP forecasts are post-processed into quantiles using ten methods.•A framework for combining quantiles is proposed.•Quantiles from ten models are combined via a linear program.•Combining quantiles is found effective with respect to ECMWF forecasts. This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical weather prediction (NWP) serves grid integration of solar energy by issuing dynamical ensemble irradiance forecasts. However, these ensemble members often suffer from under-dispersion, which motivates statistical calibration via quantile regression (QR) or ensemble model output statistics (EMOS). Given the numerous variants of QR and EMOS, it is generally unclear which variant offers the best performance under what situation, which further motivates combining quantile forecasts. A framework for combining solar forecasts in the form of quantiles is proposed, and a constrained quantile regression averaging scheme is used to exemplify the framework. Using the strictly proper pinball loss, ensemble irradiance forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System are first post-processed using five QR variants and five EMOS variants, and then combined through a linear program. It is found that combining quantiles is an effective strategy that can further improve the calibrated ECMWF forecasts across all locations herein considered. |
ArticleNumber | 118993 |
Author | Liu, Bai Yang, Dazhi Yang, Guoming |
Author_xml | – sequence: 1 givenname: Dazhi orcidid: 0000-0003-2162-6873 surname: Yang fullname: Yang, Dazhi email: yangadazhi.nus@gmail.com – sequence: 2 givenname: Guoming surname: Yang fullname: Yang, Guoming – sequence: 3 givenname: Bai surname: Liu fullname: Liu, Bai |
BookMark | eNqFkLtKBDEUQFOs4O7qH1iktJkxj3laCLL4AsFGOyFkMjeaJZPsJhnFv3eWsbJQbnGbcy6Xs0IL5x0gdEZJTgmtLrZ5ADdNzgjjOaVN2_IFWpK2IhktGnqMVjFuCaFlUxdL9LrxQ2eccW94P0qXjIWIvcZKWtMFmaDH0VsZsPYBlIwpYh38gMFFGDoL2I0DBDPh-BNkeoeAdwF6o5Lx7gQdaWkjnP7sNXq5vXne3GePT3cPm-vHTHHepqxmZS8LWfclK4H0RU2g4oyxWtJKArStImUDmjaaVx1TtOkop6ovKs71xLR8jc7nu7vg9yPEJAYTFVgrHfgxCtY0dcXLltEJvZxRFXyMAbRQJsnDsylIYwUl4pBRbMWcURwyijnjJBe_5F0wgwxf_2lXswZTgw8DQURlwKkp09Q0id6bvw98A1ohlBU |
CitedBy_id | crossref_primary_10_1016_j_solener_2024_112801 crossref_primary_10_3390_app14135769 crossref_primary_10_1063_5_0172315 crossref_primary_10_3390_drones8030080 crossref_primary_10_1016_j_eneco_2024_107934 crossref_primary_10_1016_j_rser_2024_114655 |
Cites_doi | 10.1016/j.ijforecast.2019.03.009 10.1016/j.solener.2019.08.044 10.1002/qj.2521 10.1016/j.solener.2019.10.041 10.1287/deca.2016.0340 10.1111/j.1467-9868.2007.00587.x 10.1198/jbes.2010.08110 10.1016/j.solener.2015.11.041 10.1063/1.5087588 10.1016/j.ijforecast.2015.11.013 10.1016/j.solener.2018.06.107 10.1016/j.rser.2021.111909 10.1016/j.ijforecast.2015.11.011 10.1016/j.solener.2020.05.082 10.1002/qj.2183 10.1016/j.rser.2023.113171 10.1002/wene.365 10.1016/j.solener.2021.05.050 10.1214/10-AOS827 10.1175/2009MWR3046.1 10.1016/j.cageo.2010.07.005 10.1175/MWR2906.1 10.1198/016214506000001437 10.1093/imanum/20.3.389 10.1016/j.rser.2021.111736 10.1016/j.rser.2021.110735 10.1175/MWR2904.1 10.1038/nature14956 10.1016/0169-2070(89)90012-5 10.1016/j.solener.2018.02.011 10.1287/deca.2019.0391 10.1175/MWR-D-15-0260.1 10.1063/5.0010003 10.3390/en10101591 10.1146/annurev-statistics-032921-020240 10.3390/en11071763 10.1016/j.rser.2022.112348 10.1109/OAJPE.2020.3029979 10.1080/10618600.2014.913516 10.1016/j.rser.2018.08.023 10.1016/j.solener.2016.04.016 10.1016/j.solener.2022.10.062 10.1016/j.ijforecast.2004.05.002 10.1016/j.solener.2020.05.020 10.1016/j.energy.2020.117743 10.1016/j.rser.2022.112821 10.1080/09603107.2011.523179 10.1214/13-EJS823 10.1109/TSG.2018.2833869 10.1063/1.5134731 10.1002/for.3980110806 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2023.118993 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_renene_2023_118993 S0960148123008996 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-725da4a7d525e0d470e632227a16aee99c058ef18f36b2c18b131cd4633f7a193 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Mon Jul 21 09:50:00 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Tue Jul 01 03:20:43 EDT 2025 Sat Aug 31 16:00:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | QR CQRA SQA European Centre for Medium-Range Weather Forecasts CDF QRF NWP QRNN Combining quantiles GHI QRL SURFRAD Calibration EMOS CRPS IGN Ensemble numerical weather prediction Solar forecasting ECMWF BMA NSRDB |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-725da4a7d525e0d470e632227a16aee99c058ef18f36b2c18b131cd4633f7a193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2162-6873 |
PQID | 2887635921 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2887635921 crossref_citationtrail_10_1016_j_renene_2023_118993 crossref_primary_10_1016_j_renene_2023_118993 elsevier_sciencedirect_doi_10_1016_j_renene_2023_118993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Nowotarski, Hong, Weron (b26) 2017; 8 Yang, Yagli, Srinivasan (b34) 2022; 153 Raftery, Gneiting, Balabdaoui, Polakowski (b7) 2005; 133 Hibon, Evgeniou (b47) 2005; 21 Yang, Dong (b51) 2018; 166 Wallis (b17) 2011; 21 Osborne, Presnell, Turlach (b33) 2000; 20 Taillardat, Mestre, Zamo, Naveau (b36) 2016; 144 Koenker (b8) 2005 Hong, Fan (b25) 2016; 32 Gneiting, Ranjan (b27) 2011; 29 Hastie, Tibshirani, Friedman (b32) 2009 Gneiting, Ranjan (b21) 2013; 7 Yang, van der Meer, Munkhammar (b11) 2020; 206 Wang, Zhang, Tan, Hong, Kirschen, Kang (b24) 2019; 10 Baran, Lerch (b44) 2015; 141 Meinshausen (b15) 2006; 7 Gneiting, Wolffram, Resin, Kraus, Bracher, Dimitriadis, Hagenmeyer, Jordan, Lerch, Phipps, Schienle (b58) 2023; 10 Hong, Pinson, Wang, Weron, Yang, Zareipour (b3) 2020; 7 Yang, Gueymard (b10) 2021; 225 Gneiting, Balabdaoui, Raftery (b23) 2007; 69 Yang, Wu, Kleissl (b50) 2019; 35 Gneiting, Raftery, Westveld, Goldman (b6) 2005; 133 Messner (b42) 2018 Gneiting, Raftery (b22) 2007; 102 Mayer, Yang (b28) 2023; 175 Nash (b59) 1990 Lauret, David, Pinson (b57) 2019; 194 Nagy, Barta, Kazi, Borbély, Simon (b37) 2016; 32 Yang, Perez (b56) 2019; 11 Bauer, Thorpe, Brunet (b1) 2015; 525 Yang, Wang, Gueymard, Hong, Kleissl, Huang, Perez, Perez, Bright, Xia, van der Meer, Peters (b2) 2022; 161 Armstrong (b16) 2001 Gaba, Tsetlin, Winkler (b20) 2017; 14 Massidda, Marrocu (b35) 2018; 11 Scheuerer (b45) 2014; 140 Yang, Gueymard (b39) 2020; 208 Yang (b55) 2018; 97 Lauret, David, Pedro (b31) 2017; 10 Sperati, Alessandrini, Delle Monache (b41) 2016; 133 Belloni, Chernozhukov (b12) 2011; 39 Dewangan, Singh, Chakrabarti (b49) 2020; 202 Sanfilippo, Martin-Pomares, Mohandes, Perez-Astudillo, Bachour (b52) 2016; 125 Fraley, Raftery, Gneiting (b43) 2010; 138 Wang, Yang, Hong, Kleissl (b53) 2022; 248 Bakker, Whan, Knap, Schmeits (b30) 2019; 191 Clemen (b18) 1989; 5 Yang (b38) 2020; 12 Mayer, Yang (b29) 2022; 168 Yang (b40) 2020; 12 Palm, Zellner (b48) 1992; 11 Yang, van der Meer (b5) 2021; 140 Peng, Wang (b13) 2015; 24 Cannon (b14) 2011; 37 Yuen, Baran, Fraley, Gneiting, Lerch, Scheuerer, Thorarinsdottir (b46) 2018 Sweeney, Bessa, Browell, Pinson (b4) 2020; 9 Winkler, Grushka-Cockayne, Lichtendahl, Jose (b19) 2019; 16 Yagli, Yang, Srinivasan (b9) 2022; 155 Yang (b54) 2018; 171 Hibon (10.1016/j.renene.2023.118993_b47) 2005; 21 Yang (10.1016/j.renene.2023.118993_b56) 2019; 11 Clemen (10.1016/j.renene.2023.118993_b18) 1989; 5 Mayer (10.1016/j.renene.2023.118993_b28) 2023; 175 Yang (10.1016/j.renene.2023.118993_b34) 2022; 153 Osborne (10.1016/j.renene.2023.118993_b33) 2000; 20 Meinshausen (10.1016/j.renene.2023.118993_b15) 2006; 7 Yang (10.1016/j.renene.2023.118993_b40) 2020; 12 Scheuerer (10.1016/j.renene.2023.118993_b45) 2014; 140 Hong (10.1016/j.renene.2023.118993_b25) 2016; 32 Taillardat (10.1016/j.renene.2023.118993_b36) 2016; 144 Bauer (10.1016/j.renene.2023.118993_b1) 2015; 525 Yang (10.1016/j.renene.2023.118993_b2) 2022; 161 Hastie (10.1016/j.renene.2023.118993_b32) 2009 Gneiting (10.1016/j.renene.2023.118993_b27) 2011; 29 Lauret (10.1016/j.renene.2023.118993_b31) 2017; 10 Sanfilippo (10.1016/j.renene.2023.118993_b52) 2016; 125 Wallis (10.1016/j.renene.2023.118993_b17) 2011; 21 Wang (10.1016/j.renene.2023.118993_b53) 2022; 248 Raftery (10.1016/j.renene.2023.118993_b7) 2005; 133 Yagli (10.1016/j.renene.2023.118993_b9) 2022; 155 Gneiting (10.1016/j.renene.2023.118993_b21) 2013; 7 Bakker (10.1016/j.renene.2023.118993_b30) 2019; 191 Dewangan (10.1016/j.renene.2023.118993_b49) 2020; 202 Sperati (10.1016/j.renene.2023.118993_b41) 2016; 133 Lauret (10.1016/j.renene.2023.118993_b57) 2019; 194 Yang (10.1016/j.renene.2023.118993_b5) 2021; 140 Sweeney (10.1016/j.renene.2023.118993_b4) 2020; 9 Mayer (10.1016/j.renene.2023.118993_b29) 2022; 168 Yang (10.1016/j.renene.2023.118993_b50) 2019; 35 Hong (10.1016/j.renene.2023.118993_b3) 2020; 7 Cannon (10.1016/j.renene.2023.118993_b14) 2011; 37 Messner (10.1016/j.renene.2023.118993_b42) 2018 Gneiting (10.1016/j.renene.2023.118993_b23) 2007; 69 Belloni (10.1016/j.renene.2023.118993_b12) 2011; 39 Armstrong (10.1016/j.renene.2023.118993_b16) 2001 Yang (10.1016/j.renene.2023.118993_b38) 2020; 12 Yang (10.1016/j.renene.2023.118993_b39) 2020; 208 Liu (10.1016/j.renene.2023.118993_b26) 2017; 8 Fraley (10.1016/j.renene.2023.118993_b43) 2010; 138 Yang (10.1016/j.renene.2023.118993_b55) 2018; 97 Massidda (10.1016/j.renene.2023.118993_b35) 2018; 11 Nagy (10.1016/j.renene.2023.118993_b37) 2016; 32 Yang (10.1016/j.renene.2023.118993_b10) 2021; 225 Gneiting (10.1016/j.renene.2023.118993_b22) 2007; 102 Yang (10.1016/j.renene.2023.118993_b11) 2020; 206 Yang (10.1016/j.renene.2023.118993_b51) 2018; 166 Gaba (10.1016/j.renene.2023.118993_b20) 2017; 14 Winkler (10.1016/j.renene.2023.118993_b19) 2019; 16 Koenker (10.1016/j.renene.2023.118993_b8) 2005 Yang (10.1016/j.renene.2023.118993_b54) 2018; 171 Yuen (10.1016/j.renene.2023.118993_b46) 2018 Palm (10.1016/j.renene.2023.118993_b48) 1992; 11 Baran (10.1016/j.renene.2023.118993_b44) 2015; 141 Peng (10.1016/j.renene.2023.118993_b13) 2015; 24 Wang (10.1016/j.renene.2023.118993_b24) 2019; 10 Nash (10.1016/j.renene.2023.118993_b59) 1990 Gneiting (10.1016/j.renene.2023.118993_b6) 2005; 133 Gneiting (10.1016/j.renene.2023.118993_b58) 2023; 10 |
References_xml | – volume: 39 start-page: 82 year: 2011 end-page: 130 ident: b12 article-title: -Penalized quantile regression in high-dimensional sparse models publication-title: Ann. Statist. – volume: 194 start-page: 254 year: 2019 end-page: 271 ident: b57 article-title: Verification of solar irradiance probabilistic forecasts publication-title: Sol. Energy – volume: 8 start-page: 730 year: 2017 end-page: 737 ident: b26 article-title: Probabilistic load forecasting via quantile regression averaging on sister forecasts publication-title: IEEE Trans. Smart Grid – volume: 69 start-page: 243 year: 2007 end-page: 268 ident: b23 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 291 year: 2018 end-page: 329 ident: b42 article-title: Ensemble postprocessing with r publication-title: Statistical Postprocessing of Ensemble Forecasts – volume: 125 start-page: 77 year: 2016 end-page: 85 ident: b52 article-title: An adaptive multi-modeling approach to solar nowcasting publication-title: Sol. Energy – volume: 9 year: 2020 ident: b4 article-title: The future of forecasting for renewable energy publication-title: WIREs Energy Environ. – volume: 206 start-page: 628 year: 2020 end-page: 639 ident: b11 article-title: Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California publication-title: Sol. Energy – volume: 11 start-page: 1763 year: 2018 ident: b35 article-title: Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting publication-title: Energies – volume: 12 year: 2020 ident: b38 article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit publication-title: J. Renew. Sustain. Energy – volume: 140 year: 2021 ident: b5 article-title: Post-processing in solar forecasting: Ten overarching thinking tools publication-title: Renew. Sustain. Energy Rev. – volume: 32 start-page: 914 year: 2016 end-page: 938 ident: b25 article-title: Probabilistic electric load forecasting: A tutorial review publication-title: Int. J. Forecast. – volume: 12 year: 2020 ident: b40 article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance publication-title: J. Renew. Sustain. Energy – volume: 24 start-page: 676 year: 2015 end-page: 694 ident: b13 article-title: An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression publication-title: J. Comput. Graph. Statist. – volume: 16 start-page: 239 year: 2019 end-page: 260 ident: b19 article-title: Probability forecasts and their combination: A research perspective publication-title: Decis. Anal. – volume: 21 start-page: 15 year: 2005 end-page: 24 ident: b47 article-title: To combine or not to combine: selecting among forecasts and their combinations publication-title: Int. J. Forecast. – volume: 202 year: 2020 ident: b49 article-title: Combining forecasts of day-ahead solar power publication-title: Energy – volume: 133 start-page: 1098 year: 2005 end-page: 1118 ident: b6 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mon. Weather Rev. – volume: 144 start-page: 2375 year: 2016 end-page: 2393 ident: b36 article-title: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics publication-title: Mon. Weather Rev. – volume: 166 start-page: 529 year: 2018 end-page: 541 ident: b51 article-title: Operational photovoltaics power forecasting using seasonal time series ensemble publication-title: Sol. Energy – volume: 171 start-page: A3 year: 2018 end-page: A12 ident: b54 article-title: SolarData: An R package for easy access of publicly available solar datasets publication-title: Sol. Energy – volume: 29 start-page: 411 year: 2011 end-page: 422 ident: b27 article-title: Comparing density forecasts using threshold-and quantile-weighted scoring rules publication-title: J. Bus. Econom. Statist. – volume: 11 start-page: 687 year: 1992 end-page: 701 ident: b48 article-title: To combine or not to combine? issues of combining forecasts publication-title: J. Forecast. – volume: 133 start-page: 437 year: 2016 end-page: 450 ident: b41 article-title: An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting publication-title: Sol. Energy – volume: 175 year: 2023 ident: b28 article-title: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting publication-title: Renew. Sustain. Energy Rev. – volume: 20 start-page: 389 year: 2000 end-page: 403 ident: b33 article-title: A new approach to variable selection in least squares problems publication-title: IMA J. Numer. Anal. – volume: 102 start-page: 359 year: 2007 end-page: 378 ident: b22 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Amer. Statist. Assoc. – volume: 97 start-page: 152 year: 2018 end-page: 155 ident: b55 article-title: A correct validation of the National Solar Radiation Data Base (NSRDB) publication-title: Renew. Sustain. Energy Rev. – year: 2005 ident: b8 article-title: Quantile Regression – year: 2009 ident: b32 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – year: 1990 ident: b59 article-title: Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation – volume: 10 start-page: 14.1 year: 2023 end-page: 14.25 ident: b58 article-title: Model diagnostics and forecast evaluation for quantiles publication-title: Annu. Rev. Stat. Appl. – volume: 153 year: 2022 ident: b34 article-title: Sub-minute probabilistic solar forecasting for real-time stochastic simulations publication-title: Renew. Sustain. Energy Rev. – volume: 35 start-page: 1499 year: 2019 end-page: 1519 ident: b50 article-title: Operational solar forecasting for the real-time market publication-title: Int. J. Forecast. – volume: 37 start-page: 1277 year: 2011 end-page: 1284 ident: b14 article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling publication-title: Comput. Geosci. – volume: 10 start-page: 3664 year: 2019 end-page: 3674 ident: b24 article-title: Combining probabilistic load forecasts publication-title: IEEE Trans. Smart Grid – volume: 21 start-page: 33 year: 2011 end-page: 41 ident: b17 article-title: Combining forecasts – forty years later publication-title: Appl. Financial Econ. – volume: 191 start-page: 138 year: 2019 end-page: 150 ident: b30 article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation publication-title: Sol. Energy – volume: 7 start-page: 376 year: 2020 end-page: 388 ident: b3 article-title: Energy forecasting: A review and outlook publication-title: IEEE Open Access J. Power Energy – volume: 11 year: 2019 ident: b56 article-title: Can we gauge forecasts using satellite-derived solar irradiance? publication-title: J. Renew. Sustain. Energy – volume: 161 year: 2022 ident: b2 article-title: A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality publication-title: Renew. Sustain. Energy Rev. – volume: 133 start-page: 1155 year: 2005 end-page: 1174 ident: b7 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. – volume: 14 start-page: 1 year: 2017 end-page: 20 ident: b20 article-title: Combining interval forecasts publication-title: Decis. Anal. – volume: 7 start-page: 1747 year: 2013 end-page: 1782 ident: b21 article-title: Combining predictive distributions publication-title: Electron. J. Stat. – volume: 10 start-page: 1591 year: 2017 ident: b31 article-title: Probabilistic solar forecasting using quantile regression models publication-title: Energies – volume: 141 start-page: 2289 year: 2015 end-page: 2299 ident: b44 article-title: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting publication-title: Q. J. R. Meteorol. Soc. – volume: 5 start-page: 559 year: 1989 end-page: 583 ident: b18 article-title: Combining forecasts: A review and annotated bibliography publication-title: Int. J. Forecast. – volume: 525 start-page: 47 year: 2015 end-page: 55 ident: b1 article-title: The quiet revolution of numerical weather prediction publication-title: Nature – volume: 248 start-page: 64 year: 2022 end-page: 75 ident: b53 article-title: An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting publication-title: Sol. Energy – volume: 168 year: 2022 ident: b29 article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains publication-title: Renew. Sustain. Energy Rev. – volume: 155 year: 2022 ident: b9 article-title: Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 983 year: 2006 end-page: 999 ident: b15 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 1087 year: 2016 end-page: 1093 ident: b37 article-title: GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach publication-title: Int. J. Forecast. – volume: 140 start-page: 1086 year: 2014 end-page: 1096 ident: b45 article-title: Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics publication-title: Q. J. R. Meteorol. Soc. – volume: 138 start-page: 190 year: 2010 end-page: 202 ident: b43 article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging publication-title: Mon. Weather Rev. – volume: 208 start-page: 591 year: 2020 end-page: 603 ident: b39 article-title: Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance publication-title: Sol. Energy – year: 2018 ident: b46 article-title: ensembleMOS: Ensemble model output statistics – volume: 225 start-page: 427 year: 2021 end-page: 443 ident: b10 article-title: Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation publication-title: Sol. Energy – start-page: 417 year: 2001 end-page: 439 ident: b16 article-title: Combining forecasts publication-title: Principles of Forecasting – volume: 35 start-page: 1499 issue: 4 year: 2019 ident: 10.1016/j.renene.2023.118993_b50 article-title: Operational solar forecasting for the real-time market publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2019.03.009 – year: 2009 ident: 10.1016/j.renene.2023.118993_b32 – volume: 191 start-page: 138 year: 2019 ident: 10.1016/j.renene.2023.118993_b30 article-title: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation publication-title: Sol. Energy doi: 10.1016/j.solener.2019.08.044 – volume: 141 start-page: 2289 issue: 691 year: 2015 ident: 10.1016/j.renene.2023.118993_b44 article-title: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2521 – volume: 194 start-page: 254 year: 2019 ident: 10.1016/j.renene.2023.118993_b57 article-title: Verification of solar irradiance probabilistic forecasts publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.041 – volume: 14 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.renene.2023.118993_b20 article-title: Combining interval forecasts publication-title: Decis. Anal. doi: 10.1287/deca.2016.0340 – volume: 69 start-page: 243 issue: 2 year: 2007 ident: 10.1016/j.renene.2023.118993_b23 article-title: Probabilistic forecasts, calibration and sharpness publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2007.00587.x – volume: 29 start-page: 411 issue: 3 year: 2011 ident: 10.1016/j.renene.2023.118993_b27 article-title: Comparing density forecasts using threshold-and quantile-weighted scoring rules publication-title: J. Bus. Econom. Statist. doi: 10.1198/jbes.2010.08110 – volume: 125 start-page: 77 year: 2016 ident: 10.1016/j.renene.2023.118993_b52 article-title: An adaptive multi-modeling approach to solar nowcasting publication-title: Sol. Energy doi: 10.1016/j.solener.2015.11.041 – volume: 11 issue: 2 year: 2019 ident: 10.1016/j.renene.2023.118993_b56 article-title: Can we gauge forecasts using satellite-derived solar irradiance? publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5087588 – volume: 32 start-page: 1087 issue: 3 year: 2016 ident: 10.1016/j.renene.2023.118993_b37 article-title: GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.11.013 – volume: 171 start-page: A3 year: 2018 ident: 10.1016/j.renene.2023.118993_b54 article-title: SolarData: An R package for easy access of publicly available solar datasets publication-title: Sol. Energy doi: 10.1016/j.solener.2018.06.107 – volume: 155 year: 2022 ident: 10.1016/j.renene.2023.118993_b9 article-title: Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111909 – volume: 32 start-page: 914 issue: 3 year: 2016 ident: 10.1016/j.renene.2023.118993_b25 article-title: Probabilistic electric load forecasting: A tutorial review publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.11.011 – volume: 208 start-page: 591 year: 2020 ident: 10.1016/j.renene.2023.118993_b39 article-title: Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.082 – volume: 140 start-page: 1086 issue: 680 year: 2014 ident: 10.1016/j.renene.2023.118993_b45 article-title: Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2183 – volume: 175 year: 2023 ident: 10.1016/j.renene.2023.118993_b28 article-title: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113171 – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.renene.2023.118993_b4 article-title: The future of forecasting for renewable energy publication-title: WIREs Energy Environ. doi: 10.1002/wene.365 – volume: 225 start-page: 427 year: 2021 ident: 10.1016/j.renene.2023.118993_b10 article-title: Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation publication-title: Sol. Energy doi: 10.1016/j.solener.2021.05.050 – volume: 39 start-page: 82 issue: 1 year: 2011 ident: 10.1016/j.renene.2023.118993_b12 article-title: ℓ1-Penalized quantile regression in high-dimensional sparse models publication-title: Ann. Statist. doi: 10.1214/10-AOS827 – volume: 138 start-page: 190 issue: 1 year: 2010 ident: 10.1016/j.renene.2023.118993_b43 article-title: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging publication-title: Mon. Weather Rev. doi: 10.1175/2009MWR3046.1 – volume: 37 start-page: 1277 issue: 9 year: 2011 ident: 10.1016/j.renene.2023.118993_b14 article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.07.005 – volume: 133 start-page: 1155 issue: 5 year: 2005 ident: 10.1016/j.renene.2023.118993_b7 article-title: Using Bayesian model averaging to calibrate forecast ensembles publication-title: Mon. Weather Rev. doi: 10.1175/MWR2906.1 – volume: 102 start-page: 359 issue: 477 year: 2007 ident: 10.1016/j.renene.2023.118993_b22 article-title: Strictly proper scoring rules, prediction, and estimation publication-title: J. Amer. Statist. Assoc. doi: 10.1198/016214506000001437 – volume: 20 start-page: 389 issue: 3 year: 2000 ident: 10.1016/j.renene.2023.118993_b33 article-title: A new approach to variable selection in least squares problems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/20.3.389 – volume: 153 year: 2022 ident: 10.1016/j.renene.2023.118993_b34 article-title: Sub-minute probabilistic solar forecasting for real-time stochastic simulations publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111736 – volume: 140 year: 2021 ident: 10.1016/j.renene.2023.118993_b5 article-title: Post-processing in solar forecasting: Ten overarching thinking tools publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110735 – volume: 133 start-page: 1098 issue: 5 year: 2005 ident: 10.1016/j.renene.2023.118993_b6 article-title: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation publication-title: Mon. Weather Rev. doi: 10.1175/MWR2904.1 – volume: 525 start-page: 47 issue: 7567 year: 2015 ident: 10.1016/j.renene.2023.118993_b1 article-title: The quiet revolution of numerical weather prediction publication-title: Nature doi: 10.1038/nature14956 – volume: 5 start-page: 559 issue: 4 year: 1989 ident: 10.1016/j.renene.2023.118993_b18 article-title: Combining forecasts: A review and annotated bibliography publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(89)90012-5 – volume: 166 start-page: 529 year: 2018 ident: 10.1016/j.renene.2023.118993_b51 article-title: Operational photovoltaics power forecasting using seasonal time series ensemble publication-title: Sol. Energy doi: 10.1016/j.solener.2018.02.011 – volume: 16 start-page: 239 issue: 4 year: 2019 ident: 10.1016/j.renene.2023.118993_b19 article-title: Probability forecasts and their combination: A research perspective publication-title: Decis. Anal. doi: 10.1287/deca.2019.0391 – volume: 144 start-page: 2375 issue: 6 year: 2016 ident: 10.1016/j.renene.2023.118993_b36 article-title: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-15-0260.1 – volume: 12 issue: 3 year: 2020 ident: 10.1016/j.renene.2023.118993_b38 article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit publication-title: J. Renew. Sustain. Energy doi: 10.1063/5.0010003 – volume: 10 start-page: 1591 issue: 10 year: 2017 ident: 10.1016/j.renene.2023.118993_b31 article-title: Probabilistic solar forecasting using quantile regression models publication-title: Energies doi: 10.3390/en10101591 – volume: 10 start-page: 14.1 issue: 1 year: 2023 ident: 10.1016/j.renene.2023.118993_b58 article-title: Model diagnostics and forecast evaluation for quantiles publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-032921-020240 – volume: 11 start-page: 1763 issue: 7 year: 2018 ident: 10.1016/j.renene.2023.118993_b35 article-title: Quantile regression post-processing of weather forecast for short-term solar power probabilistic forecasting publication-title: Energies doi: 10.3390/en11071763 – volume: 7 start-page: 983 issue: 35 year: 2006 ident: 10.1016/j.renene.2023.118993_b15 article-title: Quantile regression forests publication-title: J. Mach. Learn. Res. – volume: 161 year: 2022 ident: 10.1016/j.renene.2023.118993_b2 article-title: A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112348 – volume: 7 start-page: 376 year: 2020 ident: 10.1016/j.renene.2023.118993_b3 article-title: Energy forecasting: A review and outlook publication-title: IEEE Open Access J. Power Energy doi: 10.1109/OAJPE.2020.3029979 – volume: 24 start-page: 676 issue: 3 year: 2015 ident: 10.1016/j.renene.2023.118993_b13 article-title: An iterative coordinate descent algorithm for high-dimensional nonconvex penalized quantile regression publication-title: J. Comput. Graph. Statist. doi: 10.1080/10618600.2014.913516 – year: 2018 ident: 10.1016/j.renene.2023.118993_b46 – volume: 97 start-page: 152 year: 2018 ident: 10.1016/j.renene.2023.118993_b55 article-title: A correct validation of the National Solar Radiation Data Base (NSRDB) publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.08.023 – volume: 133 start-page: 437 year: 2016 ident: 10.1016/j.renene.2023.118993_b41 article-title: An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2016.04.016 – start-page: 417 year: 2001 ident: 10.1016/j.renene.2023.118993_b16 article-title: Combining forecasts – volume: 248 start-page: 64 year: 2022 ident: 10.1016/j.renene.2023.118993_b53 article-title: An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting publication-title: Sol. Energy doi: 10.1016/j.solener.2022.10.062 – volume: 21 start-page: 15 issue: 1 year: 2005 ident: 10.1016/j.renene.2023.118993_b47 article-title: To combine or not to combine: selecting among forecasts and their combinations publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2004.05.002 – volume: 206 start-page: 628 year: 2020 ident: 10.1016/j.renene.2023.118993_b11 article-title: Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.020 – volume: 202 year: 2020 ident: 10.1016/j.renene.2023.118993_b49 article-title: Combining forecasts of day-ahead solar power publication-title: Energy doi: 10.1016/j.energy.2020.117743 – volume: 168 year: 2022 ident: 10.1016/j.renene.2023.118993_b29 article-title: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112821 – volume: 8 start-page: 730 issue: 2 year: 2017 ident: 10.1016/j.renene.2023.118993_b26 article-title: Probabilistic load forecasting via quantile regression averaging on sister forecasts publication-title: IEEE Trans. Smart Grid – volume: 21 start-page: 33 issue: 1–2 year: 2011 ident: 10.1016/j.renene.2023.118993_b17 article-title: Combining forecasts – forty years later publication-title: Appl. Financial Econ. doi: 10.1080/09603107.2011.523179 – year: 1990 ident: 10.1016/j.renene.2023.118993_b59 – year: 2005 ident: 10.1016/j.renene.2023.118993_b8 – volume: 7 start-page: 1747 issue: none year: 2013 ident: 10.1016/j.renene.2023.118993_b21 article-title: Combining predictive distributions publication-title: Electron. J. Stat. doi: 10.1214/13-EJS823 – volume: 10 start-page: 3664 issue: 4 year: 2019 ident: 10.1016/j.renene.2023.118993_b24 article-title: Combining probabilistic load forecasts publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2833869 – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.renene.2023.118993_b40 article-title: Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.5134731 – start-page: 291 year: 2018 ident: 10.1016/j.renene.2023.118993_b42 article-title: Ensemble postprocessing with r – volume: 11 start-page: 687 issue: 8 year: 1992 ident: 10.1016/j.renene.2023.118993_b48 article-title: To combine or not to combine? issues of combining forecasts publication-title: J. Forecast. doi: 10.1002/for.3980110806 |
SSID | ssj0015874 |
Score | 2.480011 |
Snippet | This work is concerned with optimally combining quantiles of several post-processed versions of ensemble solar forecasts, which is new in this field. Numerical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118993 |
SubjectTerms | Calibration Combining quantiles Ensemble numerical weather prediction European Centre for Medium-Range Weather Forecasts light intensity linear programming prediction regression analysis solar energy Solar forecasting weather forecasting |
Title | Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction |
URI | https://dx.doi.org/10.1016/j.renene.2023.118993 https://www.proquest.com/docview/2887635921 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahvayHsXYb7bYGDXZVY_2yrGMpC1nHetkCORSELEvQkjlp7LBb__bqWXZpCyWwo82TMO9Jnz_x3vuE0DetmeTeB6KCqIigThGrvSZMsjwIW-g8QHPyr6t8NheXC7kYoYuhFwbKKnvsT5jeoXX_ZtJ7c7K-uZn8BvIdyXyE3gxyVyC7LYSCVX52_1jmQWWRlJijMQHroX2uq_EC1cgaxDIZj9gRJ-Gv_Z5eAHX395m-Q2972ojP05cdopGvj9DBEzHB9-g6bu2yu-4B322jv-J2b_Aq4BgEOBJHZokbOMfiSFO9s03bYOgtwfEc6_-WS4_rbcreLPG_xAvxegNpHAjdBzSffv9zMSP93QnEca5bopisrLCqkkz6rBIq8zkkVZSlufVea5fJwgdaBJ6XzNGipJy6SuSch2ij-Ue0V69qf4xw4FmoaClDxXMRXLBSy1LKylHpnBTqBPHBZcb1wuJwv8XSDBVktyY52oCjTXL0CSKPo9ZJWGOHvRqiYZ4tEBOxf8fIr0PwTNw7kBCxtV9tG8OKTo9PM_rpv2f_jN7AU6rv-4L22s3Wn0ae0pbjbiGO0f75j5-zqwccU-li |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHtofRJ06cKvYq1JEu2jiE0bJpkL00gh4KQZQlStt5tvEv_fmcsO7SFEujVemC-kT6NmJlPAB-tlVrFmHiVypaXIlTc22i51NKk0tfWJCpOPl-axWX5-Upf7cHRVAtDaZUj92dOH9h6_DIf0Zxvrq_nX8j5Rmceqbeg2JW5B_ukTqVnsH94crpY3gYTdJ3FmLE_pwFTBd2Q5kXCkR3pZUqF9IHzqH-dUH9x9XAAHT-GR6PnyA7zzz2Bvdg9hYe_6Qk-g6-4u5vhxQf2Y4eQ4Y7v2ToxtAPditG5ZD1dZRl6qjH4ftszKi9heJWN35tVZN0uB3BW7Gd2DdnmhiI5ZL3ncHn86eJowcfnE3hQym55JXXrS1-1WupYtGVVRENxlcoL42O0NhS6jknUSZlGBlE3QonQlkaphH2segGzbt3Fl8CSKlIrGp1aZcoUktdWN1q3QegQEPMDUBNkLoza4vTExcpNSWTfXAbaEdAuA30A_HbUJmtr3NG_mqzh_lgjDun_jpEfJuM53D4UE_FdXO96J-tBks9K8eq_Z38P9xcX52fu7GR5-hoeUEtO93sDs-3NLr5Ft2XbvBuX5S8dV-wT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+quantiles+of+calibrated+solar+forecasts+from+ensemble+numerical+weather+prediction&rft.jtitle=Renewable+energy&rft.au=Yang%2C+Dazhi&rft.au=Yang%2C+Guoming&rft.au=Liu%2C+Bai&rft.date=2023-10-01&rft.issn=0960-1481&rft.volume=215&rft.spage=118993&rft_id=info:doi/10.1016%2Fj.renene.2023.118993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2023_118993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |