Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology

•Various experiments were conducted on Al6061–TiB2 composite.•XRD and EDS studies confirm the crystalline size and elements present.•SEM, EDS and OM observations were used to study the characteristics.•Curve fitting and RSM design methods are effectively used to develop the model. Al6061 was reinfor...

Full description

Saved in:
Bibliographic Details
Published inMaterials in engineering Vol. 59; pp. 383 - 396
Main Authors Suresh, S., Shenbaga Vinayaga Moorthi, N., Vettivel, S.C., Selvakumar, N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Various experiments were conducted on Al6061–TiB2 composite.•XRD and EDS studies confirm the crystalline size and elements present.•SEM, EDS and OM observations were used to study the characteristics.•Curve fitting and RSM design methods are effectively used to develop the model. Al6061 was reinforced with various percentages of TiB2 particles by using high energy stir casting method. The characterization was performed through X-ray Diffraction, Energy Dispersive Spectrum and Scanning Electron Microscope. The mechanical behaviors such as hardness, tensile strength and tribological behavior were investigated. Wear experiments were conducted by using a pin-on-disc wear tester at varying load. The curve fitting technique was used to develop the respective polynomial and power law equations. The wear mechanism of the specimen was studied through SEM. Response Surface Methodology was used to minimize the number of experimental conditions and develop the mathematical models between the key process parameters namely weight percentage of TiB2, load and sliding distance. Analysis of Variance technique was applied to check the validity of the developed model. The mathematical model developed for the specific wear rate was predicted at 99.5% confidence level and some useful conclusions were made.
AbstractList Al6061 was reinforced with various percentages of TiB2 particles by using high energy stir casting method. The characterization was performed through X-ray Diffraction, Energy Dispersive Spectrum and Scanning Electron Microscope. The mechanical behaviors such as hardness, tensile strength and tribological behavior were investigated. Wear experiments were conducted by using a pin-on-disc wear tester at varying load. The curve fitting technique was used to develop the respective polynomial and power law equations. The wear mechanism of the specimen was studied through SEM. Response Surface Methodology was used to minimize the number of experimental conditions and develop the mathematical models between the key process parameters namely weight percentage of TiB2, load and sliding distance. Analysis of Variance technique was applied to check the validity of the developed model. The mathematical model developed for the specific wear rate was predicted at 99.5% confidence level and some useful conclusions were made.
•Various experiments were conducted on Al6061–TiB2 composite.•XRD and EDS studies confirm the crystalline size and elements present.•SEM, EDS and OM observations were used to study the characteristics.•Curve fitting and RSM design methods are effectively used to develop the model. Al6061 was reinforced with various percentages of TiB2 particles by using high energy stir casting method. The characterization was performed through X-ray Diffraction, Energy Dispersive Spectrum and Scanning Electron Microscope. The mechanical behaviors such as hardness, tensile strength and tribological behavior were investigated. Wear experiments were conducted by using a pin-on-disc wear tester at varying load. The curve fitting technique was used to develop the respective polynomial and power law equations. The wear mechanism of the specimen was studied through SEM. Response Surface Methodology was used to minimize the number of experimental conditions and develop the mathematical models between the key process parameters namely weight percentage of TiB2, load and sliding distance. Analysis of Variance technique was applied to check the validity of the developed model. The mathematical model developed for the specific wear rate was predicted at 99.5% confidence level and some useful conclusions were made.
Author Shenbaga Vinayaga Moorthi, N.
Vettivel, S.C.
Suresh, S.
Selvakumar, N.
Author_xml – sequence: 1
  givenname: S.
  surname: Suresh
  fullname: Suresh, S.
  email: ssuresh2009@gmail.com
  organization: Department of Mechanical Engineering, University College of Engineering, Nagercoil 629004, Tamil Nadu, India
– sequence: 2
  givenname: N.
  surname: Shenbaga Vinayaga Moorthi
  fullname: Shenbaga Vinayaga Moorthi, N.
  email: nsvmoorthi@gmail.com
  organization: Department of Mechanical Engineering, University V.O.C. College of Engineering, Thoothukudi 628008, Tamil Nadu, India
– sequence: 3
  givenname: S.C.
  surname: Vettivel
  fullname: Vettivel, S.C.
  email: vettivel@vvcoe.org
  organization: Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai 627117, Tamil Nadu, India
– sequence: 4
  givenname: N.
  surname: Selvakumar
  fullname: Selvakumar, N.
  email: nselva@mepcoeng.ac.in
  organization: Centre for Nano Science & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
BookMark eNqF0L1OHDEUhmEXIPET7iCFyzQ7-Hi8XjtFJEDkRyJKA7VlPGdYr2bswccLoss95A5zJcxqqVKQ6jTn_YrnhB2knJCxjyAaEKDPN83oa4fUSAGqEbIRy_aAHQupYdEKbY_YCdFGCFgByGM2_MSw9ikGP_B7XPunmAv3qePP6AufCnYx1JgTzz2nGgsPniq_GP7-_nMbLyUPeZwyxYrEtxTTAy9IU06EnLal9wH5iHWduzzkh5cP7LD3A-HZ2z1ld1-vb6--L25-fftxdXGzCG1r60IbgUEaUO0SpLcK5bxjVmpl7yGYttNgTNdbsP2yV0JJbbW3nQJtwBsIoT1ln_a7U8mPW6TqxkgBh8EnzFtyoJWU0hq9ml_V_jWUTFSwd1OJoy8vDoTbgbqN24O6HagT0s2gc_b5nyzE6ndQtfg4_C_-so9xNniKWByFiCnM1gVDdV2O7w-8Aqe2mfI
CitedBy_id crossref_primary_10_2339_politeknik_535022
crossref_primary_10_1007_s12008_021_00770_4
crossref_primary_10_1016_j_renene_2016_12_035
crossref_primary_10_3103_S1067821216040088
crossref_primary_10_1016_j_jascer_2015_07_002
crossref_primary_10_1016_j_jmst_2020_01_064
crossref_primary_10_1088_1757_899X_988_1_012080
crossref_primary_10_1088_1757_899X_149_1_012085
crossref_primary_10_1007_s40962_023_01067_w
crossref_primary_10_1088_1757_899X_577_1_012159
crossref_primary_10_1088_2631_8695_ab3268
crossref_primary_10_1177_13506501221142651
crossref_primary_10_1007_s12008_024_02017_4
crossref_primary_10_1016_j_matpr_2022_11_073
crossref_primary_10_1088_2051_672X_abc60b
crossref_primary_10_1080_2374068X_2021_1945298
crossref_primary_10_1016_j_matpr_2020_06_437
crossref_primary_10_1080_02726351_2017_1331285
crossref_primary_10_1016_j_matpr_2020_04_540
crossref_primary_10_1016_j_jmrt_2020_09_128
crossref_primary_10_1080_02670836_2019_1598002
crossref_primary_10_1016_j_msea_2014_06_024
crossref_primary_10_1142_S0219686724500124
crossref_primary_10_1002_pat_5771
crossref_primary_10_1007_s11665_022_06695_7
crossref_primary_10_1007_s12666_024_03412_x
crossref_primary_10_1088_2053_1591_ab0d7a
crossref_primary_10_1016_j_compositesb_2015_03_014
crossref_primary_10_1088_1757_899X_988_1_012104
crossref_primary_10_3390_ma15051707
crossref_primary_10_1177_09544089221080819
crossref_primary_10_1007_s12633_019_00179_5
crossref_primary_10_1177_09544062211052166
crossref_primary_10_1007_s12666_020_01975_z
crossref_primary_10_1142_S0218625X25500015
crossref_primary_10_1002_mawe_201900069
crossref_primary_10_1088_2053_1591_aabf46
crossref_primary_10_1016_j_triboint_2016_07_018
crossref_primary_10_1088_2053_1591_ab6257
crossref_primary_10_1177_0021998319894666
crossref_primary_10_1016_j_matpr_2019_12_237
crossref_primary_10_1016_j_jascer_2017_03_005
crossref_primary_10_1108_MMMS_12_2014_0065
crossref_primary_10_1080_2374068X_2023_2216397
crossref_primary_10_1177_1350650117726182
crossref_primary_10_1007_s11661_017_4139_1
crossref_primary_10_1007_s42452_019_0767_y
crossref_primary_10_1007_s42452_020_2713_4
crossref_primary_10_1016_j_ijrmhm_2015_05_011
crossref_primary_10_1108_MMMS_04_2015_0018
crossref_primary_10_1016_j_ceramint_2020_01_032
crossref_primary_10_1088_1757_899X_1189_1_012007
crossref_primary_10_1007_s11665_017_2734_3
crossref_primary_10_1016_j_jallcom_2018_02_320
crossref_primary_10_1016_j_ceramint_2019_03_106
crossref_primary_10_3390_met10091110
crossref_primary_10_1088_1757_899X_1248_1_012093
crossref_primary_10_1007_s13726_019_00746_y
crossref_primary_10_1088_2053_1591_ab6263
crossref_primary_10_3139_120_111126
crossref_primary_10_1016_j_jmapro_2019_09_032
crossref_primary_10_1016_j_ijmecsci_2018_01_028
crossref_primary_10_1016_j_matpr_2020_03_084
crossref_primary_10_1115_1_4035779
crossref_primary_10_1155_2021_7602160
crossref_primary_10_1177_0954406220922253
crossref_primary_10_1016_j_matpr_2019_07_383
crossref_primary_10_1177_14644207241238197
crossref_primary_10_1016_j_matdes_2015_04_026
crossref_primary_10_1155_2022_8559402
crossref_primary_10_1007_s41230_024_3070_5
crossref_primary_10_1007_s12633_017_9675_1
crossref_primary_10_1088_1757_899X_1248_1_012100
crossref_primary_10_3139_120_111354
crossref_primary_10_1016_j_matpr_2018_06_223
crossref_primary_10_1155_2022_2839150
crossref_primary_10_1016_j_matdes_2014_07_012
crossref_primary_10_1007_s40962_022_00931_5
crossref_primary_10_1088_1757_899X_377_1_012142
crossref_primary_10_1016_j_msea_2015_02_064
crossref_primary_10_1007_s40962_023_01068_9
crossref_primary_10_1088_2053_1591_ab5c9e
crossref_primary_10_3139_120_111514
crossref_primary_10_1016_j_matdes_2016_05_127
crossref_primary_10_1016_j_matpr_2017_02_174
crossref_primary_10_1080_17515831_2019_1661709
crossref_primary_10_1007_s12633_016_9437_5
crossref_primary_10_1177_0731684418816379
crossref_primary_10_1088_1742_6596_1492_1_012066
crossref_primary_10_1515_secm_2020_0010
crossref_primary_10_1080_17515831_2018_1550971
crossref_primary_10_1063_5_0004562
crossref_primary_10_1007_s40962_021_00696_3
crossref_primary_10_1016_j_matdes_2015_09_130
crossref_primary_10_3139_120_111465
crossref_primary_10_1016_j_jallcom_2022_165984
crossref_primary_10_1016_j_matpr_2019_12_201
crossref_primary_10_1088_2053_1591_aba0ec
crossref_primary_10_1016_j_matpr_2018_10_152
crossref_primary_10_1088_1757_899X_310_1_012156
crossref_primary_10_1088_1757_899X_310_1_012155
crossref_primary_10_1088_1757_899X_923_1_012053
crossref_primary_10_1177_0095244318817927
crossref_primary_10_3139_146_111731
crossref_primary_10_1016_j_matpr_2017_02_186
crossref_primary_10_1016_j_matpr_2020_05_172
crossref_primary_10_1088_2051_672X_ac8112
crossref_primary_10_1007_s11665_016_2190_5
crossref_primary_10_1016_j_matpr_2023_04_192
crossref_primary_10_1080_01932691_2023_2220784
crossref_primary_10_1590_1980_5373_mr_2022_0263
crossref_primary_10_3139_120_111211
crossref_primary_10_18311_jmmf_2023_35445
crossref_primary_10_3139_120_111213
crossref_primary_10_1088_2053_1591_ab6c0b
crossref_primary_10_1007_s11148_018_0206_4
crossref_primary_10_1007_s12540_021_01042_2
crossref_primary_10_1016_j_dt_2018_04_001
crossref_primary_10_1088_2051_672X_ad9492
crossref_primary_10_1016_j_matpr_2022_01_085
crossref_primary_10_1016_j_compstruct_2022_116545
crossref_primary_10_1016_j_jallcom_2018_11_162
crossref_primary_10_1007_s12633_020_00853_z
crossref_primary_10_1007_s11665_019_04403_6
crossref_primary_10_1088_2053_1591_ab2cff
crossref_primary_10_1016_j_matpr_2019_09_101
crossref_primary_10_1088_2053_1591_ab39b0
crossref_primary_10_1177_09544054221075879
crossref_primary_10_1155_2023_5442809
crossref_primary_10_1177_1350650120960573
crossref_primary_10_1080_2374068X_2022_2050043
crossref_primary_10_1142_S2251237315500057
crossref_primary_10_1016_j_matpr_2018_01_116
crossref_primary_10_1051_mfreview_2022006
crossref_primary_10_1016_j_matpr_2017_12_104
crossref_primary_10_1134_S0031918X19100089
crossref_primary_10_1007_s12666_020_02074_9
crossref_primary_10_1007_s40430_018_1480_2
crossref_primary_10_1016_j_jallcom_2018_01_185
crossref_primary_10_1142_S0218625X22501402
crossref_primary_10_1016_j_ijfatigue_2022_107168
crossref_primary_10_1177_0731684414556012
crossref_primary_10_1016_j_matpr_2020_06_466
crossref_primary_10_1007_s13369_021_05820_3
crossref_primary_10_1007_s00170_023_12124_3
crossref_primary_10_1016_j_surfin_2017_05_007
crossref_primary_10_1016_j_surfcoat_2024_131177
crossref_primary_10_1142_S0218625X18501226
crossref_primary_10_1155_2016_3432979
crossref_primary_10_1016_j_apt_2014_06_016
crossref_primary_10_1016_j_msea_2022_144200
Cites_doi 10.1016/j.wear.2006.04.003
10.1016/S0921-5093(03)00266-1
10.1007/BF02651761
10.1016/j.msea.2012.03.042
10.1016/S0924-0136(97)00225-2
10.1016/j.matdes.2006.12.001
10.1016/S1003-6326(09)60387-3
10.1016/j.compositesb.2013.05.012
10.1016/j.proeng.2012.06.336
10.1007/s11661-997-0150-2
10.1016/j.matdes.2011.01.036
10.1016/j.msea.2008.09.003
10.1016/j.compositesa.2005.12.018
10.1016/j.matdes.2012.09.055
10.1016/j.matdes.2009.10.019
10.1016/S0924-0136(98)00405-1
10.1364/AO.52.005701
10.1016/j.matdes.2013.03.072
10.1016/S0921-5093(99)00752-2
10.1016/S0924-0136(02)00098-5
10.1016/j.compositesb.2013.08.013
10.1016/S0301-679X(98)00011-5
10.1016/j.matdes.2008.09.037
10.1016/S0043-1648(00)00337-9
10.1016/j.matdes.2013.11.070
10.1016/j.matdes.2012.02.004
10.1016/j.matdes.2012.08.056
10.1016/S0043-1648(02)00051-0
10.1016/j.msea.2011.02.024
10.1016/j.jmatprotec.2007.02.035
10.1016/j.matchemphys.2005.07.075
10.1016/S0043-1648(02)00240-5
10.1016/j.wear.2003.08.002
10.1016/j.matdes.2012.09.015
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7QF
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matdes.2014.02.053
DatabaseName CrossRef
Aluminium Industry Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 396
ExternalDocumentID 10_1016_j_matdes_2014_02_053
S026130691400171X
GroupedDBID -~X
4G.
5VS
7-5
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAEPC
AAKOC
AALRI
AAOAW
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACNNM
ACRLP
ADMUD
ADTZH
AEBSH
AECPX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BKOJK
BLXMC
EFJIC
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FYGXN
G-2
IHE
J1W
M24
M41
OAUVE
Q38
R2-
ROL
SDF
SMS
SPC
SSM
SST
SSZ
T5K
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
7QF
7SR
8BQ
8FD
AFXIZ
JG9
ID FETCH-LOGICAL-c339t-680ec28143512a94e2ace87479b1c83d6188df919f5f4042696a9d41681a81cc3
IEDL.DBID AIKHN
ISSN 0261-3069
IngestDate Fri Jul 11 09:49:31 EDT 2025
Tue Jul 01 04:23:12 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Fri Feb 23 02:25:11 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-680ec28143512a94e2ace87479b1c83d6188df919f5f4042696a9d41681a81cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642229867
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1642229867
crossref_primary_10_1016_j_matdes_2014_02_053
crossref_citationtrail_10_1016_j_matdes_2014_02_053
elsevier_sciencedirect_doi_10_1016_j_matdes_2014_02_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials in engineering
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vettivel, Selvakumar, Leema (b0130) 2013; 45
Shorowordi, Haseeb, Celis (b0120) 2004; 256
Rajakumar, Muralidharan, Balasubramanian (b0165) 2010; 20
Lim (b0125) 1998; 31
Zang (b0040) 2013; 52
Vettivel, Selvakumar, Vijay Ponraj (b0015) 2012; 38
Degnan, Shipway (b0090) 2002; 252
Vettivel, Selvakumar, Leema, Haiter Lenin (b0180) 2014; 56
Li, Li, Wu, Ma, Liu (b0170) 2012; 546
Lakshmi, Lu, Gupta (b0005) 1998; 73
Manonmani, Murugan, Buvanasekaran (b0140) 2005; 17
Selvakumar, Vettivel (b0085) 2013; 46
Ravindran, Manisekar, Rathika (b0175) 2013; 45
Vettivel, Selvakumar, Narayanasamy, Leema (b0145) 2013; 50
Palani, Murugan (b0155) 2007; 190
Caracostas, Chiou, Fine, Cheng (b0110) 1997; 28
Baradeswaran, Elaya Perumal (b0020) 2014; 56
Sivaprasad, Kumaresh Babu, Natarajan, Narayanasamy, Anil Kumar, Dinesh (b0080) 2008; 498
Bobic, Mitrovic, Babic, Bobic (b0045) 2010; 32
Mandal, Chakraborty, Murty (b0095) 2007; 262
Baradeswaran, Elaya Perumal (b0065) 2013; 54
Ramesh, Pramod, Keshavamurthy (b0060) 2011; 528
Zhao, Wu, Jiang, Dou (b0105) 2006; 37
Gunaraj, Murugan (b0135) 1999; 88
Mallikarjuna, Shashidhara, Mallik, Parashivamurthy (b0050) 2011; 32
Tee, Lu, Lai (b0100) 2000; 240
Sumathi, Selvakumar, Narayanasamy (b0190) 2012; 39
Natarajan, Naraynasamy, Kumaresh Babu, Dinesh, Anil kumar, Sivaprasad (b0010) 2009; 30
Tjonj, Wang, Mai (b0160) 2003; 358
Hashim, Looney, Hashmi (b0025) 2002; 123
Hashim (b0030) 2007; 35
Sulima, Jaworska, Wyzga, Perek-Nowak (b0075) 2010; 48
Koji, Koshi (b0115) 2002; 253
Ramesh, Abrar, Chanabasappa, Keshavamurthy (b0035) 2010; 31
Tjong, Tam (b0055) 2006; 97
Roy, Venkatataraman, Bhanuprasad, Mahajan, Sundararajan (b0070) 1992; 23
Balasubramanian, Jayabalan, Balasubramanian (b0150) 2008; 29
Tjong, Lau (b0185) 2000; 282
Balasubramanian (10.1016/j.matdes.2014.02.053_b0150) 2008; 29
Degnan (10.1016/j.matdes.2014.02.053_b0090) 2002; 252
Mallikarjuna (10.1016/j.matdes.2014.02.053_b0050) 2011; 32
Sulima (10.1016/j.matdes.2014.02.053_b0075) 2010; 48
Hashim (10.1016/j.matdes.2014.02.053_b0025) 2002; 123
Li (10.1016/j.matdes.2014.02.053_b0170) 2012; 546
Vettivel (10.1016/j.matdes.2014.02.053_b0145) 2013; 50
Roy (10.1016/j.matdes.2014.02.053_b0070) 1992; 23
Tee (10.1016/j.matdes.2014.02.053_b0100) 2000; 240
Shorowordi (10.1016/j.matdes.2014.02.053_b0120) 2004; 256
Ramesh (10.1016/j.matdes.2014.02.053_b0060) 2011; 528
Tjonj (10.1016/j.matdes.2014.02.053_b0160) 2003; 358
Natarajan (10.1016/j.matdes.2014.02.053_b0010) 2009; 30
Palani (10.1016/j.matdes.2014.02.053_b0155) 2007; 190
Selvakumar (10.1016/j.matdes.2014.02.053_b0085) 2013; 46
Tjong (10.1016/j.matdes.2014.02.053_b0185) 2000; 282
Zhao (10.1016/j.matdes.2014.02.053_b0105) 2006; 37
Ravindran (10.1016/j.matdes.2014.02.053_b0175) 2013; 45
Tjong (10.1016/j.matdes.2014.02.053_b0055) 2006; 97
Hashim (10.1016/j.matdes.2014.02.053_b0030) 2007; 35
Baradeswaran (10.1016/j.matdes.2014.02.053_b0065) 2013; 54
Gunaraj (10.1016/j.matdes.2014.02.053_b0135) 1999; 88
Manonmani (10.1016/j.matdes.2014.02.053_b0140) 2005; 17
Lim (10.1016/j.matdes.2014.02.053_b0125) 1998; 31
Vettivel (10.1016/j.matdes.2014.02.053_b0015) 2012; 38
Caracostas (10.1016/j.matdes.2014.02.053_b0110) 1997; 28
Bobic (10.1016/j.matdes.2014.02.053_b0045) 2010; 32
Mandal (10.1016/j.matdes.2014.02.053_b0095) 2007; 262
Sumathi (10.1016/j.matdes.2014.02.053_b0190) 2012; 39
Sivaprasad (10.1016/j.matdes.2014.02.053_b0080) 2008; 498
Baradeswaran (10.1016/j.matdes.2014.02.053_b0020) 2014; 56
Ramesh (10.1016/j.matdes.2014.02.053_b0035) 2010; 31
Zang (10.1016/j.matdes.2014.02.053_b0040) 2013; 52
Vettivel (10.1016/j.matdes.2014.02.053_b0130) 2013; 45
Lakshmi (10.1016/j.matdes.2014.02.053_b0005) 1998; 73
Vettivel (10.1016/j.matdes.2014.02.053_b0180) 2014; 56
Rajakumar (10.1016/j.matdes.2014.02.053_b0165) 2010; 20
Koji (10.1016/j.matdes.2014.02.053_b0115) 2002; 253
References_xml – volume: 35
  start-page: 9
  year: 2007
  end-page: 20
  ident: b0030
  article-title: The production of cast metal matrix composite by a modified stir casting method
  publication-title: J Technol
– volume: 37
  start-page: 1916
  year: 2006
  end-page: 1921
  ident: b0105
  article-title: Friction and wear properties of TiB
  publication-title: Compos Part A-Appl Sci
– volume: 23
  start-page: 2833
  year: 1992
  end-page: 2837
  ident: b0070
  article-title: The effect of particulate reinforcement on the sliding wear behavior of aluminium matrix composites
  publication-title: Metall Mater Trans A
– volume: 528
  start-page: 4125
  year: 2011
  end-page: 4132
  ident: b0060
  article-title: A study on microstructure and mechanical properties of Al6061–TiB
  publication-title: Mater Sci Eng A
– volume: 54
  start-page: 146
  year: 2013
  end-page: 152
  ident: b0065
  article-title: Influence of B
  publication-title: Composites Part B
– volume: 88
  start-page: 266
  year: 1999
  end-page: 275
  ident: b0135
  article-title: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes
  publication-title: J Mater Process Technol
– volume: 546
  start-page: 146
  year: 2012
  end-page: 152
  ident: b0170
  article-title: Distribution of TiB
  publication-title: Mater Sci Eng A
– volume: 31
  start-page: 2230
  year: 2010
  end-page: 2236
  ident: b0035
  article-title: Development of Al6063-TiB
  publication-title: Mater Des
– volume: 256
  start-page: 1176
  year: 2004
  end-page: 1181
  ident: b0120
  article-title: Velocity effects on the wear, friction and tribochemistry of aluminium MMC sliding against phenolic brake pad
  publication-title: Wear
– volume: 498
  start-page: 495
  year: 2008
  end-page: 500
  ident: b0080
  article-title: Study on abrasive and erosive wear behavior of Al6063/TiB
  publication-title: Mater Sci Eng A
– volume: 97
  start-page: 91
  year: 2006
  end-page: 97
  ident: b0055
  article-title: Mechanical and thermal expansion behavior of hipped aluminum–TiB
  publication-title: Mater Chem Phys
– volume: 46
  start-page: 16
  year: 2013
  end-page: 25
  ident: b0085
  article-title: Thermal, electrical and wear behavior of sintered Cu–W nanocomposites
  publication-title: Mater Des
– volume: 17
  start-page: 103
  year: 2005
  end-page: 109
  ident: b0140
  article-title: Effect of process paramenters on the weld bead geometry of laser beam welded stainless steel sheets
  publication-title: Int J Join Mater
– volume: 38
  start-page: 2874
  year: 2012
  end-page: 2880
  ident: b0015
  article-title: Mechanical behavior of sintered Cu–5%W nano powder composite
  publication-title: Proc Eng
– volume: 252
  start-page: 832
  year: 2002
  end-page: 841
  ident: b0090
  article-title: A comparison of the reciprocating sliding wear behavior of steel based metal matrix composites processed from self-propagating high-temperature synthesized Fe-TiC and Fe-TiB
  publication-title: Wear
– volume: 282
  start-page: 183
  year: 2000
  end-page: 186
  ident: b0185
  article-title: Abrasive wear behavior of TiB
  publication-title: Mater Sci Eng A
– volume: 32
  start-page: 3554
  year: 2011
  end-page: 3559
  ident: b0050
  article-title: Grain refinement and wear properties evaluation of aluminium alloy 2014 matrix–TiB
  publication-title: Mater Des
– volume: 50
  start-page: 977
  year: 2013
  end-page: 996
  ident: b0145
  article-title: Numerical modeling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology
  publication-title: Mater Des
– volume: 30
  start-page: 2521
  year: 2009
  end-page: 2531
  ident: b0010
  article-title: Sliding wear behaviour of Al 6063/TiB
  publication-title: Mater Des
– volume: 123
  start-page: 251
  year: 2002
  end-page: 257
  ident: b0025
  article-title: Particle distribution in cast metal matrix composites
  publication-title: J Mater Process Technol
– volume: 45
  start-page: 561
  year: 2013
  end-page: 570
  ident: b0175
  article-title: Tribological properties of powder Metallurgy processed Aluminium self lubricating hybrid composites with SiC additions
  publication-title: Mater Des
– volume: 358
  start-page: 99
  year: 2003
  end-page: 106
  ident: b0160
  article-title: Low-cycle fatigue behavior of Al-based composites containing in situ TiB
  publication-title: Mater Sci Eng A
– volume: 73
  start-page: 160
  year: 1998
  end-page: 166
  ident: b0005
  article-title: In situ preparation of TiB
  publication-title: J Mater Process Technol
– volume: 31
  year: 1998
  ident: b0125
  article-title: Recent developments in wear mechanism maps
  publication-title: Tribo Int
– volume: 56
  start-page: 791
  year: 2014
  end-page: 806
  ident: b0180
  article-title: Electrical resistivity, wear map and modelling of extruded tungsten reinforced copper composite
  publication-title: Mater Des
– volume: 32
  start-page: 1
  year: 2010
  end-page: 9
  ident: b0045
  article-title: Corrosion of metal–matrix composites with aluminium alloy substrate
  publication-title: Tribol Int
– volume: 48
  start-page: 52
  year: 2010
  end-page: 57
  ident: b0075
  article-title: The influence of reinforcing particles on mechanical and tribological properties and microstructure of the steel–TiB
  publication-title: J Achiev Mater Manuf Eng
– volume: 20
  start-page: 1863
  year: 2010
  end-page: 1872
  ident: b0165
  article-title: Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints
  publication-title: Trans Non Ferr Met Soc
– volume: 39
  start-page: 1
  year: 2012
  end-page: 8
  ident: b0190
  article-title: Workability studies on sintered Cu–10SiC preforms during cold axial upsetting
  publication-title: Mater Des
– volume: 253
  start-page: 1097
  year: 2002
  end-page: 1104
  ident: b0115
  article-title: Wear of advanced ceramics
  publication-title: Wear
– volume: 56
  start-page: 464
  year: 2014
  end-page: 471
  ident: b0020
  article-title: Study on mechanical and wear properties of Al7075/Al
  publication-title: Composites Part B
– volume: 262
  start-page: 160
  year: 2007
  end-page: 166
  ident: b0095
  article-title: Effect of TiB
  publication-title: Wear
– volume: 28
  start-page: 491
  year: 1997
  end-page: 502
  ident: b0110
  article-title: Tribological properties of aluminium alloy matrix TiB
  publication-title: Metall Mater Trans A
– volume: 29
  start-page: 92
  year: 2008
  end-page: 97
  ident: b0150
  article-title: Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti–6Al–4V alloy
  publication-title: Mater Des
– volume: 45
  start-page: 323
  year: 2013
  end-page: 335
  ident: b0130
  article-title: Experimental and prediction of sintered Cu–W composite by using artificial neural networks
  publication-title: Mater Des
– volume: 240
  start-page: 59
  year: 2000
  end-page: 64
  ident: b0100
  article-title: Wear performance of in situ Al–TiB
  publication-title: Wear
– volume: 52
  start-page: 5701
  year: 2013
  end-page: 5706
  ident: b0040
  article-title: All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating
  publication-title: Appl Opt
– volume: 190
  start-page: 291
  year: 2007
  end-page: 299
  ident: b0155
  article-title: Optimization of weld bead geometry for stainless steel claddings deposited by FCAW
  publication-title: J Mater Process Technol
– volume: 262
  start-page: 160
  year: 2007
  ident: 10.1016/j.matdes.2014.02.053_b0095
  article-title: Effect of TiB2 particles on sliding wear behavior of Al–4Cu alloy
  publication-title: Wear
  doi: 10.1016/j.wear.2006.04.003
– volume: 358
  start-page: 99
  year: 2003
  ident: 10.1016/j.matdes.2014.02.053_b0160
  article-title: Low-cycle fatigue behavior of Al-based composites containing in situ TiB2, Al2O3 and Al3Ti reinforcements
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(03)00266-1
– volume: 23
  start-page: 2833
  year: 1992
  ident: 10.1016/j.matdes.2014.02.053_b0070
  article-title: The effect of particulate reinforcement on the sliding wear behavior of aluminium matrix composites
  publication-title: Metall Mater Trans A
  doi: 10.1007/BF02651761
– volume: 546
  start-page: 146
  year: 2012
  ident: 10.1016/j.matdes.2014.02.053_b0170
  article-title: Distribution of TiB2 particles and its effect on the mechanical properties of A390 alloy
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2012.03.042
– volume: 73
  start-page: 160
  year: 1998
  ident: 10.1016/j.matdes.2014.02.053_b0005
  article-title: In situ preparation of TiB2 reinforced Al based composites
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(97)00225-2
– volume: 29
  start-page: 92
  issue: 1
  year: 2008
  ident: 10.1016/j.matdes.2014.02.053_b0150
  article-title: Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti–6Al–4V alloy
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2006.12.001
– volume: 20
  start-page: 1863
  year: 2010
  ident: 10.1016/j.matdes.2014.02.053_b0165
  article-title: Establishing empirical relationships to predict grain size and tensile strength of friction stir welded AA 6061-T6 aluminium alloy joints
  publication-title: Trans Non Ferr Met Soc
  doi: 10.1016/S1003-6326(09)60387-3
– volume: 54
  start-page: 146
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0065
  article-title: Influence of B4C on the tribological and mechanical properties of Al7075-B4C composites
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2013.05.012
– volume: 38
  start-page: 2874
  year: 2012
  ident: 10.1016/j.matdes.2014.02.053_b0015
  article-title: Mechanical behavior of sintered Cu–5%W nano powder composite
  publication-title: Proc Eng
  doi: 10.1016/j.proeng.2012.06.336
– volume: 28
  start-page: 491
  year: 1997
  ident: 10.1016/j.matdes.2014.02.053_b0110
  article-title: Tribological properties of aluminium alloy matrix TiB2 composite prepared by in situ processing
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-997-0150-2
– volume: 32
  start-page: 3554
  year: 2011
  ident: 10.1016/j.matdes.2014.02.053_b0050
  article-title: Grain refinement and wear properties evaluation of aluminium alloy 2014 matrix–TiB2 in-situ composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.01.036
– volume: 35
  start-page: 9
  year: 2007
  ident: 10.1016/j.matdes.2014.02.053_b0030
  article-title: The production of cast metal matrix composite by a modified stir casting method
  publication-title: J Technol
– volume: 498
  start-page: 495
  year: 2008
  ident: 10.1016/j.matdes.2014.02.053_b0080
  article-title: Study on abrasive and erosive wear behavior of Al6063/TiB2 in situ composites
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2008.09.003
– volume: 37
  start-page: 1916
  year: 2006
  ident: 10.1016/j.matdes.2014.02.053_b0105
  article-title: Friction and wear properties of TiB2/Al composite
  publication-title: Compos Part A-Appl Sci
  doi: 10.1016/j.compositesa.2005.12.018
– volume: 46
  start-page: 16
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0085
  article-title: Thermal, electrical and wear behavior of sintered Cu–W nanocomposites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.09.055
– volume: 17
  start-page: 103
  issue: 4
  year: 2005
  ident: 10.1016/j.matdes.2014.02.053_b0140
  article-title: Effect of process paramenters on the weld bead geometry of laser beam welded stainless steel sheets
  publication-title: Int J Join Mater
– volume: 31
  start-page: 2230
  year: 2010
  ident: 10.1016/j.matdes.2014.02.053_b0035
  article-title: Development of Al6063-TiB2 insitu composites
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2009.10.019
– volume: 88
  start-page: 266
  year: 1999
  ident: 10.1016/j.matdes.2014.02.053_b0135
  article-title: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(98)00405-1
– volume: 52
  start-page: 5701
  issue: 23
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0040
  article-title: All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating
  publication-title: Appl Opt
  doi: 10.1364/AO.52.005701
– volume: 50
  start-page: 977
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0145
  article-title: Numerical modeling, prediction of Cu–W nano powder composite in dry sliding wear condition using response surface methodology
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.03.072
– volume: 282
  start-page: 183
  year: 2000
  ident: 10.1016/j.matdes.2014.02.053_b0185
  article-title: Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(99)00752-2
– volume: 123
  start-page: 251
  year: 2002
  ident: 10.1016/j.matdes.2014.02.053_b0025
  article-title: Particle distribution in cast metal matrix composites
  publication-title: J Mater Process Technol
  doi: 10.1016/S0924-0136(02)00098-5
– volume: 56
  start-page: 464
  year: 2014
  ident: 10.1016/j.matdes.2014.02.053_b0020
  article-title: Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2013.08.013
– volume: 31
  year: 1998
  ident: 10.1016/j.matdes.2014.02.053_b0125
  article-title: Recent developments in wear mechanism maps
  publication-title: Tribo Int
  doi: 10.1016/S0301-679X(98)00011-5
– volume: 48
  start-page: 52
  year: 2010
  ident: 10.1016/j.matdes.2014.02.053_b0075
  article-title: The influence of reinforcing particles on mechanical and tribological properties and microstructure of the steel–TiB2 composites
  publication-title: J Achiev Mater Manuf Eng
– volume: 30
  start-page: 2521
  year: 2009
  ident: 10.1016/j.matdes.2014.02.053_b0010
  article-title: Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2008.09.037
– volume: 240
  start-page: 59
  year: 2000
  ident: 10.1016/j.matdes.2014.02.053_b0100
  article-title: Wear performance of in situ Al–TiB2 composite
  publication-title: Wear
  doi: 10.1016/S0043-1648(00)00337-9
– volume: 56
  start-page: 791
  year: 2014
  ident: 10.1016/j.matdes.2014.02.053_b0180
  article-title: Electrical resistivity, wear map and modelling of extruded tungsten reinforced copper composite
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2013.11.070
– volume: 39
  start-page: 1
  year: 2012
  ident: 10.1016/j.matdes.2014.02.053_b0190
  article-title: Workability studies on sintered Cu–10SiC preforms during cold axial upsetting
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.02.004
– volume: 32
  start-page: 1
  year: 2010
  ident: 10.1016/j.matdes.2014.02.053_b0045
  article-title: Corrosion of metal–matrix composites with aluminium alloy substrate
  publication-title: Tribol Int
– volume: 45
  start-page: 323
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0130
  article-title: Experimental and prediction of sintered Cu–W composite by using artificial neural networks
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.08.056
– volume: 252
  start-page: 832
  year: 2002
  ident: 10.1016/j.matdes.2014.02.053_b0090
  article-title: A comparison of the reciprocating sliding wear behavior of steel based metal matrix composites processed from self-propagating high-temperature synthesized Fe-TiC and Fe-TiB2 master alloys
  publication-title: Wear
  doi: 10.1016/S0043-1648(02)00051-0
– volume: 528
  start-page: 4125
  year: 2011
  ident: 10.1016/j.matdes.2014.02.053_b0060
  article-title: A study on microstructure and mechanical properties of Al6061–TiB2 in-situ composites
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2011.02.024
– volume: 190
  start-page: 291
  year: 2007
  ident: 10.1016/j.matdes.2014.02.053_b0155
  article-title: Optimization of weld bead geometry for stainless steel claddings deposited by FCAW
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.02.035
– volume: 97
  start-page: 91
  year: 2006
  ident: 10.1016/j.matdes.2014.02.053_b0055
  article-title: Mechanical and thermal expansion behavior of hipped aluminum–TiB2 composites
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2005.07.075
– volume: 253
  start-page: 1097
  year: 2002
  ident: 10.1016/j.matdes.2014.02.053_b0115
  article-title: Wear of advanced ceramics
  publication-title: Wear
  doi: 10.1016/S0043-1648(02)00240-5
– volume: 256
  start-page: 1176
  year: 2004
  ident: 10.1016/j.matdes.2014.02.053_b0120
  article-title: Velocity effects on the wear, friction and tribochemistry of aluminium MMC sliding against phenolic brake pad
  publication-title: Wear
  doi: 10.1016/j.wear.2003.08.002
– volume: 45
  start-page: 561
  year: 2013
  ident: 10.1016/j.matdes.2014.02.053_b0175
  article-title: Tribological properties of powder Metallurgy processed Aluminium self lubricating hybrid composites with SiC additions
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2012.09.015
SSID ssj0017112
Score 2.5029848
Snippet •Various experiments were conducted on Al6061–TiB2 composite.•XRD and EDS studies confirm the crystalline size and elements present.•SEM, EDS and OM...
Al6061 was reinforced with various percentages of TiB2 particles by using high energy stir casting method. The characterization was performed through X-ray...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms Aluminum
Confidence intervals
Mathematical models
Mechanical properties
Response surface methodology
Scanning electron microscopy
Titanium diboride
Wear
Title Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology
URI https://dx.doi.org/10.1016/j.matdes.2014.02.053
https://www.proquest.com/docview/1642229867
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL3oQn1hfRPC6dLPZZpNjFUtV2osWegvZbFYqZVu2LV79D_5Df4kz-ygqSMHjLpuwTJKZbzLfzBByHcgEcAhnHmDRyAuVUJ4RaeLFIRhf66xgDrOR-wPRG4YPo_Zog9zWuTBIq6x0f6nTC21dvWlV0mzNxuPWE3oPAHgVuAhY9GW0SbYCsK5-g2x17h97g1UwIWJF0LO6ahGqzqAraF6ACxOHdbtZWBTvbPO_LNQvXV0YoO4e2a2QI-2UP7dPNlx2QHa-1RM8JJO-w0RelDut8--pyRL6BvuZznIMyuBC0GlK4Wjn1Jr5gnYmn-8fz-ObgCK_HElcbk6RD_9C85JB6-h8mafGOlo2nC6u4o_IsHv3fNvzqnYKnuVcLTwhfWcDiQCJBUaFLoBxEtwJFTMreSKYlEmqmErbaYiulRJGJQDYJDOSWcuPSSObZu6EUMOcLzBg6IcmtDGPA-ci0eYC1C74V0mT8FqE2la1xrHlxUTXpLJXXQpeo-C1H2gQfJN4q1GzstbGmu-jenX0jz2jwRysGXlVL6aG44QxEpO56XKuwXvEDudSRKf_nv2MbONTSeo9J41FvnQXAF0W8WW1Nb8AjzLtng
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKe4AeUPkThZYaCY6rxPbGax84pC1VQppcSKXcjNfrRamiTbSbqOLGO_AovBFPwsyut6KVqkpIve7f4Rt75pudb8aEfOAqAx4iWARcNIliLXVkZZ5FaQzB13knmcdu5PFEDi7iL7PebIv8bnthUFYZfH_j02tvHa50Apqd1Xze-YrZAxBeDSkCDn2ZBWXlyP-4gryt-jQ8BSN_5Pzs8_RkEIWjBSInhF5HUnW94wrJAuNWx55b5xVQa50yp0QmmVJZrpnOe3mMaYaWVmdAXhSzijkn4LuPyA5Ow4JttdMfjgaT6-JFwuoia_i1I3XbsVfLyoCHZh7nhLO4HhbaE3dFxFuxoQ54Z3vkaWCqtN-A8Yxs-eI52f1nfuELshh7bBxGO9O235_aIqNXgBFdlVgEQsPTZU7BlZTU2WpN-4s_P39N58ecop4dRWO-oqi__07LRrHrabUpc8CKNgdc17_-X5KLB8H4FdkuloV_TahlviuxQNmNbexSkXLvE9kTEtw85HPZPhEthMaF2eZ4xMbCtCK2S9MAbxB40-UGgN8n0fVbq2a2xz3PJ611zI01aiD83PPm-9aYBrYv1mRs4ZebykC2iieqK5m8-e-vH5HHg-n43JwPJ6O35AneaQTFB2R7XW78IdCmdfouLFNKvj30zvgLT3UoyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+behavior+and+wear+prediction+of+stir+cast+Al%E2%80%93TiB2+composites+using+response+surface+methodology&rft.jtitle=Materials+in+engineering&rft.au=Suresh%2C+S.&rft.au=Shenbaga+Vinayaga+Moorthi%2C+N.&rft.au=Vettivel%2C+S.C.&rft.au=Selvakumar%2C+N.&rft.date=2014-07-01&rft.issn=0261-3069&rft.volume=59&rft.spage=383&rft.epage=396&rft_id=info:doi/10.1016%2Fj.matdes.2014.02.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2014_02_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon