Promoting dewatering efficiency of sludge by bioleaching coupling chemical flocculation

In recent years, bioleaching has emerged as a cost-effective technology for enhancing the dewaterability of sludge. However, the lengthy treatment time involved in sludge bioleaching processes limits daily treatment capacity for sludge. Here, a novel approach was developed through a short time of sl...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 237; p. 117014
Main Authors Li, Ting, Yang, Jiawei, Zhou, Yujun, Liu, Xuan, Luo, Yixin, Fang, Di, Liang, Jianru, Li, Jiansheng, Zhou, Lixiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, bioleaching has emerged as a cost-effective technology for enhancing the dewaterability of sludge. However, the lengthy treatment time involved in sludge bioleaching processes limits daily treatment capacity for sludge. Here, a novel approach was developed through a short time of sludge bioleaching with A. ferrooxidans LX5 (A. f) and A. thiooxidans TS6 (A. t) followed by polyferric sulfate (PFS) flocculation (A. f + A. t + PFS). After 12.5 h of the A. f + A. t + PFS treatment (30% A. f, 10% A. t, 40 mg/g DS S0, 60 mg/g DS FeSO4•7H2O, and 120 mg/g DS PFS), the reduction efficiency of specific resistance to filtration (SRF) and sludge cake moisture content reached 94.0% and 11.6%, respectively, which were comparable to the results achieved through 24 h of completed bioleaching treatment. In pilot-scale applications, the mechanical dewatering performance was notably improved following A. f + A. t + PFS treatment, with the low moisture content of the treated sludge cake (∼59.2%). This study provides new insights into the A. f + A. t + PFS process and holds potential for developing efficient and promising sludge dewatering strategies in engineering application. [Display omitted] •Introducing PFS flocculation promoted sludge bioleaching dewatering efficiency.•Reduction efficiency of SRF reached 94.0% after 12.5 h of A. f + A. t + PFS treatment.•Bio-acidification, bio-substitution and PFS flocculation simultaneously occurred.•Co-driven bioleaching of A. ferrooxidans and A. thiooxidans caused low sludge pH.•In pilot-scale applications, the moisture content of treated sludge cake was ∼59.2%.
AbstractList In recent years, bioleaching has emerged as a cost-effective technology for enhancing the dewaterability of sludge. However, the lengthy treatment time involved in sludge bioleaching processes limits daily treatment capacity for sludge. Here, a novel approach was developed through a short time of sludge bioleaching with A. ferrooxidans LX5 (A. f) and A. thiooxidans TS6 (A. t) followed by polyferric sulfate (PFS) flocculation (A. f + A. t + PFS). After 12.5 h of the A. f + A. t + PFS treatment (30% A. f, 10% A. t, 40 mg/g DS S0, 60 mg/g DS FeSO4•7H2O, and 120 mg/g DS PFS), the reduction efficiency of specific resistance to filtration (SRF) and sludge cake moisture content reached 94.0% and 11.6%, respectively, which were comparable to the results achieved through 24 h of completed bioleaching treatment. In pilot-scale applications, the mechanical dewatering performance was notably improved following A. f + A. t + PFS treatment, with the low moisture content of the treated sludge cake (∼59.2%). This study provides new insights into the A. f + A. t + PFS process and holds potential for developing efficient and promising sludge dewatering strategies in engineering application. [Display omitted] •Introducing PFS flocculation promoted sludge bioleaching dewatering efficiency.•Reduction efficiency of SRF reached 94.0% after 12.5 h of A. f + A. t + PFS treatment.•Bio-acidification, bio-substitution and PFS flocculation simultaneously occurred.•Co-driven bioleaching of A. ferrooxidans and A. thiooxidans caused low sludge pH.•In pilot-scale applications, the moisture content of treated sludge cake was ∼59.2%.
ArticleNumber 117014
Author Liu, Xuan
Zhou, Yujun
Zhou, Lixiang
Yang, Jiawei
Li, Jiansheng
Li, Ting
Luo, Yixin
Liang, Jianru
Fang, Di
Author_xml – sequence: 1
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 2
  givenname: Jiawei
  surname: Yang
  fullname: Yang, Jiawei
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 3
  givenname: Yujun
  surname: Zhou
  fullname: Zhou, Yujun
  organization: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 4
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 5
  givenname: Yixin
  surname: Luo
  fullname: Luo, Yixin
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 6
  givenname: Di
  surname: Fang
  fullname: Fang, Di
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 7
  givenname: Jianru
  surname: Liang
  fullname: Liang, Jianru
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
– sequence: 8
  givenname: Jiansheng
  surname: Li
  fullname: Li, Jiansheng
  organization: School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 9
  givenname: Lixiang
  orcidid: 0000-0002-9978-1163
  surname: Zhou
  fullname: Zhou, Lixiang
  email: lxzhou@njau.edu.cn
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
BookMark eNp9kEtPwzAQhC1UJErhH3DIkUvC2s6juSChipdUCQ4gjpbjrFtXTlzspKj_nqThzGlnpZmR5rsks9a1SMgNhYQCze92CbYHjyFhwHhCaQE0PSNzCmUeQ5nxGZkDUB6XPKMX5DKE3fDSjMOcfL1717jOtJuoxh_ZoR8lam2UwVYdI6ejYPt6g1F1jCrjLEq1HT3K9Xt7EltsjJI20tYp1VvZGddekXMtbcDrv7sgn0-PH6uXeP32_Lp6WMeK87KLc56lDKCqckgRsYAsL_VS8UwhLzQojlXFoM6zOgWUFBnToJd5kSpAykrJF-R26t17991j6ERjgkJrZYuuD4Ith2bgkMFgTSer8i4Ej1rsvWmkPwoKYuQodmLiKEaOYuI4xO6nGA4zDga9CCc0WBuPqhO1M_8X_AKBQoCM
CitedBy_id crossref_primary_10_1371_journal_pone_0302311
crossref_primary_10_1080_01496395_2024_2366891
crossref_primary_10_1016_j_seppur_2023_125488
Cites_doi 10.1016/j.cej.2018.05.151
10.1021/la981130c
10.1016/j.watres.2018.07.029
10.1016/j.watres.2019.114912
10.1016/j.watres.2022.118512
10.3390/su15064789
10.1016/j.watres.2022.119195
10.1016/j.jenvman.2021.113204
10.1016/j.watres.2022.118450
10.1016/j.cej.2022.141106
10.1016/j.seppur.2016.03.037
10.1016/j.watres.2016.09.030
10.1021/es034354c
10.1016/j.jhazmat.2021.125368
10.1016/j.watres.2012.05.047
10.1080/09593330.2018.1465129
10.1061/(ASCE)EE.1943-7870.0001008
10.1016/j.jhazmat.2003.11.014
10.1016/j.biotechadv.2010.08.001
10.1016/j.ecoenv.2020.110349
10.1021/acsestengg.0c00128
10.1021/acs.est.8b04991
10.1016/j.watres.2020.115626
10.1016/j.watres.2015.10.001
10.1016/j.jclepro.2018.11.208
10.1016/j.seppur.2015.10.061
10.1016/j.biortech.2014.02.098
10.2166/wst.2020.319
10.1016/j.watres.2020.116652
10.1016/j.psep.2021.11.041
10.1016/j.watres.2020.115912
10.1016/j.watres.2023.119622
10.1016/j.chemosphere.2019.04.020
10.1016/j.jhazmat.2012.04.028
10.1016/j.cej.2022.135306
10.1016/j.biortech.2016.01.088
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.envres.2023.117014
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
EndPage 117014
ExternalDocumentID 10_1016_j_envres_2023_117014
S0013935123018182
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
C45
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
WH7
ZCA
ZU3
~02
~G-
~KM
.GJ
29G
3O-
53G
AAHBH
AAQXK
AAXKI
AAYJJ
AAYXX
ABEFU
ABFNM
ABXDB
ADFGL
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
F3I
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
OHT
R2-
RIG
SEN
VOH
WUQ
XOL
XPP
ZGI
ZKB
ZMT
ZXP
7X8
ID FETCH-LOGICAL-c339t-6354200bb604eee70569f8c35ce37f0c3ebb20d65d40ea1e22f0f8674c0e129a3
IEDL.DBID .~1
ISSN 0013-9351
IngestDate Fri Oct 25 00:06:08 EDT 2024
Thu Sep 26 16:34:48 EDT 2024
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bio-substitution
Bioleaching
Bio-acidification
Flocculation
Sludge dewaterability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-6354200bb604eee70569f8c35ce37f0c3ebb20d65d40ea1e22f0f8674c0e129a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9978-1163
PQID 2860403050
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2860403050
crossref_primary_10_1016_j_envres_2023_117014
elsevier_sciencedirect_doi_10_1016_j_envres_2023_117014
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Environmental research
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Huang, Liang, Yang, Zhou, Liao, Li, Zheng, Sun (bib7) 2020; 193
Huo, Zheng, Zhou (bib8) 2014; 168
Yang, Zeng, Zhang, Yang, Wang, Xiong (bib33) 2020; 81
Xiao, Chen, Jiang, Tyagi, Zhou (bib32) 2016; 105
Fontmorin, Sillanpää (bib4) 2015; 156
Ge, Wu, Li, Wang, Li, Dong, Yuan, Zhu (bib5) 2022; 437
Li, Yang, Zhou, Luo, Zhou, Fang, Li, Zhou (bib10) 2023; 231
Wei, Tang, Li, Yang (bib30) 2019; 227
Wang, Pan, Chen, He, Yuan, Li, Wu (bib25) 2022; 225
Liu, Zhai, Xu, Liu, Ren, Xie, Li, Zhu, Xu (bib18) 2023; 457
Li, Pan, Zhu, Yu, Wang, Yang, Yuan, Liu, Li, Zhang (bib12) 2019; 163
Zhou (bib38) 2012; 35
Lu, Zhang, Zheng, Zhou (bib19) 2019; 40
Liu, Yang, Shi, Xu, Liu, Fu (bib16) 2016; 165
Liang, Zhang, Zhou (bib14) 2021; 413
Li, Zhu, Wang, Yang, Pan, Wang, Ni, Li, Yuan, Jiang, Tang (bib13) 2020; 174
Liu, Zhou, Zhou, Song, Wang (bib15) 2012; 221–222
Yu, Wen, Yang, Xiao, Zhu, Tao, Liang, Hu, Wu, Hou, Liu, Hu (bib34) 2020; 1
Sheng, Yu, Li (bib23) 2010; 28
Chen, Westerhoff, Leenheer, Booksh (bib3) 2003; 37
Wei, Ren, Li, Yang (bib29) 2018; 349
Neyens, Baeyens, Dewil, De heyder (bib20) 2004; 106
Ai, Wang, Dionysiou, Liu, Deng, Tang, Liao, Hu, Zhang (bib1) 2021; 189
Qian, Wang, Zheng (bib21) 2016; 88
Wu, Dai, Chai (bib31) 2020; 180
Liu, Yang, Wang, Li, Zhong, Li, Deng, Wang, Yi, Zeng (bib17) 2016; 206
Wei, Gao, Ren, Li, Yang (bib28) 2018; 143
Zhang, Zhang, Zhou, Fang, Cui, Liang, Zhou, Zhang, Li, Zhou (bib35) 2023; 15
Zheng, Huo, Zhou (bib36) 2016; 142
Li, Chen, Li, Yao, Wei, Wang, Wang, Cao, Zheng, Lv, Guo, Jiang (bib11) 2022; 158
Tao, Hu, Fang, Tarabara, Zhou (bib24) 2022; 218
Chen, Dai, Dong (bib2) 2022; 217
Zhou (bib39) 2012; 35
Raynaud, Vaxelaire, Olivier, Dieudé-Fauvel, Baudez (bib22) 2012; 46
Li, Qian, Wang, Wang, Fan, Lu, Tian, Jin, He, Guo (bib9) 2019; 53
Wang, Hu, Wang, Zeng (bib26) 2019; 211
Ge, Zhu, Li, Yuan, Zhu (bib6) 2021; 296
Watanabe, Kubo, Sato (bib27) 1999; 15
Zheng, Huo, Zhou (bib37) 2016; 142
Tao (10.1016/j.envres.2023.117014_bib24) 2022; 218
Watanabe (10.1016/j.envres.2023.117014_bib27) 1999; 15
Wu (10.1016/j.envres.2023.117014_bib31) 2020; 180
Liu (10.1016/j.envres.2023.117014_bib17) 2016; 206
Li (10.1016/j.envres.2023.117014_bib12) 2019; 163
Wang (10.1016/j.envres.2023.117014_bib25) 2022; 225
Lu (10.1016/j.envres.2023.117014_bib19) 2019; 40
Ai (10.1016/j.envres.2023.117014_bib1) 2021; 189
Zhang (10.1016/j.envres.2023.117014_bib35) 2023; 15
Zheng (10.1016/j.envres.2023.117014_bib37) 2016; 142
Zhou (10.1016/j.envres.2023.117014_bib38) 2012; 35
Huang (10.1016/j.envres.2023.117014_bib7) 2020; 193
Li (10.1016/j.envres.2023.117014_bib11) 2022; 158
Xiao (10.1016/j.envres.2023.117014_bib32) 2016; 105
Sheng (10.1016/j.envres.2023.117014_bib23) 2010; 28
Li (10.1016/j.envres.2023.117014_bib13) 2020; 174
Wang (10.1016/j.envres.2023.117014_bib26) 2019; 211
Liu (10.1016/j.envres.2023.117014_bib18) 2023; 457
Chen (10.1016/j.envres.2023.117014_bib2) 2022; 217
Qian (10.1016/j.envres.2023.117014_bib21) 2016; 88
Huo (10.1016/j.envres.2023.117014_bib8) 2014; 168
Li (10.1016/j.envres.2023.117014_bib10) 2023; 231
Wei (10.1016/j.envres.2023.117014_bib30) 2019; 227
Liang (10.1016/j.envres.2023.117014_bib14) 2021; 413
Wei (10.1016/j.envres.2023.117014_bib29) 2018; 349
Yang (10.1016/j.envres.2023.117014_bib33) 2020; 81
Li (10.1016/j.envres.2023.117014_bib9) 2019; 53
Neyens (10.1016/j.envres.2023.117014_bib20) 2004; 106
Fontmorin (10.1016/j.envres.2023.117014_bib4) 2015; 156
Ge (10.1016/j.envres.2023.117014_bib6) 2021; 296
Raynaud (10.1016/j.envres.2023.117014_bib22) 2012; 46
Zhou (10.1016/j.envres.2023.117014_bib39) 2012; 35
Ge (10.1016/j.envres.2023.117014_bib5) 2022; 437
Wei (10.1016/j.envres.2023.117014_bib28) 2018; 143
Liu (10.1016/j.envres.2023.117014_bib15) 2012; 221–222
Liu (10.1016/j.envres.2023.117014_bib16) 2016; 165
Zheng (10.1016/j.envres.2023.117014_bib36) 2016; 142
Chen (10.1016/j.envres.2023.117014_bib3) 2003; 37
Yu (10.1016/j.envres.2023.117014_bib34) 2020; 1
References_xml – volume: 413
  year: 2021
  ident: bib14
  article-title: Pyrite assisted peroxymonosulfate sludge conditioning: uncover triclosan transformation during treatment
  publication-title: J. Hazard Mater.
  contributor:
    fullname: Zhou
– volume: 28
  start-page: 882
  year: 2010
  end-page: 894
  ident: bib23
  article-title: Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review
  publication-title: Biotechnol. Adv.
  contributor:
    fullname: Li
– volume: 37
  start-page: 5701
  year: 2003
  end-page: 5710
  ident: bib3
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Booksh
– volume: 457
  year: 2023
  ident: bib18
  article-title: Unraveling the impacts of Cu
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Xu
– volume: 15
  start-page: 4157
  year: 1999
  end-page: 4164
  ident: bib27
  article-title: Application of amphoteric polyelectrolytes for sludge dewatering
  publication-title: Langmuir
  contributor:
    fullname: Sato
– volume: 225
  year: 2022
  ident: bib25
  article-title: Positive feedback on dewaterability of waste-activated sludge by the conditioning process of Fe(II) catalyzing urea hydrogen peroxide
  publication-title: Water Res.
  contributor:
    fullname: Wu
– volume: 189
  year: 2021
  ident: bib1
  article-title: Understanding synergistic mechanisms of ferrous iron activated sulfite oxidation and organic polymer flocculation for enhancing wastewater sludge dewaterability
  publication-title: Water Res.
  contributor:
    fullname: Zhang
– volume: 156
  start-page: 655
  year: 2015
  end-page: 664
  ident: bib4
  article-title: Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: removal of heavy metals and improvement of the sludge dewaterability
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Sillanpää
– volume: 217
  year: 2022
  ident: bib2
  article-title: Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: mechanistic of tannic acid aided
  publication-title: Water Res.
  contributor:
    fullname: Dong
– volume: 221–222
  start-page: 170
  year: 2012
  end-page: 177
  ident: bib15
  article-title: Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH
  publication-title: J. Hazard Mater.
  contributor:
    fullname: Wang
– volume: 211
  start-page: 387
  year: 2019
  end-page: 395
  ident: bib26
  article-title: Combined use of inorganic coagulants and cationic polyacrylamide for enhancing dewaterability of sewage sludge
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Zeng
– volume: 105
  start-page: 470
  year: 2016
  end-page: 478
  ident: bib32
  article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments
  publication-title: Water Res.
  contributor:
    fullname: Zhou
– volume: 35
  start-page: 154
  year: 2012
  end-page: 166
  ident: bib38
  article-title: Bioleaching role in improving sludge in-deep dewatering and removal of sludge-brone metals and its engineering application
  publication-title: J. Nanjing Agric. Univ.
  contributor:
    fullname: Zhou
– volume: 158
  start-page: 210
  year: 2022
  end-page: 220
  ident: bib11
  article-title: Improving dewaterability of sewage sludge by inoculating acidified sludge and Fe
  publication-title: Process Saf. Environ.
  contributor:
    fullname: Jiang
– volume: 180
  year: 2020
  ident: bib31
  article-title: Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations
  publication-title: Water Res.
  contributor:
    fullname: Chai
– volume: 437
  year: 2022
  ident: bib5
  article-title: Application of CaO
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Zhu
– volume: 168
  start-page: 190
  year: 2014
  end-page: 197
  ident: bib8
  article-title: Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content
  publication-title: Bioresour. Technol.
  contributor:
    fullname: Zhou
– volume: 165
  start-page: 53
  year: 2016
  end-page: 59
  ident: bib16
  article-title: Towards understanding the dewatering mechanism of sewage sludge improved by bioleaching processing
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Fu
– volume: 143
  start-page: 608
  year: 2018
  end-page: 631
  ident: bib28
  article-title: Coagulation/flocculation in dewatering of sludge: a review
  publication-title: Water Res.
  contributor:
    fullname: Yang
– volume: 142
  year: 2016
  ident: bib37
  article-title: Extracellular polymeric substances level determines the sludge dewaterability in bioleaching process
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Zhou
– volume: 142
  year: 2016
  ident: bib36
  article-title: Extracellular polymeric substances level determines the sludge dewaterability in bioleaching process
  publication-title: J. Environ. Eng.
  contributor:
    fullname: Zhou
– volume: 15
  start-page: 4789
  year: 2023
  ident: bib35
  article-title: Reasons for ineffectiveness in improving dewaterability of anaerobically digested sludge by bioleaching
  publication-title: Sustainability
  contributor:
    fullname: Zhou
– volume: 53
  start-page: 4542
  year: 2019
  end-page: 4555
  ident: bib9
  article-title: Toxicity of three crystalline TiO(2) nanoparticles in activated sludge: bacterial cell death modes differentially weaken sludge dewaterability
  publication-title: Environ. Sci. Technol.
  contributor:
    fullname: Guo
– volume: 46
  start-page: 4448
  year: 2012
  end-page: 4456
  ident: bib22
  article-title: Compression dewatering of municipal activated sludge: effects of salt and pH
  publication-title: Water Res.
  contributor:
    fullname: Baudez
– volume: 193
  year: 2020
  ident: bib7
  article-title: Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: simultaneously mitigating antibiotic resistant genes and changing microbial communities
  publication-title: Ecotoxicol. Environ. Saf.
  contributor:
    fullname: Sun
– volume: 106
  start-page: 83
  year: 2004
  end-page: 92
  ident: bib20
  article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering
  publication-title: J. Hazard Mater.
  contributor:
    fullname: De heyder
– volume: 1
  start-page: 385
  year: 2020
  end-page: 392
  ident: bib34
  article-title: Novel insights into extracellular polymeric substance degradation, hydrophilic/hydrophobic characteristics, and dewaterability of waste activated sludge pretreated by hydroxylamine enhanced Fenton oxidation
  publication-title: ACS ES&T Engineering
  contributor:
    fullname: Hu
– volume: 81
  start-page: 2585
  year: 2020
  end-page: 2598
  ident: bib33
  article-title: The influence of different sludge concentrations on its dewaterability during bioleaching
  publication-title: Water Sci. Technol.
  contributor:
    fullname: Xiong
– volume: 231
  year: 2023
  ident: bib10
  article-title: Enhancing sludge dewatering efficiency through bioleaching facilitated by increasing reactive oxygen species
  publication-title: Water Res.
  contributor:
    fullname: Zhou
– volume: 174
  year: 2020
  ident: bib13
  article-title: Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: performance, mechanism, and implication
  publication-title: Water Res.
  contributor:
    fullname: Tang
– volume: 88
  start-page: 93
  year: 2016
  end-page: 103
  ident: bib21
  article-title: Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED)
  publication-title: Water Res.
  contributor:
    fullname: Zheng
– volume: 218
  year: 2022
  ident: bib24
  article-title: Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption
  publication-title: Water Res.
  contributor:
    fullname: Zhou
– volume: 227
  start-page: 269
  year: 2019
  end-page: 276
  ident: bib30
  article-title: Insights into the effects of acidification on sewage sludge dewaterability through pH repeated adjustment
  publication-title: Chemosphere
  contributor:
    fullname: Yang
– volume: 40
  start-page: 3176
  year: 2019
  end-page: 3189
  ident: bib19
  article-title: Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent
  publication-title: Environ. Technol.
  contributor:
    fullname: Zhou
– volume: 35
  start-page: 154
  year: 2012
  end-page: 166
  ident: bib39
  article-title: Bioleaching role in improving sludge in-deep dewatering and removal of sludge-brone metals and its engineering application
  publication-title: J. Nanjing Agric. Univ.
  contributor:
    fullname: Zhou
– volume: 163
  year: 2019
  ident: bib12
  article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?
  publication-title: Water Res.
  contributor:
    fullname: Zhang
– volume: 296
  year: 2021
  ident: bib6
  article-title: Identifying the key sludge properties characteristics in Fe
  publication-title: J. Environ. Manag.
  contributor:
    fullname: Zhu
– volume: 349
  start-page: 737
  year: 2018
  end-page: 747
  ident: bib29
  article-title: Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Yang
– volume: 206
  start-page: 134
  year: 2016
  end-page: 140
  ident: bib17
  article-title: Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation
  publication-title: Bioresour. Technol.
  contributor:
    fullname: Zeng
– volume: 349
  start-page: 737
  year: 2018
  ident: 10.1016/j.envres.2023.117014_bib29
  article-title: Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.151
  contributor:
    fullname: Wei
– volume: 15
  start-page: 4157
  issue: 12
  year: 1999
  ident: 10.1016/j.envres.2023.117014_bib27
  article-title: Application of amphoteric polyelectrolytes for sludge dewatering
  publication-title: Langmuir
  doi: 10.1021/la981130c
  contributor:
    fullname: Watanabe
– volume: 143
  start-page: 608
  year: 2018
  ident: 10.1016/j.envres.2023.117014_bib28
  article-title: Coagulation/flocculation in dewatering of sludge: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.07.029
  contributor:
    fullname: Wei
– volume: 163
  year: 2019
  ident: 10.1016/j.envres.2023.117014_bib12
  article-title: How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114912
  contributor:
    fullname: Li
– volume: 218
  year: 2022
  ident: 10.1016/j.envres.2023.117014_bib24
  article-title: Supplementation of tea polyphenols in sludge Fenton oxidation improves sludge dewaterability and reduces chemicals consumption
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118512
  contributor:
    fullname: Tao
– volume: 15
  start-page: 4789
  issue: 6
  year: 2023
  ident: 10.1016/j.envres.2023.117014_bib35
  article-title: Reasons for ineffectiveness in improving dewaterability of anaerobically digested sludge by bioleaching
  publication-title: Sustainability
  doi: 10.3390/su15064789
  contributor:
    fullname: Zhang
– volume: 225
  year: 2022
  ident: 10.1016/j.envres.2023.117014_bib25
  article-title: Positive feedback on dewaterability of waste-activated sludge by the conditioning process of Fe(II) catalyzing urea hydrogen peroxide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119195
  contributor:
    fullname: Wang
– volume: 296
  year: 2021
  ident: 10.1016/j.envres.2023.117014_bib6
  article-title: Identifying the key sludge properties characteristics in Fe2+-activated persulfate conditioning for dewaterability amelioration and engineering implementation
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113204
  contributor:
    fullname: Ge
– volume: 217
  year: 2022
  ident: 10.1016/j.envres.2023.117014_bib2
  article-title: Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: mechanistic of tannic acid aided
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118450
  contributor:
    fullname: Chen
– volume: 457
  year: 2023
  ident: 10.1016/j.envres.2023.117014_bib18
  article-title: Unraveling the impacts of Cu+-based treatments on sludge dewaterability: the overlooked role of Cu3+
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.141106
  contributor:
    fullname: Liu
– volume: 165
  start-page: 53
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib16
  article-title: Towards understanding the dewatering mechanism of sewage sludge improved by bioleaching processing
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.03.037
  contributor:
    fullname: Liu
– volume: 105
  start-page: 470
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib32
  article-title: Characterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatments
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.09.030
  contributor:
    fullname: Xiao
– volume: 37
  start-page: 5701
  year: 2003
  ident: 10.1016/j.envres.2023.117014_bib3
  article-title: Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034354c
  contributor:
    fullname: Chen
– volume: 413
  year: 2021
  ident: 10.1016/j.envres.2023.117014_bib14
  article-title: Pyrite assisted peroxymonosulfate sludge conditioning: uncover triclosan transformation during treatment
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.125368
  contributor:
    fullname: Liang
– volume: 46
  start-page: 4448
  issue: 14
  year: 2012
  ident: 10.1016/j.envres.2023.117014_bib22
  article-title: Compression dewatering of municipal activated sludge: effects of salt and pH
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.05.047
  contributor:
    fullname: Raynaud
– volume: 40
  start-page: 3176
  issue: 24
  year: 2019
  ident: 10.1016/j.envres.2023.117014_bib19
  article-title: Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2018.1465129
  contributor:
    fullname: Lu
– volume: 142
  issue: 2
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib37
  article-title: Extracellular polymeric substances level determines the sludge dewaterability in bioleaching process
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001008
  contributor:
    fullname: Zheng
– volume: 106
  start-page: 83
  issue: 2–3
  year: 2004
  ident: 10.1016/j.envres.2023.117014_bib20
  article-title: Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2003.11.014
  contributor:
    fullname: Neyens
– volume: 142
  issue: 2
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib36
  article-title: Extracellular polymeric substances level determines the sludge dewaterability in bioleaching process
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001008
  contributor:
    fullname: Zheng
– volume: 28
  start-page: 882
  issue: 6
  year: 2010
  ident: 10.1016/j.envres.2023.117014_bib23
  article-title: Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.08.001
  contributor:
    fullname: Sheng
– volume: 193
  year: 2020
  ident: 10.1016/j.envres.2023.117014_bib7
  article-title: Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: simultaneously mitigating antibiotic resistant genes and changing microbial communities
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110349
  contributor:
    fullname: Huang
– volume: 1
  start-page: 385
  issue: 3
  year: 2020
  ident: 10.1016/j.envres.2023.117014_bib34
  article-title: Novel insights into extracellular polymeric substance degradation, hydrophilic/hydrophobic characteristics, and dewaterability of waste activated sludge pretreated by hydroxylamine enhanced Fenton oxidation
  publication-title: ACS ES&T Engineering
  doi: 10.1021/acsestengg.0c00128
  contributor:
    fullname: Yu
– volume: 53
  start-page: 4542
  issue: 8
  year: 2019
  ident: 10.1016/j.envres.2023.117014_bib9
  article-title: Toxicity of three crystalline TiO(2) nanoparticles in activated sludge: bacterial cell death modes differentially weaken sludge dewaterability
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04991
  contributor:
    fullname: Li
– volume: 174
  year: 2020
  ident: 10.1016/j.envres.2023.117014_bib13
  article-title: Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: performance, mechanism, and implication
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115626
  contributor:
    fullname: Li
– volume: 88
  start-page: 93
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib21
  article-title: Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.001
  contributor:
    fullname: Qian
– volume: 211
  start-page: 387
  year: 2019
  ident: 10.1016/j.envres.2023.117014_bib26
  article-title: Combined use of inorganic coagulants and cationic polyacrylamide for enhancing dewaterability of sewage sludge
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.208
  contributor:
    fullname: Wang
– volume: 156
  start-page: 655
  year: 2015
  ident: 10.1016/j.envres.2023.117014_bib4
  article-title: Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: removal of heavy metals and improvement of the sludge dewaterability
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.10.061
  contributor:
    fullname: Fontmorin
– volume: 168
  start-page: 190
  year: 2014
  ident: 10.1016/j.envres.2023.117014_bib8
  article-title: Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.098
  contributor:
    fullname: Huo
– volume: 81
  start-page: 2585
  issue: 12
  year: 2020
  ident: 10.1016/j.envres.2023.117014_bib33
  article-title: The influence of different sludge concentrations on its dewaterability during bioleaching
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2020.319
  contributor:
    fullname: Yang
– volume: 189
  year: 2021
  ident: 10.1016/j.envres.2023.117014_bib1
  article-title: Understanding synergistic mechanisms of ferrous iron activated sulfite oxidation and organic polymer flocculation for enhancing wastewater sludge dewaterability
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116652
  contributor:
    fullname: Ai
– volume: 158
  start-page: 210
  year: 2022
  ident: 10.1016/j.envres.2023.117014_bib11
  article-title: Improving dewaterability of sewage sludge by inoculating acidified sludge and Fe2+: performance and mechanisms
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2021.11.041
  contributor:
    fullname: Li
– volume: 180
  year: 2020
  ident: 10.1016/j.envres.2023.117014_bib31
  article-title: Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115912
  contributor:
    fullname: Wu
– volume: 35
  start-page: 154
  issue: 5
  year: 2012
  ident: 10.1016/j.envres.2023.117014_bib38
  article-title: Bioleaching role in improving sludge in-deep dewatering and removal of sludge-brone metals and its engineering application
  publication-title: J. Nanjing Agric. Univ.
  contributor:
    fullname: Zhou
– volume: 231
  year: 2023
  ident: 10.1016/j.envres.2023.117014_bib10
  article-title: Enhancing sludge dewatering efficiency through bioleaching facilitated by increasing reactive oxygen species
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119622
  contributor:
    fullname: Li
– volume: 227
  start-page: 269
  year: 2019
  ident: 10.1016/j.envres.2023.117014_bib30
  article-title: Insights into the effects of acidification on sewage sludge dewaterability through pH repeated adjustment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.020
  contributor:
    fullname: Wei
– volume: 35
  start-page: 154
  issue: 5
  year: 2012
  ident: 10.1016/j.envres.2023.117014_bib39
  article-title: Bioleaching role in improving sludge in-deep dewatering and removal of sludge-brone metals and its engineering application
  publication-title: J. Nanjing Agric. Univ.
  contributor:
    fullname: Zhou
– volume: 221–222
  start-page: 170
  year: 2012
  ident: 10.1016/j.envres.2023.117014_bib15
  article-title: Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.04.028
  contributor:
    fullname: Liu
– volume: 437
  year: 2022
  ident: 10.1016/j.envres.2023.117014_bib5
  article-title: Application of CaO2-enhanced peroxone process to adjust waste activated sludge characteristics for dewaterability amelioration: molecular transformation of dissolved organic matters and realized mechanism of deep-dewatering
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135306
  contributor:
    fullname: Ge
– volume: 206
  start-page: 134
  year: 2016
  ident: 10.1016/j.envres.2023.117014_bib17
  article-title: Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.088
  contributor:
    fullname: Liu
SSID ssj0011530
Score 2.4725459
Snippet In recent years, bioleaching has emerged as a cost-effective technology for enhancing the dewaterability of sludge. However, the lengthy treatment time...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 117014
SubjectTerms Bio-acidification
Bio-substitution
Bioleaching
Flocculation
Sludge dewaterability
Title Promoting dewatering efficiency of sludge by bioleaching coupling chemical flocculation
URI https://dx.doi.org/10.1016/j.envres.2023.117014
https://search.proquest.com/docview/2860403050
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXgQRX4tvInitpk22j6OIy6q4eHDRW0nSyaJId3G7ihd_uzNtqiiIIL30kZZ2Ovlm2plvhrEjlSolnETPLUYNVsqoIJWhCUSiE5cm1CiTIrrXw3gwUpf3vfsOO2u5MJRW6bG_wfQarf2eEy_Nk-nDA3F8Q-KVIvRS0amUcFih-UOdPn7_TPNAh0eKtosBjW7pc3WOF5Qv-FF7TC3EKXopQvWbefoB1LX16a-yFe828tPmztZYB8p11j3_YqnhQT9NZ-tsufkZxxuO0Qa7u2mS7soxL-BVV3X5QQ519QiiXvKJ47OneTEGbt441WXyOZbcTuZE2cUVX1iAO7R-1vf82mSj_vnt2SDwHRUCK2VWBehdKJwWxsRCAUCC3k_mUit7FmTihJVgTCSKuFcoATqEKHLCpXGirAB0DLTssoVyUsIW4zp0uGgrIxMphIUMMhtFRocqyYxN1TYLWkHm06ZwRt5mlD3mjeBzEnzeCH6bJa20828KkCO2_3HmYftycpwbFPDQJUzmOCjF5yREEzv_vvouW6Itoh-GvT22UD3PYR_9kMoc1Ip2wBZPL64Gww_CV91j
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iBwURn7g-I3jtbtpk-zjKsrI-dvGwi95Ck52IIl3RXcWLv92ZNlUURJBeSpOWdjr58rWZb4axY5UqJZxE5hajBytlVJDK0AQiyROXJlQok1Z0-4O4N1LnN-2bOdaptTAUVumxv8L0Eq39kZa3Zuvx7o40viHpShF6KelUiji8oIgfo1M33z_jPJDxSFGXMaDutX6uDPKC4gW_aptUQ5yWL0WofpuffiB1Of2crrIVzxv5SXVra2wOinW21f2SqWGjH6fP62y5-hvHK5HRBru-qqLuils-htd8WuYf5FCmjyDtJZ84_vwwG98CN2-cEjP5IEtuJzPS7OKOzyzAHU5_1hf92mSj0-6w0wt8SYXASplNA6QXCseFMbFQAJAg_clcamXbgkycsBKMicQ4bo-VgDyEKHLCpXGirABkBrncYvPFpIBtxvPQ4ZZbGZlIIS5kkNkoMnmokszYVDVYUBtSP1aZM3QdUnavK8NrMryuDN9gSW1t_c0DNIL7H2ce1S9H4-CgFY-8gMkMO6X4nARpYuffVz9ki71h_1Jfng0udtkStZAWMWzvsfnp0wz2kZRMzUHpdB8IRt78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+dewatering+efficiency+of+sludge+by+bioleaching+coupling+chemical+flocculation&rft.jtitle=Environmental+research&rft.au=Li%2C+Ting&rft.au=Yang%2C+Jiawei&rft.au=Zhou%2C+Yujun&rft.au=Liu%2C+Xuan&rft.date=2023-11-15&rft.pub=Elsevier+Inc&rft.issn=0013-9351&rft.eissn=1096-0953&rft.volume=237&rft_id=info:doi/10.1016%2Fj.envres.2023.117014&rft.externalDocID=S0013935123018182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon