Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances

An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance an...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 121; pp. 355 - 367
Main Authors García, Jesús, Soo Too, Yen Chean, Padilla, Ricardo Vasquez, Beath, Andrew, Kim, Jin-Soo, Sanjuan, Marco E.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text
ISSN0960-1481
1879-0682
DOI10.1016/j.renene.2018.01.019

Cover

Abstract An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds. •A dynamic performance analysis of a new closed control loop methodology for heliostat aiming manipulation was performed.•A new aiming control methodology was coupled to a DNI disturbance model.•The collaborative group behaviour allows the existing control loop techniques to reduce the number of manipulated variables.•Flux peak caused by DNI fluctuations can be diminished using the proposed aiming methodology with an energy loss of 2.45%.
AbstractList An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds.
An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds. •A dynamic performance analysis of a new closed control loop methodology for heliostat aiming manipulation was performed.•A new aiming control methodology was coupled to a DNI disturbance model.•The collaborative group behaviour allows the existing control loop techniques to reduce the number of manipulated variables.•Flux peak caused by DNI fluctuations can be diminished using the proposed aiming methodology with an energy loss of 2.45%.
Author Soo Too, Yen Chean
Padilla, Ricardo Vasquez
Sanjuan, Marco E.
Kim, Jin-Soo
Beath, Andrew
García, Jesús
Author_xml – sequence: 1
  givenname: Jesús
  surname: García
  fullname: García, Jesús
  email: jesusmg@uninorte.edu.co
  organization: Department of Mechanical Engineering, Universidad del Norte, Barranquilla, Colombia
– sequence: 2
  givenname: Yen Chean
  surname: Soo Too
  fullname: Soo Too, Yen Chean
  email: yenchean@csiro.au
  organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
– sequence: 3
  givenname: Ricardo Vasquez
  surname: Padilla
  fullname: Padilla, Ricardo Vasquez
  email: ricardo.vasquez.padilla@scu.edu.au
  organization: School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
– sequence: 4
  givenname: Andrew
  surname: Beath
  fullname: Beath, Andrew
  email: andrew.beath@csiro.au
  organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
– sequence: 5
  givenname: Jin-Soo
  surname: Kim
  fullname: Kim, Jin-Soo
  email: jin-soo.kim@csiro.au
  organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
– sequence: 6
  givenname: Marco E.
  surname: Sanjuan
  fullname: Sanjuan, Marco E.
  email: msanjuan@uninorte.edu.co
  organization: Department of Mechanical Engineering, Universidad del Norte, Barranquilla, Colombia
BookMark eNqFkE9LAzEQxYNUsFa_gYccveyaZLe7WQ-C-B8EL3oOaTLRlGxSk6zQb29KPXlQ5sEc5r0H8ztGMx88IHRGSU0J7S7WdQRfpmaE8prQouEAzSnvh4p0nM3QnAwdqWjL6RE6TmlNCF3yvp2j9e3Wy9EqvIFoQhylV4CDwdJjaUfr37EKPsfg8Aj5I-jgwvsWFydOwcmIFZSrdDiCAvsFMWE9Ac4BKxcmjbVNeYqrXWs6QYdGugSnP3uB3u7vXm8eq-eXh6eb6-dKNc2Qq66hnK4UaxtmWK9ku1REK9J2mvUdWRE9GGmageulNrAEaajWjA-SatWvesaaBTrf925i-JwgZTHapMA56SFMSTDGKGl6znixXu6tKoaUIhihbJbZ7l6W1glKxA6wWIs9YLEDLAgtGkq4_RXeRDvKuP0vdrWPQWHwZSGKpCwUQNoWiFnoYP8u-AYGoZwI
CitedBy_id crossref_primary_10_1016_j_enconman_2019_112275
crossref_primary_10_1016_j_solener_2023_03_051
crossref_primary_10_1016_j_solener_2020_01_062
crossref_primary_10_1016_j_solener_2021_12_065
crossref_primary_10_3390_en18051069
crossref_primary_10_1016_j_applthermaleng_2021_117720
crossref_primary_10_1016_j_applthermaleng_2021_116722
crossref_primary_10_1088_1742_6596_2054_1_012038
crossref_primary_10_1016_j_apenergy_2020_115513
crossref_primary_10_1016_j_solener_2020_12_028
crossref_primary_10_1016_j_applthermaleng_2024_124319
crossref_primary_10_1063_5_0085499
crossref_primary_10_1016_j_renene_2021_12_008
crossref_primary_10_1016_j_solener_2023_111951
crossref_primary_10_3390_en16072997
crossref_primary_10_1016_j_renene_2020_06_113
crossref_primary_10_1016_j_solener_2020_11_053
crossref_primary_10_1016_j_apenergy_2023_121513
crossref_primary_10_1016_j_solener_2021_07_059
crossref_primary_10_1016_j_renene_2020_06_096
crossref_primary_10_1016_j_energy_2019_116034
crossref_primary_10_1016_j_rineng_2019_100074
crossref_primary_10_1016_j_applthermaleng_2019_03_086
crossref_primary_10_3390_a16100487
Cites_doi 10.1016/j.apenergy.2016.07.032
10.1016/j.apenergy.2016.06.056
10.1016/0038-092X(89)90142-4
10.1016/j.enconman.2014.04.030
10.1016/S0038-092X(99)00024-9
10.1016/j.solener.2010.01.019
10.1016/j.renene.2014.08.016
10.1016/j.apenergy.2015.07.013
10.1016/j.renene.2016.04.070
10.1016/j.apenergy.2015.01.050
10.1016/j.renene.2012.03.011
10.1016/j.apenergy.2016.09.099
10.1115/1.2189868
10.1016/j.renene.2014.03.043
10.1016/j.apenergy.2016.07.006
10.1016/j.apenergy.2014.09.008
10.1115/1.1464124
10.1016/j.solener.2012.10.010
10.1016/0038-092X(83)90022-1
10.1016/S0960-1481(02)00152-0
10.1016/j.solener.2013.02.025
10.1016/j.rser.2012.11.076
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2018.01.019
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 367
ExternalDocumentID 10_1016_j_renene_2018_01_019
S0960148118300193
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-63181bc2432f27ca45c0dc046d2760b0d9faf398d5dfe5eaf1dd289a1dc7b7223
IEDL.DBID AIKHN
ISSN 0960-1481
IngestDate Thu Sep 04 15:29:15 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Tue Jul 01 03:20:44 EDT 2025
Fri Feb 23 02:34:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud disturbances
Heliostat aiming
Multivariable closed control loop
Concentrating solar thermal
Solar central receiver
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-63181bc2432f27ca45c0dc046d2760b0d9faf398d5dfe5eaf1dd289a1dc7b7223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221037828
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2221037828
crossref_citationtrail_10_1016_j_renene_2018_01_019
crossref_primary_10_1016_j_renene_2018_01_019
elsevier_sciencedirect_doi_10_1016_j_renene_2018_01_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Le Brun, Hewitt, Markides (bib8) 2017; 186
Cruz, Redondo, Álvarez, Berenguel, Ortigosa (bib12) 2016; 16
Sengupta, Andreas (bib36) Mar. 2010
Sánchez-González, Rodríguez-Sánchez, Santana (bib33) 2016
García, Padilla, Sanjuan (bib23) 2016; 96
Sassi (bib30) 1983; 31
Augsburger, Favrat (bib21) 2013; 87
Collado, Guallar (bib37) Apr. 2013; 20
Hassan, Youssef, Mohamed, Ali, Hanafy (bib3) 2016; 179
Tehrani, Taylor (bib10) 2016; 179
Sen (bib1) 2008
Garcia Garcia, Soo Too, Vasquez Padilla, Barraza Vicencio, Beath, Sanjuan (bib22) 2017
GarcÍa-MartÍn, Berenguel, Valverde, Camacho (bib19) Aug. 1999; 66
Zavoico (bib18) Jul. 2001
Kiera (bib24) 1989
Gielen (bib4) 2012
Falcone (bib7) 1986
Salomé, Chhel, Flamant, Ferrière, Thiery (bib14) Aug. 2013; 94
Rossiter (bib34) 2013
Besarati, Yogi Goswami (bib16) Sep. 2014; 69
Tsoutsos, Gekas, Marketaki (bib6) 2003; 28
Vant-Hull (bib17) 2002; 124
Björck (bib35) 2015
Camacho, Berenguel, Rubio, Martínez (bib9) 2012
Prasad, Taylor, Kay (bib2) 2015; 143
Schwarzbözl, Pitz-Paal, Schmitz (bib25) 16-Sep-2009
Li (bib11) 2016; 178
Besarati, Yogi Goswami, Stefanakos (bib13) Aug. 2014; 84
Collado (bib26) Apr. 2010; 84
Reda, Andreas (bib28) 2003
Sánchez-González, Rodríguez-Sánchez, Santana (bib20) 2016
Collado, Turégano (bib31) Jan. 1989; 42
Chen, Lim, Lim (bib29) 2006; 128
Yu, Wang, Xu (bib15) 2014; 136
Zhu, Wang, Wu, Wang, Du, Olabi (bib5) 2015; 156
Sánchez-González, Santana (bib27) Feb. 2015; 74
Collado, Guallar (bib32) 2012; 46
Falcone (10.1016/j.renene.2018.01.019_bib7) 1986
Kiera (10.1016/j.renene.2018.01.019_bib24) 1989
Schwarzbözl (10.1016/j.renene.2018.01.019_bib25) 2009
Camacho (10.1016/j.renene.2018.01.019_bib9) 2012
Besarati (10.1016/j.renene.2018.01.019_bib13) 2014; 84
Augsburger (10.1016/j.renene.2018.01.019_bib21) 2013; 87
Sánchez-González (10.1016/j.renene.2018.01.019_bib27) 2015; 74
Vant-Hull (10.1016/j.renene.2018.01.019_bib17) 2002; 124
Collado (10.1016/j.renene.2018.01.019_bib32) 2012; 46
Salomé (10.1016/j.renene.2018.01.019_bib14) 2013; 94
Sánchez-González (10.1016/j.renene.2018.01.019_bib20) 2016
Sen (10.1016/j.renene.2018.01.019_bib1) 2008
Zavoico (10.1016/j.renene.2018.01.019_bib18) 2001
Le Brun (10.1016/j.renene.2018.01.019_bib8) 2017; 186
Björck (10.1016/j.renene.2018.01.019_bib35) 2015
Tsoutsos (10.1016/j.renene.2018.01.019_bib6) 2003; 28
Tehrani (10.1016/j.renene.2018.01.019_bib10) 2016; 179
Cruz (10.1016/j.renene.2018.01.019_bib12) 2016; 16
Rossiter (10.1016/j.renene.2018.01.019_bib34) 2013
Collado (10.1016/j.renene.2018.01.019_bib37) 2013; 20
Yu (10.1016/j.renene.2018.01.019_bib15) 2014; 136
GarcÍa-MartÍn (10.1016/j.renene.2018.01.019_bib19) 1999; 66
Prasad (10.1016/j.renene.2018.01.019_bib2) 2015; 143
Sassi (10.1016/j.renene.2018.01.019_bib30) 1983; 31
Gielen (10.1016/j.renene.2018.01.019_bib4) 2012
Besarati (10.1016/j.renene.2018.01.019_bib16) 2014; 69
Chen (10.1016/j.renene.2018.01.019_bib29) 2006; 128
Garcia Garcia (10.1016/j.renene.2018.01.019_bib22) 2017
Hassan (10.1016/j.renene.2018.01.019_bib3) 2016; 179
Collado (10.1016/j.renene.2018.01.019_bib26) 2010; 84
Sengupta (10.1016/j.renene.2018.01.019_bib36) 2010
Li (10.1016/j.renene.2018.01.019_bib11) 2016; 178
Zhu (10.1016/j.renene.2018.01.019_bib5) 2015; 156
Sánchez-González (10.1016/j.renene.2018.01.019_bib33) 2016
Collado (10.1016/j.renene.2018.01.019_bib31) 1989; 42
García (10.1016/j.renene.2018.01.019_bib23) 2016; 96
Reda (10.1016/j.renene.2018.01.019_bib28) 2003
References_xml – volume: 124
  start-page: 165
  year: 2002
  end-page: 169
  ident: bib17
  article-title: The role of ‘Allowable flux density’ in the design and operation of molten-salt solar central receivers
  publication-title: J. Sol. energy Eng.
– volume: 186
  start-page: 56
  year: 2017
  end-page: 67
  ident: bib8
  article-title: Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS)
  publication-title: Appl. Energy
– volume: 84
  start-page: 673
  year: Apr. 2010
  end-page: 684
  ident: bib26
  article-title: One-point fitting of the flux density produced by a heliostat
  publication-title: Sol. Energy
– year: Jul. 2001
  ident: bib18
  article-title: Solar Power Tower Design Basis Document, Revision 0
– volume: 46
  start-page: 49
  year: 2012
  end-page: 59
  ident: bib32
  article-title: Campo: generation of regular heliostat fields
  publication-title: Renew. Energy
– start-page: 17
  year: 2012
  ident: bib4
  article-title: Renewable Energy Technologies: Cost Analysis Series. Concentrating Solar Power
– year: 2016
  ident: bib20
  article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers
  publication-title: Sol. Energy
– volume: 179
  start-page: 437
  year: 2016
  end-page: 450
  ident: bib3
  article-title: New temperature-based models for predicting global solar radiation
  publication-title: Appl.
– volume: 136
  start-page: 417
  year: 2014
  end-page: 430
  ident: bib15
  article-title: Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field
  publication-title: Appl.
– volume: 156
  start-page: 519
  year: 2015
  end-page: 527
  ident: bib5
  article-title: Experimental investigation on the energy and exergy performance of a coiled tube solar receiver
  publication-title: Appl.
– volume: 66
  start-page: 355
  year: Aug. 1999
  end-page: 369
  ident: bib19
  article-title: Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver
  publication-title: Sol. Energy
– volume: 143
  start-page: 301
  year: 2015
  end-page: 311
  ident: bib2
  article-title: Assessment of direct normal irradiance and cloud connections using satellite data over Australia
  publication-title: Appl.
– year: 2012
  ident: bib9
  article-title: Control of Solar Energy Systems
– volume: 69
  start-page: 226
  year: Sep. 2014
  end-page: 232
  ident: bib16
  article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant
  publication-title: Renew.
– volume: 74
  start-page: 576
  year: Feb. 2015
  end-page: 587
  ident: bib27
  article-title: Solar flux distribution on central receivers: a projection method from analytic function
  publication-title: Renew. Energy
– year: 2013
  ident: bib34
  article-title: Model-based Predictive Control: a Practical Approach
– start-page: 95
  year: 1989
  end-page: 113
  ident: bib24
  article-title: Heliostat field: computer codes, requirements, comparison of methods
  publication-title: GAST—Proceedings Final Present
– volume: 94
  start-page: 352
  year: Aug. 2013
  end-page: 366
  ident: bib14
  article-title: Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: application to THEMIS solar tower
  publication-title: Sol.
– year: 2017
  ident: bib22
  article-title: Heat flux distribution over a solar central receiver using an aiming strategy based on a conventional closed control loop
  publication-title: ASME 2017 Power & Energy Conference
– year: 16-Sep-2009
  ident: bib25
  article-title: Visual HFLCAL - a software tool for layout and optimisation of heliostat fields
  publication-title: Proceedings
– start-page: 211
  year: 2015
  end-page: 430
  ident: bib35
  article-title: Linear Least Squares Problems,” in Numerical Methods in Matrix Computations
– year: 2008
  ident: bib1
  article-title: Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy
– volume: 31
  start-page: 331
  year: 1983
  end-page: 333
  ident: bib30
  article-title: Some notes on shadow and blockage effects
  publication-title: Sol. Energy
– volume: 128
  start-page: 245
  year: 2006
  end-page: 250
  ident: bib29
  article-title: General sun tracking formula for heliostats with arbitrarily oriented axes
  publication-title: J. Sol. Energy Eng.
– volume: 178
  start-page: 281
  year: 2016
  end-page: 293
  ident: bib11
  article-title: “Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant
  publication-title: Appl. Energy
– volume: 84
  start-page: 234
  year: Aug. 2014
  end-page: 243
  ident: bib13
  article-title: Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant
  publication-title: Energy Convers. Manag.
– year: Mar. 2010
  ident: bib36
  article-title: Oahu Solar Measurement Grid (1-Year archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)
– volume: 96
  start-page: 157
  year: 2016
  end-page: 166
  ident: bib23
  article-title: A biomimetic approach for modeling cloud shading with dynamic behavior
  publication-title: Renew.
– volume: 28
  start-page: 873
  year: 2003
  end-page: 886
  ident: bib6
  article-title: Technical and economical evaluation of solar thermal power generation
  publication-title: Renew. Energy
– year: 2016
  ident: bib33
  article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers
  publication-title: Sol. Energy
– year: 2003
  ident: bib28
  article-title: Sun Position MATLAB Algoritm
– volume: 87
  start-page: 42
  year: 2013
  end-page: 52
  ident: bib21
  article-title: Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant
  publication-title: Sol. Energy
– year: 1986
  ident: bib7
  article-title: A handbook for solar central receiver design
– volume: 20
  start-page: 142
  year: Apr. 2013
  end-page: 154
  ident: bib37
  article-title: A review of optimized design layouts for solar power tower plants with campo code
  publication-title: Renew. Sustain. En
– volume: 179
  start-page: 698
  year: 2016
  end-page: 715
  ident: bib10
  article-title: Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies
  publication-title: Appl. Energy
– volume: 16
  start-page: 61
  year: 2016
  end-page: 64
  ident: bib12
  article-title: On achieving a desired flux distribution on the receiver of a solar power tower plant
  publication-title: XIII Global optimization workshop GOW’16 4-8 september 2016
– volume: 42
  start-page: 149
  year: Jan. 1989
  end-page: 165
  ident: bib31
  article-title: Calculation of the annual thermal energy supplied by a defined heliostat field
  publication-title: Sol. Energy
– volume: 179
  start-page: 698
  year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib10
  article-title: Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.032
– volume: 178
  start-page: 281
  year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib11
  article-title: “Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.06.056
– volume: 42
  start-page: 149
  issue: 2
  year: 1989
  ident: 10.1016/j.renene.2018.01.019_bib31
  article-title: Calculation of the annual thermal energy supplied by a defined heliostat field
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(89)90142-4
– volume: 84
  start-page: 234
  year: 2014
  ident: 10.1016/j.renene.2018.01.019_bib13
  article-title: Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.04.030
– volume: 66
  start-page: 355
  issue: 5
  year: 1999
  ident: 10.1016/j.renene.2018.01.019_bib19
  article-title: Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(99)00024-9
– year: 2012
  ident: 10.1016/j.renene.2018.01.019_bib9
– volume: 84
  start-page: 673
  issue: 4
  year: 2010
  ident: 10.1016/j.renene.2018.01.019_bib26
  article-title: One-point fitting of the flux density produced by a heliostat
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2010.01.019
– volume: 74
  start-page: 576
  year: 2015
  ident: 10.1016/j.renene.2018.01.019_bib27
  article-title: Solar flux distribution on central receivers: a projection method from analytic function
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.08.016
– year: 2003
  ident: 10.1016/j.renene.2018.01.019_bib28
– year: 2001
  ident: 10.1016/j.renene.2018.01.019_bib18
– year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib33
  article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers
  publication-title: Sol. Energy
– volume: 156
  start-page: 519
  year: 2015
  ident: 10.1016/j.renene.2018.01.019_bib5
  article-title: Experimental investigation on the energy and exergy performance of a coiled tube solar receiver
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.07.013
– year: 1986
  ident: 10.1016/j.renene.2018.01.019_bib7
– volume: 96
  start-page: 157
  year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib23
  article-title: A biomimetic approach for modeling cloud shading with dynamic behavior
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.04.070
– volume: 143
  start-page: 301
  year: 2015
  ident: 10.1016/j.renene.2018.01.019_bib2
  article-title: Assessment of direct normal irradiance and cloud connections using satellite data over Australia
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.050
– volume: 46
  start-page: 49
  year: 2012
  ident: 10.1016/j.renene.2018.01.019_bib32
  article-title: Campo: generation of regular heliostat fields
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.011
– year: 2008
  ident: 10.1016/j.renene.2018.01.019_bib1
– year: 2009
  ident: 10.1016/j.renene.2018.01.019_bib25
  article-title: Visual HFLCAL - a software tool for layout and optimisation of heliostat fields
– volume: 186
  start-page: 56
  year: 2017
  ident: 10.1016/j.renene.2018.01.019_bib8
  article-title: Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.09.099
– year: 2010
  ident: 10.1016/j.renene.2018.01.019_bib36
– volume: 128
  start-page: 245
  issue: 2
  year: 2006
  ident: 10.1016/j.renene.2018.01.019_bib29
  article-title: General sun tracking formula for heliostats with arbitrarily oriented axes
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2189868
– year: 2017
  ident: 10.1016/j.renene.2018.01.019_bib22
  article-title: Heat flux distribution over a solar central receiver using an aiming strategy based on a conventional closed control loop
– start-page: 17
  year: 2012
  ident: 10.1016/j.renene.2018.01.019_bib4
– volume: 69
  start-page: 226
  year: 2014
  ident: 10.1016/j.renene.2018.01.019_bib16
  article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.03.043
– year: 2013
  ident: 10.1016/j.renene.2018.01.019_bib34
– volume: 179
  start-page: 437
  year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib3
  article-title: New temperature-based models for predicting global solar radiation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.006
– year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib20
  article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers
  publication-title: Sol. Energy
– start-page: 211
  year: 2015
  ident: 10.1016/j.renene.2018.01.019_bib35
– volume: 136
  start-page: 417
  year: 2014
  ident: 10.1016/j.renene.2018.01.019_bib15
  article-title: Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.008
– start-page: 95
  year: 1989
  ident: 10.1016/j.renene.2018.01.019_bib24
  article-title: Heliostat field: computer codes, requirements, comparison of methods
– volume: 16
  start-page: 61
  year: 2016
  ident: 10.1016/j.renene.2018.01.019_bib12
  article-title: On achieving a desired flux distribution on the receiver of a solar power tower plant
– volume: 124
  start-page: 165
  issue: 2
  year: 2002
  ident: 10.1016/j.renene.2018.01.019_bib17
  article-title: The role of ‘Allowable flux density’ in the design and operation of molten-salt solar central receivers
  publication-title: J. Sol. energy Eng.
  doi: 10.1115/1.1464124
– volume: 87
  start-page: 42
  year: 2013
  ident: 10.1016/j.renene.2018.01.019_bib21
  article-title: Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.10.010
– volume: 31
  start-page: 331
  issue: 3
  year: 1983
  ident: 10.1016/j.renene.2018.01.019_bib30
  article-title: Some notes on shadow and blockage effects
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(83)90022-1
– volume: 28
  start-page: 873
  issue: no. 6
  year: 2003
  ident: 10.1016/j.renene.2018.01.019_bib6
  article-title: Technical and economical evaluation of solar thermal power generation
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(02)00152-0
– volume: 94
  start-page: 352
  year: 2013
  ident: 10.1016/j.renene.2018.01.019_bib14
  article-title: Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: application to THEMIS solar tower
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.02.025
– volume: 20
  start-page: 142
  year: 2013
  ident: 10.1016/j.renene.2018.01.019_bib37
  article-title: A review of optimized design layouts for solar power tower plants with campo code
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.11.076
SSID ssj0015874
Score 2.3813763
Snippet An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 355
SubjectTerms Cloud disturbances
Concentrating solar thermal
control methods
heat transfer
Heliostat aiming
Multivariable closed control loop
renewable energy sources
shade
Solar central receiver
solar collectors
solar radiation
Title Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances
URI https://dx.doi.org/10.1016/j.renene.2018.01.019
https://www.proquest.com/docview/2221037828
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbCF7rJk2fR_HBquhFBW8hT1GkXXa3V3-7kzb1hSAIvbQkaZlMJt80M98AHFFleJkZGWW5olFSaBkpp1CXszJPS2tcZn3u8M1tNnpIrh7Txzk47XNhfFhlsP2dTW-tdXgyDNIcjp-fh3cefCOYR4TMPVDh87AQ43vTASycXF6Pbj8OE9KiI2PG9pHv0GfQtWFenjiy8nyZrGj5Oz3lzu871A9b3W5AFyuwHJAjOek-bhXmbLUGS1_4BNfh5ayrL0_Gn-kApHZEVkT66l1PJESmk65wdPtLnWBLMvUeLgmRmgQlYtt4DWIaS2Y10a91Y4hBlWgmyo863YCHi_P701EUiilEmvNyFmW4eJnSccJjF-daJqmmRqN3bOI8o4qa0knHy8KkxtnUSseMQWdMMqNzlSOI2IRBVVd2C4hlBnGNo1QnLMlVWkipqORUxqVJmEu2gfcCFDowjfuCF6-iDyl7EZ3YhRe7oAyvchuij17jjmnjj_Z5Pzfim8YI3Az-6HnYT6XAxeRPSGRl62YqECz5vEn0Qnf-PfouLPq7LpxsDwazSWP3EbjM1AHMH7-xg6Ce749O8Ck
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELZYDtADYikqbQEjcU2fHTtxckQseqwXQOJmeUUglDzxXq78dmayUKgqISHllIytaDwef5N8M0PIPrNelLk3Sa4sS2ThTGKjBVvOS5WVwcc8YO7w5VU-vpVnd9ndHDkccmGQVtn7_s6nt966vzPqtTmaPDyMrhF8A5gHhCwQqIh5sigzoZDX9-fljefBs6IrxQzSCYoP-XMtyQvLRlZYLZMXbfVOLLjz__PpH0_dHj8nq2Slx430oHu1NTIXqnXy7V01wQ3yeNR1l6eTv8kAtI7UVNRg76572vPSadc2uv2gTkGSTjG-pT1Pk4I-QsvWoL4JdFZT91Q3nnowiObZ4qzT7-T25PjmcJz0rRQSJ0Q5S3LYuty6VIo0psoZmTnmHcTGPlU5s8yX0URRFj7zMWTBRO49hGKGe6esAgixSRaqugo_CA3cA6qJjDnJpbJZYYxlRjCTll7yKLeIGBSoXV9nHNtdPOmBUPaoO7VrVLtmHK5yiyRvoyZdnY1P5NWwNvqDvWg4Cj4ZuTcspYathP9HTBXqZqoBKmHWJMSgP788-y5ZGt9cXuiL06vzX2QZn3TEst9kYfbchG2AMDO705roK5rQ8PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+performance+of+an+aiming+control+methodology+for+solar+central+receivers+due+to+cloud+disturbances&rft.jtitle=Renewable+energy&rft.au=Garc%C3%ADa%2C+Jes%C3%BAs&rft.au=Soo+Too%2C+Yen+Chean&rft.au=Padilla%2C+Ricardo+Vasquez&rft.au=Beath%2C+Andrew&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=121&rft.spage=355&rft.epage=367&rft_id=info:doi/10.1016%2Fj.renene.2018.01.019&rft.externalDocID=S0960148118300193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon