Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances
An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance an...
Saved in:
Published in | Renewable energy Vol. 121; pp. 355 - 367 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-1481 1879-0682 |
DOI | 10.1016/j.renene.2018.01.019 |
Cover
Abstract | An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds.
•A dynamic performance analysis of a new closed control loop methodology for heliostat aiming manipulation was performed.•A new aiming control methodology was coupled to a DNI disturbance model.•The collaborative group behaviour allows the existing control loop techniques to reduce the number of manipulated variables.•Flux peak caused by DNI fluctuations can be diminished using the proposed aiming methodology with an energy loss of 2.45%. |
---|---|
AbstractList | An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds. An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower systems. High solar radiation variation due to moving clouds may cause failures to the solar receiver. This paper shows a dynamic performance analysis of a solar central receiver operating when short-time cloud passages partially shade the solar field. The solar receiver incorporates an aiming methodology based on a closed loop model predictive control approach. The DNI changes are simulated using an agent-based model that closely emulates the transients in solar radiation caused by clouds. These models are coupled with a solar system model that resembles the Gemasolar solar plant. The simulations showed that the base feedback loop aiming strategy could successfully restore the solar receiver back to its steady state after transient operations caused by clouds. However, undesired overshoots in incident flux density and high heating rates in the controlled variables were found. These issues are overcome through a setpoint readjustment approach, which is temporally supported by a PI controller. The results show that the proposed aiming control strategy can provide a continuous safe operation of the solar central receiver when subject to transient flux distribution due to clouds. •A dynamic performance analysis of a new closed control loop methodology for heliostat aiming manipulation was performed.•A new aiming control methodology was coupled to a DNI disturbance model.•The collaborative group behaviour allows the existing control loop techniques to reduce the number of manipulated variables.•Flux peak caused by DNI fluctuations can be diminished using the proposed aiming methodology with an energy loss of 2.45%. |
Author | Soo Too, Yen Chean Padilla, Ricardo Vasquez Sanjuan, Marco E. Kim, Jin-Soo Beath, Andrew García, Jesús |
Author_xml | – sequence: 1 givenname: Jesús surname: García fullname: García, Jesús email: jesusmg@uninorte.edu.co organization: Department of Mechanical Engineering, Universidad del Norte, Barranquilla, Colombia – sequence: 2 givenname: Yen Chean surname: Soo Too fullname: Soo Too, Yen Chean email: yenchean@csiro.au organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia – sequence: 3 givenname: Ricardo Vasquez surname: Padilla fullname: Padilla, Ricardo Vasquez email: ricardo.vasquez.padilla@scu.edu.au organization: School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia – sequence: 4 givenname: Andrew surname: Beath fullname: Beath, Andrew email: andrew.beath@csiro.au organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia – sequence: 5 givenname: Jin-Soo surname: Kim fullname: Kim, Jin-Soo email: jin-soo.kim@csiro.au organization: CSIRO Energy Centre, Mayfield West, NSW 2304, Australia – sequence: 6 givenname: Marco E. surname: Sanjuan fullname: Sanjuan, Marco E. email: msanjuan@uninorte.edu.co organization: Department of Mechanical Engineering, Universidad del Norte, Barranquilla, Colombia |
BookMark | eNqFkE9LAzEQxYNUsFa_gYccveyaZLe7WQ-C-B8EL3oOaTLRlGxSk6zQb29KPXlQ5sEc5r0H8ztGMx88IHRGSU0J7S7WdQRfpmaE8prQouEAzSnvh4p0nM3QnAwdqWjL6RE6TmlNCF3yvp2j9e3Wy9EqvIFoQhylV4CDwdJjaUfr37EKPsfg8Aj5I-jgwvsWFydOwcmIFZSrdDiCAvsFMWE9Ac4BKxcmjbVNeYqrXWs6QYdGugSnP3uB3u7vXm8eq-eXh6eb6-dKNc2Qq66hnK4UaxtmWK9ku1REK9J2mvUdWRE9GGmageulNrAEaajWjA-SatWvesaaBTrf925i-JwgZTHapMA56SFMSTDGKGl6znixXu6tKoaUIhihbJbZ7l6W1glKxA6wWIs9YLEDLAgtGkq4_RXeRDvKuP0vdrWPQWHwZSGKpCwUQNoWiFnoYP8u-AYGoZwI |
CitedBy_id | crossref_primary_10_1016_j_enconman_2019_112275 crossref_primary_10_1016_j_solener_2023_03_051 crossref_primary_10_1016_j_solener_2020_01_062 crossref_primary_10_1016_j_solener_2021_12_065 crossref_primary_10_3390_en18051069 crossref_primary_10_1016_j_applthermaleng_2021_117720 crossref_primary_10_1016_j_applthermaleng_2021_116722 crossref_primary_10_1088_1742_6596_2054_1_012038 crossref_primary_10_1016_j_apenergy_2020_115513 crossref_primary_10_1016_j_solener_2020_12_028 crossref_primary_10_1016_j_applthermaleng_2024_124319 crossref_primary_10_1063_5_0085499 crossref_primary_10_1016_j_renene_2021_12_008 crossref_primary_10_1016_j_solener_2023_111951 crossref_primary_10_3390_en16072997 crossref_primary_10_1016_j_renene_2020_06_113 crossref_primary_10_1016_j_solener_2020_11_053 crossref_primary_10_1016_j_apenergy_2023_121513 crossref_primary_10_1016_j_solener_2021_07_059 crossref_primary_10_1016_j_renene_2020_06_096 crossref_primary_10_1016_j_energy_2019_116034 crossref_primary_10_1016_j_rineng_2019_100074 crossref_primary_10_1016_j_applthermaleng_2019_03_086 crossref_primary_10_3390_a16100487 |
Cites_doi | 10.1016/j.apenergy.2016.07.032 10.1016/j.apenergy.2016.06.056 10.1016/0038-092X(89)90142-4 10.1016/j.enconman.2014.04.030 10.1016/S0038-092X(99)00024-9 10.1016/j.solener.2010.01.019 10.1016/j.renene.2014.08.016 10.1016/j.apenergy.2015.07.013 10.1016/j.renene.2016.04.070 10.1016/j.apenergy.2015.01.050 10.1016/j.renene.2012.03.011 10.1016/j.apenergy.2016.09.099 10.1115/1.2189868 10.1016/j.renene.2014.03.043 10.1016/j.apenergy.2016.07.006 10.1016/j.apenergy.2014.09.008 10.1115/1.1464124 10.1016/j.solener.2012.10.010 10.1016/0038-092X(83)90022-1 10.1016/S0960-1481(02)00152-0 10.1016/j.solener.2013.02.025 10.1016/j.rser.2012.11.076 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2018.01.019 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 367 |
ExternalDocumentID | 10_1016_j_renene_2018_01_019 S0960148118300193 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-63181bc2432f27ca45c0dc046d2760b0d9faf398d5dfe5eaf1dd289a1dc7b7223 |
IEDL.DBID | AIKHN |
ISSN | 0960-1481 |
IngestDate | Thu Sep 04 15:29:15 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Tue Jul 01 03:20:44 EDT 2025 Fri Feb 23 02:34:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cloud disturbances Heliostat aiming Multivariable closed control loop Concentrating solar thermal Solar central receiver |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-63181bc2432f27ca45c0dc046d2760b0d9faf398d5dfe5eaf1dd289a1dc7b7223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2221037828 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2221037828 crossref_citationtrail_10_1016_j_renene_2018_01_019 crossref_primary_10_1016_j_renene_2018_01_019 elsevier_sciencedirect_doi_10_1016_j_renene_2018_01_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Le Brun, Hewitt, Markides (bib8) 2017; 186 Cruz, Redondo, Álvarez, Berenguel, Ortigosa (bib12) 2016; 16 Sengupta, Andreas (bib36) Mar. 2010 Sánchez-González, Rodríguez-Sánchez, Santana (bib33) 2016 García, Padilla, Sanjuan (bib23) 2016; 96 Sassi (bib30) 1983; 31 Augsburger, Favrat (bib21) 2013; 87 Collado, Guallar (bib37) Apr. 2013; 20 Hassan, Youssef, Mohamed, Ali, Hanafy (bib3) 2016; 179 Tehrani, Taylor (bib10) 2016; 179 Sen (bib1) 2008 Garcia Garcia, Soo Too, Vasquez Padilla, Barraza Vicencio, Beath, Sanjuan (bib22) 2017 GarcÍa-MartÍn, Berenguel, Valverde, Camacho (bib19) Aug. 1999; 66 Zavoico (bib18) Jul. 2001 Kiera (bib24) 1989 Gielen (bib4) 2012 Falcone (bib7) 1986 Salomé, Chhel, Flamant, Ferrière, Thiery (bib14) Aug. 2013; 94 Rossiter (bib34) 2013 Besarati, Yogi Goswami (bib16) Sep. 2014; 69 Tsoutsos, Gekas, Marketaki (bib6) 2003; 28 Vant-Hull (bib17) 2002; 124 Björck (bib35) 2015 Camacho, Berenguel, Rubio, Martínez (bib9) 2012 Prasad, Taylor, Kay (bib2) 2015; 143 Schwarzbözl, Pitz-Paal, Schmitz (bib25) 16-Sep-2009 Li (bib11) 2016; 178 Besarati, Yogi Goswami, Stefanakos (bib13) Aug. 2014; 84 Collado (bib26) Apr. 2010; 84 Reda, Andreas (bib28) 2003 Sánchez-González, Rodríguez-Sánchez, Santana (bib20) 2016 Collado, Turégano (bib31) Jan. 1989; 42 Chen, Lim, Lim (bib29) 2006; 128 Yu, Wang, Xu (bib15) 2014; 136 Zhu, Wang, Wu, Wang, Du, Olabi (bib5) 2015; 156 Sánchez-González, Santana (bib27) Feb. 2015; 74 Collado, Guallar (bib32) 2012; 46 Falcone (10.1016/j.renene.2018.01.019_bib7) 1986 Kiera (10.1016/j.renene.2018.01.019_bib24) 1989 Schwarzbözl (10.1016/j.renene.2018.01.019_bib25) 2009 Camacho (10.1016/j.renene.2018.01.019_bib9) 2012 Besarati (10.1016/j.renene.2018.01.019_bib13) 2014; 84 Augsburger (10.1016/j.renene.2018.01.019_bib21) 2013; 87 Sánchez-González (10.1016/j.renene.2018.01.019_bib27) 2015; 74 Vant-Hull (10.1016/j.renene.2018.01.019_bib17) 2002; 124 Collado (10.1016/j.renene.2018.01.019_bib32) 2012; 46 Salomé (10.1016/j.renene.2018.01.019_bib14) 2013; 94 Sánchez-González (10.1016/j.renene.2018.01.019_bib20) 2016 Sen (10.1016/j.renene.2018.01.019_bib1) 2008 Zavoico (10.1016/j.renene.2018.01.019_bib18) 2001 Le Brun (10.1016/j.renene.2018.01.019_bib8) 2017; 186 Björck (10.1016/j.renene.2018.01.019_bib35) 2015 Tsoutsos (10.1016/j.renene.2018.01.019_bib6) 2003; 28 Tehrani (10.1016/j.renene.2018.01.019_bib10) 2016; 179 Cruz (10.1016/j.renene.2018.01.019_bib12) 2016; 16 Rossiter (10.1016/j.renene.2018.01.019_bib34) 2013 Collado (10.1016/j.renene.2018.01.019_bib37) 2013; 20 Yu (10.1016/j.renene.2018.01.019_bib15) 2014; 136 GarcÍa-MartÍn (10.1016/j.renene.2018.01.019_bib19) 1999; 66 Prasad (10.1016/j.renene.2018.01.019_bib2) 2015; 143 Sassi (10.1016/j.renene.2018.01.019_bib30) 1983; 31 Gielen (10.1016/j.renene.2018.01.019_bib4) 2012 Besarati (10.1016/j.renene.2018.01.019_bib16) 2014; 69 Chen (10.1016/j.renene.2018.01.019_bib29) 2006; 128 Garcia Garcia (10.1016/j.renene.2018.01.019_bib22) 2017 Hassan (10.1016/j.renene.2018.01.019_bib3) 2016; 179 Collado (10.1016/j.renene.2018.01.019_bib26) 2010; 84 Sengupta (10.1016/j.renene.2018.01.019_bib36) 2010 Li (10.1016/j.renene.2018.01.019_bib11) 2016; 178 Zhu (10.1016/j.renene.2018.01.019_bib5) 2015; 156 Sánchez-González (10.1016/j.renene.2018.01.019_bib33) 2016 Collado (10.1016/j.renene.2018.01.019_bib31) 1989; 42 García (10.1016/j.renene.2018.01.019_bib23) 2016; 96 Reda (10.1016/j.renene.2018.01.019_bib28) 2003 |
References_xml | – volume: 124 start-page: 165 year: 2002 end-page: 169 ident: bib17 article-title: The role of ‘Allowable flux density’ in the design and operation of molten-salt solar central receivers publication-title: J. Sol. energy Eng. – volume: 186 start-page: 56 year: 2017 end-page: 67 ident: bib8 article-title: Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS) publication-title: Appl. Energy – volume: 84 start-page: 673 year: Apr. 2010 end-page: 684 ident: bib26 article-title: One-point fitting of the flux density produced by a heliostat publication-title: Sol. Energy – year: Jul. 2001 ident: bib18 article-title: Solar Power Tower Design Basis Document, Revision 0 – volume: 46 start-page: 49 year: 2012 end-page: 59 ident: bib32 article-title: Campo: generation of regular heliostat fields publication-title: Renew. Energy – start-page: 17 year: 2012 ident: bib4 article-title: Renewable Energy Technologies: Cost Analysis Series. Concentrating Solar Power – year: 2016 ident: bib20 article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers publication-title: Sol. Energy – volume: 179 start-page: 437 year: 2016 end-page: 450 ident: bib3 article-title: New temperature-based models for predicting global solar radiation publication-title: Appl. – volume: 136 start-page: 417 year: 2014 end-page: 430 ident: bib15 article-title: Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field publication-title: Appl. – volume: 156 start-page: 519 year: 2015 end-page: 527 ident: bib5 article-title: Experimental investigation on the energy and exergy performance of a coiled tube solar receiver publication-title: Appl. – volume: 66 start-page: 355 year: Aug. 1999 end-page: 369 ident: bib19 article-title: Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver publication-title: Sol. Energy – volume: 143 start-page: 301 year: 2015 end-page: 311 ident: bib2 article-title: Assessment of direct normal irradiance and cloud connections using satellite data over Australia publication-title: Appl. – year: 2012 ident: bib9 article-title: Control of Solar Energy Systems – volume: 69 start-page: 226 year: Sep. 2014 end-page: 232 ident: bib16 article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant publication-title: Renew. – volume: 74 start-page: 576 year: Feb. 2015 end-page: 587 ident: bib27 article-title: Solar flux distribution on central receivers: a projection method from analytic function publication-title: Renew. Energy – year: 2013 ident: bib34 article-title: Model-based Predictive Control: a Practical Approach – start-page: 95 year: 1989 end-page: 113 ident: bib24 article-title: Heliostat field: computer codes, requirements, comparison of methods publication-title: GAST—Proceedings Final Present – volume: 94 start-page: 352 year: Aug. 2013 end-page: 366 ident: bib14 article-title: Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: application to THEMIS solar tower publication-title: Sol. – year: 2017 ident: bib22 article-title: Heat flux distribution over a solar central receiver using an aiming strategy based on a conventional closed control loop publication-title: ASME 2017 Power & Energy Conference – year: 16-Sep-2009 ident: bib25 article-title: Visual HFLCAL - a software tool for layout and optimisation of heliostat fields publication-title: Proceedings – start-page: 211 year: 2015 end-page: 430 ident: bib35 article-title: Linear Least Squares Problems,” in Numerical Methods in Matrix Computations – year: 2008 ident: bib1 article-title: Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy – volume: 31 start-page: 331 year: 1983 end-page: 333 ident: bib30 article-title: Some notes on shadow and blockage effects publication-title: Sol. Energy – volume: 128 start-page: 245 year: 2006 end-page: 250 ident: bib29 article-title: General sun tracking formula for heliostats with arbitrarily oriented axes publication-title: J. Sol. Energy Eng. – volume: 178 start-page: 281 year: 2016 end-page: 293 ident: bib11 article-title: “Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant publication-title: Appl. Energy – volume: 84 start-page: 234 year: Aug. 2014 end-page: 243 ident: bib13 article-title: Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant publication-title: Energy Convers. Manag. – year: Mar. 2010 ident: bib36 article-title: Oahu Solar Measurement Grid (1-Year archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data) – volume: 96 start-page: 157 year: 2016 end-page: 166 ident: bib23 article-title: A biomimetic approach for modeling cloud shading with dynamic behavior publication-title: Renew. – volume: 28 start-page: 873 year: 2003 end-page: 886 ident: bib6 article-title: Technical and economical evaluation of solar thermal power generation publication-title: Renew. Energy – year: 2016 ident: bib33 article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers publication-title: Sol. Energy – year: 2003 ident: bib28 article-title: Sun Position MATLAB Algoritm – volume: 87 start-page: 42 year: 2013 end-page: 52 ident: bib21 article-title: Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant publication-title: Sol. Energy – year: 1986 ident: bib7 article-title: A handbook for solar central receiver design – volume: 20 start-page: 142 year: Apr. 2013 end-page: 154 ident: bib37 article-title: A review of optimized design layouts for solar power tower plants with campo code publication-title: Renew. Sustain. En – volume: 179 start-page: 698 year: 2016 end-page: 715 ident: bib10 article-title: Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies publication-title: Appl. Energy – volume: 16 start-page: 61 year: 2016 end-page: 64 ident: bib12 article-title: On achieving a desired flux distribution on the receiver of a solar power tower plant publication-title: XIII Global optimization workshop GOW’16 4-8 september 2016 – volume: 42 start-page: 149 year: Jan. 1989 end-page: 165 ident: bib31 article-title: Calculation of the annual thermal energy supplied by a defined heliostat field publication-title: Sol. Energy – volume: 179 start-page: 698 year: 2016 ident: 10.1016/j.renene.2018.01.019_bib10 article-title: Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.032 – volume: 178 start-page: 281 year: 2016 ident: 10.1016/j.renene.2018.01.019_bib11 article-title: “Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.056 – volume: 42 start-page: 149 issue: 2 year: 1989 ident: 10.1016/j.renene.2018.01.019_bib31 article-title: Calculation of the annual thermal energy supplied by a defined heliostat field publication-title: Sol. Energy doi: 10.1016/0038-092X(89)90142-4 – volume: 84 start-page: 234 year: 2014 ident: 10.1016/j.renene.2018.01.019_bib13 article-title: Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.04.030 – volume: 66 start-page: 355 issue: 5 year: 1999 ident: 10.1016/j.renene.2018.01.019_bib19 article-title: Heuristic knowledge-based heliostat field control for the optimization of the temperature distribution in a volumetric receiver publication-title: Sol. Energy doi: 10.1016/S0038-092X(99)00024-9 – year: 2012 ident: 10.1016/j.renene.2018.01.019_bib9 – volume: 84 start-page: 673 issue: 4 year: 2010 ident: 10.1016/j.renene.2018.01.019_bib26 article-title: One-point fitting of the flux density produced by a heliostat publication-title: Sol. Energy doi: 10.1016/j.solener.2010.01.019 – volume: 74 start-page: 576 year: 2015 ident: 10.1016/j.renene.2018.01.019_bib27 article-title: Solar flux distribution on central receivers: a projection method from analytic function publication-title: Renew. Energy doi: 10.1016/j.renene.2014.08.016 – year: 2003 ident: 10.1016/j.renene.2018.01.019_bib28 – year: 2001 ident: 10.1016/j.renene.2018.01.019_bib18 – year: 2016 ident: 10.1016/j.renene.2018.01.019_bib33 article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers publication-title: Sol. Energy – volume: 156 start-page: 519 year: 2015 ident: 10.1016/j.renene.2018.01.019_bib5 article-title: Experimental investigation on the energy and exergy performance of a coiled tube solar receiver publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.013 – year: 1986 ident: 10.1016/j.renene.2018.01.019_bib7 – volume: 96 start-page: 157 year: 2016 ident: 10.1016/j.renene.2018.01.019_bib23 article-title: A biomimetic approach for modeling cloud shading with dynamic behavior publication-title: Renew. Energy doi: 10.1016/j.renene.2016.04.070 – volume: 143 start-page: 301 year: 2015 ident: 10.1016/j.renene.2018.01.019_bib2 article-title: Assessment of direct normal irradiance and cloud connections using satellite data over Australia publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.050 – volume: 46 start-page: 49 year: 2012 ident: 10.1016/j.renene.2018.01.019_bib32 article-title: Campo: generation of regular heliostat fields publication-title: Renew. Energy doi: 10.1016/j.renene.2012.03.011 – year: 2008 ident: 10.1016/j.renene.2018.01.019_bib1 – year: 2009 ident: 10.1016/j.renene.2018.01.019_bib25 article-title: Visual HFLCAL - a software tool for layout and optimisation of heliostat fields – volume: 186 start-page: 56 year: 2017 ident: 10.1016/j.renene.2018.01.019_bib8 article-title: Transient freezing of molten salts in pipe-flow systems: application to the direct reactor auxiliary cooling system (DRACS) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.099 – year: 2010 ident: 10.1016/j.renene.2018.01.019_bib36 – volume: 128 start-page: 245 issue: 2 year: 2006 ident: 10.1016/j.renene.2018.01.019_bib29 article-title: General sun tracking formula for heliostats with arbitrarily oriented axes publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2189868 – year: 2017 ident: 10.1016/j.renene.2018.01.019_bib22 article-title: Heat flux distribution over a solar central receiver using an aiming strategy based on a conventional closed control loop – start-page: 17 year: 2012 ident: 10.1016/j.renene.2018.01.019_bib4 – volume: 69 start-page: 226 year: 2014 ident: 10.1016/j.renene.2018.01.019_bib16 article-title: A computationally efficient method for the design of the heliostat field for solar power tower plant publication-title: Renew. Energy doi: 10.1016/j.renene.2014.03.043 – year: 2013 ident: 10.1016/j.renene.2018.01.019_bib34 – volume: 179 start-page: 437 year: 2016 ident: 10.1016/j.renene.2018.01.019_bib3 article-title: New temperature-based models for predicting global solar radiation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.07.006 – year: 2016 ident: 10.1016/j.renene.2018.01.019_bib20 article-title: Aiming strategy model based on allowable flux densities for molten salt central receivers publication-title: Sol. Energy – start-page: 211 year: 2015 ident: 10.1016/j.renene.2018.01.019_bib35 – volume: 136 start-page: 417 year: 2014 ident: 10.1016/j.renene.2018.01.019_bib15 article-title: Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.008 – start-page: 95 year: 1989 ident: 10.1016/j.renene.2018.01.019_bib24 article-title: Heliostat field: computer codes, requirements, comparison of methods – volume: 16 start-page: 61 year: 2016 ident: 10.1016/j.renene.2018.01.019_bib12 article-title: On achieving a desired flux distribution on the receiver of a solar power tower plant – volume: 124 start-page: 165 issue: 2 year: 2002 ident: 10.1016/j.renene.2018.01.019_bib17 article-title: The role of ‘Allowable flux density’ in the design and operation of molten-salt solar central receivers publication-title: J. Sol. energy Eng. doi: 10.1115/1.1464124 – volume: 87 start-page: 42 year: 2013 ident: 10.1016/j.renene.2018.01.019_bib21 article-title: Modelling of the receiver transient flux distribution due to cloud passages on a solar tower thermal power plant publication-title: Sol. Energy doi: 10.1016/j.solener.2012.10.010 – volume: 31 start-page: 331 issue: 3 year: 1983 ident: 10.1016/j.renene.2018.01.019_bib30 article-title: Some notes on shadow and blockage effects publication-title: Sol. Energy doi: 10.1016/0038-092X(83)90022-1 – volume: 28 start-page: 873 issue: no. 6 year: 2003 ident: 10.1016/j.renene.2018.01.019_bib6 article-title: Technical and economical evaluation of solar thermal power generation publication-title: Renew. Energy doi: 10.1016/S0960-1481(02)00152-0 – volume: 94 start-page: 352 year: 2013 ident: 10.1016/j.renene.2018.01.019_bib14 article-title: Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: application to THEMIS solar tower publication-title: Sol. Energy doi: 10.1016/j.solener.2013.02.025 – volume: 20 start-page: 142 year: 2013 ident: 10.1016/j.renene.2018.01.019_bib37 article-title: A review of optimized design layouts for solar power tower plants with campo code publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.11.076 |
SSID | ssj0015874 |
Score | 2.3813763 |
Snippet | An appropriate control of the heat flux distribution over the solar central receiver is essential to achieve an efficient and safe operation of solar tower... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 355 |
SubjectTerms | Cloud disturbances Concentrating solar thermal control methods heat transfer Heliostat aiming Multivariable closed control loop renewable energy sources shade Solar central receiver solar collectors solar radiation |
Title | Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances |
URI | https://dx.doi.org/10.1016/j.renene.2018.01.019 https://www.proquest.com/docview/2221037828 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbCF7rJk2fR_HBquhFBW8hT1GkXXa3V3-7kzb1hSAIvbQkaZlMJt80M98AHFFleJkZGWW5olFSaBkpp1CXszJPS2tcZn3u8M1tNnpIrh7Txzk47XNhfFhlsP2dTW-tdXgyDNIcjp-fh3cefCOYR4TMPVDh87AQ43vTASycXF6Pbj8OE9KiI2PG9pHv0GfQtWFenjiy8nyZrGj5Oz3lzu871A9b3W5AFyuwHJAjOek-bhXmbLUGS1_4BNfh5ayrL0_Gn-kApHZEVkT66l1PJESmk65wdPtLnWBLMvUeLgmRmgQlYtt4DWIaS2Y10a91Y4hBlWgmyo863YCHi_P701EUiilEmvNyFmW4eJnSccJjF-daJqmmRqN3bOI8o4qa0knHy8KkxtnUSseMQWdMMqNzlSOI2IRBVVd2C4hlBnGNo1QnLMlVWkipqORUxqVJmEu2gfcCFDowjfuCF6-iDyl7EZ3YhRe7oAyvchuij17jjmnjj_Z5Pzfim8YI3Az-6HnYT6XAxeRPSGRl62YqECz5vEn0Qnf-PfouLPq7LpxsDwazSWP3EbjM1AHMH7-xg6Ce749O8Ck |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wELZYDtADYikqbQEjcU2fHTtxckQseqwXQOJmeUUglDzxXq78dmayUKgqISHllIytaDwef5N8M0PIPrNelLk3Sa4sS2ThTGKjBVvOS5WVwcc8YO7w5VU-vpVnd9ndHDkccmGQVtn7_s6nt966vzPqtTmaPDyMrhF8A5gHhCwQqIh5sigzoZDX9-fljefBs6IrxQzSCYoP-XMtyQvLRlZYLZMXbfVOLLjz__PpH0_dHj8nq2Slx430oHu1NTIXqnXy7V01wQ3yeNR1l6eTv8kAtI7UVNRg76572vPSadc2uv2gTkGSTjG-pT1Pk4I-QsvWoL4JdFZT91Q3nnowiObZ4qzT7-T25PjmcJz0rRQSJ0Q5S3LYuty6VIo0psoZmTnmHcTGPlU5s8yX0URRFj7zMWTBRO49hGKGe6esAgixSRaqugo_CA3cA6qJjDnJpbJZYYxlRjCTll7yKLeIGBSoXV9nHNtdPOmBUPaoO7VrVLtmHK5yiyRvoyZdnY1P5NWwNvqDvWg4Cj4ZuTcspYathP9HTBXqZqoBKmHWJMSgP788-y5ZGt9cXuiL06vzX2QZn3TEst9kYfbchG2AMDO705roK5rQ8PQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+performance+of+an+aiming+control+methodology+for+solar+central+receivers+due+to+cloud+disturbances&rft.jtitle=Renewable+energy&rft.au=Garc%C3%ADa%2C+Jes%C3%BAs&rft.au=Soo+Too%2C+Yen+Chean&rft.au=Padilla%2C+Ricardo+Vasquez&rft.au=Beath%2C+Andrew&rft.date=2018-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=121&rft.spage=355&rft.epage=367&rft_id=info:doi/10.1016%2Fj.renene.2018.01.019&rft.externalDocID=S0960148118300193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |