Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors
Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple...
Saved in:
Published in | Carbon (New York) Vol. 206; pp. 53 - 61 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication.
[Display omitted] |
---|---|
AbstractList | Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication. Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication. [Display omitted] |
Author | Sun, Xiao-Rong Gong, Tao Li, Wu-Di Bao, Rui-Ying Ke, Kai Jia, Jin Yang, Wei |
Author_xml | – sequence: 1 givenname: Tao surname: Gong fullname: Gong, Tao – sequence: 2 givenname: Jin surname: Jia fullname: Jia, Jin – sequence: 3 givenname: Xiao-Rong surname: Sun fullname: Sun, Xiao-Rong – sequence: 4 givenname: Wu-Di surname: Li fullname: Li, Wu-Di – sequence: 5 givenname: Kai surname: Ke fullname: Ke, Kai email: kaike@scu.edu.cn – sequence: 6 givenname: Rui-Ying surname: Bao fullname: Bao, Rui-Ying – sequence: 7 givenname: Wei orcidid: 0000-0003-0198-1632 surname: Yang fullname: Yang, Wei email: weiyang@scu.edu.cn |
BookMark | eNqFkc9u1DAQxn0oUv--QQ8-ctngOG42ywEJFQqVKnGBszWZjLveJvYydor6ELwzDuHEAU4zI8_3G8835-IkxEBCXNeqqlXdvjlUCNzHUGmlm0rpSqnuRJypEjat1s2pOE_pUErT1eZM_PxAyT8GmTJDpscX6SLLvScGxr1HGJeXGfPMJKOTK1v2I-CTLMnkkeMxcpyTpBFSjhOxTDM7QJI5_gAeFgJl3EM_koQwSIzTkSkl_0y_5_oynkKKnC7FKwdjoqs_8UJ8u_v49fbz5uHLp_vb9w8bbJpd3rR12xL2xrUI5Pre6E7XqgOH7sa1BpXZ1nV3A4PabcEZM2CptoM24Ejvdrq5EK9X7pHj95lStpNPSOMIgcoqVneN0aor1NL6dm0ti6bE5Cz6DNnHsPx8tLWyi-_2YFdv7OK7VdoWw4vY_CU-sp-AX_4ne7fKqHjwXI5hE3oKSINnwmyH6P8N-AWqXqf2 |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118379 crossref_primary_10_1016_j_rinma_2024_100646 crossref_primary_10_1016_j_compositesa_2023_107730 crossref_primary_10_1016_j_porgcoat_2024_108373 crossref_primary_10_1021_acsaelm_3c00039 crossref_primary_10_3390_ma16196363 crossref_primary_10_26599_NR_2025_94907167 crossref_primary_10_1002_adem_202400132 crossref_primary_10_1109_JSEN_2024_3425162 crossref_primary_10_1016_j_jallcom_2025_178779 crossref_primary_10_1021_acs_nanolett_5c00327 crossref_primary_10_1021_acsami_3c14672 crossref_primary_10_1016_j_carbon_2023_118480 crossref_primary_10_1002_app_56440 crossref_primary_10_1007_s00339_025_08408_y crossref_primary_10_1002_app_56023 crossref_primary_10_1039_D4SM00926F crossref_primary_10_1016_j_nanoen_2023_109173 crossref_primary_10_1002_app_56863 crossref_primary_10_1007_s42114_024_01157_1 crossref_primary_10_1016_j_polymer_2024_127248 crossref_primary_10_1016_j_cej_2024_157289 crossref_primary_10_1016_j_coco_2024_101985 crossref_primary_10_1002_admi_202400803 crossref_primary_10_1007_s42765_023_00359_4 crossref_primary_10_1002_vjch_202300236 crossref_primary_10_15407_scine20_05_071 crossref_primary_10_1007_s10854_024_12641_1 crossref_primary_10_1021_acsami_3c13458 crossref_primary_10_1021_acsanm_3c04826 crossref_primary_10_1109_JSEN_2024_3372587 crossref_primary_10_1002_adsr_202300120 crossref_primary_10_1039_D3CP04158A crossref_primary_10_1002_adem_202402208 crossref_primary_10_1016_j_cej_2025_161566 crossref_primary_10_1016_j_sna_2024_115287 crossref_primary_10_1016_j_ijoes_2023_100236 crossref_primary_10_1016_j_mtnano_2024_100512 crossref_primary_10_1016_j_eurpolymj_2024_113182 crossref_primary_10_1021_acsapm_3c01034 |
Cites_doi | 10.1016/j.compositesb.2021.108607 10.1016/j.compositesb.2020.108319 10.1039/D1TB01467F 10.1016/j.cej.2022.138258 10.1016/j.carbon.2018.06.037 10.1016/j.compositesb.2021.108641 10.1016/j.carbon.2022.01.020 10.1039/C7CP01278K 10.1016/j.nanoen.2021.106603 10.1016/j.polymer.2016.12.056 10.1021/acsami.1c07640 10.1021/acsami.9b13349 10.1021/acsnano.5b02781 10.1016/j.amjhyper.2004.10.009 10.1016/j.compositesa.2020.105837 10.1021/acsami.9b16922 10.1016/j.carbon.2017.09.055 10.1021/nn201002d 10.1016/j.carbon.2017.04.002 10.1080/03602559.2017.1329433 10.1016/j.compositesa.2020.105898 10.1002/smll.201903487 10.1021/acsami.8b20929 10.1002/smll.201701388 10.1016/j.cej.2019.05.045 10.1016/j.compositesb.2016.06.031 10.1039/C6TC03713E 10.1039/C5TC00692A 10.1021/acsnano.2c06482 10.1039/D0MH00922A 10.1126/sciadv.1500661 10.1002/adma.201808148 10.1016/j.carbon.2019.03.001 10.1016/j.cej.2020.127025 10.1016/j.apsusc.2021.149268 10.1039/D0MH00716A 10.1016/j.cej.2021.133488 10.1016/j.carbon.2022.04.033 10.1002/smll.201702091 10.1016/j.compositesa.2017.06.017 10.1016/j.nanoen.2020.104814 10.1021/acsnano.2c04188 10.1039/D1NJ04626H 10.1002/smll.202103734 10.1039/C8MH00680F 10.1002/adfm.201601995 10.1038/s41467-017-02685-9 10.1016/j.coco.2021.100809 10.1021/acsami.0c04709 10.1016/j.compscitech.2017.06.027 10.1016/j.carbon.2022.02.003 10.1039/C6NR02216B 10.1002/advs.202105084 10.1021/acsami.8b11527 10.1021/acsami.8b02322 10.1088/1361-665X/ac3d9e 10.1038/s41467-022-30361-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.carbon.2023.02.008 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EndPage | 61 |
ExternalDocumentID | 10_1016_j_carbon_2023_02_008 S0008622323000787 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABMAC ABXRA ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7S9 L.6 SSH |
ID | FETCH-LOGICAL-c339t-6166ecb4f6caefbb4282108afcf5f64c0471185ad097af44dc1857d24afe29923 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 04:23:54 EDT 2025 Tue Aug 05 03:08:35 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Tue Dec 03 03:44:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 3D continuous porous structure Isotropic composites Wearable electronics Pressure/tensile strain sensors Phase separation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-6166ecb4f6caefbb4282108afcf5f64c0471185ad097af44dc1857d24afe29923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0198-1632 |
PQID | 2834208821 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2834208821 crossref_citationtrail_10_1016_j_carbon_2023_02_008 crossref_primary_10_1016_j_carbon_2023_02_008 elsevier_sciencedirect_doi_10_1016_j_carbon_2023_02_008 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-25 |
PublicationDateYYYYMMDD | 2023-03-25 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Carbon (New York) |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tang, Zhao, Jia, Wang, Zha, Yin, Ke, Bao, Liu, Wang, Zhang, Yang, Yang (bib17) 2021; 90 Youn, Mun, Jang, Kyung (bib56) 2021; 31 Liu, Dong, Huang, Gao, Dai, Guo, Zheng, Liu, Shen, Guo (bib52) 2017; 5 Mathieu, Anthony, Arnaud, Lionel (bib42) 2015; 3 Liao, Wang, Lin, Li, Wu, Zheng (bib3) 2018; 5 Ghaffarkhah, Kamkar, Dijvejin, Riazi, Ghaderi, Golovin, Soroush, Arjmand (bib5) 2022; 191 Niu, Chen, Kim, Zhou, Li, Kim (bib59) 2022; 450 Jia, Pu, Liu, Zhao, Ke, Bao, Liu, Yang, Yang (bib12) 2020; 7 Park, Lee, Barbee, Cho, Cho, Shanker, Kim, Myoung, Kim, Baig, Craig, Ko (bib1) 2019; 31 Ha, Zhang, Jang, Kang, Wang, Tan, Hwang, Lu (bib24) 2021; 33 Nichols (bib60) 2005; 18 Wang, Huang, Wang, Zhang, Gao, Luo, Guo, Xue, Gao (bib29) 2021; 405 Gong, Liu, Liu, Peng, Li, Bao, Yang, Xie, Yang, Guo (bib40) 2017; 110 Zhu, Li, Peng, Zhao, Chen, Zhu (bib2) 2022; 195 Liu, Chen, Huang, Wang, Li, Liu (bib6) 2022; 190 Gui, Li, Zhang, Jia, Liu, Li, Wei, Wang, Zhu, Tang, Wu, Cao (bib48) 2011; 5 Gong, Bao, Liu, Xie, Yang, Yang (bib41) 2017; 19 Cui, Jiang, Xu, Xi, Jiang, Song, Zhao, Wang (bib57) 2021; 211 Sang, Ke, Manas-Zloczower (bib28) 2019; 15 Kausar (bib31) 2018; 57 Iglio, Mariani, Robbiano, Strambini, Barillaro (bib32) 2018; 10 Yao, Shen, Guo, Zuo, Shi, Jiang, Chu (bib49) 2021; 9 Zhang, Zhang, Huang, Yang (bib22) 2022; 9 Zeng, Jin, Chen, Li, Zhou, Xue, Zhang (bib47) 2017; 13 Huang, Chen, Xu, Hu, Cui, Shi, Zhu (bib51) 2021; 548 Gao, Wang, Zhai, Liu, Zheng, Dai, Mi, Liu, Shen (bib35) 2018; 10 Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (bib15) 2018; 9 Ding, Xu, Onyilagha, Fong, Zhu (bib20) 2019; 11 Jia, Liu, Wang, Zha, Ke, Liu, Pötschke, Yang, Yang (bib43) 2022; 431 Gao, Li, Huang, Wang, Lin, Wang, Xue (bib7) 2019; 373 Yu, Zhai, Yun, Zhai, Wang, Zheng, Yan, Dai, Liu, Shen (bib37) 2019; 5 Yang, Jiang, Yan, Shen, Chen, Xu, Zhu (bib46) 2020; 134 Lei, Feng, Ding, Wang, Dai, Liu, Gao, Zhou, Xu, Zhou (bib19) 2022; 16 Park, Kim, Lee, Lee, Ko (bib58) 2015; 1 Ke, Solouki Bonab, Yuan, Manas-Zloczower (bib34) 2018; 139 Xia, Wang, Zhai, Shao, Xu, Yan, Yang, Dai, Liu, Shen (bib38) 2021; 26 Yuan, Guo, Ke, Manas-Zloczower (bib13) 2020; 132 Liu, Gao, Huang, Dai, Zheng, Liu, Shen, Yan, Guo, Guo (bib33) 2016; 8 Qin, Peng, Ding, Lin, Wang, Li, Xu, Li, Yuan, He (bib26) 2015; 9 Song, Chen, Su, Chen, Miao, Zhang, Cheng, Zhang (bib23) 2017; 13 Chen, Jing, Lee, Liu, Kim, Chen, Huang, Shen, Zheng, Yang, Jeon, Kim (bib16) 2020; 7 Jia, Peng, Zha, Ke, Bao, Liu, Yang, Yang (bib44) 2022; 16 Wang, Guan, Huang, Wang, Lin, Peng (bib30) 2019; 29 Andrzejewski, Mohanty, Misra (bib36) 2020; 200 Gong, Peng, Bao, Yang, Xie, Yang (bib39) 2016; 99 Jiang, Zhou, Wei, Zheng, Ji, Mi, Dai, Liu, Shen (bib10) 2020; 12 Wu, Han, Zhang, Zhou, Lu (bib50) 2016; 26 Li, Hua, Xu (bib54) 2017; 118 Pu, Zhao, Zha, Li, Ke, Bao, Liu, Yang, Yang (bib8) 2020; 74 Liu, Xiang, Wang, Li, Qian, Li, Ma, Zhou, Huang (bib18) 2019; 11 Son, Lee, Wang, Samson, Wei, Zhu, You (bib9) 2022; 13 Li, Ke, Jia, Pu, Zhao, Bao, Liu, Bai, Zhang, Yang, Yang (bib4) 2022; 18 Jung, Lee, Oh, Park, Ko, Kim, Yun, Cho (bib25) 2021; 13 Kamkar, Ghaffarkhah, Hosseini, Amini, Ghaderi, Arjmand (bib61) 2021; 45 Wei, Cao, Wang, Zheng, Dai, Liu, Shen (bib27) 2017; 149 Hwang, Kim, Yang, Oh (bib45) 2021; 211 Xue, Chen, Diao (bib11) 2019; 147 Chen, Zhang, Luo, Zhang, Li, Su, Gao, Li, Tang, Cao, Liu, Wang, Li (bib55) 2020; 12 Oh, Kim, Kim, Choi, Yang, Lee, Pyatykh, Kim, Sim, Park (bib14) 2019; 15 Yang, Wang, Song, Liu, Zhao, Shen (bib53) 2017; 101 Zhang, Hou, Yan, Zhao, Zhan (bib21) 2017; 125 Wei (10.1016/j.carbon.2023.02.008_bib27) 2017; 149 Iglio (10.1016/j.carbon.2023.02.008_bib32) 2018; 10 Jia (10.1016/j.carbon.2023.02.008_bib12) 2020; 7 Cui (10.1016/j.carbon.2023.02.008_bib57) 2021; 211 Sang (10.1016/j.carbon.2023.02.008_bib28) 2019; 15 Li (10.1016/j.carbon.2023.02.008_bib54) 2017; 118 Li (10.1016/j.carbon.2023.02.008_bib4) 2022; 18 Park (10.1016/j.carbon.2023.02.008_bib58) 2015; 1 Ghaffarkhah (10.1016/j.carbon.2023.02.008_bib5) 2022; 191 Chen (10.1016/j.carbon.2023.02.008_bib55) 2020; 12 Kausar (10.1016/j.carbon.2023.02.008_bib31) 2018; 57 Gong (10.1016/j.carbon.2023.02.008_bib41) 2017; 19 Zhang (10.1016/j.carbon.2023.02.008_bib21) 2017; 125 Zhang (10.1016/j.carbon.2023.02.008_bib22) 2022; 9 Jung (10.1016/j.carbon.2023.02.008_bib25) 2021; 13 Yu (10.1016/j.carbon.2023.02.008_bib37) 2019; 5 Mathieu (10.1016/j.carbon.2023.02.008_bib42) 2015; 3 Liu (10.1016/j.carbon.2023.02.008_bib6) 2022; 190 Oh (10.1016/j.carbon.2023.02.008_bib14) 2019; 15 Zeng (10.1016/j.carbon.2023.02.008_bib47) 2017; 13 Son (10.1016/j.carbon.2023.02.008_bib9) 2022; 13 Liao (10.1016/j.carbon.2023.02.008_bib3) 2018; 5 Gao (10.1016/j.carbon.2023.02.008_bib35) 2018; 10 Liu (10.1016/j.carbon.2023.02.008_bib52) 2017; 5 Youn (10.1016/j.carbon.2023.02.008_bib56) 2021; 31 Hwang (10.1016/j.carbon.2023.02.008_bib45) 2021; 211 Wang (10.1016/j.carbon.2023.02.008_bib29) 2021; 405 Lei (10.1016/j.carbon.2023.02.008_bib19) 2022; 16 Zhu (10.1016/j.carbon.2023.02.008_bib2) 2022; 195 Park (10.1016/j.carbon.2023.02.008_bib1) 2019; 31 Kamkar (10.1016/j.carbon.2023.02.008_bib61) 2021; 45 Pu (10.1016/j.carbon.2023.02.008_bib8) 2020; 74 Wang (10.1016/j.carbon.2023.02.008_bib30) 2019; 29 Hua (10.1016/j.carbon.2023.02.008_bib15) 2018; 9 Qin (10.1016/j.carbon.2023.02.008_bib26) 2015; 9 Jia (10.1016/j.carbon.2023.02.008_bib44) 2022; 16 Xia (10.1016/j.carbon.2023.02.008_bib38) 2021; 26 Gong (10.1016/j.carbon.2023.02.008_bib40) 2017; 110 Gui (10.1016/j.carbon.2023.02.008_bib48) 2011; 5 Song (10.1016/j.carbon.2023.02.008_bib23) 2017; 13 Gong (10.1016/j.carbon.2023.02.008_bib39) 2016; 99 Nichols (10.1016/j.carbon.2023.02.008_bib60) 2005; 18 Huang (10.1016/j.carbon.2023.02.008_bib51) 2021; 548 Xue (10.1016/j.carbon.2023.02.008_bib11) 2019; 147 Gao (10.1016/j.carbon.2023.02.008_bib7) 2019; 373 Chen (10.1016/j.carbon.2023.02.008_bib16) 2020; 7 Ha (10.1016/j.carbon.2023.02.008_bib24) 2021; 33 Liu (10.1016/j.carbon.2023.02.008_bib18) 2019; 11 Wu (10.1016/j.carbon.2023.02.008_bib50) 2016; 26 Tang (10.1016/j.carbon.2023.02.008_bib17) 2021; 90 Niu (10.1016/j.carbon.2023.02.008_bib59) 2022; 450 Ke (10.1016/j.carbon.2023.02.008_bib34) 2018; 139 Yang (10.1016/j.carbon.2023.02.008_bib53) 2017; 101 Liu (10.1016/j.carbon.2023.02.008_bib33) 2016; 8 Jiang (10.1016/j.carbon.2023.02.008_bib10) 2020; 12 Jia (10.1016/j.carbon.2023.02.008_bib43) 2022; 431 Ding (10.1016/j.carbon.2023.02.008_bib20) 2019; 11 Andrzejewski (10.1016/j.carbon.2023.02.008_bib36) 2020; 200 Yao (10.1016/j.carbon.2023.02.008_bib49) 2021; 9 Yang (10.1016/j.carbon.2023.02.008_bib46) 2020; 134 Yuan (10.1016/j.carbon.2023.02.008_bib13) 2020; 132 |
References_xml | – volume: 139 start-page: 52 year: 2018 end-page: 58 ident: bib34 article-title: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures publication-title: Carbon – volume: 15 year: 2019 ident: bib28 article-title: Design strategy for porous composites aimed at pressure sensor application publication-title: Small – volume: 13 year: 2017 ident: bib23 article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring publication-title: Small – volume: 13 start-page: 28975 year: 2021 end-page: 28984 ident: bib25 article-title: Linearly sensitive pressure sensor based on a porous multistacked composite structure with controlled mechanical and electrical properties publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 8676 year: 2021 end-page: 8685 ident: bib49 article-title: Poly(vinyl alcohol)/phosphoric acid gel electrolyte@polydimethylsiloxane sponge for piezoresistive pressure sensors publication-title: J. Mater. Chem. B – volume: 101 start-page: 195 year: 2017 end-page: 198 ident: bib53 article-title: One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization publication-title: Compos. Part A-Appl. S. – volume: 99 start-page: 348 year: 2016 end-page: 357 ident: bib39 article-title: Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure publication-title: Compos. B Eng. – volume: 431 year: 2022 ident: bib43 article-title: In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing publication-title: Chem. Eng. J. – volume: 190 start-page: 245 year: 2022 end-page: 254 ident: bib6 article-title: In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability publication-title: Carbon – volume: 132 year: 2020 ident: bib13 article-title: Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing publication-title: Compos. Part A-Appl. S. – volume: 57 start-page: 346 year: 2018 end-page: 369 ident: bib31 article-title: Polyurethane composite foams in high-performance applications: a review publication-title: Polym.-Plast. Technol. Eng. – volume: 3 start-page: 5769 year: 2015 end-page: 5774 ident: bib42 article-title: CNT aggregation mechanisms probed by electrical and dielectric measurements publication-title: J. Mater. Chem. C – volume: 5 start-page: 73 year: 2017 end-page: 83 ident: bib52 article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing publication-title: J. Mater. Chem. C – volume: 16 start-page: 16806 year: 2022 end-page: 16815 ident: bib44 article-title: Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for bosted strain sensing performance publication-title: ACS Nano – volume: 373 start-page: 298 year: 2019 end-page: 306 ident: bib7 article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring publication-title: Chem. Eng. J. – volume: 211 year: 2021 ident: bib45 article-title: Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor publication-title: Compos. B Eng. – volume: 110 start-page: 1 year: 2017 end-page: 11 ident: bib40 article-title: Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers publication-title: Polymer – volume: 1 year: 2015 ident: bib58 article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli publication-title: Sci. Adv. – volume: 15 year: 2019 ident: bib14 article-title: Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size publication-title: Small – volume: 31 year: 2021 ident: bib56 article-title: Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator publication-title: Smart Mater. Struct. – volume: 5 start-page: 920 year: 2018 end-page: 931 ident: bib3 article-title: Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation publication-title: Mater. Horiz. – volume: 5 start-page: 4276 year: 2011 end-page: 4283 ident: bib48 article-title: A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges publication-title: ACS Nano – volume: 125 start-page: 199 year: 2017 end-page: 206 ident: bib21 article-title: Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors publication-title: Carbon – volume: 134 year: 2020 ident: bib46 article-title: Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization publication-title: Compos. Part A-Appl. S. – volume: 18 start-page: 3S year: 2005 end-page: 10S ident: bib60 article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms publication-title: Am. J. Hypertens. – volume: 31 year: 2019 ident: bib1 article-title: A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins publication-title: Adv. Mater. – volume: 12 start-page: 22200 year: 2020 end-page: 22211 ident: bib55 article-title: Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 6246 year: 2016 end-page: 6256 ident: bib50 article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing publication-title: Adv. Funct. Mater. – volume: 211 year: 2021 ident: bib57 article-title: Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability publication-title: Compos. B Eng. – volume: 191 start-page: 277 year: 2022 end-page: 289 ident: bib5 article-title: High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding publication-title: Carbon – volume: 26 year: 2021 ident: bib38 article-title: Highly linear and low hysteresis porous strain sensor for wearable electronic skins publication-title: Compos. Commun. – volume: 33 year: 2021 ident: bib24 article-title: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite publication-title: Adv. Mater. – volume: 149 start-page: 166 year: 2017 end-page: 177 ident: bib27 article-title: Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor publication-title: Compos. Sci. Technol. – volume: 12 start-page: 1454 year: 2020 end-page: 1464 ident: bib10 article-title: Transparent conductive flexible trilayer films for a deicing window and self-recover bending sensor based on a single-walled carbon nanotube/polyvinyl butyral interlayer publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 244 year: 2018 ident: bib15 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nat. Commun. – volume: 29 year: 2019 ident: bib30 article-title: Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture publication-title: Adv. Funct. Mater. – volume: 450 year: 2022 ident: bib59 article-title: Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception publication-title: Chem. Eng. J. – volume: 10 start-page: 34592 year: 2018 end-page: 34603 ident: bib35 article-title: Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor publication-title: ACS Appl. Mater. Interfaces – volume: 548 year: 2021 ident: bib51 article-title: Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles publication-title: Appl. Surf. Sci. – volume: 7 start-page: 2378 year: 2020 end-page: 2389 ident: bib16 article-title: Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures publication-title: Mater. Horiz. – volume: 5 year: 2019 ident: bib37 article-title: Ultra‐stretchable porous fiber‐shaped strain sensor with exponential response in full sensing range and excellent anti‐interference ability toward buckling, torsion, temperature, and humidity publication-title: Adv. Electroni. Mater. – volume: 147 start-page: 227 year: 2019 end-page: 235 ident: bib11 article-title: Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures publication-title: Carbon – volume: 18 year: 2022 ident: bib4 article-title: Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing publication-title: Small – volume: 11 start-page: 6685 year: 2019 end-page: 6704 ident: bib20 article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges publication-title: ACS Appl. Mater. Interfaces – volume: 74 year: 2020 ident: bib8 article-title: A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring publication-title: Nano Energy – volume: 45 start-page: 21488 year: 2021 end-page: 21507 ident: bib61 article-title: Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects publication-title: New J. Chem. – volume: 16 start-page: 12620 year: 2022 end-page: 12634 ident: bib19 article-title: Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode publication-title: ACS Nano – volume: 10 start-page: 13877 year: 2018 end-page: 13885 ident: bib32 article-title: Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 40613 year: 2019 end-page: 40619 ident: bib18 article-title: A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2739 year: 2022 ident: bib9 article-title: Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors publication-title: Nat. Commun. – volume: 118 start-page: 686 year: 2017 end-page: 698 ident: bib54 article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core publication-title: Carbon – volume: 90 year: 2021 ident: bib17 article-title: Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening publication-title: Nano Energy – volume: 13 year: 2017 ident: bib47 article-title: Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites publication-title: Small – volume: 7 start-page: 2450 year: 2020 end-page: 2459 ident: bib12 article-title: Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing publication-title: Mater. Horiz. – volume: 9 year: 2022 ident: bib22 article-title: A new class of electronic devices based on flexible porous substrates publication-title: Adv. Sci. – volume: 195 start-page: 364 year: 2022 end-page: 371 ident: bib2 article-title: Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor publication-title: Carbon – volume: 9 start-page: 8933 year: 2015 end-page: 8941 ident: bib26 article-title: Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application publication-title: ACS Nano – volume: 19 start-page: 12712 year: 2017 end-page: 12719 ident: bib41 article-title: The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 12977 year: 2016 end-page: 12989 ident: bib33 article-title: Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers publication-title: Nanoscale – volume: 405 year: 2021 ident: bib29 article-title: Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range publication-title: Chem. Eng. J. – volume: 200 year: 2020 ident: bib36 article-title: Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials publication-title: Compos. B Eng. – volume: 211 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib45 article-title: Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2021.108607 – volume: 200 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib36 article-title: Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108319 – volume: 9 start-page: 8676 issue: 41 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib49 article-title: Poly(vinyl alcohol)/phosphoric acid gel electrolyte@polydimethylsiloxane sponge for piezoresistive pressure sensors publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01467F – volume: 450 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib59 article-title: Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138258 – volume: 139 start-page: 52 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib34 article-title: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures publication-title: Carbon doi: 10.1016/j.carbon.2018.06.037 – volume: 211 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib57 article-title: Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2021.108641 – volume: 190 start-page: 245 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib6 article-title: In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability publication-title: Carbon doi: 10.1016/j.carbon.2022.01.020 – volume: 19 start-page: 12712 issue: 20 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib41 article-title: The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01278K – volume: 90 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib17 article-title: Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106603 – volume: 110 start-page: 1 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib40 article-title: Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers publication-title: Polymer doi: 10.1016/j.polymer.2016.12.056 – volume: 13 start-page: 28975 issue: 24 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib25 article-title: Linearly sensitive pressure sensor based on a porous multistacked composite structure with controlled mechanical and electrical properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07640 – volume: 11 start-page: 40613 issue: 43 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib18 article-title: A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13349 – volume: 9 start-page: 8933 issue: 9 year: 2015 ident: 10.1016/j.carbon.2023.02.008_bib26 article-title: Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application publication-title: ACS Nano doi: 10.1021/acsnano.5b02781 – volume: 18 start-page: 3S issue: S1 year: 2005 ident: 10.1016/j.carbon.2023.02.008_bib60 article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2004.10.009 – volume: 132 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib13 article-title: Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2020.105837 – volume: 12 start-page: 1454 issue: 1 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib10 article-title: Transparent conductive flexible trilayer films for a deicing window and self-recover bending sensor based on a single-walled carbon nanotube/polyvinyl butyral interlayer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16922 – volume: 125 start-page: 199 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib21 article-title: Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors publication-title: Carbon doi: 10.1016/j.carbon.2017.09.055 – volume: 5 start-page: 4276 issue: 6 year: 2011 ident: 10.1016/j.carbon.2023.02.008_bib48 article-title: A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges publication-title: ACS Nano doi: 10.1021/nn201002d – volume: 118 start-page: 686 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib54 article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core publication-title: Carbon doi: 10.1016/j.carbon.2017.04.002 – volume: 57 start-page: 346 issue: 4 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib31 article-title: Polyurethane composite foams in high-performance applications: a review publication-title: Polym.-Plast. Technol. Eng. doi: 10.1080/03602559.2017.1329433 – volume: 134 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib46 article-title: Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2020.105898 – volume: 15 issue: 45 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib28 article-title: Design strategy for porous composites aimed at pressure sensor application publication-title: Small doi: 10.1002/smll.201903487 – volume: 11 start-page: 6685 issue: 7 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib20 article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20929 – volume: 13 issue: 34 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib47 article-title: Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites publication-title: Small doi: 10.1002/smll.201701388 – volume: 373 start-page: 298 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib7 article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.045 – volume: 99 start-page: 348 year: 2016 ident: 10.1016/j.carbon.2023.02.008_bib39 article-title: Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.06.031 – volume: 5 start-page: 73 issue: 1 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib52 article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03713E – volume: 3 start-page: 5769 issue: 22 year: 2015 ident: 10.1016/j.carbon.2023.02.008_bib42 article-title: CNT aggregation mechanisms probed by electrical and dielectric measurements publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00692A – volume: 16 start-page: 16806 issue: 10 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib44 article-title: Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for bosted strain sensing performance publication-title: ACS Nano doi: 10.1021/acsnano.2c06482 – volume: 15 issue: 33 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib14 article-title: Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size publication-title: Small – volume: 29 issue: 11 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib30 article-title: Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture publication-title: Adv. Funct. Mater. – volume: 7 start-page: 2378 issue: 9 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib16 article-title: Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures publication-title: Mater. Horiz. doi: 10.1039/D0MH00922A – volume: 1 issue: 9 year: 2015 ident: 10.1016/j.carbon.2023.02.008_bib58 article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli publication-title: Sci. Adv. doi: 10.1126/sciadv.1500661 – volume: 31 issue: 25 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib1 article-title: A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins publication-title: Adv. Mater. doi: 10.1002/adma.201808148 – volume: 147 start-page: 227 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib11 article-title: Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures publication-title: Carbon doi: 10.1016/j.carbon.2019.03.001 – volume: 405 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib29 article-title: Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127025 – volume: 548 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib51 article-title: Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149268 – volume: 7 start-page: 2450 issue: 9 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib12 article-title: Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing publication-title: Mater. Horiz. doi: 10.1039/D0MH00716A – volume: 431 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib43 article-title: In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133488 – volume: 195 start-page: 364 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib2 article-title: Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor publication-title: Carbon doi: 10.1016/j.carbon.2022.04.033 – volume: 13 issue: 39 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib23 article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring publication-title: Small doi: 10.1002/smll.201702091 – volume: 5 issue: 10 year: 2019 ident: 10.1016/j.carbon.2023.02.008_bib37 article-title: Ultra‐stretchable porous fiber‐shaped strain sensor with exponential response in full sensing range and excellent anti‐interference ability toward buckling, torsion, temperature, and humidity publication-title: Adv. Electroni. Mater. – volume: 101 start-page: 195 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib53 article-title: One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization publication-title: Compos. Part A-Appl. S. doi: 10.1016/j.compositesa.2017.06.017 – volume: 74 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib8 article-title: A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104814 – volume: 16 start-page: 12620 issue: 8 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib19 article-title: Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode publication-title: ACS Nano doi: 10.1021/acsnano.2c04188 – volume: 45 start-page: 21488 issue: 46 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib61 article-title: Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects publication-title: New J. Chem. doi: 10.1039/D1NJ04626H – volume: 18 issue: 7 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib4 article-title: Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing publication-title: Small doi: 10.1002/smll.202103734 – volume: 5 start-page: 920 issue: 5 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib3 article-title: Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation publication-title: Mater. Horiz. doi: 10.1039/C8MH00680F – volume: 26 start-page: 6246 issue: 34 year: 2016 ident: 10.1016/j.carbon.2023.02.008_bib50 article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601995 – volume: 9 start-page: 244 issue: 1 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib15 article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing publication-title: Nat. Commun. doi: 10.1038/s41467-017-02685-9 – volume: 26 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib38 article-title: Highly linear and low hysteresis porous strain sensor for wearable electronic skins publication-title: Compos. Commun. doi: 10.1016/j.coco.2021.100809 – volume: 12 start-page: 22200 issue: 19 year: 2020 ident: 10.1016/j.carbon.2023.02.008_bib55 article-title: Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04709 – volume: 33 issue: 48 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib24 article-title: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite publication-title: Adv. Mater. – volume: 149 start-page: 166 year: 2017 ident: 10.1016/j.carbon.2023.02.008_bib27 article-title: Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.06.027 – volume: 191 start-page: 277 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib5 article-title: High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding publication-title: Carbon doi: 10.1016/j.carbon.2022.02.003 – volume: 8 start-page: 12977 issue: 26 year: 2016 ident: 10.1016/j.carbon.2023.02.008_bib33 article-title: Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers publication-title: Nanoscale doi: 10.1039/C6NR02216B – volume: 9 issue: 7 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib22 article-title: A new class of electronic devices based on flexible porous substrates publication-title: Adv. Sci. doi: 10.1002/advs.202105084 – volume: 10 start-page: 34592 issue: 40 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib35 article-title: Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11527 – volume: 10 start-page: 13877 issue: 16 year: 2018 ident: 10.1016/j.carbon.2023.02.008_bib32 article-title: Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02322 – volume: 31 issue: 1 year: 2021 ident: 10.1016/j.carbon.2023.02.008_bib56 article-title: Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac3d9e – volume: 13 start-page: 2739 issue: 1 year: 2022 ident: 10.1016/j.carbon.2023.02.008_bib9 article-title: Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors publication-title: Nat. Commun. doi: 10.1038/s41467-022-30361-0 |
SSID | ssj0004814 |
Score | 2.5774438 |
Snippet | Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 53 |
SubjectTerms | 3D continuous porous structure carbon composite polymers compression strength detection limit hysteresis Isotropic composites isotropy nanomaterials Phase separation polyethylene glycol porous media Pressure/tensile strain sensors separation soot tensile strength Wearable electronics |
Title | Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors |
URI | https://dx.doi.org/10.1016/j.carbon.2023.02.008 https://www.proquest.com/docview/2834208821 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jPuiL-InzY0Twta40Wds9jumYCntysLeQpAlMXDu6TvDFf-B_9t6kVRRE8K0t_Qj3hNyT5twTQq6YTWQ_keiHF_KApwMeSG0sAmJkCkcqcwLZaTyZ8ft5f94io6YWBmWV9djvx3Q3WtdXenU0e6vFAmt8kY4DI2Au0WFFOecJ9vLrty-ZB0-9vzcu8-PdTfmc03hpWaoCXVAj5p0709_S04-B2mWf8R7ZrWkjHfqW7ZOWyQ_I9qjZre2QvN84KQZde7fZVwpklOI-126lAICg3il2UxpaWOqbRBX-vqNwsERdHlDxYrOmBgh1VSxNSdeb0kJMaeW0tfgGBBmLrajMM4pydCejfTHuuwv4PMyKi3J9RGbj28fRJKi3Wgg0Y4MKJpBxbLTiNtYS8FEwKYG5YCqttn0bcx1CDoPMLrNwkEjLeabRQyqLuLQGElrEjkk7L3JzQmikWJplkQbuotD9TSVZyplWYaKgP-ioQ1gTYaFrH3Js4rNoBGdPwgdBIC4ijATg0iHB51Mr78Pxx_1JA5741p8EpIo_nrxssBaAIa6fyNxA-AUwMRQjQGRO__32M7KDZ6hii_rnpA3QmwugNZXqun7bJVvDu4fJ9ANnZPv4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFA2DLnQjPvFtBF1WS5ppOwsX4oPRGV0puItJmsCIttLOKG78A7_GH_TepFUUZEBwV2ambbjnzr0n7ckJITuRTWQ7keiHF_KApx0eSG0sAmJkCkcqcwLZy7h7zc9v2jct8t6shUFZZV37fU131br-ZL-O5v7jYIBrfJGOAyOIXKNLamVlz7w8w7ytOjg7BpB3GTs9uTrqBvXWAoGOos4QJkxxbLTiNtYSxqOAhMPcJ5VW27aNuQ6hZkMnk1nYSaTlPNPomZQxLq2BAo5uB1D3JzmUC9w2Ye_1S1fCU28ojroCHF6zXs-JyrQsVYG2qyzyVqHpb_3wR2dw7e50lszUPJUe-lDMkZbJ58nUUbM93AJ5O3baD1p5e9sXCuyX4sba7tUEIE-9Ne2oNLSw1A-JKnxeSOHgAYWAwP2LUUUNMPhh8WBKWo1KCyDSoRPz4hUwq3B1F5V5RlH_7nS7T8bddwC3h2l4UVaL5PpfAFgiE3mRm2VCmYrSLGMayJJCuzmVZCmPtAoTBQmo2QqJmggLXRuf4xDvRaNwuxM-CAJxESETgMsKCT7PevTGH2N-nzTgiW8JLKA3jTlzu8FaAIb4wkbmBsIvgPqh-gEis_rnq2-Rqe7VRV_0zy57a2Qav0EJHWuvkwlIA7MBnGqoNl0OU3L733-aD4f7ODc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+strategy+for+hierarchical+structure+of+carbon+black+on+microporous+elastomer+surface+toward+stretchable+and+compressive+strain+sensors&rft.jtitle=Carbon+%28New+York%29&rft.au=Gong%2C+Tao&rft.au=Jia%2C+Jin&rft.au=Sun%2C+Xiao-Rong&rft.au=Li%2C+Wu-Di&rft.date=2023-03-25&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.volume=206&rft.spage=53&rft.epage=61&rft_id=info:doi/10.1016%2Fj.carbon.2023.02.008&rft.externalDocID=S0008622323000787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |