Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors

Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 206; pp. 53 - 61
Main Authors Gong, Tao, Jia, Jin, Sun, Xiao-Rong, Li, Wu-Di, Ke, Kai, Bao, Rui-Ying, Yang, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 25.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication. [Display omitted]
AbstractList Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication.
Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great significance for the development of wearable devices, flexible electronic skins, and robotics. However, it is still of challenge to develop simple 3-dimensional (3D) porous polymer/carbon nanomaterial composite strain sensors capable of sensing both tensile and compressive strains with reproducible electrical signals. Herein, we report a simple and scalable morphology-engineering strategy, i.e., selective location of carbon black (CB) in polyoxyethylene (PEO)/ethylene-α-octene random copolymer (ORC) blends via phase separation, to fabricate isotropic 3D continuous porous composite strain sensors. Such a composite consists of a continuous porous ORC matrix inlaid with preferable CB distribution on ORC surface after PEO removal, enabling distinguishable detection of both compressive and tensile strains with opposite resistance changes. Specifically, the as-fabricated strain sensors exhibit linear response with a sensitivity of 16 for 0–46% compressive strain, a detection limit of 0.3% strain with 16/16 ms response/recovery time. Besides, it has a large gauge factor for tensile strain of 0–300%, a detection limit strain of 0.06% with 16/47 ms response/recovery time, and low hysteresis degree. As such, it allows for full-range body motion monitoring and Morse code communication. [Display omitted]
Author Sun, Xiao-Rong
Gong, Tao
Li, Wu-Di
Bao, Rui-Ying
Ke, Kai
Jia, Jin
Yang, Wei
Author_xml – sequence: 1
  givenname: Tao
  surname: Gong
  fullname: Gong, Tao
– sequence: 2
  givenname: Jin
  surname: Jia
  fullname: Jia, Jin
– sequence: 3
  givenname: Xiao-Rong
  surname: Sun
  fullname: Sun, Xiao-Rong
– sequence: 4
  givenname: Wu-Di
  surname: Li
  fullname: Li, Wu-Di
– sequence: 5
  givenname: Kai
  surname: Ke
  fullname: Ke, Kai
  email: kaike@scu.edu.cn
– sequence: 6
  givenname: Rui-Ying
  surname: Bao
  fullname: Bao, Rui-Ying
– sequence: 7
  givenname: Wei
  orcidid: 0000-0003-0198-1632
  surname: Yang
  fullname: Yang, Wei
  email: weiyang@scu.edu.cn
BookMark eNqFkc9u1DAQxn0oUv--QQ8-ctngOG42ywEJFQqVKnGBszWZjLveJvYydor6ELwzDuHEAU4zI8_3G8835-IkxEBCXNeqqlXdvjlUCNzHUGmlm0rpSqnuRJypEjat1s2pOE_pUErT1eZM_PxAyT8GmTJDpscX6SLLvScGxr1HGJeXGfPMJKOTK1v2I-CTLMnkkeMxcpyTpBFSjhOxTDM7QJI5_gAeFgJl3EM_koQwSIzTkSkl_0y_5_oynkKKnC7FKwdjoqs_8UJ8u_v49fbz5uHLp_vb9w8bbJpd3rR12xL2xrUI5Pre6E7XqgOH7sa1BpXZ1nV3A4PabcEZM2CptoM24Ejvdrq5EK9X7pHj95lStpNPSOMIgcoqVneN0aor1NL6dm0ti6bE5Cz6DNnHsPx8tLWyi-_2YFdv7OK7VdoWw4vY_CU-sp-AX_4ne7fKqHjwXI5hE3oKSINnwmyH6P8N-AWqXqf2
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118379
crossref_primary_10_1016_j_rinma_2024_100646
crossref_primary_10_1016_j_compositesa_2023_107730
crossref_primary_10_1016_j_porgcoat_2024_108373
crossref_primary_10_1021_acsaelm_3c00039
crossref_primary_10_3390_ma16196363
crossref_primary_10_26599_NR_2025_94907167
crossref_primary_10_1002_adem_202400132
crossref_primary_10_1109_JSEN_2024_3425162
crossref_primary_10_1016_j_jallcom_2025_178779
crossref_primary_10_1021_acs_nanolett_5c00327
crossref_primary_10_1021_acsami_3c14672
crossref_primary_10_1016_j_carbon_2023_118480
crossref_primary_10_1002_app_56440
crossref_primary_10_1007_s00339_025_08408_y
crossref_primary_10_1002_app_56023
crossref_primary_10_1039_D4SM00926F
crossref_primary_10_1016_j_nanoen_2023_109173
crossref_primary_10_1002_app_56863
crossref_primary_10_1007_s42114_024_01157_1
crossref_primary_10_1016_j_polymer_2024_127248
crossref_primary_10_1016_j_cej_2024_157289
crossref_primary_10_1016_j_coco_2024_101985
crossref_primary_10_1002_admi_202400803
crossref_primary_10_1007_s42765_023_00359_4
crossref_primary_10_1002_vjch_202300236
crossref_primary_10_15407_scine20_05_071
crossref_primary_10_1007_s10854_024_12641_1
crossref_primary_10_1021_acsami_3c13458
crossref_primary_10_1021_acsanm_3c04826
crossref_primary_10_1109_JSEN_2024_3372587
crossref_primary_10_1002_adsr_202300120
crossref_primary_10_1039_D3CP04158A
crossref_primary_10_1002_adem_202402208
crossref_primary_10_1016_j_cej_2025_161566
crossref_primary_10_1016_j_sna_2024_115287
crossref_primary_10_1016_j_ijoes_2023_100236
crossref_primary_10_1016_j_mtnano_2024_100512
crossref_primary_10_1016_j_eurpolymj_2024_113182
crossref_primary_10_1021_acsapm_3c01034
Cites_doi 10.1016/j.compositesb.2021.108607
10.1016/j.compositesb.2020.108319
10.1039/D1TB01467F
10.1016/j.cej.2022.138258
10.1016/j.carbon.2018.06.037
10.1016/j.compositesb.2021.108641
10.1016/j.carbon.2022.01.020
10.1039/C7CP01278K
10.1016/j.nanoen.2021.106603
10.1016/j.polymer.2016.12.056
10.1021/acsami.1c07640
10.1021/acsami.9b13349
10.1021/acsnano.5b02781
10.1016/j.amjhyper.2004.10.009
10.1016/j.compositesa.2020.105837
10.1021/acsami.9b16922
10.1016/j.carbon.2017.09.055
10.1021/nn201002d
10.1016/j.carbon.2017.04.002
10.1080/03602559.2017.1329433
10.1016/j.compositesa.2020.105898
10.1002/smll.201903487
10.1021/acsami.8b20929
10.1002/smll.201701388
10.1016/j.cej.2019.05.045
10.1016/j.compositesb.2016.06.031
10.1039/C6TC03713E
10.1039/C5TC00692A
10.1021/acsnano.2c06482
10.1039/D0MH00922A
10.1126/sciadv.1500661
10.1002/adma.201808148
10.1016/j.carbon.2019.03.001
10.1016/j.cej.2020.127025
10.1016/j.apsusc.2021.149268
10.1039/D0MH00716A
10.1016/j.cej.2021.133488
10.1016/j.carbon.2022.04.033
10.1002/smll.201702091
10.1016/j.compositesa.2017.06.017
10.1016/j.nanoen.2020.104814
10.1021/acsnano.2c04188
10.1039/D1NJ04626H
10.1002/smll.202103734
10.1039/C8MH00680F
10.1002/adfm.201601995
10.1038/s41467-017-02685-9
10.1016/j.coco.2021.100809
10.1021/acsami.0c04709
10.1016/j.compscitech.2017.06.027
10.1016/j.carbon.2022.02.003
10.1039/C6NR02216B
10.1002/advs.202105084
10.1021/acsami.8b11527
10.1021/acsami.8b02322
10.1088/1361-665X/ac3d9e
10.1038/s41467-022-30361-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.carbon.2023.02.008
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 61
ExternalDocumentID 10_1016_j_carbon_2023_02_008
S0008622323000787
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7S9
L.6
SSH
ID FETCH-LOGICAL-c339t-6166ecb4f6caefbb4282108afcf5f64c0471185ad097af44dc1857d24afe29923
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 04:23:54 EDT 2025
Tue Aug 05 03:08:35 EDT 2025
Thu Apr 24 23:09:01 EDT 2025
Tue Dec 03 03:44:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 3D continuous porous structure
Isotropic composites
Wearable electronics
Pressure/tensile strain sensors
Phase separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-6166ecb4f6caefbb4282108afcf5f64c0471185ad097af44dc1857d24afe29923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0198-1632
PQID 2834208821
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2834208821
crossref_citationtrail_10_1016_j_carbon_2023_02_008
crossref_primary_10_1016_j_carbon_2023_02_008
elsevier_sciencedirect_doi_10_1016_j_carbon_2023_02_008
PublicationCentury 2000
PublicationDate 2023-03-25
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-25
  day: 25
PublicationDecade 2020
PublicationTitle Carbon (New York)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Zhao, Jia, Wang, Zha, Yin, Ke, Bao, Liu, Wang, Zhang, Yang, Yang (bib17) 2021; 90
Youn, Mun, Jang, Kyung (bib56) 2021; 31
Liu, Dong, Huang, Gao, Dai, Guo, Zheng, Liu, Shen, Guo (bib52) 2017; 5
Mathieu, Anthony, Arnaud, Lionel (bib42) 2015; 3
Liao, Wang, Lin, Li, Wu, Zheng (bib3) 2018; 5
Ghaffarkhah, Kamkar, Dijvejin, Riazi, Ghaderi, Golovin, Soroush, Arjmand (bib5) 2022; 191
Niu, Chen, Kim, Zhou, Li, Kim (bib59) 2022; 450
Jia, Pu, Liu, Zhao, Ke, Bao, Liu, Yang, Yang (bib12) 2020; 7
Park, Lee, Barbee, Cho, Cho, Shanker, Kim, Myoung, Kim, Baig, Craig, Ko (bib1) 2019; 31
Ha, Zhang, Jang, Kang, Wang, Tan, Hwang, Lu (bib24) 2021; 33
Nichols (bib60) 2005; 18
Wang, Huang, Wang, Zhang, Gao, Luo, Guo, Xue, Gao (bib29) 2021; 405
Gong, Liu, Liu, Peng, Li, Bao, Yang, Xie, Yang, Guo (bib40) 2017; 110
Zhu, Li, Peng, Zhao, Chen, Zhu (bib2) 2022; 195
Liu, Chen, Huang, Wang, Li, Liu (bib6) 2022; 190
Gui, Li, Zhang, Jia, Liu, Li, Wei, Wang, Zhu, Tang, Wu, Cao (bib48) 2011; 5
Gong, Bao, Liu, Xie, Yang, Yang (bib41) 2017; 19
Cui, Jiang, Xu, Xi, Jiang, Song, Zhao, Wang (bib57) 2021; 211
Sang, Ke, Manas-Zloczower (bib28) 2019; 15
Kausar (bib31) 2018; 57
Iglio, Mariani, Robbiano, Strambini, Barillaro (bib32) 2018; 10
Yao, Shen, Guo, Zuo, Shi, Jiang, Chu (bib49) 2021; 9
Zhang, Zhang, Huang, Yang (bib22) 2022; 9
Zeng, Jin, Chen, Li, Zhou, Xue, Zhang (bib47) 2017; 13
Huang, Chen, Xu, Hu, Cui, Shi, Zhu (bib51) 2021; 548
Gao, Wang, Zhai, Liu, Zheng, Dai, Mi, Liu, Shen (bib35) 2018; 10
Hua, Sun, Liu, Bao, Yu, Zhai, Pan, Wang (bib15) 2018; 9
Ding, Xu, Onyilagha, Fong, Zhu (bib20) 2019; 11
Jia, Liu, Wang, Zha, Ke, Liu, Pötschke, Yang, Yang (bib43) 2022; 431
Gao, Li, Huang, Wang, Lin, Wang, Xue (bib7) 2019; 373
Yu, Zhai, Yun, Zhai, Wang, Zheng, Yan, Dai, Liu, Shen (bib37) 2019; 5
Yang, Jiang, Yan, Shen, Chen, Xu, Zhu (bib46) 2020; 134
Lei, Feng, Ding, Wang, Dai, Liu, Gao, Zhou, Xu, Zhou (bib19) 2022; 16
Park, Kim, Lee, Lee, Ko (bib58) 2015; 1
Ke, Solouki Bonab, Yuan, Manas-Zloczower (bib34) 2018; 139
Xia, Wang, Zhai, Shao, Xu, Yan, Yang, Dai, Liu, Shen (bib38) 2021; 26
Yuan, Guo, Ke, Manas-Zloczower (bib13) 2020; 132
Liu, Gao, Huang, Dai, Zheng, Liu, Shen, Yan, Guo, Guo (bib33) 2016; 8
Qin, Peng, Ding, Lin, Wang, Li, Xu, Li, Yuan, He (bib26) 2015; 9
Song, Chen, Su, Chen, Miao, Zhang, Cheng, Zhang (bib23) 2017; 13
Chen, Jing, Lee, Liu, Kim, Chen, Huang, Shen, Zheng, Yang, Jeon, Kim (bib16) 2020; 7
Jia, Peng, Zha, Ke, Bao, Liu, Yang, Yang (bib44) 2022; 16
Wang, Guan, Huang, Wang, Lin, Peng (bib30) 2019; 29
Andrzejewski, Mohanty, Misra (bib36) 2020; 200
Gong, Peng, Bao, Yang, Xie, Yang (bib39) 2016; 99
Jiang, Zhou, Wei, Zheng, Ji, Mi, Dai, Liu, Shen (bib10) 2020; 12
Wu, Han, Zhang, Zhou, Lu (bib50) 2016; 26
Li, Hua, Xu (bib54) 2017; 118
Pu, Zhao, Zha, Li, Ke, Bao, Liu, Yang, Yang (bib8) 2020; 74
Liu, Xiang, Wang, Li, Qian, Li, Ma, Zhou, Huang (bib18) 2019; 11
Son, Lee, Wang, Samson, Wei, Zhu, You (bib9) 2022; 13
Li, Ke, Jia, Pu, Zhao, Bao, Liu, Bai, Zhang, Yang, Yang (bib4) 2022; 18
Jung, Lee, Oh, Park, Ko, Kim, Yun, Cho (bib25) 2021; 13
Kamkar, Ghaffarkhah, Hosseini, Amini, Ghaderi, Arjmand (bib61) 2021; 45
Wei, Cao, Wang, Zheng, Dai, Liu, Shen (bib27) 2017; 149
Hwang, Kim, Yang, Oh (bib45) 2021; 211
Xue, Chen, Diao (bib11) 2019; 147
Chen, Zhang, Luo, Zhang, Li, Su, Gao, Li, Tang, Cao, Liu, Wang, Li (bib55) 2020; 12
Oh, Kim, Kim, Choi, Yang, Lee, Pyatykh, Kim, Sim, Park (bib14) 2019; 15
Yang, Wang, Song, Liu, Zhao, Shen (bib53) 2017; 101
Zhang, Hou, Yan, Zhao, Zhan (bib21) 2017; 125
Wei (10.1016/j.carbon.2023.02.008_bib27) 2017; 149
Iglio (10.1016/j.carbon.2023.02.008_bib32) 2018; 10
Jia (10.1016/j.carbon.2023.02.008_bib12) 2020; 7
Cui (10.1016/j.carbon.2023.02.008_bib57) 2021; 211
Sang (10.1016/j.carbon.2023.02.008_bib28) 2019; 15
Li (10.1016/j.carbon.2023.02.008_bib54) 2017; 118
Li (10.1016/j.carbon.2023.02.008_bib4) 2022; 18
Park (10.1016/j.carbon.2023.02.008_bib58) 2015; 1
Ghaffarkhah (10.1016/j.carbon.2023.02.008_bib5) 2022; 191
Chen (10.1016/j.carbon.2023.02.008_bib55) 2020; 12
Kausar (10.1016/j.carbon.2023.02.008_bib31) 2018; 57
Gong (10.1016/j.carbon.2023.02.008_bib41) 2017; 19
Zhang (10.1016/j.carbon.2023.02.008_bib21) 2017; 125
Zhang (10.1016/j.carbon.2023.02.008_bib22) 2022; 9
Jung (10.1016/j.carbon.2023.02.008_bib25) 2021; 13
Yu (10.1016/j.carbon.2023.02.008_bib37) 2019; 5
Mathieu (10.1016/j.carbon.2023.02.008_bib42) 2015; 3
Liu (10.1016/j.carbon.2023.02.008_bib6) 2022; 190
Oh (10.1016/j.carbon.2023.02.008_bib14) 2019; 15
Zeng (10.1016/j.carbon.2023.02.008_bib47) 2017; 13
Son (10.1016/j.carbon.2023.02.008_bib9) 2022; 13
Liao (10.1016/j.carbon.2023.02.008_bib3) 2018; 5
Gao (10.1016/j.carbon.2023.02.008_bib35) 2018; 10
Liu (10.1016/j.carbon.2023.02.008_bib52) 2017; 5
Youn (10.1016/j.carbon.2023.02.008_bib56) 2021; 31
Hwang (10.1016/j.carbon.2023.02.008_bib45) 2021; 211
Wang (10.1016/j.carbon.2023.02.008_bib29) 2021; 405
Lei (10.1016/j.carbon.2023.02.008_bib19) 2022; 16
Zhu (10.1016/j.carbon.2023.02.008_bib2) 2022; 195
Park (10.1016/j.carbon.2023.02.008_bib1) 2019; 31
Kamkar (10.1016/j.carbon.2023.02.008_bib61) 2021; 45
Pu (10.1016/j.carbon.2023.02.008_bib8) 2020; 74
Wang (10.1016/j.carbon.2023.02.008_bib30) 2019; 29
Hua (10.1016/j.carbon.2023.02.008_bib15) 2018; 9
Qin (10.1016/j.carbon.2023.02.008_bib26) 2015; 9
Jia (10.1016/j.carbon.2023.02.008_bib44) 2022; 16
Xia (10.1016/j.carbon.2023.02.008_bib38) 2021; 26
Gong (10.1016/j.carbon.2023.02.008_bib40) 2017; 110
Gui (10.1016/j.carbon.2023.02.008_bib48) 2011; 5
Song (10.1016/j.carbon.2023.02.008_bib23) 2017; 13
Gong (10.1016/j.carbon.2023.02.008_bib39) 2016; 99
Nichols (10.1016/j.carbon.2023.02.008_bib60) 2005; 18
Huang (10.1016/j.carbon.2023.02.008_bib51) 2021; 548
Xue (10.1016/j.carbon.2023.02.008_bib11) 2019; 147
Gao (10.1016/j.carbon.2023.02.008_bib7) 2019; 373
Chen (10.1016/j.carbon.2023.02.008_bib16) 2020; 7
Ha (10.1016/j.carbon.2023.02.008_bib24) 2021; 33
Liu (10.1016/j.carbon.2023.02.008_bib18) 2019; 11
Wu (10.1016/j.carbon.2023.02.008_bib50) 2016; 26
Tang (10.1016/j.carbon.2023.02.008_bib17) 2021; 90
Niu (10.1016/j.carbon.2023.02.008_bib59) 2022; 450
Ke (10.1016/j.carbon.2023.02.008_bib34) 2018; 139
Yang (10.1016/j.carbon.2023.02.008_bib53) 2017; 101
Liu (10.1016/j.carbon.2023.02.008_bib33) 2016; 8
Jiang (10.1016/j.carbon.2023.02.008_bib10) 2020; 12
Jia (10.1016/j.carbon.2023.02.008_bib43) 2022; 431
Ding (10.1016/j.carbon.2023.02.008_bib20) 2019; 11
Andrzejewski (10.1016/j.carbon.2023.02.008_bib36) 2020; 200
Yao (10.1016/j.carbon.2023.02.008_bib49) 2021; 9
Yang (10.1016/j.carbon.2023.02.008_bib46) 2020; 134
Yuan (10.1016/j.carbon.2023.02.008_bib13) 2020; 132
References_xml – volume: 139
  start-page: 52
  year: 2018
  end-page: 58
  ident: bib34
  article-title: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures
  publication-title: Carbon
– volume: 15
  year: 2019
  ident: bib28
  article-title: Design strategy for porous composites aimed at pressure sensor application
  publication-title: Small
– volume: 13
  year: 2017
  ident: bib23
  article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring
  publication-title: Small
– volume: 13
  start-page: 28975
  year: 2021
  end-page: 28984
  ident: bib25
  article-title: Linearly sensitive pressure sensor based on a porous multistacked composite structure with controlled mechanical and electrical properties
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8676
  year: 2021
  end-page: 8685
  ident: bib49
  article-title: Poly(vinyl alcohol)/phosphoric acid gel electrolyte@polydimethylsiloxane sponge for piezoresistive pressure sensors
  publication-title: J. Mater. Chem. B
– volume: 101
  start-page: 195
  year: 2017
  end-page: 198
  ident: bib53
  article-title: One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization
  publication-title: Compos. Part A-Appl. S.
– volume: 99
  start-page: 348
  year: 2016
  end-page: 357
  ident: bib39
  article-title: Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure
  publication-title: Compos. B Eng.
– volume: 431
  year: 2022
  ident: bib43
  article-title: In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 245
  year: 2022
  end-page: 254
  ident: bib6
  article-title: In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability
  publication-title: Carbon
– volume: 132
  year: 2020
  ident: bib13
  article-title: Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing
  publication-title: Compos. Part A-Appl. S.
– volume: 57
  start-page: 346
  year: 2018
  end-page: 369
  ident: bib31
  article-title: Polyurethane composite foams in high-performance applications: a review
  publication-title: Polym.-Plast. Technol. Eng.
– volume: 3
  start-page: 5769
  year: 2015
  end-page: 5774
  ident: bib42
  article-title: CNT aggregation mechanisms probed by electrical and dielectric measurements
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 73
  year: 2017
  end-page: 83
  ident: bib52
  article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing
  publication-title: J. Mater. Chem. C
– volume: 16
  start-page: 16806
  year: 2022
  end-page: 16815
  ident: bib44
  article-title: Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for bosted strain sensing performance
  publication-title: ACS Nano
– volume: 373
  start-page: 298
  year: 2019
  end-page: 306
  ident: bib7
  article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring
  publication-title: Chem. Eng. J.
– volume: 211
  year: 2021
  ident: bib45
  article-title: Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor
  publication-title: Compos. B Eng.
– volume: 110
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib40
  article-title: Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers
  publication-title: Polymer
– volume: 1
  year: 2015
  ident: bib58
  article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli
  publication-title: Sci. Adv.
– volume: 15
  year: 2019
  ident: bib14
  article-title: Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size
  publication-title: Small
– volume: 31
  year: 2021
  ident: bib56
  article-title: Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator
  publication-title: Smart Mater. Struct.
– volume: 5
  start-page: 920
  year: 2018
  end-page: 931
  ident: bib3
  article-title: Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation
  publication-title: Mater. Horiz.
– volume: 5
  start-page: 4276
  year: 2011
  end-page: 4283
  ident: bib48
  article-title: A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges
  publication-title: ACS Nano
– volume: 125
  start-page: 199
  year: 2017
  end-page: 206
  ident: bib21
  article-title: Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors
  publication-title: Carbon
– volume: 134
  year: 2020
  ident: bib46
  article-title: Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization
  publication-title: Compos. Part A-Appl. S.
– volume: 18
  start-page: 3S
  year: 2005
  end-page: 10S
  ident: bib60
  article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms
  publication-title: Am. J. Hypertens.
– volume: 31
  year: 2019
  ident: bib1
  article-title: A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins
  publication-title: Adv. Mater.
– volume: 12
  start-page: 22200
  year: 2020
  end-page: 22211
  ident: bib55
  article-title: Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 6246
  year: 2016
  end-page: 6256
  ident: bib50
  article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing
  publication-title: Adv. Funct. Mater.
– volume: 211
  year: 2021
  ident: bib57
  article-title: Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability
  publication-title: Compos. B Eng.
– volume: 191
  start-page: 277
  year: 2022
  end-page: 289
  ident: bib5
  article-title: High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding
  publication-title: Carbon
– volume: 26
  year: 2021
  ident: bib38
  article-title: Highly linear and low hysteresis porous strain sensor for wearable electronic skins
  publication-title: Compos. Commun.
– volume: 33
  year: 2021
  ident: bib24
  article-title: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite
  publication-title: Adv. Mater.
– volume: 149
  start-page: 166
  year: 2017
  end-page: 177
  ident: bib27
  article-title: Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor
  publication-title: Compos. Sci. Technol.
– volume: 12
  start-page: 1454
  year: 2020
  end-page: 1464
  ident: bib10
  article-title: Transparent conductive flexible trilayer films for a deicing window and self-recover bending sensor based on a single-walled carbon nanotube/polyvinyl butyral interlayer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 244
  year: 2018
  ident: bib15
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
– volume: 29
  year: 2019
  ident: bib30
  article-title: Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture
  publication-title: Adv. Funct. Mater.
– volume: 450
  year: 2022
  ident: bib59
  article-title: Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 34592
  year: 2018
  end-page: 34603
  ident: bib35
  article-title: Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 548
  year: 2021
  ident: bib51
  article-title: Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 2378
  year: 2020
  end-page: 2389
  ident: bib16
  article-title: Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures
  publication-title: Mater. Horiz.
– volume: 5
  year: 2019
  ident: bib37
  article-title: Ultra‐stretchable porous fiber‐shaped strain sensor with exponential response in full sensing range and excellent anti‐interference ability toward buckling, torsion, temperature, and humidity
  publication-title: Adv. Electroni. Mater.
– volume: 147
  start-page: 227
  year: 2019
  end-page: 235
  ident: bib11
  article-title: Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures
  publication-title: Carbon
– volume: 18
  year: 2022
  ident: bib4
  article-title: Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing
  publication-title: Small
– volume: 11
  start-page: 6685
  year: 2019
  end-page: 6704
  ident: bib20
  article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges
  publication-title: ACS Appl. Mater. Interfaces
– volume: 74
  year: 2020
  ident: bib8
  article-title: A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring
  publication-title: Nano Energy
– volume: 45
  start-page: 21488
  year: 2021
  end-page: 21507
  ident: bib61
  article-title: Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects
  publication-title: New J. Chem.
– volume: 16
  start-page: 12620
  year: 2022
  end-page: 12634
  ident: bib19
  article-title: Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode
  publication-title: ACS Nano
– volume: 10
  start-page: 13877
  year: 2018
  end-page: 13885
  ident: bib32
  article-title: Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 40613
  year: 2019
  end-page: 40619
  ident: bib18
  article-title: A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2739
  year: 2022
  ident: bib9
  article-title: Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors
  publication-title: Nat. Commun.
– volume: 118
  start-page: 686
  year: 2017
  end-page: 698
  ident: bib54
  article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core
  publication-title: Carbon
– volume: 90
  year: 2021
  ident: bib17
  article-title: Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening
  publication-title: Nano Energy
– volume: 13
  year: 2017
  ident: bib47
  article-title: Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites
  publication-title: Small
– volume: 7
  start-page: 2450
  year: 2020
  end-page: 2459
  ident: bib12
  article-title: Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing
  publication-title: Mater. Horiz.
– volume: 9
  year: 2022
  ident: bib22
  article-title: A new class of electronic devices based on flexible porous substrates
  publication-title: Adv. Sci.
– volume: 195
  start-page: 364
  year: 2022
  end-page: 371
  ident: bib2
  article-title: Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor
  publication-title: Carbon
– volume: 9
  start-page: 8933
  year: 2015
  end-page: 8941
  ident: bib26
  article-title: Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application
  publication-title: ACS Nano
– volume: 19
  start-page: 12712
  year: 2017
  end-page: 12719
  ident: bib41
  article-title: The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 12977
  year: 2016
  end-page: 12989
  ident: bib33
  article-title: Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers
  publication-title: Nanoscale
– volume: 405
  year: 2021
  ident: bib29
  article-title: Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range
  publication-title: Chem. Eng. J.
– volume: 200
  year: 2020
  ident: bib36
  article-title: Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials
  publication-title: Compos. B Eng.
– volume: 211
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib45
  article-title: Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2021.108607
– volume: 200
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib36
  article-title: Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.108319
– volume: 9
  start-page: 8676
  issue: 41
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib49
  article-title: Poly(vinyl alcohol)/phosphoric acid gel electrolyte@polydimethylsiloxane sponge for piezoresistive pressure sensors
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01467F
– volume: 450
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib59
  article-title: Ultrasensitive capacitive tactile sensor with heterostructured active layers for tiny signal perception
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138258
– volume: 139
  start-page: 52
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib34
  article-title: Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.06.037
– volume: 211
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib57
  article-title: Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2021.108641
– volume: 190
  start-page: 245
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib6
  article-title: In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.01.020
– volume: 19
  start-page: 12712
  issue: 20
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib41
  article-title: The effect of chain mobility on the coarsening process of co-continuous, immiscible polymer blends under quiescent melt annealing
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01278K
– volume: 90
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib17
  article-title: Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106603
– volume: 110
  start-page: 1
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib40
  article-title: Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2016.12.056
– volume: 13
  start-page: 28975
  issue: 24
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib25
  article-title: Linearly sensitive pressure sensor based on a porous multistacked composite structure with controlled mechanical and electrical properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07640
– volume: 11
  start-page: 40613
  issue: 43
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib18
  article-title: A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13349
– volume: 9
  start-page: 8933
  issue: 9
  year: 2015
  ident: 10.1016/j.carbon.2023.02.008_bib26
  article-title: Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02781
– volume: 18
  start-page: 3S
  issue: S1
  year: 2005
  ident: 10.1016/j.carbon.2023.02.008_bib60
  article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2004.10.009
– volume: 132
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib13
  article-title: Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing
  publication-title: Compos. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2020.105837
– volume: 12
  start-page: 1454
  issue: 1
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib10
  article-title: Transparent conductive flexible trilayer films for a deicing window and self-recover bending sensor based on a single-walled carbon nanotube/polyvinyl butyral interlayer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16922
– volume: 125
  start-page: 199
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib21
  article-title: Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.09.055
– volume: 5
  start-page: 4276
  issue: 6
  year: 2011
  ident: 10.1016/j.carbon.2023.02.008_bib48
  article-title: A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges
  publication-title: ACS Nano
  doi: 10.1021/nn201002d
– volume: 118
  start-page: 686
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib54
  article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.002
– volume: 57
  start-page: 346
  issue: 4
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib31
  article-title: Polyurethane composite foams in high-performance applications: a review
  publication-title: Polym.-Plast. Technol. Eng.
  doi: 10.1080/03602559.2017.1329433
– volume: 134
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib46
  article-title: Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization
  publication-title: Compos. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2020.105898
– volume: 15
  issue: 45
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib28
  article-title: Design strategy for porous composites aimed at pressure sensor application
  publication-title: Small
  doi: 10.1002/smll.201903487
– volume: 11
  start-page: 6685
  issue: 7
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib20
  article-title: Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20929
– volume: 13
  issue: 34
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib47
  article-title: Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites
  publication-title: Small
  doi: 10.1002/smll.201701388
– volume: 373
  start-page: 298
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib7
  article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.045
– volume: 99
  start-page: 348
  year: 2016
  ident: 10.1016/j.carbon.2023.02.008_bib39
  article-title: Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2016.06.031
– volume: 5
  start-page: 73
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib52
  article-title: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03713E
– volume: 3
  start-page: 5769
  issue: 22
  year: 2015
  ident: 10.1016/j.carbon.2023.02.008_bib42
  article-title: CNT aggregation mechanisms probed by electrical and dielectric measurements
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00692A
– volume: 16
  start-page: 16806
  issue: 10
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib44
  article-title: Janus and heteromodulus elastomeric fiber mats feature regulable stress redistribution for bosted strain sensing performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06482
– volume: 15
  issue: 33
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib14
  article-title: Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size
  publication-title: Small
– volume: 29
  issue: 11
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib30
  article-title: Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2378
  issue: 9
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib16
  article-title: Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00922A
– volume: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.carbon.2023.02.008_bib58
  article-title: Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500661
– volume: 31
  issue: 25
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib1
  article-title: A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808148
– volume: 147
  start-page: 227
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib11
  article-title: Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.001
– volume: 405
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib29
  article-title: Lotus leaf inspired superhydrophobic rubber composites for temperature stable piezoresistive sensors with ultrahigh compressibility and linear working range
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127025
– volume: 548
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib51
  article-title: Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149268
– volume: 7
  start-page: 2450
  issue: 9
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib12
  article-title: Surface structure engineering for a bionic fiber-based sensor toward linear, tunable, and multifunctional sensing
  publication-title: Mater. Horiz.
  doi: 10.1039/D0MH00716A
– volume: 431
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib43
  article-title: In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133488
– volume: 195
  start-page: 364
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib2
  article-title: Highly-stretchable porous thermoplastic polyurethane/carbon nanotubes composites as a multimodal sensor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.04.033
– volume: 13
  issue: 39
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib23
  article-title: Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring
  publication-title: Small
  doi: 10.1002/smll.201702091
– volume: 5
  issue: 10
  year: 2019
  ident: 10.1016/j.carbon.2023.02.008_bib37
  article-title: Ultra‐stretchable porous fiber‐shaped strain sensor with exponential response in full sensing range and excellent anti‐interference ability toward buckling, torsion, temperature, and humidity
  publication-title: Adv. Electroni. Mater.
– volume: 101
  start-page: 195
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib53
  article-title: One-pot preparation of porous piezoresistive sensor with high strain sensitivity via emulsion-templated polymerization
  publication-title: Compos. Part A-Appl. S.
  doi: 10.1016/j.compositesa.2017.06.017
– volume: 74
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib8
  article-title: A strain localization directed crack control strategy for designing MXene-based customizable sensitivity and sensing range strain sensors for full-range human motion monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104814
– volume: 16
  start-page: 12620
  issue: 8
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib19
  article-title: Breathable and waterproof electronic skin with three-dimensional architecture for pressure and strain sensing in nonoverlapping mode
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c04188
– volume: 45
  start-page: 21488
  issue: 46
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib61
  article-title: Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ04626H
– volume: 18
  issue: 7
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib4
  article-title: Recent advances in multiresponsive flexible sensors towards E-skin: a delicate design for versatile sensing
  publication-title: Small
  doi: 10.1002/smll.202103734
– volume: 5
  start-page: 920
  issue: 5
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib3
  article-title: Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00680F
– volume: 26
  start-page: 6246
  issue: 34
  year: 2016
  ident: 10.1016/j.carbon.2023.02.008_bib50
  article-title: Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601995
– volume: 9
  start-page: 244
  issue: 1
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib15
  article-title: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02685-9
– volume: 26
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib38
  article-title: Highly linear and low hysteresis porous strain sensor for wearable electronic skins
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2021.100809
– volume: 12
  start-page: 22200
  issue: 19
  year: 2020
  ident: 10.1016/j.carbon.2023.02.008_bib55
  article-title: Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04709
– volume: 33
  issue: 48
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib24
  article-title: Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite
  publication-title: Adv. Mater.
– volume: 149
  start-page: 166
  year: 2017
  ident: 10.1016/j.carbon.2023.02.008_bib27
  article-title: Conductive herringbone structure carbon nanotube/thermoplastic polyurethane porous foam tuned by epoxy for high performance flexible piezoresistive sensor
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2017.06.027
– volume: 191
  start-page: 277
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib5
  article-title: High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.02.003
– volume: 8
  start-page: 12977
  issue: 26
  year: 2016
  ident: 10.1016/j.carbon.2023.02.008_bib33
  article-title: Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers
  publication-title: Nanoscale
  doi: 10.1039/C6NR02216B
– volume: 9
  issue: 7
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib22
  article-title: A new class of electronic devices based on flexible porous substrates
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105084
– volume: 10
  start-page: 34592
  issue: 40
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib35
  article-title: Ultrastretchable multilayered fiber with a hollow-monolith structure for high-performance strain sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11527
– volume: 10
  start-page: 13877
  issue: 16
  year: 2018
  ident: 10.1016/j.carbon.2023.02.008_bib32
  article-title: Flexible polydimethylsiloxane foams decorated with multiwalled carbon nanotubes enable unprecedented detection of ultralow strain and pressure coupled with a large working range
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02322
– volume: 31
  issue: 1
  year: 2021
  ident: 10.1016/j.carbon.2023.02.008_bib56
  article-title: Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ac3d9e
– volume: 13
  start-page: 2739
  issue: 1
  year: 2022
  ident: 10.1016/j.carbon.2023.02.008_bib9
  article-title: Integrating charge mobility, stability and stretchability within conjugated polymer films for stretchable multifunctional sensors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30361-0
SSID ssj0004814
Score 2.5774438
Snippet Flexible mechanical sensors capable of sensing both compressive and tensile strains with high sensitivity and linear piezoresistive response are of great...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms 3D continuous porous structure
carbon
composite polymers
compression strength
detection limit
hysteresis
Isotropic composites
isotropy
nanomaterials
Phase separation
polyethylene glycol
porous media
Pressure/tensile strain sensors
separation
soot
tensile strength
Wearable electronics
Title Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors
URI https://dx.doi.org/10.1016/j.carbon.2023.02.008
https://www.proquest.com/docview/2834208821
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA1jPuiL-InzY0Twta40Wds9jumYCntysLeQpAlMXDu6TvDFf-B_9t6kVRRE8K0t_Qj3hNyT5twTQq6YTWQ_keiHF_KApwMeSG0sAmJkCkcqcwLZaTyZ8ft5f94io6YWBmWV9djvx3Q3WtdXenU0e6vFAmt8kY4DI2Au0WFFOecJ9vLrty-ZB0-9vzcu8-PdTfmc03hpWaoCXVAj5p0709_S04-B2mWf8R7ZrWkjHfqW7ZOWyQ_I9qjZre2QvN84KQZde7fZVwpklOI-126lAICg3il2UxpaWOqbRBX-vqNwsERdHlDxYrOmBgh1VSxNSdeb0kJMaeW0tfgGBBmLrajMM4pydCejfTHuuwv4PMyKi3J9RGbj28fRJKi3Wgg0Y4MKJpBxbLTiNtYS8FEwKYG5YCqttn0bcx1CDoPMLrNwkEjLeabRQyqLuLQGElrEjkk7L3JzQmikWJplkQbuotD9TSVZyplWYaKgP-ioQ1gTYaFrH3Js4rNoBGdPwgdBIC4ijATg0iHB51Mr78Pxx_1JA5741p8EpIo_nrxssBaAIa6fyNxA-AUwMRQjQGRO__32M7KDZ6hii_rnpA3QmwugNZXqun7bJVvDu4fJ9ANnZPv4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsQwFA2DLnQjPvFtBF1WS5ppOwsX4oPRGV0puItJmsCIttLOKG78A7_GH_TepFUUZEBwV2ambbjnzr0n7ckJITuRTWQ7keiHF_KApx0eSG0sAmJkCkcqcwLZy7h7zc9v2jct8t6shUFZZV37fU131br-ZL-O5v7jYIBrfJGOAyOIXKNLamVlz7w8w7ytOjg7BpB3GTs9uTrqBvXWAoGOos4QJkxxbLTiNtYSxqOAhMPcJ5VW27aNuQ6hZkMnk1nYSaTlPNPomZQxLq2BAo5uB1D3JzmUC9w2Ye_1S1fCU28ojroCHF6zXs-JyrQsVYG2qyzyVqHpb_3wR2dw7e50lszUPJUe-lDMkZbJ58nUUbM93AJ5O3baD1p5e9sXCuyX4sba7tUEIE-9Ne2oNLSw1A-JKnxeSOHgAYWAwP2LUUUNMPhh8WBKWo1KCyDSoRPz4hUwq3B1F5V5RlH_7nS7T8bddwC3h2l4UVaL5PpfAFgiE3mRm2VCmYrSLGMayJJCuzmVZCmPtAoTBQmo2QqJmggLXRuf4xDvRaNwuxM-CAJxESETgMsKCT7PevTGH2N-nzTgiW8JLKA3jTlzu8FaAIb4wkbmBsIvgPqh-gEis_rnq2-Rqe7VRV_0zy57a2Qav0EJHWuvkwlIA7MBnGqoNl0OU3L733-aD4f7ODc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+strategy+for+hierarchical+structure+of+carbon+black+on+microporous+elastomer+surface+toward+stretchable+and+compressive+strain+sensors&rft.jtitle=Carbon+%28New+York%29&rft.au=Gong%2C+Tao&rft.au=Jia%2C+Jin&rft.au=Sun%2C+Xiao-Rong&rft.au=Li%2C+Wu-Di&rft.date=2023-03-25&rft.pub=Elsevier+Ltd&rft.issn=0008-6223&rft.volume=206&rft.spage=53&rft.epage=61&rft_id=info:doi/10.1016%2Fj.carbon.2023.02.008&rft.externalDocID=S0008622323000787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon