Monitoring regional soil organic matter content using a spatiotemporal model with time-series synthetic Landsat images
Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with...
Saved in:
Published in | Geoderma Regional Vol. 34; p. e00702 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples.
[Display omitted]
•Time-series synthetic Landsat images of 1986–2007 were established based on GEE.•The image of 2005–2007 was used to fit a spatiotemporal model to map soil organic matter (SOM) content.•The model was conveniently temporally transferred to predict SOM content of 1986–2007.•The model had a better accuracy than another one in a previous study. |
---|---|
AbstractList | Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples.
[Display omitted]
•Time-series synthetic Landsat images of 1986–2007 were established based on GEE.•The image of 2005–2007 was used to fit a spatiotemporal model to map soil organic matter (SOM) content.•The model was conveniently temporally transferred to predict SOM content of 1986–2007.•The model had a better accuracy than another one in a previous study. Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples. |
ArticleNumber | e00702 |
Author | Cui, Yu-Pei Sun, Xiao-Lin Ding, Xiao-Gang Yang, Hua-Lei Zhang, Mei-Wei Guo, Qian Zeng, Ling-Tao Wang, Xiao-Qing |
Author_xml | – sequence: 1 givenname: Mei-Wei surname: Zhang fullname: Zhang, Mei-Wei organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 2 givenname: Xiao-Qing surname: Wang fullname: Wang, Xiao-Qing organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 3 givenname: Xiao-Gang surname: Ding fullname: Ding, Xiao-Gang organization: Guangdong Academy of Forestry, Guangzhou 510520, China – sequence: 4 givenname: Hua-Lei surname: Yang fullname: Yang, Hua-Lei organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 5 givenname: Qian surname: Guo fullname: Guo, Qian organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 6 givenname: Ling-Tao surname: Zeng fullname: Zeng, Ling-Tao organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 7 givenname: Yu-Pei surname: Cui fullname: Cui, Yu-Pei organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China – sequence: 8 givenname: Xiao-Lin surname: Sun fullname: Sun, Xiao-Lin email: sxiaolin@mail.sysu.edu.cn organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China |
BookMark | eNqFkD1vFDEQhi0UJELIP0jhkmYPr70fWQokFPER6RBNUls-e3Yzp1378MwF5d_Hp6VAFKTySH6fVzPPW3EWUwQhrmq1qVXdfdhvJkgh00YrbTagVK_0K3GuTasrpYbm7K_5jbgk2iul9NCavtPn4vFHisgpY5xkhglTdLOkhLNMeXIRvVwcM2TpU2SILI90ijpJB8eYGJZDygVZUoBZ_kZ-kIwLVAQZgSQ9RX4ALjVbFwM5lri4CeideD26meDyz3sh7r9-ubv5Xm1_fru9-bytvDEDV-04jM650e36cmqrw9AEFXbXPZjyr4zqmhB2w64xfe-hNnUYO901pm2UHxo9mgvxfu095PTrCMR2QfIwzy5COpI1dWuKt6G-LtFmjfqciDKM9pDLsvnJ1sqeTNu9XU3bk2m7mi7Yx38wj3xSEzk7nF-CP60wFAePCNmSR4geAmbwbEPC_xc8AzEaoRw |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2025_117225 crossref_primary_10_1016_j_still_2024_106357 crossref_primary_10_1007_s10661_023_12172_y crossref_primary_10_3390_land14040677 |
Cites_doi | 10.1016/j.geoderma.2022.116065 10.1016/j.catena.2021.105442 10.1016/j.scitotenv.2022.159253 10.1016/j.ecolind.2023.109940 10.1016/j.landusepol.2018.12.008 10.1016/j.rse.2019.111285 10.1016/j.geoderma.2021.115402 10.1016/j.ecolind.2013.12.015 10.1016/j.geoderma.2023.116446 10.1016/j.geoderma.2008.12.010 10.1023/A:1010933404324 10.5194/essd-13-3907-2021 10.1016/j.gloplacha.2011.12.005 10.1016/j.scitotenv.2015.07.014 10.1016/j.rse.2019.111625 10.1111/j.1475-2743.2012.00421.x 10.1038/s41467-019-08636-w 10.3390/su132414055 10.1016/j.catena.2016.05.023 10.1016/j.scib.2019.04.024 10.1016/j.catena.2022.106217 10.1016/j.geoderma.2022.116066 10.1016/j.still.2019.104465 10.1016/j.ecolind.2014.12.028 10.1016/j.agee.2005.09.006 10.1016/j.geoderma.2018.07.026 10.5721/EuJRS20144731 10.1111/sum.12206 10.1016/j.scitotenv.2018.11.230 10.3390/rs13152934 10.1111/gcb.13898 10.1016/0034-4257(88)90106-X 10.3390/ijgi11020111 10.1016/j.geoderma.2021.115567 10.1016/j.geoderma.2021.115118 10.1016/S0034-4257(02)00096-2 10.1016/j.rse.2022.113260 10.1016/j.still.2009.09.003 10.1016/j.rse.2013.02.029 10.1111/j.1365-2486.2007.01409.x 10.1016/j.geoderma.2021.115407 10.1080/10643389.2021.2024484 10.3390/rs14184441 10.1126/science.1097396 10.3390/rs14081875 10.1016/S0034-4257(96)00067-3 10.1016/j.still.2011.01.007 10.1016/S1002-0160(12)60026-5 10.1016/j.agee.2009.12.011 10.1111/j.1365-2486.2008.01792.x 10.1016/j.catena.2018.11.010 10.1016/j.geoderma.2015.08.009 10.1016/j.agee.2018.02.012 10.1016/j.geoderma.2020.114808 10.1016/j.ecolind.2015.09.012 10.2136/sssaj2008.0045 10.1016/j.geoderma.2018.08.011 10.1016/j.geoderma.2007.02.012 10.1080/01431161.2021.1957177 10.1016/j.scitotenv.2019.03.151 10.1111/gcb.16154 10.1016/j.ecolind.2021.107975 10.1016/j.geoderma.2012.07.020 10.1016/j.geoderma.2019.05.012 10.1029/2009GB003484 10.5194/soil-5-79-2019 10.1016/j.rse.2019.111260 10.1126/science.1244693 10.1016/j.geoderma.2013.08.013 10.1007/978-1-4419-9326-7_5 10.1073/pnas.1700292114 10.1111/j.1365-2486.2010.02324.x 10.1016/j.rse.2019.111624 10.1016/j.isprsjprs.2021.06.018 10.1016/j.geoderma.2021.115599 10.1007/s11434-006-2056-6 10.5194/soil-6-35-2020 10.1016/j.ecolind.2022.108545 10.1016/j.geoderma.2019.01.015 10.1111/ejss.12295 10.1016/j.agee.2006.07.011 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2023.e00702 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2023_e00702 S2352009423000986 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-5f9faaafab701652d94d0db87e333903064ddb9b4377ce131df62643540c942f3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Aug 22 20:39:47 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Tue Jul 01 02:07:20 EDT 2025 Fri Feb 23 02:35:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Digital soil mapping Spatiotemporal dynamics Synthetic Landsat imagery Google Earth Engine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-5f9faaafab701652d94d0db87e333903064ddb9b4377ce131df62643540c942f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153202918 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153202918 crossref_primary_10_1016_j_geodrs_2023_e00702 crossref_citationtrail_10_1016_j_geodrs_2023_e00702 elsevier_sciencedirect_doi_10_1016_j_geodrs_2023_e00702 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Li, Zhang (bb0090) 2019; 64 Ivushkin, Bartholomeus, Bregt, Pulatov, Kempen, De Sousa (bb0160) 2019; 231 Fatchurrachman, Soh, Shah, Giap, Setiawan, Minasny (bb0070) 2022; 14 Wu, Wu, Luo, Zhang, DeGloria (bb0400) 2009; 73 Guo, Sun, Fu, Shi, Dang, Chen, Linderman, Zhang, Zhang, Jiang, Zhang, Chen (bb0100) 2021; 398 Adhikari, Hartemink (bb0005) 2016; 262 Cutler, Cutler, Stevens (bb0060) 2012; 157–175 Mahmoudzadeh, Matinfar, Taghizadeh-Mehrjardi, Kerry (bb0220) 2020; 21 Zhao, Zhang, Wu, Li, Zhao (bb0480) 2015; 31 Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco (bb0395) 2019; 333 Liu, Wang, Zhang, Song, Li, Li, Li, Duan (bb0205) 2006; 113 McBratney, Field, Koch (bb0235) 2014; 213 Sun, Lai, Ding, Wu, Wang, Wu (bb0350) 2022; 213 Wang, Wang, Li, Wang, Zheng, Song (bb0385) 2022; 425 Chuai, Huang, Wang, Zhang, Li, Liao (bb0055) 2012; 22 Sahu, Mishra, Basti (bb0310) 2023; 32 Tong, Xiao, Tang, Wang, Huang, Xia, Keith, Li, Liu, Wu (bb0360) 2009; 106 Lou, Xu, Wang, Sun, Zhao (bb0215) 2011; 113 Sun, Wu, Lou, Wang, Zhang, Zhao, Zhang (bb0340) 2015; 66 IUSS Working Group WRB (bb0155) 2006 Yu, Huang, Zhang (bb0455) 2012; 82 Pan, Xu, Smith, Pan, Lal (bb0295) 2010; 136 Chen, Chang, Xiao, Zhou, Wu (bb0035) 2019; 669 Yang, Song, Zhu, Qin, Zhou, Qi, Li, Chen, Gao (bb0420) 2019; 340 Lal (bb0175) 2004; 304 Li, Yu, Peng, Gong (bb0180) 2021; 42 Hounkpatin, Bossa, Yira, Igue, Sinsin (bb0125) 2022; 28 Babu, Singh, Avasthe, Kumar, Rathore, Singh, Ansari, Valente, Petrosillo (bb0020) 2023; 147 Liu, Xiao, Qin, Wang, Xu, Hu, Qiao (bb0210) 2020; 239 Pan, Li, Zhang, Wang, Sun, Xu, Jiang (bb0290) 2005; 17 Xie, Zhang, Lu, Peng, Chen, Zhao (bb0410) 2022; 409 Yang, Cai, Zhang, Guo, Li, Zhou (bb0435) 2021; 102 Huang, Zhang, Zou, Zhu, Chen, Mi, Wang, Yang, Li (bb0140) 2015; 536 Nelson, Sommers (bb0255) 1996; 5 Sun, Zhao, Wu, Zhao, Wang, Zhang (bb0335) 2012; 28 Dharumarajan, Gomez, Lalitha, Kalaiselvi, Vasundhara, Hegde (bb0065) 2023; 32 Xie, Zhu, Liu, Cadisch, Hasegawa, Chen, Sun, Tang, Zeng (bb0405) 2007; 13 Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland (bb0110) 2013; 342 Padarian, Stockmann, Minasny, McBratney (bb0280) 2022; 281 Yang, Huang (bb0415) 2021; 13 Pahlavan-Rad, Dahmardeh, Brungard (bb0285) 2018; 15 Zhao, Rossiter, Li, Zhao, Liu, Zhang (bb0475) 2014; 39 Han, Wiesmeier, Conant, Kühnel, Sun, Kögel-Knabner, Hou, Cong, Liang, Ouyang (bb0105) 2018; 24 Rouse, Haas, Schell, Deering (bb0305) 1974; 351 Sun, Minasny, Wang, Zhao, Zhang, Wu (bb0345) 2021; 384 Wang, Du, Li, Bao, Zhao, Yue (bb0380) 2021; 129 Minasny, Sulaeman, Mcbratney (bb0245) 2011; 17 Gong, Yan, Wang, Hu, Gong (bb0085) 2009; 149 Gao (bb0075) 1996; 58 Mirzaee, Ghorbani-Dashtaki, Mohammadi, Asadi, Asadzadeh (bb0250) 2016; 145 Lin, Zhu, Wang, Wang, Ma (bb0200) 2020; 89 He, Yang, Li, Zhang, Shen, Cai, Zhou (bb0120) 2021; 205 Huete (bb0145) 1988; 25 Nocita, Stevens, Noon, van Wesemael (bb0265) 2013; 199 Meng, Bao, Liu, Zhang, Wang (bb0240) 2022; 425 Stumpf, Keller, Schmidt, Mayr, Gubler, Schaepman (bb0325) 2018; 258 Bao, Gao, Ge (bb0025) 2019; 82 Liang, Chen, Yang, Zhao, Shi, Rossel (bb0190) 2019; 335 Yang, Liu, Zhang, He, Zhu, Zhang, Li (bb0440) 2022; 405 Chen, Ma, Yu, Zhang, Feng, Wang, Song (bb0050) 2022; 135 Richardson, Wiegand (bb0300) 1977; 43 Chen, Liang, Webster, Zhang, Zhou, Teng, Hu, Arrouays, Shi (bb0040) 2019; 655 Zhang, Hao, Wang, Sun (bb0470) 2023; 433 Chen, Arrouays, Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Richer-de-Forges, Walter (bb0045) 2022; 409 Hastie, Tibshirani, Friedman (bb0115) 2009 Yang, Tilman, Furey, Lehman (bb0425) 2019; 10 Sun, Minasny, Wu, Wang, Fan, Zhang (bb0355) 2023; 857 Kopittke, Berhe, Carrillo, Cavagnaro, Chen, Chen, Román Dobarco, Dijkstra, Field, Grundy (bb0170) 2022; 52 Shibabaw, George, Gärdenäs (bb0315) 2023; 32 Were, Bui, Dick, Singh (bb0390) 2015; 52 Sothe, Gonsamo, Arabian, Snider (bb0320) 2022; 405 Huang, Sun, Zhao, Zhu, Yang, Zou, Ding, Su (bb0135) 2007; 139 Yang, Shang, Xiao, Wang, Tang (bb0445) 2022; 11 Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie (bb0485) 2018; 115 Araya, Lyle, Lewis, Ostendorf (bb0015) 2016; 60 Wang, Zhang, Atkinson, Yao (bb0375) 2020; 92 Manlay, Feller, Swift (bb0225) 2007; 119 Li, Wu, Liu, Xiao, Zhao, Chen, Alexandrov, Cao (bb0185) 2022; 28 Yang, He, Shen, Zhou, Zhu, Gao, Chen, Li (bb0430) 2020; 196 Liao, Zhang, Li, Pan, Smith, Jin, Wu (bb0195) 2009; 15 Massetti, Gil (bb0230) 2020; 239 Ge, Hu, Ren, Jia, Wang, Liu, Zhang, Zhao, Luo, Fu, Bai, Chen (bb0080) 2019; 232 Grinand, Le Maire, Vieilledent, Razakamanarivo, Razafimbelo, Bernoux (bb0095) 2017; 54 Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0150) 2002; 83 Zhang, Zhang, Yang, Jin, Zhang, Liu (bb0460) 2021; 13 Ye, Sheng, Liu, Ma, Wang, Ding, Liu, Li, Wang (bb0450) 2021; 13 Breiman (bb0030) 2001; 45 Zhang, Cai, Huang, Li, Yang, Zhou (bb0465) 2022; 14 Padarian, Minasny, McBratney (bb0270) 2019; 6 Jain, Mondal, DeFries, Small, Galford (bb0165) 2013; 134 Tziachris, Aschonitis, Chatzistathis, Papadopoulou (bb0365) 2019; 174 Ni, Tian, Li, Yin, Li, Gong, Zhang, Zhu, Wu (bb0260) 2021; 178 Sun, Huang, Zhang, Yu (bb0330) 2010; 24 Ahmed, Iqbal (bb0010) 2014; 47 Wadoux (bb0370) 2019; 351 Padarian, Minasny, McBratney (bb0275) 2019; 5 Huang, Sun (bb0130) 2006; 51 Meng (10.1016/j.geodrs.2023.e00702_bb0240) 2022; 425 Ni (10.1016/j.geodrs.2023.e00702_bb0260) 2021; 178 Sun (10.1016/j.geodrs.2023.e00702_bb0340) 2015; 66 Ahmed (10.1016/j.geodrs.2023.e00702_bb0010) 2014; 47 Shibabaw (10.1016/j.geodrs.2023.e00702_bb0315) 2023; 32 Wadoux (10.1016/j.geodrs.2023.e00702_bb0370) 2019; 351 Xie (10.1016/j.geodrs.2023.e00702_bb0405) 2007; 13 Grinand (10.1016/j.geodrs.2023.e00702_bb0095) 2017; 54 Xie (10.1016/j.geodrs.2023.e00702_bb0410) 2022; 409 Lou (10.1016/j.geodrs.2023.e00702_bb0215) 2011; 113 Richardson (10.1016/j.geodrs.2023.e00702_bb0300) 1977; 43 Yang (10.1016/j.geodrs.2023.e00702_bb0435) 2021; 102 Sahu (10.1016/j.geodrs.2023.e00702_bb0310) 2023; 32 Padarian (10.1016/j.geodrs.2023.e00702_bb0280) 2022; 281 Yang (10.1016/j.geodrs.2023.e00702_bb0415) 2021; 13 Zhao (10.1016/j.geodrs.2023.e00702_bb0485) 2018; 115 Araya (10.1016/j.geodrs.2023.e00702_bb0015) 2016; 60 Chuai (10.1016/j.geodrs.2023.e00702_bb0055) 2012; 22 Zhao (10.1016/j.geodrs.2023.e00702_bb0475) 2014; 39 Liao (10.1016/j.geodrs.2023.e00702_bb0195) 2009; 15 Sun (10.1016/j.geodrs.2023.e00702_bb0335) 2012; 28 Pahlavan-Rad (10.1016/j.geodrs.2023.e00702_bb0285) 2018; 15 Tziachris (10.1016/j.geodrs.2023.e00702_bb0365) 2019; 174 Ivushkin (10.1016/j.geodrs.2023.e00702_bb0160) 2019; 231 McBratney (10.1016/j.geodrs.2023.e00702_bb0235) 2014; 213 Bao (10.1016/j.geodrs.2023.e00702_bb0025) 2019; 82 Li (10.1016/j.geodrs.2023.e00702_bb0180) 2021; 42 Cutler (10.1016/j.geodrs.2023.e00702_bb0060) 2012; 157–175 Minasny (10.1016/j.geodrs.2023.e00702_bb0245) 2011; 17 Huang (10.1016/j.geodrs.2023.e00702_bb0130) 2006; 51 Wang (10.1016/j.geodrs.2023.e00702_bb0375) 2020; 92 Stumpf (10.1016/j.geodrs.2023.e00702_bb0325) 2018; 258 Yang (10.1016/j.geodrs.2023.e00702_bb0440) 2022; 405 Were (10.1016/j.geodrs.2023.e00702_bb0390) 2015; 52 Padarian (10.1016/j.geodrs.2023.e00702_bb0275) 2019; 5 Babu (10.1016/j.geodrs.2023.e00702_bb0020) 2023; 147 Sothe (10.1016/j.geodrs.2023.e00702_bb0320) 2022; 405 Sun (10.1016/j.geodrs.2023.e00702_bb0350) 2022; 213 Han (10.1016/j.geodrs.2023.e00702_bb0105) 2018; 24 Jain (10.1016/j.geodrs.2023.e00702_bb0165) 2013; 134 Padarian (10.1016/j.geodrs.2023.e00702_bb0270) 2019; 6 Nelson (10.1016/j.geodrs.2023.e00702_bb0255) 1996; 5 Yang (10.1016/j.geodrs.2023.e00702_bb0425) 2019; 10 Wang (10.1016/j.geodrs.2023.e00702_bb0380) 2021; 129 Hounkpatin (10.1016/j.geodrs.2023.e00702_bb0125) 2022; 28 IUSS Working Group WRB (10.1016/j.geodrs.2023.e00702_bb0155) 2006 Yang (10.1016/j.geodrs.2023.e00702_bb0420) 2019; 340 Pan (10.1016/j.geodrs.2023.e00702_bb0295) 2010; 136 Gong (10.1016/j.geodrs.2023.e00702_bb0085) 2009; 149 Chen (10.1016/j.geodrs.2023.e00702_bb0035) 2019; 669 Sun (10.1016/j.geodrs.2023.e00702_bb0345) 2021; 384 Hastie (10.1016/j.geodrs.2023.e00702_bb0115) 2009 Li (10.1016/j.geodrs.2023.e00702_bb0185) 2022; 28 Zhang (10.1016/j.geodrs.2023.e00702_bb0470) 2023; 433 Mirzaee (10.1016/j.geodrs.2023.e00702_bb0250) 2016; 145 Sun (10.1016/j.geodrs.2023.e00702_bb0330) 2010; 24 Liu (10.1016/j.geodrs.2023.e00702_bb0205) 2006; 113 Lal (10.1016/j.geodrs.2023.e00702_bb0175) 2004; 304 Wang (10.1016/j.geodrs.2023.e00702_bb0385) 2022; 425 Zhang (10.1016/j.geodrs.2023.e00702_bb0460) 2021; 13 Zhang (10.1016/j.geodrs.2023.e00702_bb0465) 2022; 14 Zhao (10.1016/j.geodrs.2023.e00702_bb0480) 2015; 31 Breiman (10.1016/j.geodrs.2023.e00702_bb0030) 2001; 45 He (10.1016/j.geodrs.2023.e00702_bb0120) 2021; 205 Sun (10.1016/j.geodrs.2023.e00702_bb0355) 2023; 857 Lin (10.1016/j.geodrs.2023.e00702_bb0200) 2020; 89 Manlay (10.1016/j.geodrs.2023.e00702_bb0225) 2007; 119 Nocita (10.1016/j.geodrs.2023.e00702_bb0265) 2013; 199 Wiesmeier (10.1016/j.geodrs.2023.e00702_bb0395) 2019; 333 Gao (10.1016/j.geodrs.2023.e00702_bb0075) 1996; 58 Hansen (10.1016/j.geodrs.2023.e00702_bb0110) 2013; 342 Liang (10.1016/j.geodrs.2023.e00702_bb0190) 2019; 335 Fatchurrachman (10.1016/j.geodrs.2023.e00702_bb0070) 2022; 14 Dharumarajan (10.1016/j.geodrs.2023.e00702_bb0065) 2023; 32 Yang (10.1016/j.geodrs.2023.e00702_bb0430) 2020; 196 Huete (10.1016/j.geodrs.2023.e00702_bb0145) 1988; 25 Huang (10.1016/j.geodrs.2023.e00702_bb0135) 2007; 139 Mahmoudzadeh (10.1016/j.geodrs.2023.e00702_bb0220) 2020; 21 Chen (10.1016/j.geodrs.2023.e00702_bb0045) 2022; 409 Wu (10.1016/j.geodrs.2023.e00702_bb0400) 2009; 73 Rouse (10.1016/j.geodrs.2023.e00702_bb0305) 1974; 351 Ye (10.1016/j.geodrs.2023.e00702_bb0450) 2021; 13 Gong (10.1016/j.geodrs.2023.e00702_bb0090) 2019; 64 Chen (10.1016/j.geodrs.2023.e00702_bb0050) 2022; 135 Liu (10.1016/j.geodrs.2023.e00702_bb0210) 2020; 239 Adhikari (10.1016/j.geodrs.2023.e00702_bb0005) 2016; 262 Guo (10.1016/j.geodrs.2023.e00702_bb0100) 2021; 398 Kopittke (10.1016/j.geodrs.2023.e00702_bb0170) 2022; 52 Ge (10.1016/j.geodrs.2023.e00702_bb0080) 2019; 232 Pan (10.1016/j.geodrs.2023.e00702_bb0290) 2005; 17 Massetti (10.1016/j.geodrs.2023.e00702_bb0230) 2020; 239 Chen (10.1016/j.geodrs.2023.e00702_bb0040) 2019; 655 Yang (10.1016/j.geodrs.2023.e00702_bb0445) 2022; 11 Huang (10.1016/j.geodrs.2023.e00702_bb0140) 2015; 536 Huete (10.1016/j.geodrs.2023.e00702_bb0150) 2002; 83 Yu (10.1016/j.geodrs.2023.e00702_bb0455) 2012; 82 Tong (10.1016/j.geodrs.2023.e00702_bb0360) 2009; 106 |
References_xml | – volume: 15 start-page: 861 year: 2009 end-page: 875 ident: bb0195 article-title: Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province publication-title: Glob. Chang. Biol. – volume: 409 year: 2022 ident: bb0045 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma – volume: 113 start-page: 70 year: 2011 end-page: 73 ident: bb0215 article-title: Return rate of straw residue affects soil organic C sequestration by chemical fertilization publication-title: Soil Tillage Res. – volume: 425 year: 2022 ident: bb0385 article-title: Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model publication-title: Geoderma – volume: 54 start-page: 1 year: 2017 end-page: 14 ident: bb0095 article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 82 start-page: 169 year: 2019 end-page: 180 ident: bb0025 article-title: Dynamic land use and its policy in response to environmental and social-economic changes in China: a case study of the Jiangsu coast (1750–2015) publication-title: Land Use Policy – volume: 335 start-page: 47 year: 2019 end-page: 56 ident: bb0190 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: bb0110 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science – volume: 340 start-page: 289 year: 2019 end-page: 302 ident: bb0420 article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables publication-title: Geoderma – volume: 129 year: 2021 ident: bb0380 article-title: Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping publication-title: Ecol. Indic. – volume: 14 start-page: 1875 year: 2022 ident: bb0070 article-title: High-resolution mapping of Paddy Rice extent and growth stages across peninsular Malaysia using a fusion of Sentinel-1 and 2 time series data in Google earth engine publication-title: Remote Sens. – volume: 351 start-page: 59 year: 2019 end-page: 70 ident: bb0370 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma – volume: 134 start-page: 210 year: 2013 end-page: 223 ident: bb0165 article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors publication-title: Remote Sens. Environ. – volume: 21 year: 2020 ident: bb0220 article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran publication-title: Geoderma Reg. – volume: 13 start-page: 14055 year: 2021 ident: bb0450 article-title: Using machine learning algorithms based on GF-6 and Google earth engine to predict and map the spatial distribution of soil organic matter content publication-title: Sustainability – volume: 231 year: 2019 ident: bb0160 article-title: Global mapping of soil salinity change publication-title: Remote Sens. Environ. – volume: 655 start-page: 273 year: 2019 end-page: 283 ident: bb0040 article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution publication-title: Sci. Total Environ. – volume: 149 start-page: 318 year: 2009 end-page: 324 ident: bb0085 article-title: Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China publication-title: Geoderma – volume: 28 start-page: 3394 year: 2022 end-page: 3410 ident: bb0185 article-title: Decipher soil organic carbon dynamics and driving forces across China using machine learning publication-title: Glob. Chang. Biol. – volume: 433 year: 2023 ident: bb0470 article-title: Application of generalized linear geostatistical model for regional soil organic matter mapping: the effect of sampling density publication-title: Geoderma – volume: 24 start-page: 987 year: 2018 end-page: 1000 ident: bb0105 article-title: Large soil organic carbon increase due to improved agronomic management in the North China plain from 1980s to 2010s publication-title: Glob. Chang. Biol. – volume: 31 start-page: 440 year: 2015 end-page: 449 ident: bb0480 article-title: Driving forces of soil organic matter change in Jiangsu Province of China publication-title: Soil Use Manag. – volume: 73 start-page: 1202 year: 2009 end-page: 1208 ident: bb0400 article-title: Spatial prediction of soil organic matter content using cokriging with remotely sensed data publication-title: Soil Sci. Soc. Am. J. – volume: 115 start-page: 4045 year: 2018 end-page: 4050 ident: bb0485 article-title: Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 35 year: 2019 end-page: 52 ident: bb0270 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil – volume: 32 year: 2023 ident: bb0315 article-title: The combined impacts of land use change and climate change on soil organic carbon stocks in the Ethiopian highlands publication-title: Geoderma Reg. – volume: 669 start-page: 844 year: 2019 end-page: 855 ident: bb0035 article-title: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms publication-title: Sci. Total Environ. – volume: 60 start-page: 1263 year: 2016 end-page: 1272 ident: bb0015 article-title: Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity publication-title: Ecol. Indic. – volume: 64 start-page: 756 year: 2019 end-page: 763 ident: bb0090 article-title: 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing publication-title: Sci. Bull. – volume: 28 year: 2022 ident: bb0125 article-title: Assessment of the soil fertility status in Benin (West Africa)–digital soil mapping using machine learning publication-title: Geoderma Reg. – volume: 28 start-page: 318 year: 2012 end-page: 328 ident: bb0335 article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps publication-title: Soil Use Manag. – volume: 17 start-page: 1 year: 2005 end-page: 7 ident: bb0290 article-title: Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration publication-title: J. Environ. Sci. – volume: 66 start-page: 1012 year: 2015 end-page: 1022 ident: bb0340 article-title: Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China publication-title: Eur. J. Soil Sci. – volume: 199 start-page: 37 year: 2013 end-page: 42 ident: bb0265 article-title: Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy publication-title: Geoderma – volume: 384 year: 2021 ident: bb0345 article-title: Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE publication-title: Geoderma – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0030 article-title: Random forests publication-title: Mach. Learn. – volume: 119 start-page: 217 year: 2007 end-page: 233 ident: bb0225 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. – volume: 5 start-page: 79 year: 2019 end-page: 89 ident: bb0275 article-title: Using deep learning for digital soil mapping publication-title: Soil – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: bb0150 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 15 year: 2018 ident: bb0285 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Reg. – volume: 39 start-page: 120 year: 2014 end-page: 133 ident: bb0475 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Indic. – volume: 136 start-page: 133 year: 2010 end-page: 138 ident: bb0295 article-title: An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring publication-title: Agric. Ecosyst. Environ. – volume: 52 start-page: 394 year: 2015 end-page: 403 ident: bb0390 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. – volume: 174 start-page: 206 year: 2019 end-page: 216 ident: bb0365 article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters publication-title: Catena – volume: 13 start-page: 3907 year: 2021 end-page: 3925 ident: bb0415 article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 publication-title: Earth Syst. Sci. Data – volume: 239 year: 2020 ident: bb0230 article-title: Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic islands’ terrestrial ecosystems: a case study of Madeira Island, Portugal (2009–2011) publication-title: Remote Sens. Environ. – volume: 147 year: 2023 ident: bb0020 article-title: Soil carbon dynamics under organic farming: impact of tillage and cropping diversity publication-title: Ecol. Indic. – volume: 13 start-page: 1989 year: 2007 end-page: 2007 ident: bb0405 article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s publication-title: Glob. Chang. Biol. – volume: 262 start-page: 101 year: 2016 end-page: 111 ident: bb0005 article-title: Linking soils to ecosystem services—a global review publication-title: Geoderma – volume: 47 start-page: 557 year: 2014 end-page: 573 ident: bb0010 article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS publication-title: Eur. J. Remote Sens. – volume: 398 year: 2021 ident: bb0100 article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas publication-title: Geoderma – volume: 536 start-page: 173 year: 2015 end-page: 181 ident: bb0140 article-title: Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China publication-title: Sci. Total Environ. – volume: 10 start-page: 718 year: 2019 ident: bb0425 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity publication-title: Nat. Commun. – volume: 258 start-page: 129 year: 2018 end-page: 142 ident: bb0325 article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems publication-title: Agric. Ecosyst. Environ. – volume: 213 year: 2022 ident: bb0350 article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study publication-title: Catena – volume: 43 start-page: 1541 year: 1977 end-page: 1552 ident: bb0300 article-title: Distinguishing vegetation from soil background information publication-title: Photogramm. Eng. Remote. Sens. – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: bb0075 article-title: NDWI? A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 304 start-page: 1623 year: 2004 end-page: 1627 ident: bb0175 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science – volume: 857 year: 2023 ident: bb0355 article-title: Soil organic carbon content increase in the east and south of China is accompanied by soil acidification publication-title: Sci. Total Environ. – volume: 113 start-page: 73 year: 2006 end-page: 81 ident: bb0205 article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China publication-title: Agric. Ecosyst. Environ. – volume: 32 year: 2023 ident: bb0065 article-title: Soil order knowledge as a driver in soil properties estimation from Vis-NIR spectral data–case study from northern Karnataka (India) publication-title: Geoderma Reg. – volume: 42 start-page: 7332 year: 2021 end-page: 7356 ident: bb0180 article-title: A large-scale, long time-series (1984–2020) of soybean mapping with phenological features: Heilongjiang Province as a test case publication-title: Int. J. Remote Sens. – volume: 232 year: 2019 ident: bb0080 article-title: Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018 publication-title: Remote Sens. Environ. – volume: 213 start-page: 203 year: 2014 end-page: 213 ident: bb0235 article-title: The dimensions of soil security publication-title: Geoderma – volume: 145 start-page: 118 year: 2016 end-page: 127 ident: bb0250 article-title: Spatial variability of soil organic matter using remote sensing data publication-title: Catena – volume: 351 start-page: 309 year: 1974 end-page: 317 ident: bb0305 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 196 year: 2020 ident: bb0430 article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data publication-title: Soil Tillage Res. – year: 2006 ident: bb0155 article-title: World Reference Base for Soil Resources 2006. World Soil Resources Reports No.103 – volume: 11 start-page: 111 year: 2022 ident: bb0445 article-title: Spectral index for mapping topsoil organic matter content based on ZY1-02D satellite hyperspectral data in Jiangsu Province, China publication-title: ISPRS Int. J. Geoinf. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bb0145 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 425 year: 2022 ident: bb0240 article-title: A new digital soil mapping method with temporal-spatial-spectral information derived from multi-source satellite images publication-title: Geoderma – volume: 409 year: 2022 ident: bb0410 article-title: Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area publication-title: Geoderma – volume: 239 year: 2020 ident: bb0210 article-title: Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google earth engine publication-title: Remote Sens. Environ. – volume: 82 start-page: 115 year: 2012 end-page: 128 ident: bb0455 article-title: Modeling soil organic carbon change in croplands of China, 1980–2009 publication-title: Glob. Planet. Chang. – volume: 281 year: 2022 ident: bb0280 article-title: Monitoring changes in global soil organic carbon stocks from space publication-title: Remote Sens. Environ. – volume: 51 start-page: 1785 year: 2006 end-page: 1803 ident: bb0130 article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades publication-title: Chin. Sci. Bull. – volume: 24 year: 2010 ident: bb0330 article-title: Carbon sequestration and its potential in agricultural soils of China publication-title: Glob. Biogeochem. Cycles – volume: 205 year: 2021 ident: bb0120 article-title: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images publication-title: Catena – volume: 405 year: 2022 ident: bb0440 article-title: The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes publication-title: Geoderma – volume: 333 start-page: 149 year: 2019 end-page: 162 ident: bb0395 article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales publication-title: Geoderma – volume: 157–175 year: 2012 ident: bb0060 article-title: Random forests publication-title: Ensemble Mach. Learn Methods Appl. – volume: 52 start-page: 4308 year: 2022 end-page: 4324 ident: bb0170 article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 5 start-page: 961 year: 1996 end-page: 1010 ident: bb0255 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods of Soil Analysis: Part 3 Chemical Methods – year: 2009 ident: bb0115 article-title: The Elements of Statistical Learning – volume: 92 year: 2020 ident: bb0375 article-title: Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 13 start-page: 2934 year: 2021 ident: bb0460 article-title: Mapping regional soil organic matter based on sentinel-2A and MODIS imagery using machine learning algorithms and Google earth engine publication-title: Remote Sens. – volume: 14 start-page: 4441 year: 2022 ident: bb0465 article-title: A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables publication-title: Remote Sens. – volume: 405 year: 2022 ident: bb0320 article-title: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations publication-title: Geoderma – volume: 32 year: 2023 ident: bb0310 article-title: Land-use change affects carbon storage and lability in tropical soil of India publication-title: Geoderma Reg. – volume: 102 year: 2021 ident: bb0435 article-title: A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 89 year: 2020 ident: bb0200 article-title: The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 139 start-page: 336 year: 2007 end-page: 345 ident: bb0135 article-title: Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices publication-title: Geoderma – volume: 22 start-page: 404 year: 2012 end-page: 414 ident: bb0055 article-title: Spatial variability of soil organic carbon and related factors in Jiangsu Province, China publication-title: Pedosphere – volume: 178 start-page: 282 year: 2021 end-page: 296 ident: bb0260 article-title: An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google earth engine publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 106 start-page: 8 year: 2009 end-page: 14 ident: bb0360 article-title: Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China publication-title: Soil Tillage Res. – volume: 135 year: 2022 ident: bb0050 article-title: Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests publication-title: Ecol. Indic. – volume: 17 start-page: 1917 year: 2011 end-page: 1924 ident: bb0245 article-title: Is soil carbon disappearing? The dynamics of soil organic carbon in Java publication-title: Glob. Chang. Biol. – volume: 425 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0240 article-title: A new digital soil mapping method with temporal-spatial-spectral information derived from multi-source satellite images publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116065 – volume: 205 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0120 article-title: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images publication-title: Catena doi: 10.1016/j.catena.2021.105442 – volume: 857 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0355 article-title: Soil organic carbon content increase in the east and south of China is accompanied by soil acidification publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159253 – volume: 147 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0020 article-title: Soil carbon dynamics under organic farming: impact of tillage and cropping diversity publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2023.109940 – volume: 82 start-page: 169 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0025 article-title: Dynamic land use and its policy in response to environmental and social-economic changes in China: a case study of the Jiangsu coast (1750–2015) publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.12.008 – volume: 232 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0080 article-title: Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111285 – volume: 405 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0320 article-title: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115402 – volume: 39 start-page: 120 year: 2014 ident: 10.1016/j.geodrs.2023.e00702_bb0475 article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2013.12.015 – volume: 54 start-page: 1 year: 2017 ident: 10.1016/j.geodrs.2023.e00702_bb0095 article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 433 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0470 article-title: Application of generalized linear geostatistical model for regional soil organic matter mapping: the effect of sampling density publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116446 – volume: 149 start-page: 318 issue: 3–4 year: 2009 ident: 10.1016/j.geodrs.2023.e00702_bb0085 article-title: Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China publication-title: Geoderma doi: 10.1016/j.geoderma.2008.12.010 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.geodrs.2023.e00702_bb0030 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 start-page: 3907 issue: 8 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0415 article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-3907-2021 – volume: 82 start-page: 115 year: 2012 ident: 10.1016/j.geodrs.2023.e00702_bb0455 article-title: Modeling soil organic carbon change in croplands of China, 1980–2009 publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2011.12.005 – volume: 536 start-page: 173 year: 2015 ident: 10.1016/j.geodrs.2023.e00702_bb0140 article-title: Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.07.014 – volume: 239 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0230 article-title: Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic islands’ terrestrial ecosystems: a case study of Madeira Island, Portugal (2009–2011) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111625 – volume: 28 start-page: 318 issue: 3 year: 2012 ident: 10.1016/j.geodrs.2023.e00702_bb0335 article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2012.00421.x – volume: 10 start-page: 718 issue: 1 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0425 article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity publication-title: Nat. Commun. doi: 10.1038/s41467-019-08636-w – volume: 13 start-page: 14055 issue: 24 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0450 article-title: Using machine learning algorithms based on GF-6 and Google earth engine to predict and map the spatial distribution of soil organic matter content publication-title: Sustainability doi: 10.3390/su132414055 – volume: 145 start-page: 118 year: 2016 ident: 10.1016/j.geodrs.2023.e00702_bb0250 article-title: Spatial variability of soil organic matter using remote sensing data publication-title: Catena doi: 10.1016/j.catena.2016.05.023 – volume: 89 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0200 article-title: The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 5 start-page: 961 year: 1996 ident: 10.1016/j.geodrs.2023.e00702_bb0255 article-title: Total carbon, organic carbon, and organic matter – year: 2006 ident: 10.1016/j.geodrs.2023.e00702_bb0155 – volume: 64 start-page: 756 issue: 11 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0090 article-title: 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.04.024 – volume: 213 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0350 article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study publication-title: Catena doi: 10.1016/j.catena.2022.106217 – volume: 425 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0385 article-title: Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116066 – volume: 196 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0430 article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.104465 – volume: 52 start-page: 394 year: 2015 ident: 10.1016/j.geodrs.2023.e00702_bb0390 article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.12.028 – volume: 113 start-page: 73 issue: 1–4 year: 2006 ident: 10.1016/j.geodrs.2023.e00702_bb0205 article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2005.09.006 – volume: 333 start-page: 149 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0395 article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.026 – volume: 47 start-page: 557 issue: 1 year: 2014 ident: 10.1016/j.geodrs.2023.e00702_bb0010 article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20144731 – volume: 31 start-page: 440 issue: 4 year: 2015 ident: 10.1016/j.geodrs.2023.e00702_bb0480 article-title: Driving forces of soil organic matter change in Jiangsu Province of China publication-title: Soil Use Manag. doi: 10.1111/sum.12206 – volume: 655 start-page: 273 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0040 article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.230 – volume: 13 start-page: 2934 issue: 15 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0460 article-title: Mapping regional soil organic matter based on sentinel-2A and MODIS imagery using machine learning algorithms and Google earth engine publication-title: Remote Sens. doi: 10.3390/rs13152934 – volume: 24 start-page: 987 issue: 3 year: 2018 ident: 10.1016/j.geodrs.2023.e00702_bb0105 article-title: Large soil organic carbon increase due to improved agronomic management in the North China plain from 1980s to 2010s publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13898 – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10.1016/j.geodrs.2023.e00702_bb0145 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 11 start-page: 111 issue: 2 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0445 article-title: Spectral index for mapping topsoil organic matter content based on ZY1-02D satellite hyperspectral data in Jiangsu Province, China publication-title: ISPRS Int. J. Geoinf. doi: 10.3390/ijgi11020111 – volume: 409 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0045 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115567 – volume: 398 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0100 article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115118 – volume: 92 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0375 article-title: Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 83 start-page: 195 issue: 1 year: 2002 ident: 10.1016/j.geodrs.2023.e00702_bb0150 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 281 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0280 article-title: Monitoring changes in global soil organic carbon stocks from space publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113260 – volume: 106 start-page: 8 issue: 1 year: 2009 ident: 10.1016/j.geodrs.2023.e00702_bb0360 article-title: Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2009.09.003 – volume: 134 start-page: 210 year: 2013 ident: 10.1016/j.geodrs.2023.e00702_bb0165 article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.029 – volume: 13 start-page: 1989 issue: 9 year: 2007 ident: 10.1016/j.geodrs.2023.e00702_bb0405 article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2007.01409.x – volume: 405 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0440 article-title: The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115407 – volume: 52 start-page: 4308 issue: 23 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0170 article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2021.2024484 – volume: 14 start-page: 4441 issue: 18 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0465 article-title: A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables publication-title: Remote Sens. doi: 10.3390/rs14184441 – volume: 304 start-page: 1623 issue: 5677 year: 2004 ident: 10.1016/j.geodrs.2023.e00702_bb0175 article-title: Soil carbon sequestration impacts on global climate change and food security publication-title: Science doi: 10.1126/science.1097396 – volume: 21 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0220 article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran publication-title: Geoderma Reg. – volume: 43 start-page: 1541 issue: 12 year: 1977 ident: 10.1016/j.geodrs.2023.e00702_bb0300 article-title: Distinguishing vegetation from soil background information publication-title: Photogramm. Eng. Remote. Sens. – volume: 14 start-page: 1875 issue: 8 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0070 article-title: High-resolution mapping of Paddy Rice extent and growth stages across peninsular Malaysia using a fusion of Sentinel-1 and 2 time series data in Google earth engine publication-title: Remote Sens. doi: 10.3390/rs14081875 – volume: 32 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0315 article-title: The combined impacts of land use change and climate change on soil organic carbon stocks in the Ethiopian highlands publication-title: Geoderma Reg. – volume: 58 start-page: 257 issue: 3 year: 1996 ident: 10.1016/j.geodrs.2023.e00702_bb0075 article-title: NDWI? A normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 113 start-page: 70 issue: 1 year: 2011 ident: 10.1016/j.geodrs.2023.e00702_bb0215 article-title: Return rate of straw residue affects soil organic C sequestration by chemical fertilization publication-title: Soil Tillage Res. doi: 10.1016/j.still.2011.01.007 – volume: 22 start-page: 404 issue: 3 year: 2012 ident: 10.1016/j.geodrs.2023.e00702_bb0055 article-title: Spatial variability of soil organic carbon and related factors in Jiangsu Province, China publication-title: Pedosphere doi: 10.1016/S1002-0160(12)60026-5 – volume: 28 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0125 article-title: Assessment of the soil fertility status in Benin (West Africa)–digital soil mapping using machine learning publication-title: Geoderma Reg. – volume: 136 start-page: 133 issue: 1–2 year: 2010 ident: 10.1016/j.geodrs.2023.e00702_bb0295 article-title: An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.12.011 – volume: 15 start-page: 861 issue: 4 year: 2009 ident: 10.1016/j.geodrs.2023.e00702_bb0195 article-title: Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01792.x – volume: 174 start-page: 206 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0365 article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters publication-title: Catena doi: 10.1016/j.catena.2018.11.010 – volume: 262 start-page: 101 year: 2016 ident: 10.1016/j.geodrs.2023.e00702_bb0005 article-title: Linking soils to ecosystem services—a global review publication-title: Geoderma doi: 10.1016/j.geoderma.2015.08.009 – volume: 258 start-page: 129 year: 2018 ident: 10.1016/j.geodrs.2023.e00702_bb0325 article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2018.02.012 – volume: 384 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0345 article-title: Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114808 – volume: 15 year: 2018 ident: 10.1016/j.geodrs.2023.e00702_bb0285 article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran publication-title: Geoderma Reg. – volume: 60 start-page: 1263 year: 2016 ident: 10.1016/j.geodrs.2023.e00702_bb0015 article-title: Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.09.012 – volume: 73 start-page: 1202 issue: 4 year: 2009 ident: 10.1016/j.geodrs.2023.e00702_bb0400 article-title: Spatial prediction of soil organic matter content using cokriging with remotely sensed data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2008.0045 – volume: 335 start-page: 47 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0190 article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.08.011 – volume: 139 start-page: 336 issue: 3–4 year: 2007 ident: 10.1016/j.geodrs.2023.e00702_bb0135 article-title: Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices publication-title: Geoderma doi: 10.1016/j.geoderma.2007.02.012 – volume: 42 start-page: 7332 issue: 19 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0180 article-title: A large-scale, long time-series (1984–2020) of soybean mapping with phenological features: Heilongjiang Province as a test case publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.1957177 – volume: 669 start-page: 844 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0035 article-title: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.151 – volume: 17 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.geodrs.2023.e00702_bb0290 article-title: Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration publication-title: J. Environ. Sci. – volume: 28 start-page: 3394 issue: 10 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0185 article-title: Decipher soil organic carbon dynamics and driving forces across China using machine learning publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.16154 – volume: 129 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0380 article-title: Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107975 – volume: 32 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0065 article-title: Soil order knowledge as a driver in soil properties estimation from Vis-NIR spectral data–case study from northern Karnataka (India) publication-title: Geoderma Reg. – volume: 199 start-page: 37 year: 2013 ident: 10.1016/j.geodrs.2023.e00702_bb0265 article-title: Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2012.07.020 – volume: 351 start-page: 59 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0370 article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.012 – volume: 24 issue: 3 year: 2010 ident: 10.1016/j.geodrs.2023.e00702_bb0330 article-title: Carbon sequestration and its potential in agricultural soils of China publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2009GB003484 – volume: 5 start-page: 79 issue: 1 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0275 article-title: Using deep learning for digital soil mapping publication-title: Soil doi: 10.5194/soil-5-79-2019 – volume: 351 start-page: 309 issue: 1 year: 1974 ident: 10.1016/j.geodrs.2023.e00702_bb0305 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 231 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0160 article-title: Global mapping of soil salinity change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111260 – volume: 102 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0435 article-title: A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 342 start-page: 850 issue: 6160 year: 2013 ident: 10.1016/j.geodrs.2023.e00702_bb0110 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 213 start-page: 203 year: 2014 ident: 10.1016/j.geodrs.2023.e00702_bb0235 article-title: The dimensions of soil security publication-title: Geoderma doi: 10.1016/j.geoderma.2013.08.013 – volume: 157–175 year: 2012 ident: 10.1016/j.geodrs.2023.e00702_bb0060 article-title: Random forests publication-title: Ensemble Mach. Learn Methods Appl. doi: 10.1007/978-1-4419-9326-7_5 – volume: 115 start-page: 4045 issue: 16 year: 2018 ident: 10.1016/j.geodrs.2023.e00702_bb0485 article-title: Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1700292114 – volume: 17 start-page: 1917 issue: 5 year: 2011 ident: 10.1016/j.geodrs.2023.e00702_bb0245 article-title: Is soil carbon disappearing? The dynamics of soil organic carbon in Java publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02324.x – volume: 239 year: 2020 ident: 10.1016/j.geodrs.2023.e00702_bb0210 article-title: Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google earth engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111624 – volume: 178 start-page: 282 year: 2021 ident: 10.1016/j.geodrs.2023.e00702_bb0260 article-title: An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google earth engine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.06.018 – volume: 409 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0410 article-title: Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115599 – volume: 32 year: 2023 ident: 10.1016/j.geodrs.2023.e00702_bb0310 article-title: Land-use change affects carbon storage and lability in tropical soil of India publication-title: Geoderma Reg. – volume: 51 start-page: 1785 issue: 15 year: 2006 ident: 10.1016/j.geodrs.2023.e00702_bb0130 article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-006-2056-6 – volume: 6 start-page: 35 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0270 article-title: Machine learning and soil sciences: a review aided by machine learning tools publication-title: Soil doi: 10.5194/soil-6-35-2020 – volume: 135 year: 2022 ident: 10.1016/j.geodrs.2023.e00702_bb0050 article-title: Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108545 – volume: 340 start-page: 289 year: 2019 ident: 10.1016/j.geodrs.2023.e00702_bb0420 article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.015 – volume: 66 start-page: 1012 issue: 6 year: 2015 ident: 10.1016/j.geodrs.2023.e00702_bb0340 article-title: Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12295 – volume: 119 start-page: 217 issue: 3–4 year: 2007 ident: 10.1016/j.geodrs.2023.e00702_bb0225 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.07.011 – year: 2009 ident: 10.1016/j.geodrs.2023.e00702_bb0115 |
SSID | ssj0002953762 |
Score | 2.3135347 |
Snippet | Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00702 |
SubjectTerms | China differential equation Digital soil mapping Google Earth Engine Internet Landsat soil Soil organic matter soil surveys spatial data Spatiotemporal dynamics Synthetic Landsat imagery time series analysis |
Title | Monitoring regional soil organic matter content using a spatiotemporal model with time-series synthetic Landsat images |
URI | https://dx.doi.org/10.1016/j.geodrs.2023.e00702 https://www.proquest.com/docview/3153202918 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze_FFFBXnFxF8jWuTtF0fx3BMp3tQh3sLaZKOytaOdRP87831Y6AgA59K2qYtl-Tucv3d_RC67TIuNaBnPKYk4b5UJDSuT2Ia-MZxYhlJyHd-HvvDCX-cetMG6te5MACrrHR_qdMLbV2d6VTS7CyTpPNKWVEyyPoD4Ch0_T3Uota6Ok3U6j2MhuNtqIWGULOEFjRzHiXQp06iK5BeM5PpFZTupuzOQP0b-peR-qWuCxs0OEQHlfOIe-X3HaGGSY_RZ7ksIT6HgWYBXGucZ8kcl4xNCi-KGpoYUOnWxGCAus-wxHkBpq5qU81xwYmDIS6LgXCewNw0Oc6_Uusj2hfiJ8gKlmucLKwOyk_QZHD_1h-Sik2BKMbCNfHiMJZSWukHkMJEdci1o6NuYJi9DlsHrnUURpwFgTIuc3VsNzsc4kLKCjlmp6iZZqk5Q9gOq6NcrZRxFI9i27J-iFR-5CjHU9y0EavFJ1RVahwYL-aixpR9iFLoAoQuSqG3Edn2WpalNnbcH9QjI35MGWGtwY6eN_VACrua4BeJTE22yQVzgSiDhm73_N9Pv0D70CqBaJeouV5tzJX1XNbRdTUz4Th6eR99AxNJ8j8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELVgOZRL1apUQGk7lcrRbGI7yebQA2qLdrvLXgCJm3FsZ7VoySKyUO3v6h_sTOIgtVKFVIljPpxYY3vmxXnzhrHPA6mMI_ZMIq3hKjWW5z5OeSmy1EdRaQpD-c6n03R4oX5cJpcb7FeXC0O0yuD7W5_eeOtwph-s2b-dz_tnQjaSQYgHCCgM0sCsHPv1T_xuq7-MvuEgHwpx8v3865CH0gLcSpmveFLmpTEGu5JRPo9wuXKRKwaZl3idcLRyrsgLJbPM-ljGrkTkr2iTxOIbS4nP3WRbpIaFy2rreDQeTh-3dkROGimiKWuXCE597JL2GmbZzC_dHUmFC3nkSW9H_Cso_hUemph38oq9DGAVjlt7vGYbvnrDHlo3QPuBQGUdCMpDvZwvoK0QZeGm0ewEYsFjSAOi1s_AQN2Qt4MW1gKaGjxA-8BABe45rQVfQ72uEJPiC2FCWchmBfMb9Hn1Drt4FhO_Zb1qWfldBjiNIhs7a31kVVHiEeIeY9MislFild9jsjOftkHanCpsLHTHYbvWrdE1GV23Rt9j_LHVbSvt8cT9WTcy-o8pqjH6PNHyUzeQGlcv_ZIxlV_e11rGVJhD5PFg_7-f_pG9GJ6fTvRkNB2_Y9t0pSXBHbDe6u7ev0fUtCo-hFkK7Oq5F8ZvGswtDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+regional+soil+organic+matter+content+using+a+spatiotemporal+model+with+time-series+synthetic+Landsat+images&rft.jtitle=Geoderma+Regional&rft.au=Zhang%2C+Mei-Wei&rft.au=Wang%2C+Xiao-Qing&rft.au=Ding%2C+Xiao-Gang&rft.au=Yang%2C+Hua-Lei&rft.date=2023-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=34+p.e00702-&rft_id=info:doi/10.1016%2Fj.geodrs.2023.e00702&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |