Monitoring regional soil organic matter content using a spatiotemporal model with time-series synthetic Landsat images

Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 34; p. e00702
Main Authors Zhang, Mei-Wei, Wang, Xiao-Qing, Ding, Xiao-Gang, Yang, Hua-Lei, Guo, Qian, Zeng, Ling-Tao, Cui, Yu-Pei, Sun, Xiao-Lin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples. [Display omitted] •Time-series synthetic Landsat images of 1986–2007 were established based on GEE.•The image of 2005–2007 was used to fit a spatiotemporal model to map soil organic matter (SOM) content.•The model was conveniently temporally transferred to predict SOM content of 1986–2007.•The model had a better accuracy than another one in a previous study.
AbstractList Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples. [Display omitted] •Time-series synthetic Landsat images of 1986–2007 were established based on GEE.•The image of 2005–2007 was used to fit a spatiotemporal model to map soil organic matter (SOM) content.•The model was conveniently temporally transferred to predict SOM content of 1986–2007.•The model had a better accuracy than another one in a previous study.
Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse data cannot provide detailed spatial information about SOM content changes in an area. This study proposes using a spatiotemporal model with time-series synthetic Landsat images to monitor SOM content dynamics at the regional scale. The approach was implemented in Google Earth Engine (GEE) platform and tested in Jiangsu province, China, using the soil survey data from 2006 to 2007 and synthetic Landsat images from 1986 to 2007. The model generated SOM maps every three years between 1986 and 2007 and was evaluated using another soil survey from 2000 in southern Jiangsu. The model associated with 20 covariates derived from the synthetic Landsat image explained 70% of the variation in SOM content with root mean squared error (RMSE) and Lin's concordance correlation coefficient (CCC) of 5.17 g/kg and 0.57, respectively. The results showed that the model could reveal regional spatial and temporal differences in SOM content distribution. The SOM content in Jiangsu increased in the north, while decreasing in the central and southern areas. Temporally, the mean SOM contents increased from 1986 to 1992 by 0.17 g/kg, decreased in 1995, and increased again from 1998 to 2000 before decreasing from 2004 to 2007 by 0.14 g/kg. The validation based on the soil data in 2000 showed that the approach generated an RMSE of 5.97 g/kg, accounting for 22.77% of the average SOM content of the data. The study concluded that this approach could be used for monitoring SOM content and other soil properties. This approach had a relatively better accuracy than a previous study using the Integrated Nested Laplace Approximation with the Stochastic Partial Differential Equation approach with the same soil data but 4 times more samples.
ArticleNumber e00702
Author Cui, Yu-Pei
Sun, Xiao-Lin
Ding, Xiao-Gang
Yang, Hua-Lei
Zhang, Mei-Wei
Guo, Qian
Zeng, Ling-Tao
Wang, Xiao-Qing
Author_xml – sequence: 1
  givenname: Mei-Wei
  surname: Zhang
  fullname: Zhang, Mei-Wei
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Xiao-Qing
  surname: Wang
  fullname: Wang, Xiao-Qing
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 3
  givenname: Xiao-Gang
  surname: Ding
  fullname: Ding, Xiao-Gang
  organization: Guangdong Academy of Forestry, Guangzhou 510520, China
– sequence: 4
  givenname: Hua-Lei
  surname: Yang
  fullname: Yang, Hua-Lei
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 5
  givenname: Qian
  surname: Guo
  fullname: Guo, Qian
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 6
  givenname: Ling-Tao
  surname: Zeng
  fullname: Zeng, Ling-Tao
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 7
  givenname: Yu-Pei
  surname: Cui
  fullname: Cui, Yu-Pei
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 8
  givenname: Xiao-Lin
  surname: Sun
  fullname: Sun, Xiao-Lin
  email: sxiaolin@mail.sysu.edu.cn
  organization: School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
BookMark eNqFkD1vFDEQhi0UJELIP0jhkmYPr70fWQokFPER6RBNUls-e3Yzp1378MwF5d_Hp6VAFKTySH6fVzPPW3EWUwQhrmq1qVXdfdhvJkgh00YrbTagVK_0K3GuTasrpYbm7K_5jbgk2iul9NCavtPn4vFHisgpY5xkhglTdLOkhLNMeXIRvVwcM2TpU2SILI90ijpJB8eYGJZDygVZUoBZ_kZ-kIwLVAQZgSQ9RX4ALjVbFwM5lri4CeideD26meDyz3sh7r9-ubv5Xm1_fru9-bytvDEDV-04jM650e36cmqrw9AEFXbXPZjyr4zqmhB2w64xfe-hNnUYO901pm2UHxo9mgvxfu095PTrCMR2QfIwzy5COpI1dWuKt6G-LtFmjfqciDKM9pDLsvnJ1sqeTNu9XU3bk2m7mi7Yx38wj3xSEzk7nF-CP60wFAePCNmSR4geAmbwbEPC_xc8AzEaoRw
CitedBy_id crossref_primary_10_1016_j_geoderma_2025_117225
crossref_primary_10_1016_j_still_2024_106357
crossref_primary_10_1007_s10661_023_12172_y
crossref_primary_10_3390_land14040677
Cites_doi 10.1016/j.geoderma.2022.116065
10.1016/j.catena.2021.105442
10.1016/j.scitotenv.2022.159253
10.1016/j.ecolind.2023.109940
10.1016/j.landusepol.2018.12.008
10.1016/j.rse.2019.111285
10.1016/j.geoderma.2021.115402
10.1016/j.ecolind.2013.12.015
10.1016/j.geoderma.2023.116446
10.1016/j.geoderma.2008.12.010
10.1023/A:1010933404324
10.5194/essd-13-3907-2021
10.1016/j.gloplacha.2011.12.005
10.1016/j.scitotenv.2015.07.014
10.1016/j.rse.2019.111625
10.1111/j.1475-2743.2012.00421.x
10.1038/s41467-019-08636-w
10.3390/su132414055
10.1016/j.catena.2016.05.023
10.1016/j.scib.2019.04.024
10.1016/j.catena.2022.106217
10.1016/j.geoderma.2022.116066
10.1016/j.still.2019.104465
10.1016/j.ecolind.2014.12.028
10.1016/j.agee.2005.09.006
10.1016/j.geoderma.2018.07.026
10.5721/EuJRS20144731
10.1111/sum.12206
10.1016/j.scitotenv.2018.11.230
10.3390/rs13152934
10.1111/gcb.13898
10.1016/0034-4257(88)90106-X
10.3390/ijgi11020111
10.1016/j.geoderma.2021.115567
10.1016/j.geoderma.2021.115118
10.1016/S0034-4257(02)00096-2
10.1016/j.rse.2022.113260
10.1016/j.still.2009.09.003
10.1016/j.rse.2013.02.029
10.1111/j.1365-2486.2007.01409.x
10.1016/j.geoderma.2021.115407
10.1080/10643389.2021.2024484
10.3390/rs14184441
10.1126/science.1097396
10.3390/rs14081875
10.1016/S0034-4257(96)00067-3
10.1016/j.still.2011.01.007
10.1016/S1002-0160(12)60026-5
10.1016/j.agee.2009.12.011
10.1111/j.1365-2486.2008.01792.x
10.1016/j.catena.2018.11.010
10.1016/j.geoderma.2015.08.009
10.1016/j.agee.2018.02.012
10.1016/j.geoderma.2020.114808
10.1016/j.ecolind.2015.09.012
10.2136/sssaj2008.0045
10.1016/j.geoderma.2018.08.011
10.1016/j.geoderma.2007.02.012
10.1080/01431161.2021.1957177
10.1016/j.scitotenv.2019.03.151
10.1111/gcb.16154
10.1016/j.ecolind.2021.107975
10.1016/j.geoderma.2012.07.020
10.1016/j.geoderma.2019.05.012
10.1029/2009GB003484
10.5194/soil-5-79-2019
10.1016/j.rse.2019.111260
10.1126/science.1244693
10.1016/j.geoderma.2013.08.013
10.1007/978-1-4419-9326-7_5
10.1073/pnas.1700292114
10.1111/j.1365-2486.2010.02324.x
10.1016/j.rse.2019.111624
10.1016/j.isprsjprs.2021.06.018
10.1016/j.geoderma.2021.115599
10.1007/s11434-006-2056-6
10.5194/soil-6-35-2020
10.1016/j.ecolind.2022.108545
10.1016/j.geoderma.2019.01.015
10.1111/ejss.12295
10.1016/j.agee.2006.07.011
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2023.e00702
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2023_e00702
S2352009423000986
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-5f9faaafab701652d94d0db87e333903064ddb9b4377ce131df62643540c942f3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Aug 22 20:39:47 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Tue Jul 01 02:07:20 EDT 2025
Fri Feb 23 02:35:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Digital soil mapping
Spatiotemporal dynamics
Synthetic Landsat imagery
Google Earth Engine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-5f9faaafab701652d94d0db87e333903064ddb9b4377ce131df62643540c942f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153202918
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153202918
crossref_primary_10_1016_j_geodrs_2023_e00702
crossref_citationtrail_10_1016_j_geodrs_2023_e00702
elsevier_sciencedirect_doi_10_1016_j_geodrs_2023_e00702
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Li, Zhang (bb0090) 2019; 64
Ivushkin, Bartholomeus, Bregt, Pulatov, Kempen, De Sousa (bb0160) 2019; 231
Fatchurrachman, Soh, Shah, Giap, Setiawan, Minasny (bb0070) 2022; 14
Wu, Wu, Luo, Zhang, DeGloria (bb0400) 2009; 73
Guo, Sun, Fu, Shi, Dang, Chen, Linderman, Zhang, Zhang, Jiang, Zhang, Chen (bb0100) 2021; 398
Adhikari, Hartemink (bb0005) 2016; 262
Cutler, Cutler, Stevens (bb0060) 2012; 157–175
Mahmoudzadeh, Matinfar, Taghizadeh-Mehrjardi, Kerry (bb0220) 2020; 21
Zhao, Zhang, Wu, Li, Zhao (bb0480) 2015; 31
Wiesmeier, Urbanski, Hobley, Lang, von Lützow, Marin-Spiotta, van Wesemael, Rabot, Ließ, Garcia-Franco (bb0395) 2019; 333
Liu, Wang, Zhang, Song, Li, Li, Li, Duan (bb0205) 2006; 113
McBratney, Field, Koch (bb0235) 2014; 213
Sun, Lai, Ding, Wu, Wang, Wu (bb0350) 2022; 213
Wang, Wang, Li, Wang, Zheng, Song (bb0385) 2022; 425
Chuai, Huang, Wang, Zhang, Li, Liao (bb0055) 2012; 22
Sahu, Mishra, Basti (bb0310) 2023; 32
Tong, Xiao, Tang, Wang, Huang, Xia, Keith, Li, Liu, Wu (bb0360) 2009; 106
Lou, Xu, Wang, Sun, Zhao (bb0215) 2011; 113
Sun, Wu, Lou, Wang, Zhang, Zhao, Zhang (bb0340) 2015; 66
IUSS Working Group WRB (bb0155) 2006
Yu, Huang, Zhang (bb0455) 2012; 82
Pan, Xu, Smith, Pan, Lal (bb0295) 2010; 136
Chen, Chang, Xiao, Zhou, Wu (bb0035) 2019; 669
Yang, Song, Zhu, Qin, Zhou, Qi, Li, Chen, Gao (bb0420) 2019; 340
Lal (bb0175) 2004; 304
Li, Yu, Peng, Gong (bb0180) 2021; 42
Hounkpatin, Bossa, Yira, Igue, Sinsin (bb0125) 2022; 28
Babu, Singh, Avasthe, Kumar, Rathore, Singh, Ansari, Valente, Petrosillo (bb0020) 2023; 147
Liu, Xiao, Qin, Wang, Xu, Hu, Qiao (bb0210) 2020; 239
Pan, Li, Zhang, Wang, Sun, Xu, Jiang (bb0290) 2005; 17
Xie, Zhang, Lu, Peng, Chen, Zhao (bb0410) 2022; 409
Yang, Cai, Zhang, Guo, Li, Zhou (bb0435) 2021; 102
Huang, Zhang, Zou, Zhu, Chen, Mi, Wang, Yang, Li (bb0140) 2015; 536
Nelson, Sommers (bb0255) 1996; 5
Sun, Zhao, Wu, Zhao, Wang, Zhang (bb0335) 2012; 28
Dharumarajan, Gomez, Lalitha, Kalaiselvi, Vasundhara, Hegde (bb0065) 2023; 32
Xie, Zhu, Liu, Cadisch, Hasegawa, Chen, Sun, Tang, Zeng (bb0405) 2007; 13
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland (bb0110) 2013; 342
Padarian, Stockmann, Minasny, McBratney (bb0280) 2022; 281
Yang, Huang (bb0415) 2021; 13
Pahlavan-Rad, Dahmardeh, Brungard (bb0285) 2018; 15
Zhao, Rossiter, Li, Zhao, Liu, Zhang (bb0475) 2014; 39
Han, Wiesmeier, Conant, Kühnel, Sun, Kögel-Knabner, Hou, Cong, Liang, Ouyang (bb0105) 2018; 24
Rouse, Haas, Schell, Deering (bb0305) 1974; 351
Sun, Minasny, Wang, Zhao, Zhang, Wu (bb0345) 2021; 384
Wang, Du, Li, Bao, Zhao, Yue (bb0380) 2021; 129
Minasny, Sulaeman, Mcbratney (bb0245) 2011; 17
Gong, Yan, Wang, Hu, Gong (bb0085) 2009; 149
Gao (bb0075) 1996; 58
Mirzaee, Ghorbani-Dashtaki, Mohammadi, Asadi, Asadzadeh (bb0250) 2016; 145
Lin, Zhu, Wang, Wang, Ma (bb0200) 2020; 89
He, Yang, Li, Zhang, Shen, Cai, Zhou (bb0120) 2021; 205
Huete (bb0145) 1988; 25
Nocita, Stevens, Noon, van Wesemael (bb0265) 2013; 199
Meng, Bao, Liu, Zhang, Wang (bb0240) 2022; 425
Stumpf, Keller, Schmidt, Mayr, Gubler, Schaepman (bb0325) 2018; 258
Bao, Gao, Ge (bb0025) 2019; 82
Liang, Chen, Yang, Zhao, Shi, Rossel (bb0190) 2019; 335
Yang, Liu, Zhang, He, Zhu, Zhang, Li (bb0440) 2022; 405
Chen, Ma, Yu, Zhang, Feng, Wang, Song (bb0050) 2022; 135
Richardson, Wiegand (bb0300) 1977; 43
Chen, Liang, Webster, Zhang, Zhou, Teng, Hu, Arrouays, Shi (bb0040) 2019; 655
Zhang, Hao, Wang, Sun (bb0470) 2023; 433
Chen, Arrouays, Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Richer-de-Forges, Walter (bb0045) 2022; 409
Hastie, Tibshirani, Friedman (bb0115) 2009
Yang, Tilman, Furey, Lehman (bb0425) 2019; 10
Sun, Minasny, Wu, Wang, Fan, Zhang (bb0355) 2023; 857
Kopittke, Berhe, Carrillo, Cavagnaro, Chen, Chen, Román Dobarco, Dijkstra, Field, Grundy (bb0170) 2022; 52
Shibabaw, George, Gärdenäs (bb0315) 2023; 32
Were, Bui, Dick, Singh (bb0390) 2015; 52
Sothe, Gonsamo, Arabian, Snider (bb0320) 2022; 405
Huang, Sun, Zhao, Zhu, Yang, Zou, Ding, Su (bb0135) 2007; 139
Yang, Shang, Xiao, Wang, Tang (bb0445) 2022; 11
Zhao, Wang, Hu, Zhang, Ouyang, Zhang, Huang, Zhao, Wu, Xie (bb0485) 2018; 115
Araya, Lyle, Lewis, Ostendorf (bb0015) 2016; 60
Wang, Zhang, Atkinson, Yao (bb0375) 2020; 92
Manlay, Feller, Swift (bb0225) 2007; 119
Li, Wu, Liu, Xiao, Zhao, Chen, Alexandrov, Cao (bb0185) 2022; 28
Yang, He, Shen, Zhou, Zhu, Gao, Chen, Li (bb0430) 2020; 196
Liao, Zhang, Li, Pan, Smith, Jin, Wu (bb0195) 2009; 15
Massetti, Gil (bb0230) 2020; 239
Ge, Hu, Ren, Jia, Wang, Liu, Zhang, Zhao, Luo, Fu, Bai, Chen (bb0080) 2019; 232
Grinand, Le Maire, Vieilledent, Razakamanarivo, Razafimbelo, Bernoux (bb0095) 2017; 54
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (bb0150) 2002; 83
Zhang, Zhang, Yang, Jin, Zhang, Liu (bb0460) 2021; 13
Ye, Sheng, Liu, Ma, Wang, Ding, Liu, Li, Wang (bb0450) 2021; 13
Breiman (bb0030) 2001; 45
Zhang, Cai, Huang, Li, Yang, Zhou (bb0465) 2022; 14
Padarian, Minasny, McBratney (bb0270) 2019; 6
Jain, Mondal, DeFries, Small, Galford (bb0165) 2013; 134
Tziachris, Aschonitis, Chatzistathis, Papadopoulou (bb0365) 2019; 174
Ni, Tian, Li, Yin, Li, Gong, Zhang, Zhu, Wu (bb0260) 2021; 178
Sun, Huang, Zhang, Yu (bb0330) 2010; 24
Ahmed, Iqbal (bb0010) 2014; 47
Wadoux (bb0370) 2019; 351
Padarian, Minasny, McBratney (bb0275) 2019; 5
Huang, Sun (bb0130) 2006; 51
Meng (10.1016/j.geodrs.2023.e00702_bb0240) 2022; 425
Ni (10.1016/j.geodrs.2023.e00702_bb0260) 2021; 178
Sun (10.1016/j.geodrs.2023.e00702_bb0340) 2015; 66
Ahmed (10.1016/j.geodrs.2023.e00702_bb0010) 2014; 47
Shibabaw (10.1016/j.geodrs.2023.e00702_bb0315) 2023; 32
Wadoux (10.1016/j.geodrs.2023.e00702_bb0370) 2019; 351
Xie (10.1016/j.geodrs.2023.e00702_bb0405) 2007; 13
Grinand (10.1016/j.geodrs.2023.e00702_bb0095) 2017; 54
Xie (10.1016/j.geodrs.2023.e00702_bb0410) 2022; 409
Lou (10.1016/j.geodrs.2023.e00702_bb0215) 2011; 113
Richardson (10.1016/j.geodrs.2023.e00702_bb0300) 1977; 43
Yang (10.1016/j.geodrs.2023.e00702_bb0435) 2021; 102
Sahu (10.1016/j.geodrs.2023.e00702_bb0310) 2023; 32
Padarian (10.1016/j.geodrs.2023.e00702_bb0280) 2022; 281
Yang (10.1016/j.geodrs.2023.e00702_bb0415) 2021; 13
Zhao (10.1016/j.geodrs.2023.e00702_bb0485) 2018; 115
Araya (10.1016/j.geodrs.2023.e00702_bb0015) 2016; 60
Chuai (10.1016/j.geodrs.2023.e00702_bb0055) 2012; 22
Zhao (10.1016/j.geodrs.2023.e00702_bb0475) 2014; 39
Liao (10.1016/j.geodrs.2023.e00702_bb0195) 2009; 15
Sun (10.1016/j.geodrs.2023.e00702_bb0335) 2012; 28
Pahlavan-Rad (10.1016/j.geodrs.2023.e00702_bb0285) 2018; 15
Tziachris (10.1016/j.geodrs.2023.e00702_bb0365) 2019; 174
Ivushkin (10.1016/j.geodrs.2023.e00702_bb0160) 2019; 231
McBratney (10.1016/j.geodrs.2023.e00702_bb0235) 2014; 213
Bao (10.1016/j.geodrs.2023.e00702_bb0025) 2019; 82
Li (10.1016/j.geodrs.2023.e00702_bb0180) 2021; 42
Cutler (10.1016/j.geodrs.2023.e00702_bb0060) 2012; 157–175
Minasny (10.1016/j.geodrs.2023.e00702_bb0245) 2011; 17
Huang (10.1016/j.geodrs.2023.e00702_bb0130) 2006; 51
Wang (10.1016/j.geodrs.2023.e00702_bb0375) 2020; 92
Stumpf (10.1016/j.geodrs.2023.e00702_bb0325) 2018; 258
Yang (10.1016/j.geodrs.2023.e00702_bb0440) 2022; 405
Were (10.1016/j.geodrs.2023.e00702_bb0390) 2015; 52
Padarian (10.1016/j.geodrs.2023.e00702_bb0275) 2019; 5
Babu (10.1016/j.geodrs.2023.e00702_bb0020) 2023; 147
Sothe (10.1016/j.geodrs.2023.e00702_bb0320) 2022; 405
Sun (10.1016/j.geodrs.2023.e00702_bb0350) 2022; 213
Han (10.1016/j.geodrs.2023.e00702_bb0105) 2018; 24
Jain (10.1016/j.geodrs.2023.e00702_bb0165) 2013; 134
Padarian (10.1016/j.geodrs.2023.e00702_bb0270) 2019; 6
Nelson (10.1016/j.geodrs.2023.e00702_bb0255) 1996; 5
Yang (10.1016/j.geodrs.2023.e00702_bb0425) 2019; 10
Wang (10.1016/j.geodrs.2023.e00702_bb0380) 2021; 129
Hounkpatin (10.1016/j.geodrs.2023.e00702_bb0125) 2022; 28
IUSS Working Group WRB (10.1016/j.geodrs.2023.e00702_bb0155) 2006
Yang (10.1016/j.geodrs.2023.e00702_bb0420) 2019; 340
Pan (10.1016/j.geodrs.2023.e00702_bb0295) 2010; 136
Gong (10.1016/j.geodrs.2023.e00702_bb0085) 2009; 149
Chen (10.1016/j.geodrs.2023.e00702_bb0035) 2019; 669
Sun (10.1016/j.geodrs.2023.e00702_bb0345) 2021; 384
Hastie (10.1016/j.geodrs.2023.e00702_bb0115) 2009
Li (10.1016/j.geodrs.2023.e00702_bb0185) 2022; 28
Zhang (10.1016/j.geodrs.2023.e00702_bb0470) 2023; 433
Mirzaee (10.1016/j.geodrs.2023.e00702_bb0250) 2016; 145
Sun (10.1016/j.geodrs.2023.e00702_bb0330) 2010; 24
Liu (10.1016/j.geodrs.2023.e00702_bb0205) 2006; 113
Lal (10.1016/j.geodrs.2023.e00702_bb0175) 2004; 304
Wang (10.1016/j.geodrs.2023.e00702_bb0385) 2022; 425
Zhang (10.1016/j.geodrs.2023.e00702_bb0460) 2021; 13
Zhang (10.1016/j.geodrs.2023.e00702_bb0465) 2022; 14
Zhao (10.1016/j.geodrs.2023.e00702_bb0480) 2015; 31
Breiman (10.1016/j.geodrs.2023.e00702_bb0030) 2001; 45
He (10.1016/j.geodrs.2023.e00702_bb0120) 2021; 205
Sun (10.1016/j.geodrs.2023.e00702_bb0355) 2023; 857
Lin (10.1016/j.geodrs.2023.e00702_bb0200) 2020; 89
Manlay (10.1016/j.geodrs.2023.e00702_bb0225) 2007; 119
Nocita (10.1016/j.geodrs.2023.e00702_bb0265) 2013; 199
Wiesmeier (10.1016/j.geodrs.2023.e00702_bb0395) 2019; 333
Gao (10.1016/j.geodrs.2023.e00702_bb0075) 1996; 58
Hansen (10.1016/j.geodrs.2023.e00702_bb0110) 2013; 342
Liang (10.1016/j.geodrs.2023.e00702_bb0190) 2019; 335
Fatchurrachman (10.1016/j.geodrs.2023.e00702_bb0070) 2022; 14
Dharumarajan (10.1016/j.geodrs.2023.e00702_bb0065) 2023; 32
Yang (10.1016/j.geodrs.2023.e00702_bb0430) 2020; 196
Huete (10.1016/j.geodrs.2023.e00702_bb0145) 1988; 25
Huang (10.1016/j.geodrs.2023.e00702_bb0135) 2007; 139
Mahmoudzadeh (10.1016/j.geodrs.2023.e00702_bb0220) 2020; 21
Chen (10.1016/j.geodrs.2023.e00702_bb0045) 2022; 409
Wu (10.1016/j.geodrs.2023.e00702_bb0400) 2009; 73
Rouse (10.1016/j.geodrs.2023.e00702_bb0305) 1974; 351
Ye (10.1016/j.geodrs.2023.e00702_bb0450) 2021; 13
Gong (10.1016/j.geodrs.2023.e00702_bb0090) 2019; 64
Chen (10.1016/j.geodrs.2023.e00702_bb0050) 2022; 135
Liu (10.1016/j.geodrs.2023.e00702_bb0210) 2020; 239
Adhikari (10.1016/j.geodrs.2023.e00702_bb0005) 2016; 262
Guo (10.1016/j.geodrs.2023.e00702_bb0100) 2021; 398
Kopittke (10.1016/j.geodrs.2023.e00702_bb0170) 2022; 52
Ge (10.1016/j.geodrs.2023.e00702_bb0080) 2019; 232
Pan (10.1016/j.geodrs.2023.e00702_bb0290) 2005; 17
Massetti (10.1016/j.geodrs.2023.e00702_bb0230) 2020; 239
Chen (10.1016/j.geodrs.2023.e00702_bb0040) 2019; 655
Yang (10.1016/j.geodrs.2023.e00702_bb0445) 2022; 11
Huang (10.1016/j.geodrs.2023.e00702_bb0140) 2015; 536
Huete (10.1016/j.geodrs.2023.e00702_bb0150) 2002; 83
Yu (10.1016/j.geodrs.2023.e00702_bb0455) 2012; 82
Tong (10.1016/j.geodrs.2023.e00702_bb0360) 2009; 106
References_xml – volume: 15
  start-page: 861
  year: 2009
  end-page: 875
  ident: bb0195
  article-title: Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province
  publication-title: Glob. Chang. Biol.
– volume: 409
  year: 2022
  ident: bb0045
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
– volume: 113
  start-page: 70
  year: 2011
  end-page: 73
  ident: bb0215
  article-title: Return rate of straw residue affects soil organic C sequestration by chemical fertilization
  publication-title: Soil Tillage Res.
– volume: 425
  year: 2022
  ident: bb0385
  article-title: Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model
  publication-title: Geoderma
– volume: 54
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0095
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 82
  start-page: 169
  year: 2019
  end-page: 180
  ident: bb0025
  article-title: Dynamic land use and its policy in response to environmental and social-economic changes in China: a case study of the Jiangsu coast (1750–2015)
  publication-title: Land Use Policy
– volume: 335
  start-page: 47
  year: 2019
  end-page: 56
  ident: bb0190
  article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
  publication-title: Geoderma
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: bb0110
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
– volume: 340
  start-page: 289
  year: 2019
  end-page: 302
  ident: bb0420
  article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables
  publication-title: Geoderma
– volume: 129
  year: 2021
  ident: bb0380
  article-title: Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping
  publication-title: Ecol. Indic.
– volume: 14
  start-page: 1875
  year: 2022
  ident: bb0070
  article-title: High-resolution mapping of Paddy Rice extent and growth stages across peninsular Malaysia using a fusion of Sentinel-1 and 2 time series data in Google earth engine
  publication-title: Remote Sens.
– volume: 351
  start-page: 59
  year: 2019
  end-page: 70
  ident: bb0370
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
– volume: 134
  start-page: 210
  year: 2013
  end-page: 223
  ident: bb0165
  article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors
  publication-title: Remote Sens. Environ.
– volume: 21
  year: 2020
  ident: bb0220
  article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran
  publication-title: Geoderma Reg.
– volume: 13
  start-page: 14055
  year: 2021
  ident: bb0450
  article-title: Using machine learning algorithms based on GF-6 and Google earth engine to predict and map the spatial distribution of soil organic matter content
  publication-title: Sustainability
– volume: 231
  year: 2019
  ident: bb0160
  article-title: Global mapping of soil salinity change
  publication-title: Remote Sens. Environ.
– volume: 655
  start-page: 273
  year: 2019
  end-page: 283
  ident: bb0040
  article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution
  publication-title: Sci. Total Environ.
– volume: 149
  start-page: 318
  year: 2009
  end-page: 324
  ident: bb0085
  article-title: Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China
  publication-title: Geoderma
– volume: 28
  start-page: 3394
  year: 2022
  end-page: 3410
  ident: bb0185
  article-title: Decipher soil organic carbon dynamics and driving forces across China using machine learning
  publication-title: Glob. Chang. Biol.
– volume: 433
  year: 2023
  ident: bb0470
  article-title: Application of generalized linear geostatistical model for regional soil organic matter mapping: the effect of sampling density
  publication-title: Geoderma
– volume: 24
  start-page: 987
  year: 2018
  end-page: 1000
  ident: bb0105
  article-title: Large soil organic carbon increase due to improved agronomic management in the North China plain from 1980s to 2010s
  publication-title: Glob. Chang. Biol.
– volume: 31
  start-page: 440
  year: 2015
  end-page: 449
  ident: bb0480
  article-title: Driving forces of soil organic matter change in Jiangsu Province of China
  publication-title: Soil Use Manag.
– volume: 73
  start-page: 1202
  year: 2009
  end-page: 1208
  ident: bb0400
  article-title: Spatial prediction of soil organic matter content using cokriging with remotely sensed data
  publication-title: Soil Sci. Soc. Am. J.
– volume: 115
  start-page: 4045
  year: 2018
  end-page: 4050
  ident: bb0485
  article-title: Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci.
– volume: 6
  start-page: 35
  year: 2019
  end-page: 52
  ident: bb0270
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
– volume: 32
  year: 2023
  ident: bb0315
  article-title: The combined impacts of land use change and climate change on soil organic carbon stocks in the Ethiopian highlands
  publication-title: Geoderma Reg.
– volume: 669
  start-page: 844
  year: 2019
  end-page: 855
  ident: bb0035
  article-title: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 60
  start-page: 1263
  year: 2016
  end-page: 1272
  ident: bb0015
  article-title: Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity
  publication-title: Ecol. Indic.
– volume: 64
  start-page: 756
  year: 2019
  end-page: 763
  ident: bb0090
  article-title: 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing
  publication-title: Sci. Bull.
– volume: 28
  year: 2022
  ident: bb0125
  article-title: Assessment of the soil fertility status in Benin (West Africa)–digital soil mapping using machine learning
  publication-title: Geoderma Reg.
– volume: 28
  start-page: 318
  year: 2012
  end-page: 328
  ident: bb0335
  article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps
  publication-title: Soil Use Manag.
– volume: 17
  start-page: 1
  year: 2005
  end-page: 7
  ident: bb0290
  article-title: Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration
  publication-title: J. Environ. Sci.
– volume: 66
  start-page: 1012
  year: 2015
  end-page: 1022
  ident: bb0340
  article-title: Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China
  publication-title: Eur. J. Soil Sci.
– volume: 199
  start-page: 37
  year: 2013
  end-page: 42
  ident: bb0265
  article-title: Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy
  publication-title: Geoderma
– volume: 384
  year: 2021
  ident: bb0345
  article-title: Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE
  publication-title: Geoderma
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0030
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 119
  start-page: 217
  year: 2007
  end-page: 233
  ident: bb0225
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 5
  start-page: 79
  year: 2019
  end-page: 89
  ident: bb0275
  article-title: Using deep learning for digital soil mapping
  publication-title: Soil
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: bb0150
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 15
  year: 2018
  ident: bb0285
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Reg.
– volume: 39
  start-page: 120
  year: 2014
  end-page: 133
  ident: bb0475
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Indic.
– volume: 136
  start-page: 133
  year: 2010
  end-page: 138
  ident: bb0295
  article-title: An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring
  publication-title: Agric. Ecosyst. Environ.
– volume: 52
  start-page: 394
  year: 2015
  end-page: 403
  ident: bb0390
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
– volume: 174
  start-page: 206
  year: 2019
  end-page: 216
  ident: bb0365
  article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters
  publication-title: Catena
– volume: 13
  start-page: 3907
  year: 2021
  end-page: 3925
  ident: bb0415
  article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
  publication-title: Earth Syst. Sci. Data
– volume: 239
  year: 2020
  ident: bb0230
  article-title: Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic islands’ terrestrial ecosystems: a case study of Madeira Island, Portugal (2009–2011)
  publication-title: Remote Sens. Environ.
– volume: 147
  year: 2023
  ident: bb0020
  article-title: Soil carbon dynamics under organic farming: impact of tillage and cropping diversity
  publication-title: Ecol. Indic.
– volume: 13
  start-page: 1989
  year: 2007
  end-page: 2007
  ident: bb0405
  article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s
  publication-title: Glob. Chang. Biol.
– volume: 262
  start-page: 101
  year: 2016
  end-page: 111
  ident: bb0005
  article-title: Linking soils to ecosystem services—a global review
  publication-title: Geoderma
– volume: 47
  start-page: 557
  year: 2014
  end-page: 573
  ident: bb0010
  article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS
  publication-title: Eur. J. Remote Sens.
– volume: 398
  year: 2021
  ident: bb0100
  article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
  publication-title: Geoderma
– volume: 536
  start-page: 173
  year: 2015
  end-page: 181
  ident: bb0140
  article-title: Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 718
  year: 2019
  ident: bb0425
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nat. Commun.
– volume: 258
  start-page: 129
  year: 2018
  end-page: 142
  ident: bb0325
  article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems
  publication-title: Agric. Ecosyst. Environ.
– volume: 213
  year: 2022
  ident: bb0350
  article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study
  publication-title: Catena
– volume: 43
  start-page: 1541
  year: 1977
  end-page: 1552
  ident: bb0300
  article-title: Distinguishing vegetation from soil background information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bb0075
  article-title: NDWI? A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 304
  start-page: 1623
  year: 2004
  end-page: 1627
  ident: bb0175
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
– volume: 857
  year: 2023
  ident: bb0355
  article-title: Soil organic carbon content increase in the east and south of China is accompanied by soil acidification
  publication-title: Sci. Total Environ.
– volume: 113
  start-page: 73
  year: 2006
  end-page: 81
  ident: bb0205
  article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China
  publication-title: Agric. Ecosyst. Environ.
– volume: 32
  year: 2023
  ident: bb0065
  article-title: Soil order knowledge as a driver in soil properties estimation from Vis-NIR spectral data–case study from northern Karnataka (India)
  publication-title: Geoderma Reg.
– volume: 42
  start-page: 7332
  year: 2021
  end-page: 7356
  ident: bb0180
  article-title: A large-scale, long time-series (1984–2020) of soybean mapping with phenological features: Heilongjiang Province as a test case
  publication-title: Int. J. Remote Sens.
– volume: 232
  year: 2019
  ident: bb0080
  article-title: Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018
  publication-title: Remote Sens. Environ.
– volume: 213
  start-page: 203
  year: 2014
  end-page: 213
  ident: bb0235
  article-title: The dimensions of soil security
  publication-title: Geoderma
– volume: 145
  start-page: 118
  year: 2016
  end-page: 127
  ident: bb0250
  article-title: Spatial variability of soil organic matter using remote sensing data
  publication-title: Catena
– volume: 351
  start-page: 309
  year: 1974
  end-page: 317
  ident: bb0305
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 196
  year: 2020
  ident: bb0430
  article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data
  publication-title: Soil Tillage Res.
– year: 2006
  ident: bb0155
  article-title: World Reference Base for Soil Resources 2006. World Soil Resources Reports No.103
– volume: 11
  start-page: 111
  year: 2022
  ident: bb0445
  article-title: Spectral index for mapping topsoil organic matter content based on ZY1-02D satellite hyperspectral data in Jiangsu Province, China
  publication-title: ISPRS Int. J. Geoinf.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bb0145
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 425
  year: 2022
  ident: bb0240
  article-title: A new digital soil mapping method with temporal-spatial-spectral information derived from multi-source satellite images
  publication-title: Geoderma
– volume: 409
  year: 2022
  ident: bb0410
  article-title: Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area
  publication-title: Geoderma
– volume: 239
  year: 2020
  ident: bb0210
  article-title: Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google earth engine
  publication-title: Remote Sens. Environ.
– volume: 82
  start-page: 115
  year: 2012
  end-page: 128
  ident: bb0455
  article-title: Modeling soil organic carbon change in croplands of China, 1980–2009
  publication-title: Glob. Planet. Chang.
– volume: 281
  year: 2022
  ident: bb0280
  article-title: Monitoring changes in global soil organic carbon stocks from space
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 1785
  year: 2006
  end-page: 1803
  ident: bb0130
  article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades
  publication-title: Chin. Sci. Bull.
– volume: 24
  year: 2010
  ident: bb0330
  article-title: Carbon sequestration and its potential in agricultural soils of China
  publication-title: Glob. Biogeochem. Cycles
– volume: 205
  year: 2021
  ident: bb0120
  article-title: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images
  publication-title: Catena
– volume: 405
  year: 2022
  ident: bb0440
  article-title: The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes
  publication-title: Geoderma
– volume: 333
  start-page: 149
  year: 2019
  end-page: 162
  ident: bb0395
  article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales
  publication-title: Geoderma
– volume: 157–175
  year: 2012
  ident: bb0060
  article-title: Random forests
  publication-title: Ensemble Mach. Learn Methods Appl.
– volume: 52
  start-page: 4308
  year: 2022
  end-page: 4324
  ident: bb0170
  article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 5
  start-page: 961
  year: 1996
  end-page: 1010
  ident: bb0255
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods of Soil Analysis: Part 3 Chemical Methods
– year: 2009
  ident: bb0115
  article-title: The Elements of Statistical Learning
– volume: 92
  year: 2020
  ident: bb0375
  article-title: Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 13
  start-page: 2934
  year: 2021
  ident: bb0460
  article-title: Mapping regional soil organic matter based on sentinel-2A and MODIS imagery using machine learning algorithms and Google earth engine
  publication-title: Remote Sens.
– volume: 14
  start-page: 4441
  year: 2022
  ident: bb0465
  article-title: A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables
  publication-title: Remote Sens.
– volume: 405
  year: 2022
  ident: bb0320
  article-title: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations
  publication-title: Geoderma
– volume: 32
  year: 2023
  ident: bb0310
  article-title: Land-use change affects carbon storage and lability in tropical soil of India
  publication-title: Geoderma Reg.
– volume: 102
  year: 2021
  ident: bb0435
  article-title: A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 89
  year: 2020
  ident: bb0200
  article-title: The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 139
  start-page: 336
  year: 2007
  end-page: 345
  ident: bb0135
  article-title: Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices
  publication-title: Geoderma
– volume: 22
  start-page: 404
  year: 2012
  end-page: 414
  ident: bb0055
  article-title: Spatial variability of soil organic carbon and related factors in Jiangsu Province, China
  publication-title: Pedosphere
– volume: 178
  start-page: 282
  year: 2021
  end-page: 296
  ident: bb0260
  article-title: An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google earth engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 106
  start-page: 8
  year: 2009
  end-page: 14
  ident: bb0360
  article-title: Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China
  publication-title: Soil Tillage Res.
– volume: 135
  year: 2022
  ident: bb0050
  article-title: Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests
  publication-title: Ecol. Indic.
– volume: 17
  start-page: 1917
  year: 2011
  end-page: 1924
  ident: bb0245
  article-title: Is soil carbon disappearing? The dynamics of soil organic carbon in Java
  publication-title: Glob. Chang. Biol.
– volume: 425
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0240
  article-title: A new digital soil mapping method with temporal-spatial-spectral information derived from multi-source satellite images
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116065
– volume: 205
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0120
  article-title: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105442
– volume: 857
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0355
  article-title: Soil organic carbon content increase in the east and south of China is accompanied by soil acidification
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159253
– volume: 147
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0020
  article-title: Soil carbon dynamics under organic farming: impact of tillage and cropping diversity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2023.109940
– volume: 82
  start-page: 169
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0025
  article-title: Dynamic land use and its policy in response to environmental and social-economic changes in China: a case study of the Jiangsu coast (1750–2015)
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2018.12.008
– volume: 232
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0080
  article-title: Mapping annual land use changes in China's poverty-stricken areas from 2013 to 2018
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111285
– volume: 405
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0320
  article-title: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115402
– volume: 39
  start-page: 120
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00702_bb0475
  article-title: Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2013.12.015
– volume: 54
  start-page: 1
  year: 2017
  ident: 10.1016/j.geodrs.2023.e00702_bb0095
  article-title: Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 433
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0470
  article-title: Application of generalized linear geostatistical model for regional soil organic matter mapping: the effect of sampling density
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2023.116446
– volume: 149
  start-page: 318
  issue: 3–4
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00702_bb0085
  article-title: Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.12.010
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.geodrs.2023.e00702_bb0030
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 3907
  issue: 8
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0415
  article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-3907-2021
– volume: 82
  start-page: 115
  year: 2012
  ident: 10.1016/j.geodrs.2023.e00702_bb0455
  article-title: Modeling soil organic carbon change in croplands of China, 1980–2009
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2011.12.005
– volume: 536
  start-page: 173
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00702_bb0140
  article-title: Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.07.014
– volume: 239
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0230
  article-title: Mapping and assessing land cover/land use and aboveground carbon stocks rapid changes in small oceanic islands’ terrestrial ecosystems: a case study of Madeira Island, Portugal (2009–2011)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111625
– volume: 28
  start-page: 318
  issue: 3
  year: 2012
  ident: 10.1016/j.geodrs.2023.e00702_bb0335
  article-title: Spatio-temporal change of soil organic matter content of Jiangsu Province, China, based on digital soil maps
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2012.00421.x
– volume: 10
  start-page: 718
  issue: 1
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0425
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08636-w
– volume: 13
  start-page: 14055
  issue: 24
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0450
  article-title: Using machine learning algorithms based on GF-6 and Google earth engine to predict and map the spatial distribution of soil organic matter content
  publication-title: Sustainability
  doi: 10.3390/su132414055
– volume: 145
  start-page: 118
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00702_bb0250
  article-title: Spatial variability of soil organic matter using remote sensing data
  publication-title: Catena
  doi: 10.1016/j.catena.2016.05.023
– volume: 89
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0200
  article-title: The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  start-page: 961
  year: 1996
  ident: 10.1016/j.geodrs.2023.e00702_bb0255
  article-title: Total carbon, organic carbon, and organic matter
– year: 2006
  ident: 10.1016/j.geodrs.2023.e00702_bb0155
– volume: 64
  start-page: 756
  issue: 11
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0090
  article-title: 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.024
– volume: 213
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0350
  article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106217
– volume: 425
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0385
  article-title: Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116066
– volume: 196
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0430
  article-title: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104465
– volume: 52
  start-page: 394
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00702_bb0390
  article-title: A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.12.028
– volume: 113
  start-page: 73
  issue: 1–4
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00702_bb0205
  article-title: Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2005.09.006
– volume: 333
  start-page: 149
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0395
  article-title: Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.026
– volume: 47
  start-page: 557
  issue: 1
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00702_bb0010
  article-title: Evaluation of Landsat TM5 multispectral data for automated mapping of surface soil texture and organic matter in GIS
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20144731
– volume: 31
  start-page: 440
  issue: 4
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00702_bb0480
  article-title: Driving forces of soil organic matter change in Jiangsu Province of China
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12206
– volume: 655
  start-page: 273
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0040
  article-title: A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.230
– volume: 13
  start-page: 2934
  issue: 15
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0460
  article-title: Mapping regional soil organic matter based on sentinel-2A and MODIS imagery using machine learning algorithms and Google earth engine
  publication-title: Remote Sens.
  doi: 10.3390/rs13152934
– volume: 24
  start-page: 987
  issue: 3
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00702_bb0105
  article-title: Large soil organic carbon increase due to improved agronomic management in the North China plain from 1980s to 2010s
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13898
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.1016/j.geodrs.2023.e00702_bb0145
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 11
  start-page: 111
  issue: 2
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0445
  article-title: Spectral index for mapping topsoil organic matter content based on ZY1-02D satellite hyperspectral data in Jiangsu Province, China
  publication-title: ISPRS Int. J. Geoinf.
  doi: 10.3390/ijgi11020111
– volume: 409
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0045
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115567
– volume: 398
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0100
  article-title: Mapping soil organic carbon stock by hyperspectral and time-series multispectral remote sensing images in low-relief agricultural areas
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115118
– volume: 92
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0375
  article-title: Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 83
  start-page: 195
  issue: 1
  year: 2002
  ident: 10.1016/j.geodrs.2023.e00702_bb0150
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 281
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0280
  article-title: Monitoring changes in global soil organic carbon stocks from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113260
– volume: 106
  start-page: 8
  issue: 1
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00702_bb0360
  article-title: Long-term fertilizer effects on organic carbon and total nitrogen and coupling relationships of C and N in paddy soils in subtropical China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2009.09.003
– volume: 134
  start-page: 210
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00702_bb0165
  article-title: Mapping cropping intensity of smallholder farms: a comparison of methods using multiple sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.029
– volume: 13
  start-page: 1989
  issue: 9
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00702_bb0405
  article-title: Soil organic carbon stocks in China and changes from 1980s to 2000s
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2007.01409.x
– volume: 405
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0440
  article-title: The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115407
– volume: 52
  start-page: 4308
  issue: 23
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0170
  article-title: Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2021.2024484
– volume: 14
  start-page: 4441
  issue: 18
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0465
  article-title: A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables
  publication-title: Remote Sens.
  doi: 10.3390/rs14184441
– volume: 304
  start-page: 1623
  issue: 5677
  year: 2004
  ident: 10.1016/j.geodrs.2023.e00702_bb0175
  article-title: Soil carbon sequestration impacts on global climate change and food security
  publication-title: Science
  doi: 10.1126/science.1097396
– volume: 21
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0220
  article-title: Spatial prediction of soil organic carbon using machine learning techniques in western Iran
  publication-title: Geoderma Reg.
– volume: 43
  start-page: 1541
  issue: 12
  year: 1977
  ident: 10.1016/j.geodrs.2023.e00702_bb0300
  article-title: Distinguishing vegetation from soil background information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 14
  start-page: 1875
  issue: 8
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0070
  article-title: High-resolution mapping of Paddy Rice extent and growth stages across peninsular Malaysia using a fusion of Sentinel-1 and 2 time series data in Google earth engine
  publication-title: Remote Sens.
  doi: 10.3390/rs14081875
– volume: 32
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0315
  article-title: The combined impacts of land use change and climate change on soil organic carbon stocks in the Ethiopian highlands
  publication-title: Geoderma Reg.
– volume: 58
  start-page: 257
  issue: 3
  year: 1996
  ident: 10.1016/j.geodrs.2023.e00702_bb0075
  article-title: NDWI? A normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 113
  start-page: 70
  issue: 1
  year: 2011
  ident: 10.1016/j.geodrs.2023.e00702_bb0215
  article-title: Return rate of straw residue affects soil organic C sequestration by chemical fertilization
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2011.01.007
– volume: 22
  start-page: 404
  issue: 3
  year: 2012
  ident: 10.1016/j.geodrs.2023.e00702_bb0055
  article-title: Spatial variability of soil organic carbon and related factors in Jiangsu Province, China
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(12)60026-5
– volume: 28
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0125
  article-title: Assessment of the soil fertility status in Benin (West Africa)–digital soil mapping using machine learning
  publication-title: Geoderma Reg.
– volume: 136
  start-page: 133
  issue: 1–2
  year: 2010
  ident: 10.1016/j.geodrs.2023.e00702_bb0295
  article-title: An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.12.011
– volume: 15
  start-page: 861
  issue: 4
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00702_bb0195
  article-title: Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01792.x
– volume: 174
  start-page: 206
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0365
  article-title: Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters
  publication-title: Catena
  doi: 10.1016/j.catena.2018.11.010
– volume: 262
  start-page: 101
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00702_bb0005
  article-title: Linking soils to ecosystem services—a global review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.08.009
– volume: 258
  start-page: 129
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00702_bb0325
  article-title: Spatio-temporal land use dynamics and soil organic carbon in Swiss agroecosystems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2018.02.012
– volume: 384
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0345
  article-title: Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114808
– volume: 15
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00702_bb0285
  article-title: Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran
  publication-title: Geoderma Reg.
– volume: 60
  start-page: 1263
  year: 2016
  ident: 10.1016/j.geodrs.2023.e00702_bb0015
  article-title: Phenologic metrics derived from MODIS NDVI as indicators for plant available water-holding capacity
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.09.012
– volume: 73
  start-page: 1202
  issue: 4
  year: 2009
  ident: 10.1016/j.geodrs.2023.e00702_bb0400
  article-title: Spatial prediction of soil organic matter content using cokriging with remotely sensed data
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2008.0045
– volume: 335
  start-page: 47
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0190
  article-title: National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.08.011
– volume: 139
  start-page: 336
  issue: 3–4
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00702_bb0135
  article-title: Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.02.012
– volume: 42
  start-page: 7332
  issue: 19
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0180
  article-title: A large-scale, long time-series (1984–2020) of soybean mapping with phenological features: Heilongjiang Province as a test case
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1957177
– volume: 669
  start-page: 844
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0035
  article-title: Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.151
– volume: 17
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.geodrs.2023.e00702_bb0290
  article-title: Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration
  publication-title: J. Environ. Sci.
– volume: 28
  start-page: 3394
  issue: 10
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0185
  article-title: Decipher soil organic carbon dynamics and driving forces across China using machine learning
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.16154
– volume: 129
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0380
  article-title: Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107975
– volume: 32
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0065
  article-title: Soil order knowledge as a driver in soil properties estimation from Vis-NIR spectral data–case study from northern Karnataka (India)
  publication-title: Geoderma Reg.
– volume: 199
  start-page: 37
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00702_bb0265
  article-title: Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.07.020
– volume: 351
  start-page: 59
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0370
  article-title: Using deep learning for multivariate mapping of soil with quantified uncertainty
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.012
– volume: 24
  issue: 3
  year: 2010
  ident: 10.1016/j.geodrs.2023.e00702_bb0330
  article-title: Carbon sequestration and its potential in agricultural soils of China
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2009GB003484
– volume: 5
  start-page: 79
  issue: 1
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0275
  article-title: Using deep learning for digital soil mapping
  publication-title: Soil
  doi: 10.5194/soil-5-79-2019
– volume: 351
  start-page: 309
  issue: 1
  year: 1974
  ident: 10.1016/j.geodrs.2023.e00702_bb0305
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 231
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0160
  article-title: Global mapping of soil salinity change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111260
– volume: 102
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0435
  article-title: A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 342
  start-page: 850
  issue: 6160
  year: 2013
  ident: 10.1016/j.geodrs.2023.e00702_bb0110
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 213
  start-page: 203
  year: 2014
  ident: 10.1016/j.geodrs.2023.e00702_bb0235
  article-title: The dimensions of soil security
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.08.013
– volume: 157–175
  year: 2012
  ident: 10.1016/j.geodrs.2023.e00702_bb0060
  article-title: Random forests
  publication-title: Ensemble Mach. Learn Methods Appl.
  doi: 10.1007/978-1-4419-9326-7_5
– volume: 115
  start-page: 4045
  issue: 16
  year: 2018
  ident: 10.1016/j.geodrs.2023.e00702_bb0485
  article-title: Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1700292114
– volume: 17
  start-page: 1917
  issue: 5
  year: 2011
  ident: 10.1016/j.geodrs.2023.e00702_bb0245
  article-title: Is soil carbon disappearing? The dynamics of soil organic carbon in Java
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02324.x
– volume: 239
  year: 2020
  ident: 10.1016/j.geodrs.2023.e00702_bb0210
  article-title: Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google earth engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111624
– volume: 178
  start-page: 282
  year: 2021
  ident: 10.1016/j.geodrs.2023.e00702_bb0260
  article-title: An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google earth engine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.06.018
– volume: 409
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0410
  article-title: Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115599
– volume: 32
  year: 2023
  ident: 10.1016/j.geodrs.2023.e00702_bb0310
  article-title: Land-use change affects carbon storage and lability in tropical soil of India
  publication-title: Geoderma Reg.
– volume: 51
  start-page: 1785
  issue: 15
  year: 2006
  ident: 10.1016/j.geodrs.2023.e00702_bb0130
  article-title: Changes in topsoil organic carbon of croplands in mainland China over the last two decades
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-006-2056-6
– volume: 6
  start-page: 35
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0270
  article-title: Machine learning and soil sciences: a review aided by machine learning tools
  publication-title: Soil
  doi: 10.5194/soil-6-35-2020
– volume: 135
  year: 2022
  ident: 10.1016/j.geodrs.2023.e00702_bb0050
  article-title: Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.108545
– volume: 340
  start-page: 289
  year: 2019
  ident: 10.1016/j.geodrs.2023.e00702_bb0420
  article-title: Predicting soil organic carbon content in croplands using crop rotation and Fourier transform decomposed variables
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.015
– volume: 66
  start-page: 1012
  issue: 6
  year: 2015
  ident: 10.1016/j.geodrs.2023.e00702_bb0340
  article-title: Updating digital soil maps with new data: a case study of soil organic matter in Jiangsu, China
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12295
– volume: 119
  start-page: 217
  issue: 3–4
  year: 2007
  ident: 10.1016/j.geodrs.2023.e00702_bb0225
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.07.011
– year: 2009
  ident: 10.1016/j.geodrs.2023.e00702_bb0115
SSID ssj0002953762
Score 2.3135347
Snippet Accurately monitoring soil organic matter (SOM) content is crucial for food and soil security. Current methods of monitoring are expensive and existing sparse...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00702
SubjectTerms China
differential equation
Digital soil mapping
Google Earth Engine
Internet
Landsat
soil
Soil organic matter
soil surveys
spatial data
Spatiotemporal dynamics
Synthetic Landsat imagery
time series analysis
Title Monitoring regional soil organic matter content using a spatiotemporal model with time-series synthetic Landsat images
URI https://dx.doi.org/10.1016/j.geodrs.2023.e00702
https://www.proquest.com/docview/3153202918
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9ze_FFFBXnFxF8jWuTtF0fx3BMp3tQh3sLaZKOytaOdRP87831Y6AgA59K2qYtl-Tucv3d_RC67TIuNaBnPKYk4b5UJDSuT2Ia-MZxYhlJyHd-HvvDCX-cetMG6te5MACrrHR_qdMLbV2d6VTS7CyTpPNKWVEyyPoD4Ch0_T3Uota6Ok3U6j2MhuNtqIWGULOEFjRzHiXQp06iK5BeM5PpFZTupuzOQP0b-peR-qWuCxs0OEQHlfOIe-X3HaGGSY_RZ7ksIT6HgWYBXGucZ8kcl4xNCi-KGpoYUOnWxGCAus-wxHkBpq5qU81xwYmDIS6LgXCewNw0Oc6_Uusj2hfiJ8gKlmucLKwOyk_QZHD_1h-Sik2BKMbCNfHiMJZSWukHkMJEdci1o6NuYJi9DlsHrnUURpwFgTIuc3VsNzsc4kLKCjlmp6iZZqk5Q9gOq6NcrZRxFI9i27J-iFR-5CjHU9y0EavFJ1RVahwYL-aixpR9iFLoAoQuSqG3Edn2WpalNnbcH9QjI35MGWGtwY6eN_VACrua4BeJTE22yQVzgSiDhm73_N9Pv0D70CqBaJeouV5tzJX1XNbRdTUz4Th6eR99AxNJ8j8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELVgOZRL1apUQGk7lcrRbGI7yebQA2qLdrvLXgCJm3FsZ7VoySKyUO3v6h_sTOIgtVKFVIljPpxYY3vmxXnzhrHPA6mMI_ZMIq3hKjWW5z5OeSmy1EdRaQpD-c6n03R4oX5cJpcb7FeXC0O0yuD7W5_eeOtwph-s2b-dz_tnQjaSQYgHCCgM0sCsHPv1T_xuq7-MvuEgHwpx8v3865CH0gLcSpmveFLmpTEGu5JRPo9wuXKRKwaZl3idcLRyrsgLJbPM-ljGrkTkr2iTxOIbS4nP3WRbpIaFy2rreDQeTh-3dkROGimiKWuXCE597JL2GmbZzC_dHUmFC3nkSW9H_Cso_hUemph38oq9DGAVjlt7vGYbvnrDHlo3QPuBQGUdCMpDvZwvoK0QZeGm0ewEYsFjSAOi1s_AQN2Qt4MW1gKaGjxA-8BABe45rQVfQ72uEJPiC2FCWchmBfMb9Hn1Drt4FhO_Zb1qWfldBjiNIhs7a31kVVHiEeIeY9MislFild9jsjOftkHanCpsLHTHYbvWrdE1GV23Rt9j_LHVbSvt8cT9WTcy-o8pqjH6PNHyUzeQGlcv_ZIxlV_e11rGVJhD5PFg_7-f_pG9GJ6fTvRkNB2_Y9t0pSXBHbDe6u7ev0fUtCo-hFkK7Oq5F8ZvGswtDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+regional+soil+organic+matter+content+using+a+spatiotemporal+model+with+time-series+synthetic+Landsat+images&rft.jtitle=Geoderma+Regional&rft.au=Zhang%2C+Mei-Wei&rft.au=Wang%2C+Xiao-Qing&rft.au=Ding%2C+Xiao-Gang&rft.au=Yang%2C+Hua-Lei&rft.date=2023-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=34+p.e00702-&rft_id=info:doi/10.1016%2Fj.geodrs.2023.e00702&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon