N-doped porous carbon derived from macadamia nut shell for CO2 adsorption
Selective adsorption and converting CO2 upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy to prepare nitrogen-enriched porous carbons using the macadamia nutshell (MNS) as a carbon precursor, KOH as the activator and melamine as t...
Saved in:
Published in | Fuel processing technology Vol. 249; p. 107854 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 |
DOI | 10.1016/j.fuproc.2023.107854 |
Cover
Abstract | Selective adsorption and converting CO2 upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy to prepare nitrogen-enriched porous carbons using the macadamia nutshell (MNS) as a carbon precursor, KOH as the activator and melamine as the nitrogen agent, respectively. The as-prepared porous carbons exhibit an enhanced specific surface area of 1731 m2/g and high microporosity with abundant nitrogen functional groups and structural defects. The CO2 uptake of 6.61 and 4.35 mmol g−1 were achieved at 0 and 25 °C, respectively, under 1 bar. More importantly, these biomass-based nitrogen-doped carbons possess various CO2 adsorption merits such as quick adsorption kinetics, high CO2/N2 selectivity, medium heat of adsorption, outstanding uninterrupted recyclability and good dynamic CO2 capture capacity. The present study provides an advanced protocol to design nitrogen-doped porous Carbon via a facile route toward the capture of CO2, which offers excellent progress in sustainable chemistry and engineering.
[Display omitted]
•N-doped porous carbons were synthesized from biomass waste.•Macadamia nut shell as the precursor, melamine as the N source, KOH as the activator.•The obtained carbon exhibits high CO2 adsorption capacity, 6.61 mmol g−1 at 0 °C and 1 bar.•The adsorbents also possess many good CO2 adsorption properties.•Synergetic effect of narrow microporosity and N functionalities determines CO2 uptake. |
---|---|
AbstractList | Selective adsorption and converting CO2 upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy to prepare nitrogen-enriched porous carbons using the macadamia nutshell (MNS) as a carbon precursor, KOH as the activator and melamine as the nitrogen agent, respectively. The as-prepared porous carbons exhibit an enhanced specific surface area of 1731 m2/g and high microporosity with abundant nitrogen functional groups and structural defects. The CO2 uptake of 6.61 and 4.35 mmol g−1 were achieved at 0 and 25 °C, respectively, under 1 bar. More importantly, these biomass-based nitrogen-doped carbons possess various CO2 adsorption merits such as quick adsorption kinetics, high CO2/N2 selectivity, medium heat of adsorption, outstanding uninterrupted recyclability and good dynamic CO2 capture capacity. The present study provides an advanced protocol to design nitrogen-doped porous Carbon via a facile route toward the capture of CO2, which offers excellent progress in sustainable chemistry and engineering.
[Display omitted]
•N-doped porous carbons were synthesized from biomass waste.•Macadamia nut shell as the precursor, melamine as the N source, KOH as the activator.•The obtained carbon exhibits high CO2 adsorption capacity, 6.61 mmol g−1 at 0 °C and 1 bar.•The adsorbents also possess many good CO2 adsorption properties.•Synergetic effect of narrow microporosity and N functionalities determines CO2 uptake. Selective adsorption and converting CO₂ upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy to prepare nitrogen-enriched porous carbons using the macadamia nutshell (MNS) as a carbon precursor, KOH as the activator and melamine as the nitrogen agent, respectively. The as-prepared porous carbons exhibit an enhanced specific surface area of 1731 m²/g and high microporosity with abundant nitrogen functional groups and structural defects. The CO₂ uptake of 6.61 and 4.35 mmol g⁻¹ were achieved at 0 and 25 °C, respectively, under 1 bar. More importantly, these biomass-based nitrogen-doped carbons possess various CO₂ adsorption merits such as quick adsorption kinetics, high CO₂/N₂ selectivity, medium heat of adsorption, outstanding uninterrupted recyclability and good dynamic CO₂ capture capacity. The present study provides an advanced protocol to design nitrogen-doped porous Carbon via a facile route toward the capture of CO₂, which offers excellent progress in sustainable chemistry and engineering. |
ArticleNumber | 107854 |
Author | Huang, Jiamei Demir, Muslum Yu, Qiyun Wang, Linlin Altay, Bilge Nazli Bai, Jiali Kilic, Murat Hu, Xin |
Author_xml | – sequence: 1 givenname: Jiali surname: Bai fullname: Bai, Jiali organization: Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China – sequence: 2 givenname: Jiamei surname: Huang fullname: Huang, Jiamei organization: Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China – sequence: 3 givenname: Qiyun surname: Yu fullname: Yu, Qiyun organization: Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China – sequence: 4 givenname: Muslum surname: Demir fullname: Demir, Muslum organization: Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Türkiye – sequence: 5 givenname: Murat surname: Kilic fullname: Kilic, Murat organization: Department of Chemical Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye – sequence: 6 givenname: Bilge Nazli surname: Altay fullname: Altay, Bilge Nazli organization: College of Engineering Technology, Print and Graphic Media Science, Rochester Institute of Technology, Rochester, NY 14623, United States – sequence: 7 givenname: Xin surname: Hu fullname: Hu, Xin email: huxin@zjnu.cn organization: Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China – sequence: 8 givenname: Linlin surname: Wang fullname: Wang, Linlin email: wanglinlin@zjnu.cn organization: Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China |
BookMark | eNqFkD9PwzAUxD0UiRb4BgweWVIcO7YTBiRU8adSRReYLcd-Ea6SONhJJb49rsLEANOTTnene78VWvS-B4Suc7LOSS5uD-tmGoI3a0ooS5IsebFAS8JkmbGSknO0ivFACOG8kku0fc2sH8DiwQc_RWx0qH2PLQR3TGoTfIc7bbTVndO4n0YcP6BtceMD3uwp1jb6MIzO95forNFthKufe4Henx7fNi_Zbv-83TzsMsNYNWbc2kbrhpi6zo00hktBta6KStTUcsGlBJrLUteS5km3DEQJPHmYrEtBG3aBbube9OXnBHFUnYsmbdI9pA8ULVlBBaNSJOvdbDXBxxigUcaN-jR2DNq1KifqxEwd1MxMnZipmVkKF7_CQ3CdDl__xe7nGCQGRwdBReOgN2BdADMq693fBd_vN4yZ |
CitedBy_id | crossref_primary_10_1016_j_apmt_2024_102121 crossref_primary_10_1016_j_crcon_2024_100237 crossref_primary_10_1016_j_jcou_2024_102716 crossref_primary_10_1016_j_colsurfa_2023_132323 crossref_primary_10_1016_j_energy_2024_130892 crossref_primary_10_1016_j_jece_2024_114634 crossref_primary_10_1016_j_colsurfa_2024_136054 crossref_primary_10_1021_acs_iecr_3c04117 crossref_primary_10_1016_j_micromeso_2023_112939 crossref_primary_10_3390_pr11102987 crossref_primary_10_1016_j_ceramint_2023_09_154 crossref_primary_10_1016_j_fuel_2023_130638 crossref_primary_10_1016_j_jallcom_2025_178539 crossref_primary_10_1016_j_arabjc_2024_105688 crossref_primary_10_1016_j_jcou_2024_102680 crossref_primary_10_1016_j_seppur_2024_130582 crossref_primary_10_1016_j_carbon_2024_119530 crossref_primary_10_1016_j_colsurfa_2023_131916 crossref_primary_10_1016_j_fuel_2024_133183 crossref_primary_10_1016_j_envres_2024_118426 crossref_primary_10_1016_j_jcou_2024_102807 crossref_primary_10_1016_j_scitotenv_2024_176429 crossref_primary_10_1002_slct_202401145 crossref_primary_10_1016_j_cej_2023_147638 crossref_primary_10_1016_j_biombioe_2024_107113 crossref_primary_10_1016_j_cej_2024_150149 crossref_primary_10_1021_acsanm_3c06239 crossref_primary_10_1016_j_cej_2025_159241 crossref_primary_10_1016_j_ijbiomac_2024_132078 crossref_primary_10_1016_j_seppur_2025_132203 crossref_primary_10_1016_j_jece_2023_111735 crossref_primary_10_1016_j_ccst_2023_100151 crossref_primary_10_1016_j_indcrop_2025_120808 crossref_primary_10_1021_acs_energyfuels_4c03493 crossref_primary_10_1016_j_jece_2024_113808 crossref_primary_10_1016_j_fuel_2024_131776 crossref_primary_10_1007_s42247_024_00989_3 crossref_primary_10_1016_j_colsurfa_2024_133823 crossref_primary_10_1016_j_jiec_2024_03_049 crossref_primary_10_1021_acs_energyfuels_3c03069 crossref_primary_10_1016_j_apsusc_2024_159727 crossref_primary_10_1016_j_cej_2023_147667 crossref_primary_10_1016_j_jece_2024_112113 crossref_primary_10_1016_j_powtec_2024_120322 crossref_primary_10_1021_acsami_5c04331 crossref_primary_10_1021_acs_energyfuels_4c02372 crossref_primary_10_1016_j_seppur_2023_125891 crossref_primary_10_1016_j_chemosphere_2023_140546 crossref_primary_10_3390_su16041634 crossref_primary_10_1016_j_seppur_2024_131253 crossref_primary_10_1007_s11665_024_09397_4 crossref_primary_10_1016_j_fuel_2023_130134 crossref_primary_10_1016_j_seppur_2024_128525 crossref_primary_10_3390_c11010015 crossref_primary_10_1016_j_pnsc_2025_02_011 crossref_primary_10_3390_molecules29133153 crossref_primary_10_1016_j_cplett_2023_140655 crossref_primary_10_1016_j_jece_2024_113197 crossref_primary_10_1007_s10853_024_10032_9 crossref_primary_10_1016_j_seppur_2025_132585 crossref_primary_10_1016_j_cplett_2024_141244 crossref_primary_10_1080_1536383X_2024_2325524 crossref_primary_10_3390_cleantechnol7010025 crossref_primary_10_3390_polym16020269 crossref_primary_10_1016_j_cplett_2023_140890 crossref_primary_10_1016_j_jece_2024_115218 crossref_primary_10_1016_j_seppur_2024_128472 crossref_primary_10_1016_j_seppur_2024_130476 crossref_primary_10_3390_ma17246264 crossref_primary_10_1016_j_jece_2024_114839 crossref_primary_10_1016_j_jics_2024_101124 crossref_primary_10_1016_j_jiec_2023_12_027 crossref_primary_10_1016_j_seppur_2023_125188 crossref_primary_10_3390_molecules29050987 crossref_primary_10_1016_j_seppur_2023_126117 crossref_primary_10_1016_j_jcou_2024_102950 crossref_primary_10_3390_pr12122730 |
Cites_doi | 10.1016/j.seppur.2018.07.074 10.1016/j.scitotenv.2022.157805 10.1016/j.jes.2022.03.016 10.1016/j.eti.2020.101104 10.1002/anie.201702453 10.1021/acs.iecr.7b04533 10.1016/j.carbon.2015.05.017 10.1016/j.fuel.2022.125119 10.1007/s12649-020-01109-y 10.1021/ja9015765 10.1016/j.jcis.2020.12.002 10.1039/D1RA03699H 10.1016/j.carbon.2015.11.019 10.1016/j.jes.2020.04.006 10.1016/j.cej.2018.07.161 10.1016/j.jece.2021.105957 10.1021/acs.chemrev.6b00626 10.1007/s10853-018-2927-7 10.1016/j.seppur.2022.122053 10.1186/s42834-022-00155-6 10.32604/jrm.2019.00001 10.1016/j.colsurfa.2021.127750 10.1016/j.carbon.2012.07.044 10.1007/s11837-016-2213-6 10.1039/c1ee01176f 10.1021/acssuschemeng.9b04574 10.1016/j.seppur.2021.119899 10.1016/j.rser.2022.112537 10.1039/D2GC02306G 10.1016/j.fuproc.2022.107437 10.1016/j.carbon.2015.10.007 10.1016/j.jcou.2020.101212 10.1016/j.seppur.2022.121602 10.1021/acsanm.2c03126 10.1002/jctb.408 10.1016/j.fuel.2022.123195 10.1016/j.fuproc.2023.107700 10.1016/j.cej.2019.122736 10.1126/science.1176731 10.1016/j.carbon.2022.02.040 10.1016/j.fuel.2021.121762 10.1002/anie.201602919 10.1016/j.seppur.2023.123440 10.1021/acssuschemeng.5b00544 10.1016/j.jece.2020.104819 10.1016/j.jcou.2021.101641 10.1016/j.jcou.2022.101890 10.1016/j.carbon.2020.09.088 10.1016/j.cep.2018.04.006 10.1016/j.jallcom.2022.163725 10.3390/molecules28041772 10.1016/j.seppur.2022.121368 10.1021/acsomega.0c01918 10.1016/j.cej.2020.128193 10.1007/s13399-018-0322-x 10.1016/S0008-6223(97)00127-9 10.1155/2021/2543197 10.1016/j.fuproc.2022.107613 10.1021/acs.energyfuels.2c00748 10.1002/cssc.202201004 10.1016/j.jcou.2021.101809 10.1002/ente.201800300 10.1021/ef3009234 10.1002/adfm.201904785 10.1039/c0ee00784f 10.1016/j.cej.2020.127707 10.1002/apj.2179 10.1002/er.8385 10.1002/chem.202100414 10.3390/molecules27206816 10.1021/acs.energyfuels.0c04091 10.1002/adfm.201603937 10.1016/j.biombioe.2016.12.017 10.1039/C7CS00787F 10.1016/j.micromeso.2013.07.008 10.1016/j.cej.2019.122515 10.1021/ja0570032 10.1038/s41598-022-12596-5 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fuproc.2023.107854 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_fuproc_2023_107854 S0378382023002023 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD ADVLN AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS EFLBG L.6 |
ID | FETCH-LOGICAL-c339t-5ddfaaf0cbb1c7cc5762aa9496b2d56577e2178ab721aa9d3e68e562a37b862f3 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Fri Sep 05 04:22:30 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Tue Jul 01 03:04:44 EDT 2025 Tue Dec 03 03:44:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N-doped Porous carbons Macadamia nutshell Biomass waste CO2 adsorption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-5ddfaaf0cbb1c7cc5762aa9496b2d56577e2178ab721aa9d3e68e562a37b862f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2834263276 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834263276 crossref_citationtrail_10_1016_j_fuproc_2023_107854 crossref_primary_10_1016_j_fuproc_2023_107854 elsevier_sciencedirect_doi_10_1016_j_fuproc_2023_107854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ma, Lu, Shao, Huang, Hu, Wang (bb0160) 2022; 281 Shao, Sang, Liu, Liu, Zhan, Huang, Chen (bb0310) 2020; 5 Yu, Xie, Li, Ma, Seminario, Balbuena (bb0125) 2017; 117 Wu, Zhang, Liu, Yan, Lv (bb0230) 2022; 46 Khosrowshahi, Abdol, Mashhadimoslem, Khakpour, Emrooz, Sadeghzadeh, Ghaemi (bb0285) 2022; 12 Ren, Zhang, Wang, Jia, Cai (bb0290) 2019; 54 Shao, Wan, Wang, Wang, Liu, Wu, Zhan, Zhang, Ma, Huang (bb0100) 2023; 313 Millward, Yaghi (bb0120) 2005; 127 Gong, Antonietti, Yuan (bb0080) 2017; 56 Shi, Yan, Cui, Xu, Liu, Zhang (bb0355) 2019; 7 Yu, Bai, Huang, Demir, Altay, Hu, Wang (bb0315) 2022; 27 Xia, Zhu, Tang (bb0370) 2012; 50 Bandosz, Seredych, Rodríguez-Castellón, Cheng, Daemen, Ramírez-Cuesta (bb0360) 2016; 96 Ello, de Souza, Trokourey, Jaroniec (bb0180) 2013; 180 Zhang, Li, Ning, Jia, Wang, Wang (bb0035) 2020; 380 Jiang, Peng, Xiang, Liu, Xu, Wang, Tremblay, Zhang (bb0225) 2022; 902 Shen (bb0400) 2022; 236 Yan, Zhang, Xu, Zhang, Liu, Li, Zhao, Wang, Zhang (bb0025) 2022; 315 Nazir, Rehman, Park (bb0070) 2021; 51 Feng, Guo, Zhang, Sun, Zhao, Shang, Sun, Wu, Tan (bb0340) 2021; 410 Dao, Tran, Vo, Nguyen, Hoang (bb0205) 2021; 2021 Benzigar, Talapaneni, Joseph, Ramadass, Singh, Scaranto, Ravon, Al-Bahily, Vinu (bb0055) 2018; 47 Correa, Otto, Kruse (bb0235) 2017; 97 Tang, Gao, Zhang, Du, Feng, Dong, Peng, Zhang, Xie (bb0045) 2023; 241 Rochelle (bb0015) 2009; 325 Guo, Tan, Sun, Li, Zhang, Zhao (bb0060) 2020; 381 Bai, Huang, Yu, Demir, Gecit, Altay, Wang, Hu (bb0105) 2023; 244 Xie, Yao, Li, Li, He (bb0270) 2022; 15 Wongcharee, Aravinthan, Erdei, Sanongraj (bb0195) 2018; 13 Ma, Bai, Demir, Yu, Hu, Jiang, Wang (bb0250) 2022; 122299 Kamran, Park (bb0330) 2020; 40 Teo, Ong, Tan, Li, Loh, Lim (bb0265) 2022; 24 Furukawa, Yaghi (bb0395) 2009; 131 Girdis, Gaudion, Proust, Loschke, Dong (bb0210) 2017; 69 Wartelle, Marshall (bb0190) 2001; 76 Zhang, Zhao, Hao, Xu, Cheng (bb0030) 2019; 209 Singh, Bhunia, Basu (bb0380) 2020; 20 Lin, Garcia, Ballesteros, Garcia-Segura, Lu (bb0005) 2022; 32 Presser, McDonough, Yeon, Gogotsi (bb0320) 2011; 4 Policicchio, Conte, Agostino, Caputo, Rossi, Godbert, Nicotera, Simari (bb0115) 2022; 55 Shi, Ochedi, Yu, Liu (bb0165) 2021; 35 Li, Li, Thomas, Liao (bb0295) 2019; 29 Yu, Bai, Huang, Demir, Farghaly, Aghamohammadi, Hu, Wang (bb0255) 2023; 28 Karimi, Shirzad, Silva, Rodrigues (bb0405) 2022; 57 Feng, Guo, Zhang, Sun, Zhao, Chang, Guo, Qin (bb0345) 2021; 409 Rehman, Heo, Nazir, Park (bb0335) 2021; 172 Sepehri, Sarrafzadeh (bb0130) 2018; 128 Sang, Cao, Wang, Yan, Chen, Huang, Liu (bb0145) 2021; 587 Zhong, Mao, Li, Wu, Xie, Li, Liang, Wang (bb0275) 2021; 11 Ahmadpour, Do (bb0200) 1997; 35 Zhou, Zhang, Shao, Lu, He (bb0280) 2021; 12 Tsai, Jiang (bb0185) 2018; 8 Tian, Zhang, Sun, Suvorova, Saunders, Tade, Wang (bb0365) 2016; 26 Ma, Bai, Hu, Jiang, Wang (bb0095) 2023; 125 Ma, Lu, Demir, Yu, Hu, Jiang, Wang (bb0300) 2022; 5 Li, Liang, Yang, Zhang, Li, Li (bb0220) 2017; 28 Liu, Rao, Yang, Wang, Wang, Ma, Yue, Hu (bb0260) 2020; 93 Nazir, Rehman, Park (bb0085) 2022; 192 Cipriano, Zanini, Dantas, Mulinari (bb0215) 2019; 7 Wang, Xiao, Wang, Zhang, Yuan (bb0305) 2021; 27 Chen, Huang, Zhou, Tian, Zhu, Tao, Jiang, Dai (bb0020) 2016; 55 Huang, Zheng, Louis, Wang (bb0040) 2018; 6 Sevilla, Fuertes (bb0325) 2011; 4 Shao, Ma, Zhao, Wang, Hu (bb0065) 2022; 632 Chen, Huang, Yu, Shi, He, Albilali, Pan (bb0075) 2018; 353 Huang, Bai, Demir, Hu, Jiang, Wang (bb0240) 2022; 36 Sethia, Sayari (bb0350) 2015; 93 Shao, Li, Huang, Liu (bb0140) 2018; 57 Chatterjee, Jeevanandham, Mukherjee, Vo, Mishra (bb0110) 2021; 9 Shi, Liu (bb0170) 2021; 306 Lu, Bai, Demir, Hu, Huang, Wang (bb0385) 2022; 296 Kwiatkowski, Policicchio, Seredych, Bandosz (bb0375) 2016; 98 Xiao, Yuan, Zhang, Ouyang, Yuan (bb0050) 2022; 298 Sun, Kang, Shi, Jiang, Liu (bb0135) 2015; 3 Chen, Liu, Zhang, Teng, McLellan (bb0010) 2022; 167 Gokce, Yaglikci, Yagmur, Banford, Aktas (bb0245) 2021; 9 Lu, Ma, Demir, Yu, Aghamohammadi, Wang, Hu (bb0390) 2022; 301 Rehman, Nazir, Rhee, Park (bb0090) 2022; 849 Duy Anh, Hong Nam, Tsubota (bb0150) 2021; 148 Ma, Bai, Demir, Hu, Liu, Wang (bb0155) 2022; 326 Mi, Wang, Fan, Qu, Li (bb0175) 2012; 26 Singh (10.1016/j.fuproc.2023.107854_bb0380) 2020; 20 Policicchio (10.1016/j.fuproc.2023.107854_bb0115) 2022; 55 Mi (10.1016/j.fuproc.2023.107854_bb0175) 2012; 26 Wongcharee (10.1016/j.fuproc.2023.107854_bb0195) 2018; 13 Sevilla (10.1016/j.fuproc.2023.107854_bb0325) 2011; 4 Li (10.1016/j.fuproc.2023.107854_bb0295) 2019; 29 Shao (10.1016/j.fuproc.2023.107854_bb0100) 2023; 313 Xie (10.1016/j.fuproc.2023.107854_bb0270) 2022; 15 Yan (10.1016/j.fuproc.2023.107854_bb0025) 2022; 315 Shi (10.1016/j.fuproc.2023.107854_bb0165) 2021; 35 Sepehri (10.1016/j.fuproc.2023.107854_bb0130) 2018; 128 Lin (10.1016/j.fuproc.2023.107854_bb0005) 2022; 32 Li (10.1016/j.fuproc.2023.107854_bb0220) 2017; 28 Shi (10.1016/j.fuproc.2023.107854_bb0355) 2019; 7 Lu (10.1016/j.fuproc.2023.107854_bb0390) 2022; 301 Tang (10.1016/j.fuproc.2023.107854_bb0045) 2023; 241 Bandosz (10.1016/j.fuproc.2023.107854_bb0360) 2016; 96 Gokce (10.1016/j.fuproc.2023.107854_bb0245) 2021; 9 Yu (10.1016/j.fuproc.2023.107854_bb0255) 2023; 28 Shao (10.1016/j.fuproc.2023.107854_bb0310) 2020; 5 Guo (10.1016/j.fuproc.2023.107854_bb0060) 2020; 381 Correa (10.1016/j.fuproc.2023.107854_bb0235) 2017; 97 Zhou (10.1016/j.fuproc.2023.107854_bb0280) 2021; 12 Shi (10.1016/j.fuproc.2023.107854_bb0170) 2021; 306 Ma (10.1016/j.fuproc.2023.107854_bb0250) 2022; 122299 Feng (10.1016/j.fuproc.2023.107854_bb0340) 2021; 410 Chen (10.1016/j.fuproc.2023.107854_bb0010) 2022; 167 Huang (10.1016/j.fuproc.2023.107854_bb0240) 2022; 36 Zhong (10.1016/j.fuproc.2023.107854_bb0275) 2021; 11 Bai (10.1016/j.fuproc.2023.107854_bb0105) 2023; 244 Girdis (10.1016/j.fuproc.2023.107854_bb0210) 2017; 69 Zhang (10.1016/j.fuproc.2023.107854_bb0030) 2019; 209 Gong (10.1016/j.fuproc.2023.107854_bb0080) 2017; 56 Rochelle (10.1016/j.fuproc.2023.107854_bb0015) 2009; 325 Wartelle (10.1016/j.fuproc.2023.107854_bb0190) 2001; 76 Xiao (10.1016/j.fuproc.2023.107854_bb0050) 2022; 298 Ma (10.1016/j.fuproc.2023.107854_bb0095) 2023; 125 Sang (10.1016/j.fuproc.2023.107854_bb0145) 2021; 587 Teo (10.1016/j.fuproc.2023.107854_bb0265) 2022; 24 Kwiatkowski (10.1016/j.fuproc.2023.107854_bb0375) 2016; 98 Tian (10.1016/j.fuproc.2023.107854_bb0365) 2016; 26 Cipriano (10.1016/j.fuproc.2023.107854_bb0215) 2019; 7 Tsai (10.1016/j.fuproc.2023.107854_bb0185) 2018; 8 Wu (10.1016/j.fuproc.2023.107854_bb0230) 2022; 46 Liu (10.1016/j.fuproc.2023.107854_bb0260) 2020; 93 Ren (10.1016/j.fuproc.2023.107854_bb0290) 2019; 54 Yu (10.1016/j.fuproc.2023.107854_bb0125) 2017; 117 Wang (10.1016/j.fuproc.2023.107854_bb0305) 2021; 27 Lu (10.1016/j.fuproc.2023.107854_bb0385) 2022; 296 Rehman (10.1016/j.fuproc.2023.107854_bb0090) 2022; 849 Dao (10.1016/j.fuproc.2023.107854_bb0205) 2021; 2021 Ma (10.1016/j.fuproc.2023.107854_bb0155) 2022; 326 Rehman (10.1016/j.fuproc.2023.107854_bb0335) 2021; 172 Presser (10.1016/j.fuproc.2023.107854_bb0320) 2011; 4 Ahmadpour (10.1016/j.fuproc.2023.107854_bb0200) 1997; 35 Xia (10.1016/j.fuproc.2023.107854_bb0370) 2012; 50 Ma (10.1016/j.fuproc.2023.107854_bb0300) 2022; 5 Jiang (10.1016/j.fuproc.2023.107854_bb0225) 2022; 902 Shen (10.1016/j.fuproc.2023.107854_bb0400) 2022; 236 Zhang (10.1016/j.fuproc.2023.107854_bb0035) 2020; 380 Benzigar (10.1016/j.fuproc.2023.107854_bb0055) 2018; 47 Chen (10.1016/j.fuproc.2023.107854_bb0020) 2016; 55 Feng (10.1016/j.fuproc.2023.107854_bb0345) 2021; 409 Sun (10.1016/j.fuproc.2023.107854_bb0135) 2015; 3 Ello (10.1016/j.fuproc.2023.107854_bb0180) 2013; 180 Nazir (10.1016/j.fuproc.2023.107854_bb0070) 2021; 51 Duy Anh (10.1016/j.fuproc.2023.107854_bb0150) 2021; 148 Yu (10.1016/j.fuproc.2023.107854_bb0315) 2022; 27 Kamran (10.1016/j.fuproc.2023.107854_bb0330) 2020; 40 Huang (10.1016/j.fuproc.2023.107854_bb0040) 2018; 6 Ma (10.1016/j.fuproc.2023.107854_bb0160) 2022; 281 Furukawa (10.1016/j.fuproc.2023.107854_bb0395) 2009; 131 Chen (10.1016/j.fuproc.2023.107854_bb0075) 2018; 353 Shao (10.1016/j.fuproc.2023.107854_bb0140) 2018; 57 Nazir (10.1016/j.fuproc.2023.107854_bb0085) 2022; 192 Millward (10.1016/j.fuproc.2023.107854_bb0120) 2005; 127 Chatterjee (10.1016/j.fuproc.2023.107854_bb0110) 2021; 9 Sethia (10.1016/j.fuproc.2023.107854_bb0350) 2015; 93 Karimi (10.1016/j.fuproc.2023.107854_bb0405) 2022; 57 Shao (10.1016/j.fuproc.2023.107854_bb0065) 2022; 632 Khosrowshahi (10.1016/j.fuproc.2023.107854_bb0285) 2022; 12 |
References_xml | – volume: 35 start-page: 1723 year: 1997 end-page: 1732 ident: bb0200 article-title: The preparation of activated Carbon from macadamia nutshell by chemical activation publication-title: Carbon – volume: 241 year: 2023 ident: bb0045 article-title: Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO publication-title: Fuel Process. Technol. – volume: 902 year: 2022 ident: bb0225 article-title: A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr publication-title: J. Alloys Compd. – volume: 5 start-page: 17450 year: 2020 end-page: 17462 ident: bb0310 article-title: Selectable microporous carbons derived from poplar wood by three preparation routes for CO publication-title: Acs Omega – volume: 24 start-page: 6086 year: 2022 end-page: 6099 ident: bb0265 article-title: Materials from waste plastics for CO publication-title: Green Chem. – volume: 12 year: 2022 ident: bb0285 article-title: The role of surface chemistry on CO publication-title: Sci. Rep. – volume: 51 year: 2021 ident: bb0070 article-title: Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO publication-title: J. CO – volume: 29 start-page: 1904785 year: 2019 ident: bb0295 article-title: Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived from a Schiff-Base Porous Organic Polymer Aerogel for CO publication-title: Adv. Funct. Mater. – volume: 15 year: 2022 ident: bb0270 article-title: Biomass-based N-Rich Porous Carbon Materials for CO publication-title: Chemsuschem – volume: 4 start-page: 1765 year: 2011 end-page: 1771 ident: bb0325 article-title: Sustainable porous carbons with a superior performance for CO publication-title: Energy Environ. Sci. – volume: 20 year: 2020 ident: bb0380 article-title: Development of Sulphur-doped carbon monolith derived from phenol-formaldehyde resin for fixed bed CO publication-title: Environ. Technol. Innov. – volume: 301 year: 2022 ident: bb0390 article-title: One-pot synthesis of potassium benzoate-derived porous carbon for CO publication-title: Sep. Purif. Technol. – volume: 587 start-page: 121 year: 2021 end-page: 130 ident: bb0145 article-title: N-rich porous organic polymers based on Schiff base reaction for CO publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 3077 year: 2015 end-page: 3085 ident: bb0135 article-title: Highly Selective capture of the greenhouse Gas CO publication-title: ACS Sustain. Chem. Eng. – volume: 122299 year: 2022 ident: bb0250 article-title: Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO publication-title: Sep. Purif. Technol. – volume: 96 start-page: 856 year: 2016 end-page: 863 ident: bb0360 article-title: Evidence for CO publication-title: Carbon – volume: 244 year: 2023 ident: bb0105 article-title: One-pot synthesis of self S-doped porous Carbon for efficient CO publication-title: Fuel Process. Technol. – volume: 236 year: 2022 ident: bb0400 article-title: Preparation of renewable porous carbons for CO publication-title: Fuel Process. Technol. – volume: 180 start-page: 280 year: 2013 end-page: 283 ident: bb0180 article-title: Coconut shell-based microporous carbons for CO publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 13473 year: 2022 end-page: 13481 ident: bb0300 article-title: Polyacrylonitrile-Derived N-Doped Nanoporous Carbon Fibers for CO publication-title: ACS Appl. Nano Mater. – volume: 54 start-page: 1606 year: 2019 end-page: 1615 ident: bb0290 article-title: A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO publication-title: J. Mater. Sci. – volume: 35 start-page: 7646 year: 2021 end-page: 7656 ident: bb0165 article-title: Porous biochars derived from microalgae pyrolysis for CO publication-title: Energy Fuel – volume: 2021 start-page: 2543197 year: 2021 ident: bb0205 article-title: Utilization of Macadamia Nutshell Residue for the Synthesis of magnetic Activated Carbon toward Zinc (II) Ion Removal publication-title: Adv. Mater. Sci. Eng. – volume: 172 start-page: 71 year: 2021 end-page: 82 ident: bb0335 article-title: Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO publication-title: Carbon – volume: 56 start-page: 7557 year: 2017 end-page: 7563 ident: bb0080 article-title: Poly(Ionic Liquid)-Derived Carbon with Site-specific N-Doping and Biphasic Heterojunction for Enhanced CO publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 2856 year: 2018 end-page: 2865 ident: bb0140 article-title: Synthesis of Triazine-based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 711 year: 2018 end-page: 718 ident: bb0185 article-title: Mesoporous activated Carbon produced from coconut shell using a single-step physical activation process publication-title: Biomass Conv. Bioref. – volume: 632 year: 2022 ident: bb0065 article-title: Effective nitrogen and sulfur CO-doped porous carbonaceous CO publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 325 start-page: 1652 year: 2009 end-page: 1654 ident: bb0015 article-title: Amine Scrubbing for CO publication-title: Science – volume: 9 year: 2021 ident: bb0110 article-title: Significance of re-engineered zeolites in climate mitigation–a review for carbon capture and separation publication-title: J. Environ. Chem. Eng. – volume: 55 start-page: 7166 year: 2016 end-page: 7170 ident: bb0020 article-title: Multi-molar absorption of CO publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 13880 year: 2017 end-page: 13887 ident: bb0220 article-title: Convenient preparation of nitrogen-doped activated Carbon from Macadamia nutshell and its application in supercapacitor publication-title: J. Mater. Sci. – volume: 128 start-page: 10 year: 2018 end-page: 18 ident: bb0130 article-title: Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor publication-title: Chem. Eng. Process. – volume: 380 year: 2020 ident: bb0035 article-title: K publication-title: Chem. Eng. J. – volume: 167 year: 2022 ident: bb0010 article-title: A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality publication-title: Renew. Sust. Energ. Rev. – volume: 97 start-page: 53 year: 2017 end-page: 64 ident: bb0235 article-title: Influence of the biomass components on the pore formation of activated Carbon publication-title: Biomass Bioenergy – volume: 7 start-page: 1047 year: 2019 end-page: 1053 ident: bb0215 article-title: Mechanical Properties of polypropylene composites reinforced with macadamia nutshell fibers publication-title: J. Renew. Mater. – volume: 13 year: 2018 ident: bb0195 article-title: Mesoporous activated carbon prepared from macadamia nut shell waste by carbon dioxide activation: Comparative characterisation and study of methylene blue removal from aqueous solution publication-title: Asia-Pacific J. Chem. Eng. – volume: 296 year: 2022 ident: bb0385 article-title: Synthesis of potassium Bitartrate-derived porous Carbon via a facile and Self-Activating strategy for CO publication-title: Sep. Purif. Technol. – volume: 4 start-page: 3059 year: 2011 end-page: 3066 ident: bb0320 article-title: Effect of pore size on carbon dioxide sorption by carbide derived Carbon publication-title: Energy Environ. Sci. – volume: 69 start-page: 575 year: 2017 end-page: 579 ident: bb0210 article-title: Rethinking Timber: Investigation into the use of Waste Macadamia Nut Shells for Additive Manufacturing publication-title: JOM – volume: 127 start-page: 17998 year: 2005 end-page: 17999 ident: bb0120 article-title: Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature publication-title: J. Am. Chem. Soc. – volume: 306 year: 2021 ident: bb0170 article-title: Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO publication-title: Fuel – volume: 55 year: 2022 ident: bb0115 article-title: Hexagonal Mesoporous Silica for carbon capture: Unrevealing CO publication-title: J. CO2 Util. – volume: 40 year: 2020 ident: bb0330 article-title: Tuning ratios of KOH and NaOH on acetic acid-mediated chitosan-based porous carbons for improving their textural features and CO publication-title: J. CO – volume: 98 start-page: 250 year: 2016 end-page: 258 ident: bb0375 article-title: Evaluation of CO publication-title: Carbon – volume: 76 start-page: 451 year: 2001 end-page: 455 ident: bb0190 article-title: Nutshells as granular activated carbons: physical, chemical and adsorptive properties publication-title: J. Chem. Technol. Biotechnol. – volume: 46 start-page: 17204 year: 2022 end-page: 17219 ident: bb0230 article-title: Influence of the interaction between activation conditions on the pore structure and CO publication-title: Int. J. Energy Res. – volume: 36 start-page: 5825 year: 2022 end-page: 5832 ident: bb0240 article-title: Efficient N-doped porous carbonaceous CO publication-title: Energy Fuel – volume: 57 year: 2022 ident: bb0405 article-title: Biomass/Biochar carbon materials for CO publication-title: J. CO2 Util. – volume: 6 start-page: 2469 year: 2018 end-page: 2478 ident: bb0040 article-title: A facile Solvent/Nonsolvent Preparation of Sintering-Resistant MgO/CaO Composites for High-Temperature CO publication-title: Energy Technol. – volume: 26 start-page: 8651 year: 2016 end-page: 8661 ident: bb0365 article-title: Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1772 year: 2023 ident: bb0255 article-title: One-pot synthesis of melamine formaldehyde resin-derived N-doped porous carbon for CO publication-title: Molecules – volume: 27 start-page: 6816 year: 2022 ident: bb0315 article-title: One-pot synthesis of N-rich porous carbon for efficient CO publication-title: Molecules – volume: 313 year: 2023 ident: bb0100 article-title: N-doped highly microporous Carbon derived from the self-assembled lignin/chitosan composites beads for selective CO publication-title: Sep. Purif. Technol. – volume: 9 year: 2021 ident: bb0245 article-title: Adsorption behaviour of high performance activated Carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol publication-title: J. Environ. Chem. Eng. – volume: 281 year: 2022 ident: bb0160 article-title: Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO publication-title: Sep. Purif. Technol. – volume: 27 start-page: 7908 year: 2021 end-page: 7914 ident: bb0305 article-title: N-doped porous carbon derived from solvent-free synthesis of cross-linked triazine polymers for simultaneously achieving CO publication-title: Chem. Eur. J. – volume: 7 start-page: 19513 year: 2019 end-page: 19521 ident: bb0355 article-title: Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO publication-title: ACS Sustain. Chem. Eng. – volume: 410 year: 2021 ident: bb0340 article-title: Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption publication-title: Chem. Eng. J. – volume: 849 start-page: 157805 year: 2022 ident: bb0090 article-title: Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO publication-title: Sci. Total Environ. – volume: 209 start-page: 516 year: 2019 end-page: 527 ident: bb0030 article-title: A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support publication-title: Sep. Purif. Technol. – volume: 125 start-page: 533 year: 2023 end-page: 543 ident: bb0095 article-title: Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO publication-title: J. Environ. Sci. – volume: 117 start-page: 9674 year: 2017 end-page: 9754 ident: bb0125 article-title: CO publication-title: Chem. Rev. – volume: 409 year: 2021 ident: bb0345 article-title: Adsorption-enrichment characterization of CO publication-title: Chem. Eng. J. – volume: 32 start-page: 45 year: 2022 ident: bb0005 article-title: A review on chemical precipitation in carbon capture, utilization and storage publication-title: Sustain. Environ. Res. – volume: 326 year: 2022 ident: bb0155 article-title: Water chestnut shell-derived N/S-doped porous carbons and their applications in CO publication-title: Fuel – volume: 26 start-page: 5321 year: 2012 end-page: 5329 ident: bb0175 article-title: Coconut-Shell-based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors publication-title: Energy Fuel – volume: 93 start-page: 109 year: 2020 end-page: 116 ident: bb0260 article-title: Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin publication-title: J. Environ. Sci. – volume: 93 start-page: 68 year: 2015 end-page: 80 ident: bb0350 article-title: Comprehensive study of ultra-microporous nitrogen-doped activated Carbon for CO publication-title: Carbon – volume: 47 start-page: 2680 year: 2018 end-page: 2721 ident: bb0055 article-title: Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1699 year: 2021 end-page: 1724 ident: bb0280 article-title: Preparation and application of hierarchical porous carbon materials from waste and biomass: a review publication-title: Waste Biomass Valori. – volume: 131 start-page: 8875 year: 2009 end-page: 8883 ident: bb0395 article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications publication-title: J. Am. Chem. Soc. – volume: 381 year: 2020 ident: bb0060 article-title: Porous activated carbons derived from waste sugarcane bagasse for CO publication-title: Chem. Eng. J. – volume: 192 start-page: 14 year: 2022 end-page: 29 ident: bb0085 article-title: Self-activated, urea modified microporous carbon cryogels for high-performance CO publication-title: Carbon – volume: 298 year: 2022 ident: bb0050 article-title: Nitrogen-doped porous Carbon for excellent CO publication-title: Sep. Purif. Technol. – volume: 148 year: 2021 ident: bb0150 article-title: Activated Carbon produced from bamboo and solid residue by CO publication-title: Biomass Bioenergy – volume: 11 start-page: 27860 year: 2021 end-page: 27867 ident: bb0275 article-title: Biomass-derived O, N-codoped hierarchically porous Carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor publication-title: RSC Adv. – volume: 353 start-page: 584 year: 2018 end-page: 594 ident: bb0075 article-title: Template-free synthesis of hierarchical porous Carbon with controlled morphology for CO publication-title: Chem. Eng. J. – volume: 315 year: 2022 ident: bb0025 article-title: High CO publication-title: Fuel – volume: 50 start-page: 5543 year: 2012 end-page: 5553 ident: bb0370 article-title: Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide publication-title: Carbon – volume: 209 start-page: 516 year: 2019 ident: 10.1016/j.fuproc.2023.107854_bb0030 article-title: A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.074 – volume: 849 start-page: 157805 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0090 article-title: Valorization of orange peel waste to tunable heteroatom-doped hydrochar-derived microporous carbons for selective CO2 adsorption and separation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157805 – volume: 125 start-page: 533 year: 2023 ident: 10.1016/j.fuproc.2023.107854_bb0095 article-title: Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO2 adsorbents publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2022.03.016 – volume: 20 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0380 article-title: Development of Sulphur-doped carbon monolith derived from phenol-formaldehyde resin for fixed bed CO2 adsorption publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.101104 – volume: 56 start-page: 7557 year: 2017 ident: 10.1016/j.fuproc.2023.107854_bb0080 article-title: Poly(Ionic Liquid)-Derived Carbon with Site-specific N-Doping and Biphasic Heterojunction for Enhanced CO2 Capture and Sensing publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201702453 – volume: 57 start-page: 2856 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0140 article-title: Synthesis of Triazine-based Porous Organic Polymers Derived N-Enriched Porous Carbons for CO2 Capture publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04533 – volume: 122299 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0250 article-title: Polyacrylonitrile-derived nitrogen enriched porous carbon fiber with high CO2 capture performance publication-title: Sep. Purif. Technol. – volume: 93 start-page: 68 year: 2015 ident: 10.1016/j.fuproc.2023.107854_bb0350 article-title: Comprehensive study of ultra-microporous nitrogen-doped activated Carbon for CO2 capture publication-title: Carbon doi: 10.1016/j.carbon.2015.05.017 – volume: 326 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0155 article-title: Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor publication-title: Fuel doi: 10.1016/j.fuel.2022.125119 – volume: 12 start-page: 1699 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0280 article-title: Preparation and application of hierarchical porous carbon materials from waste and biomass: a review publication-title: Waste Biomass Valori. doi: 10.1007/s12649-020-01109-y – volume: 131 start-page: 8875 year: 2009 ident: 10.1016/j.fuproc.2023.107854_bb0395 article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9015765 – volume: 587 start-page: 121 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0145 article-title: N-rich porous organic polymers based on Schiff base reaction for CO2 capture and mercury(II) adsorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.002 – volume: 11 start-page: 27860 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0275 article-title: Biomass-derived O, N-codoped hierarchically porous Carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor publication-title: RSC Adv. doi: 10.1039/D1RA03699H – volume: 98 start-page: 250 year: 2016 ident: 10.1016/j.fuproc.2023.107854_bb0375 article-title: Evaluation of CO2 interactions with S-doped nanoporous Carbon and its composites with a reduced GO: effect of surface features on an apparent physical adsorption mechanism publication-title: Carbon doi: 10.1016/j.carbon.2015.11.019 – volume: 93 start-page: 109 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0260 article-title: Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.04.006 – volume: 353 start-page: 584 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0075 article-title: Template-free synthesis of hierarchical porous Carbon with controlled morphology for CO2 efficient capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.161 – volume: 9 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0110 article-title: Significance of re-engineered zeolites in climate mitigation–a review for carbon capture and separation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105957 – volume: 117 start-page: 9674 year: 2017 ident: 10.1016/j.fuproc.2023.107854_bb0125 article-title: CO2 capture and separations using MOFs: computational and experimental studies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00626 – volume: 54 start-page: 1606 year: 2019 ident: 10.1016/j.fuproc.2023.107854_bb0290 article-title: A highly pyridinic N-doped carbon from macroalgae with multifunctional use toward CO2 capture and electrochemical applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2927-7 – volume: 301 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0390 article-title: One-pot synthesis of potassium benzoate-derived porous carbon for CO2 capture and supercapacitor application publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122053 – volume: 32 start-page: 45 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0005 article-title: A review on chemical precipitation in carbon capture, utilization and storage publication-title: Sustain. Environ. Res. doi: 10.1186/s42834-022-00155-6 – volume: 148 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0150 article-title: Activated Carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents publication-title: Biomass Bioenergy – volume: 7 start-page: 1047 year: 2019 ident: 10.1016/j.fuproc.2023.107854_bb0215 article-title: Mechanical Properties of polypropylene composites reinforced with macadamia nutshell fibers publication-title: J. Renew. Mater. doi: 10.32604/jrm.2019.00001 – volume: 632 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0065 article-title: Effective nitrogen and sulfur CO-doped porous carbonaceous CO2 adsorbents derived from amino acid publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127750 – volume: 28 start-page: 13880 year: 2017 ident: 10.1016/j.fuproc.2023.107854_bb0220 article-title: Convenient preparation of nitrogen-doped activated Carbon from Macadamia nutshell and its application in supercapacitor publication-title: J. Mater. Sci. – volume: 50 start-page: 5543 year: 2012 ident: 10.1016/j.fuproc.2023.107854_bb0370 article-title: Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide publication-title: Carbon doi: 10.1016/j.carbon.2012.07.044 – volume: 69 start-page: 575 year: 2017 ident: 10.1016/j.fuproc.2023.107854_bb0210 article-title: Rethinking Timber: Investigation into the use of Waste Macadamia Nut Shells for Additive Manufacturing publication-title: JOM doi: 10.1007/s11837-016-2213-6 – volume: 4 start-page: 3059 year: 2011 ident: 10.1016/j.fuproc.2023.107854_bb0320 article-title: Effect of pore size on carbon dioxide sorption by carbide derived Carbon publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01176f – volume: 7 start-page: 19513 year: 2019 ident: 10.1016/j.fuproc.2023.107854_bb0355 article-title: Salt Template Synthesis of Nitrogen and Sulfur Co-Doped Porous Carbons as CO2 Adsorbents publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04574 – volume: 281 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0160 article-title: Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119899 – volume: 167 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0010 article-title: A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2022.112537 – volume: 24 start-page: 6086 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0265 article-title: Materials from waste plastics for CO2 capture and utilisation publication-title: Green Chem. doi: 10.1039/D2GC02306G – volume: 236 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0400 article-title: Preparation of renewable porous carbons for CO2 capture - a review publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107437 – volume: 96 start-page: 856 year: 2016 ident: 10.1016/j.fuproc.2023.107854_bb0360 article-title: Evidence for CO2 reactive adsorption on nanoporous S- and N-doped Carbon at ambient conditions publication-title: Carbon doi: 10.1016/j.carbon.2015.10.007 – volume: 40 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0330 article-title: Tuning ratios of KOH and NaOH on acetic acid-mediated chitosan-based porous carbons for improving their textural features and CO2 uptakes publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101212 – volume: 298 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0050 article-title: Nitrogen-doped porous Carbon for excellent CO2 capture: a novel method for preparation and performance evaluation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121602 – volume: 5 start-page: 13473 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0300 article-title: Polyacrylonitrile-Derived N-Doped Nanoporous Carbon Fibers for CO2 Adsorption publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c03126 – volume: 76 start-page: 451 year: 2001 ident: 10.1016/j.fuproc.2023.107854_bb0190 article-title: Nutshells as granular activated carbons: physical, chemical and adsorptive properties publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.408 – volume: 315 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0025 article-title: High CO2 adsorption on amine-functionalized improved macro−/mesoporous multimodal pore silica publication-title: Fuel doi: 10.1016/j.fuel.2022.123195 – volume: 244 year: 2023 ident: 10.1016/j.fuproc.2023.107854_bb0105 article-title: One-pot synthesis of self S-doped porous Carbon for efficient CO2 adsorption publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2023.107700 – volume: 381 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0060 article-title: Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122736 – volume: 325 start-page: 1652 year: 2009 ident: 10.1016/j.fuproc.2023.107854_bb0015 article-title: Amine Scrubbing for CO2 Capture publication-title: Science doi: 10.1126/science.1176731 – volume: 192 start-page: 14 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0085 article-title: Self-activated, urea modified microporous carbon cryogels for high-performance CO2 capture and separation publication-title: Carbon doi: 10.1016/j.carbon.2022.02.040 – volume: 306 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0170 article-title: Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption publication-title: Fuel doi: 10.1016/j.fuel.2021.121762 – volume: 55 start-page: 7166 year: 2016 ident: 10.1016/j.fuproc.2023.107854_bb0020 article-title: Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602919 – volume: 313 year: 2023 ident: 10.1016/j.fuproc.2023.107854_bb0100 article-title: N-doped highly microporous Carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123440 – volume: 3 start-page: 3077 year: 2015 ident: 10.1016/j.fuproc.2023.107854_bb0135 article-title: Highly Selective capture of the greenhouse Gas CO2 in polymers publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00544 – volume: 9 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0245 article-title: Adsorption behaviour of high performance activated Carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104819 – volume: 51 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0070 article-title: Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO2 adsorption and separation publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101641 – volume: 57 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0405 article-title: Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: a review and prospects for future directions publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.101890 – volume: 172 start-page: 71 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0335 article-title: Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption publication-title: Carbon doi: 10.1016/j.carbon.2020.09.088 – volume: 128 start-page: 10 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0130 article-title: Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2018.04.006 – volume: 902 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0225 article-title: A counter electrode modified with renewable carbonized biomass for an all-inorganic CsPbBr3 perovskite solar cell publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.163725 – volume: 28 start-page: 1772 year: 2023 ident: 10.1016/j.fuproc.2023.107854_bb0255 article-title: One-pot synthesis of melamine formaldehyde resin-derived N-doped porous carbon for CO2 capture application publication-title: Molecules doi: 10.3390/molecules28041772 – volume: 296 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0385 article-title: Synthesis of potassium Bitartrate-derived porous Carbon via a facile and Self-Activating strategy for CO2 adsorption application publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121368 – volume: 5 start-page: 17450 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0310 article-title: Selectable microporous carbons derived from poplar wood by three preparation routes for CO2 capture publication-title: Acs Omega doi: 10.1021/acsomega.0c01918 – volume: 409 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0345 article-title: Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3·H2O activation for promotion of new ammonia-based carbon capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128193 – volume: 8 start-page: 711 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0185 article-title: Mesoporous activated Carbon produced from coconut shell using a single-step physical activation process publication-title: Biomass Conv. Bioref. doi: 10.1007/s13399-018-0322-x – volume: 35 start-page: 1723 year: 1997 ident: 10.1016/j.fuproc.2023.107854_bb0200 article-title: The preparation of activated Carbon from macadamia nutshell by chemical activation publication-title: Carbon doi: 10.1016/S0008-6223(97)00127-9 – volume: 2021 start-page: 2543197 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0205 article-title: Utilization of Macadamia Nutshell Residue for the Synthesis of magnetic Activated Carbon toward Zinc (II) Ion Removal publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2021/2543197 – volume: 241 year: 2023 ident: 10.1016/j.fuproc.2023.107854_bb0045 article-title: Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2022.107613 – volume: 36 start-page: 5825 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0240 article-title: Efficient N-doped porous carbonaceous CO2 adsorbents derived from commercial urea-formaldehyde Resin publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.2c00748 – volume: 15 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0270 article-title: Biomass-based N-Rich Porous Carbon Materials for CO2 Capture and in-situ Conversion publication-title: Chemsuschem doi: 10.1002/cssc.202201004 – volume: 55 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0115 article-title: Hexagonal Mesoporous Silica for carbon capture: Unrevealing CO2 microscopic dynamics by Nuclear magnetic Resonance publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2021.101809 – volume: 6 start-page: 2469 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0040 article-title: A facile Solvent/Nonsolvent Preparation of Sintering-Resistant MgO/CaO Composites for High-Temperature CO2 Capture publication-title: Energy Technol. doi: 10.1002/ente.201800300 – volume: 26 start-page: 5321 year: 2012 ident: 10.1016/j.fuproc.2023.107854_bb0175 article-title: Coconut-Shell-based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors publication-title: Energy Fuel doi: 10.1021/ef3009234 – volume: 29 start-page: 1904785 year: 2019 ident: 10.1016/j.fuproc.2023.107854_bb0295 article-title: Ultra-High Surface Area Nitrogen-Doped Carbon Aerogels Derived from a Schiff-Base Porous Organic Polymer Aerogel for CO2 Storage and Supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904785 – volume: 4 start-page: 1765 year: 2011 ident: 10.1016/j.fuproc.2023.107854_bb0325 article-title: Sustainable porous carbons with a superior performance for CO2 capture publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00784f – volume: 410 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0340 article-title: Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127707 – volume: 13 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0195 article-title: Mesoporous activated carbon prepared from macadamia nut shell waste by carbon dioxide activation: Comparative characterisation and study of methylene blue removal from aqueous solution publication-title: Asia-Pacific J. Chem. Eng. doi: 10.1002/apj.2179 – volume: 46 start-page: 17204 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0230 article-title: Influence of the interaction between activation conditions on the pore structure and CO2 uptake of the prepared macadamia nutshell-based activated Carbon publication-title: Int. J. Energy Res. doi: 10.1002/er.8385 – volume: 27 start-page: 7908 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0305 article-title: N-doped porous carbon derived from solvent-free synthesis of cross-linked triazine polymers for simultaneously achieving CO2 capture and supercapacitors publication-title: Chem. Eur. J. doi: 10.1002/chem.202100414 – volume: 27 start-page: 6816 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0315 article-title: One-pot synthesis of N-rich porous carbon for efficient CO2 adsorption performance publication-title: Molecules doi: 10.3390/molecules27206816 – volume: 35 start-page: 7646 year: 2021 ident: 10.1016/j.fuproc.2023.107854_bb0165 article-title: Porous biochars derived from microalgae pyrolysis for CO2 adsorption publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c04091 – volume: 26 start-page: 8651 year: 2016 ident: 10.1016/j.fuproc.2023.107854_bb0365 article-title: Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603937 – volume: 97 start-page: 53 year: 2017 ident: 10.1016/j.fuproc.2023.107854_bb0235 article-title: Influence of the biomass components on the pore formation of activated Carbon publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.12.017 – volume: 47 start-page: 2680 year: 2018 ident: 10.1016/j.fuproc.2023.107854_bb0055 article-title: Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00787F – volume: 180 start-page: 280 year: 2013 ident: 10.1016/j.fuproc.2023.107854_bb0180 article-title: Coconut shell-based microporous carbons for CO2 capture publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.07.008 – volume: 380 year: 2020 ident: 10.1016/j.fuproc.2023.107854_bb0035 article-title: K2CO3 promoted novel Li4SiO4-based sorbents from sepiolite with high CO2 capture capacity under different CO2 partial pressures publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122515 – volume: 127 start-page: 17998 year: 2005 ident: 10.1016/j.fuproc.2023.107854_bb0120 article-title: Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0570032 – volume: 12 year: 2022 ident: 10.1016/j.fuproc.2023.107854_bb0285 article-title: The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations publication-title: Sci. Rep. doi: 10.1038/s41598-022-12596-5 |
SSID | ssj0005597 |
Score | 2.6302447 |
Snippet | Selective adsorption and converting CO2 upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy... Selective adsorption and converting CO₂ upon efficient solid-based adsorbents is critical for net-zero accomplishment. Herein, we develop an advisable strategy... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107854 |
SubjectTerms | adsorbents adsorption Biomass waste carbon carbon dioxide CO2 adsorption fuels green chemistry heat hulls Macadamia macadamia nuts Macadamia nutshell melamine N-doped nitrogen Porous carbons surface area technology |
Title | N-doped porous carbon derived from macadamia nut shell for CO2 adsorption |
URI | https://dx.doi.org/10.1016/j.fuproc.2023.107854 https://www.proquest.com/docview/2834263276 |
Volume | 249 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5se9GD-MT6KBG8pm02u5vdoxSlVawHFbyFvBYqdltq69Hf7mQfvkAELws7myzLJPvl-8hkBuCMowQQiQlpyHSMF8ap4lFCBQsM4iVzrMjAdzOOhw_h1WP0uAaD-iyMD6ussL_E9AKtK0uv8mZvPpn07vpcJDzx5b895wl4A1oBT-OoCa3z0fVw_BnpERU1Vnx76jvUJ-iKMK9s5VeKrn8BmkQShb-tUD-wuliALrdgs2KO5Lz8uG1Yc_kObHzJJ7gLozG1s7mzBEk1Knpi1ELPcmLx8Sta_VESMlVGWTWdKJKvluTFx4ESJK5kcBsQZV9miwJD9uDh8uJ-MKRVrQRqOE-XNLI2UyrrG62ZEcagjAiUSsM01oH1W5vCofhIlEbFh3bLXZw45D6KC42iJuP70MxnuTsAYpHRsAiFVBhnYWxcapFm9ENtmYlwYNM28No_0lSJxH09i2dZR4w9ydKr0ntVll5tA_3oNS8TafzRXtSul98mhESs_6PnaT1SEv8VvwGicodel0ilivz0Ij7899uPYN3flfF8x9BcLlbuBHnJUneg0X1jnWr2vQPqJ9_e |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HtSD-MT6jOA1trvJbnaPUiyttvVgC72FvBYqdlv68Ohvd7IPqYIUvOxhkizLl-zk-8hkBqE7ChKAR5oR5qkQHh4lkgYR4Z6vwV961ssy8PX6YXvInkbBqIKa5V0YF1ZZ-P7cp2feurDUCzTrs_G4_tqgPKKRK__tOI9Pt9A2Cyh3cX33n2txHkFWYcX1Jq57eX8uC_JKVm6fuHfDwcSjgP21P_3y1Nn20zpA-wVvxA_5px2iik2P0N5aNsFj1OkTM51Zg4FSg57HWs7VNMUGmj_A6i6S4InU0sjJWOJ0tcQLFwWKgbbi5ouPpVlM55kHOUHD1uOg2SZFpQSiKY2XJDAmkTJpaKU8zbUGEeFLGbM4VL5xB5vcgvSIpAK9B3ZDbRhZYD6ScgWSJqGnqJpOU3uGsAE-4wUgo1iYsFDb2ADJaDBlPB3AtMY1REt8hC7SiLtqFu-ijBd7EzmqwqEqclRriHyPmuVpNDb05yX04sdyEODpN4y8LWdKwJ_ijj9kagF1AUQqy07Pw_N_v_0G7bQHva7odvrPF2jXteSRfZeoupyv7BUwlKW6zlbgF8uc4Kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-doped+porous+carbon+derived+from+macadamia+nut+shell+for+CO2+adsorption&rft.jtitle=Fuel+processing+technology&rft.au=Bai%2C+Jiali&rft.au=Huang%2C+Jiamei&rft.au=Yu%2C+Qiyun&rft.au=Demir%2C+Muslum&rft.date=2023-10-01&rft.issn=0378-3820&rft.volume=249+p.107854-&rft_id=info:doi/10.1016%2Fj.fuproc.2023.107854&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |