Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation
The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation...
Saved in:
Published in | Renewable energy Vol. 194; pp. 211 - 219 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation.
•Daisy stem was selected as the porous skeleton to load PCM based on water transportation and capillary evaporation.•Daisy stem was facilely modified using ethanol to create a richer pore structure and increase the PCM loading amounts.•The obtained composite PCM with high phase change enthalpy and excellent stability could effectively regulate building temperature. |
---|---|
AbstractList | The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation. The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation. •Daisy stem was selected as the porous skeleton to load PCM based on water transportation and capillary evaporation.•Daisy stem was facilely modified using ethanol to create a richer pore structure and increase the PCM loading amounts.•The obtained composite PCM with high phase change enthalpy and excellent stability could effectively regulate building temperature. |
Author | Jin, Tingxiang Cheng, Chuanxiao Dong, Hongsheng Wang, Chongwei |
Author_xml | – sequence: 1 givenname: Chongwei surname: Wang fullname: Wang, Chongwei organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China – sequence: 2 givenname: Chuanxiao surname: Cheng fullname: Cheng, Chuanxiao organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China – sequence: 3 givenname: Tingxiang surname: Jin fullname: Jin, Tingxiang email: txjin@126.com organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China – sequence: 4 givenname: Hongsheng surname: Dong fullname: Dong, Hongsheng email: dhsh2009@126.com organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian, 116024, China |
BookMark | eNqFkE1LxDAQhoOs4K76Dzzk6KVr0jZt40GQxS9Y0YPiMUzTqWRpk5q0C_vvja4nD8oc5vN9GZ4FmVlnkZAzzpac8eJis_RoYyxTlqZLJuK0PCBzXpUyYUWVzsicyYIlPK_4EVmEsGGMi6rM56R_gxE9xS0MzsNonKXGhsF4bGhtXA8hJDWE2D2vHmnrXU8bMGFHw4g9BdvQATy0rbG0dZ7Wk-kaY99p3A4YDSeP1OP71H17n5DDFrqApz_5mLze3rys7pP1093D6nqd6CyTYyI0tiBkKxBSloGESuR1VmAuoQZIYy2Q15mUGiAT0IiMYylRc82wLAqWHZPzve_g3ceEYVS9CRq7Diy6Kai0KIUopCh5PL3cn2rvQvDYKm3G72dHD6ZTnKkvxmqj9ozVF2PFRJyWUZz_Eg_e9OB3_8mu9jKMDLYGvQraoNXYRO56VI0zfxt8AimEnS0 |
CitedBy_id | crossref_primary_10_1007_s42235_025_00647_2 crossref_primary_10_1016_j_est_2023_106911 crossref_primary_10_1016_j_ijrefrig_2023_12_015 crossref_primary_10_1016_j_est_2023_108959 crossref_primary_10_3390_polym14194089 crossref_primary_10_1515_polyeng_2023_0256 crossref_primary_10_1016_j_compositesb_2023_110885 crossref_primary_10_1016_j_renene_2024_122023 crossref_primary_10_1016_j_energy_2024_130715 crossref_primary_10_1016_j_cej_2022_139441 crossref_primary_10_1016_j_solmat_2024_112802 crossref_primary_10_1016_j_renene_2023_118987 crossref_primary_10_1016_j_tsep_2025_103237 crossref_primary_10_2139_ssrn_4187568 crossref_primary_10_1063_5_0102005 crossref_primary_10_1016_j_est_2023_108256 crossref_primary_10_1016_j_jobe_2023_108306 crossref_primary_10_1016_j_pes_2024_100023 crossref_primary_10_3390_en16124806 crossref_primary_10_1016_j_est_2023_108869 crossref_primary_10_1016_j_est_2023_108608 crossref_primary_10_1016_j_energy_2025_134962 crossref_primary_10_1007_s12355_025_01565_7 crossref_primary_10_1016_j_renene_2023_05_106 crossref_primary_10_1021_acssuschemeng_2c07635 crossref_primary_10_1016_j_solmat_2023_112617 crossref_primary_10_1016_j_ijft_2024_100712 crossref_primary_10_1016_j_est_2024_110621 crossref_primary_10_1016_j_est_2025_115725 crossref_primary_10_1016_j_solmat_2024_112910 crossref_primary_10_1016_j_solmat_2024_113306 crossref_primary_10_1016_j_carbon_2022_09_077 crossref_primary_10_1016_j_est_2024_111278 crossref_primary_10_1016_j_conbuildmat_2023_133367 crossref_primary_10_3390_f13101622 crossref_primary_10_1016_j_jobe_2022_105763 crossref_primary_10_1016_j_est_2023_109114 crossref_primary_10_1021_acssuschemeng_4c04264 crossref_primary_10_1039_D3TA07521D |
Cites_doi | 10.1016/j.solmat.2021.111140 10.1016/j.enconman.2015.01.084 10.1016/j.est.2021.102288 10.1016/j.solmat.2014.04.015 10.1016/j.enbuild.2017.08.057 10.1016/j.solener.2021.10.046 10.1016/j.energy.2019.115987 10.1039/C9TA07629H 10.1016/j.rser.2016.11.272 10.1016/j.carbon.2021.07.051 10.1016/j.apenergy.2011.10.037 10.1016/j.scs.2019.101833 10.1039/C7GC03595K 10.1016/j.jhazmat.2020.123041 10.1016/j.compositesa.2019.105690 10.1016/j.solmat.2019.110037 10.1016/j.matlet.2019.03.130 10.1016/j.renene.2020.02.008 10.1016/j.ijbiomac.2019.11.236 10.1016/j.cej.2021.129942 10.1016/j.enbuild.2017.11.033 10.1016/j.enbuild.2017.10.078 10.1039/C4TA04605F 10.1016/j.est.2021.102420 10.1016/j.solmat.2019.01.007 10.1039/C7GC00503B 10.1007/s12517-021-07296-9 10.1038/s41598-019-47877-z 10.1002/anie.201802663 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2022.05.107 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 219 |
ExternalDocumentID | 10_1016_j_renene_2022_05_107 S0960148122007583 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-5cefa59f5ea203a9a854b36e49abaa24b35e1b399caa35ad531e79ec1c0e76603 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 10:54:17 EDT 2025 Thu Apr 24 22:54:24 EDT 2025 Tue Jul 01 03:20:32 EDT 2025 Fri Feb 23 02:41:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal energy storage Porous structure PCM Energy-efficient buildings Daisy stem |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-5cefa59f5ea203a9a854b36e49abaa24b35e1b399caa35ad531e79ec1c0e76603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675569571 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2675569571 crossref_citationtrail_10_1016_j_renene_2022_05_107 crossref_primary_10_1016_j_renene_2022_05_107 elsevier_sciencedirect_doi_10_1016_j_renene_2022_05_107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Min, Huang, Liu, Wu (bib25) 2018; 158 Yang (bib10) 2021; 14 Wei, Li, Sun, Wu, Zhao (bib22) 2018; 20 Saafi, Daouas (bib9) 2019; 187 Wen, Liu, Yang, Zhu, Huang, Zhang, Gao (bib15) 2021; 36 Hekimolu, Sar, Kar, Kele, Saleh (bib24) 2021; 35 Harmen, Chhiti, Alaoui, Bentiss, Elkhouakhi, Deshayes, Jama, Duquesne, Bensitel (bib14) 2020 Shoja, Mohammadi-Roshandeh, Hemmati, Zandi, Farizeh (bib16) 2019; 157 Safari, Saidur, Sulaiman, Xu, Dong (bib4) 2017; 70 Liang, Lu, Li, Tu, Yang, Yuan (bib29) 2019; 200 Qian, Shen, Fang, Fan, Zhao, Xu (bib27) 2018; 158 Sharma, Ganesan, Tyagi, Metselaar, Sandaran (bib6) 2015; 95 Zhou, Wang, Zhao, Wang, Gu, Ji (bib20) 2021; 183 Wang, Liang, Yang, Liu, Sun, Zhu, Li (bib28) 2020; 153 Shi, Huang, Guo, Shan, Zou (bib8) 2020; 8 Pan, Zhang, Yuan, Shao, Zhong, Yang (bib26) 2021; 230 Atinafu, Chang, Kim (bib23) 2020; 399 Zhang, Huang, Yin, Zhang, Huang, Liu, Fang, Wu, Min (bib18) 2017; 154 Wan, Chen, Cui, Ding, Gao, Han, Gao (bib19) 2019; 9 Qiu, Fan, Shi, Zhang, Xin, Wang, Tang (bib11) 2019; 7 Gu, Liu, Liu, Peng, He (bib31) 2019; 248 Zhao, Deng, Zhao, Lu, He, Wang (bib30) 2021; 420 Huang, Xia, Zou (bib5) 2014; 2 Costa, Keane, Torrens, Corry (bib2) 2013; 101 Ye, Huang, Fang, Zhang (bib7) 2020; 52 Zeng, Gan, Zhu, Yu, Xiao, Yan, Zhu, Liu, Sun, Cao (bib12) 2014; 127 Cheng, Feng (bib21) 2020; 129 Fu, Zou, Liang, Wang, Gao, Zhang, Fang (bib3) 2019; 193 Wu, Liang, Hu, Yu (bib13) 2018; 57 Liu, Zheng, Qian, Wang, Wu, Wang (bib17) 2021; 229 Sun, Zhu, Kang, Liu, Qian, Ma, Zhang, Yang, Han (bib1) 2017; 19 Zhao (10.1016/j.renene.2022.05.107_bib30) 2021; 420 Ye (10.1016/j.renene.2022.05.107_bib7) 2020; 52 Huang (10.1016/j.renene.2022.05.107_bib5) 2014; 2 Saafi (10.1016/j.renene.2022.05.107_bib9) 2019; 187 Zhou (10.1016/j.renene.2022.05.107_bib20) 2021; 183 Cheng (10.1016/j.renene.2022.05.107_bib21) 2020; 129 Shoja (10.1016/j.renene.2022.05.107_bib16) 2019; 157 Yang (10.1016/j.renene.2022.05.107_bib10) 2021; 14 Atinafu (10.1016/j.renene.2022.05.107_bib23) 2020; 399 Sun (10.1016/j.renene.2022.05.107_bib1) 2017; 19 Zeng (10.1016/j.renene.2022.05.107_bib12) 2014; 127 Zhao (10.1016/j.renene.2022.05.107_bib25) 2018; 158 Shi (10.1016/j.renene.2022.05.107_bib8) 2020; 8 Liu (10.1016/j.renene.2022.05.107_bib17) 2021; 229 Hekimolu (10.1016/j.renene.2022.05.107_bib24) 2021; 35 Harmen (10.1016/j.renene.2022.05.107_bib14) 2020 Safari (10.1016/j.renene.2022.05.107_bib4) 2017; 70 Wen (10.1016/j.renene.2022.05.107_bib15) 2021; 36 Wu (10.1016/j.renene.2022.05.107_bib13) 2018; 57 Fu (10.1016/j.renene.2022.05.107_bib3) 2019; 193 Zhang (10.1016/j.renene.2022.05.107_bib18) 2017; 154 Pan (10.1016/j.renene.2022.05.107_bib26) 2021; 230 Liang (10.1016/j.renene.2022.05.107_bib29) 2019; 200 Sharma (10.1016/j.renene.2022.05.107_bib6) 2015; 95 Wei (10.1016/j.renene.2022.05.107_bib22) 2018; 20 Qian (10.1016/j.renene.2022.05.107_bib27) 2018; 158 Wang (10.1016/j.renene.2022.05.107_bib28) 2020; 153 Costa (10.1016/j.renene.2022.05.107_bib2) 2013; 101 Qiu (10.1016/j.renene.2022.05.107_bib11) 2019; 7 Wan (10.1016/j.renene.2022.05.107_bib19) 2019; 9 Gu (10.1016/j.renene.2022.05.107_bib31) 2019; 248 |
References_xml | – start-page: 1 year: 2020 end-page: 6 ident: bib14 article-title: Storage Efficiency of Paraffin-LDPE-MWCNT Phase Change Material for Industrial Building Applications – volume: 36 start-page: 102420 year: 2021 ident: bib15 article-title: Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings publication-title: J. Energy Storage – volume: 101 start-page: 310 year: 2013 end-page: 316 ident: bib2 article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit publication-title: Appl. Energy – volume: 158 start-page: 1184 year: 2018 end-page: 1188 ident: bib27 article-title: Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability publication-title: Energy Build. – volume: 154 start-page: 46 year: 2017 end-page: 54 ident: bib18 article-title: Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: preparation, characterization, and thermal conductivity enhancement publication-title: Energy Build. – volume: 230 start-page: 269 year: 2021 end-page: 277 ident: bib26 article-title: Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage publication-title: Sol. Energy – volume: 229 start-page: 111140 year: 2021 ident: bib17 article-title: Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest publication-title: Sol. Energy Mater. Sol. Cell. – volume: 399 start-page: 123041 year: 2020 ident: bib23 article-title: Infiltration properties of n-alkanes in mesoporous biochar: the capacity of smokeless support for stability and energy storage publication-title: J. Hazard Mater. – volume: 7 start-page: 21371 year: 2019 end-page: 21377 ident: bib11 article-title: PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content publication-title: J. Mater. Chem. – volume: 19 start-page: 2086 year: 2017 end-page: 2091 ident: bib1 article-title: Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO publication-title: Green Chem. – volume: 14 start-page: 1 year: 2021 end-page: 9 ident: bib10 article-title: The application of nanocapsule phase change material in the construction of civil engineering publication-title: Arabian J. Geosci. – volume: 153 start-page: 182 year: 2020 end-page: 192 ident: bib28 article-title: Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage publication-title: Renew. Energy – volume: 57 start-page: 15646 year: 2018 end-page: 15662 ident: bib13 article-title: Emerging carbon-nanofiber aerogels: chemosynthesis versus biosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 35 start-page: 102288 year: 2021 ident: bib24 article-title: Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties publication-title: J. Energy Storage – volume: 187 start-page: 115987 year: 2019 ident: bib9 article-title: Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate publication-title: Energy – volume: 193 start-page: 149 year: 2019 end-page: 156 ident: bib3 article-title: Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. – volume: 158 start-page: 1049 year: 2018 end-page: 1062 ident: bib25 article-title: Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage publication-title: Energy Build. – volume: 95 start-page: 193 year: 2015 end-page: 228 ident: bib6 article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage publication-title: Energy Convers. Manag. – volume: 157 start-page: 715 year: 2019 end-page: 725 ident: bib16 article-title: Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures publication-title: Int. J. Biol. Macromol. – volume: 183 start-page: 515 year: 2021 end-page: 524 ident: bib20 article-title: Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application publication-title: Carbon – volume: 8 start-page: 21 year: 2020 end-page: 28 ident: bib8 article-title: Experimental Investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building publication-title: ES Energy Environ. – volume: 127 start-page: 122 year: 2014 end-page: 128 ident: bib12 article-title: Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. – volume: 20 start-page: 1858 year: 2018 end-page: 1865 ident: bib22 article-title: Leakage-proof phase change composites supported by biomass carbon aerogels from succulents publication-title: Green Chem. – volume: 420 start-page: 129942 year: 2021 ident: bib30 article-title: Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release publication-title: Chem. Eng. J. – volume: 248 start-page: 12 year: 2019 end-page: 15 ident: bib31 article-title: A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage publication-title: Mater. Lett. – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: bib19 article-title: A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage publication-title: Sci. Rep. – volume: 52 start-page: 101833 year: 2020 ident: bib7 article-title: Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures publication-title: Sustain. Cities Soc. – volume: 200 start-page: 110037 year: 2019 ident: bib29 article-title: Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. – volume: 70 start-page: 905 year: 2017 end-page: 919 ident: bib4 article-title: A review on supercooling of phase change materials in thermal energy storage systems publication-title: Renew. Sustain. Energy Rev. – volume: 2 start-page: 19963 year: 2014 end-page: 19968 ident: bib5 article-title: Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage publication-title: J. Mater. Chem. – volume: 129 start-page: 105690 year: 2020 ident: bib21 article-title: Form-stable phase change materials based on delignified wood flour for thermal management of buildings publication-title: Compos. Appl. Sci. Manuf. – volume: 229 start-page: 111140 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib17 article-title: Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2021.111140 – volume: 95 start-page: 193 year: 2015 ident: 10.1016/j.renene.2022.05.107_bib6 article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.01.084 – volume: 35 start-page: 102288 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib24 article-title: Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102288 – volume: 127 start-page: 122 year: 2014 ident: 10.1016/j.renene.2022.05.107_bib12 article-title: Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2014.04.015 – volume: 154 start-page: 46 year: 2017 ident: 10.1016/j.renene.2022.05.107_bib18 article-title: Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: preparation, characterization, and thermal conductivity enhancement publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.08.057 – volume: 230 start-page: 269 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib26 article-title: Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage publication-title: Sol. Energy doi: 10.1016/j.solener.2021.10.046 – volume: 187 start-page: 115987 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib9 article-title: Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate publication-title: Energy doi: 10.1016/j.energy.2019.115987 – volume: 7 start-page: 21371 issue: 37 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib11 article-title: PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content publication-title: J. Mater. Chem. doi: 10.1039/C9TA07629H – volume: 70 start-page: 905 year: 2017 ident: 10.1016/j.renene.2022.05.107_bib4 article-title: A review on supercooling of phase change materials in thermal energy storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.272 – volume: 183 start-page: 515 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib20 article-title: Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application publication-title: Carbon doi: 10.1016/j.carbon.2021.07.051 – volume: 101 start-page: 310 year: 2013 ident: 10.1016/j.renene.2022.05.107_bib2 article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.10.037 – volume: 52 start-page: 101833 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib7 article-title: Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101833 – volume: 20 start-page: 1858 year: 2018 ident: 10.1016/j.renene.2022.05.107_bib22 article-title: Leakage-proof phase change composites supported by biomass carbon aerogels from succulents publication-title: Green Chem. doi: 10.1039/C7GC03595K – volume: 399 start-page: 123041 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib23 article-title: Infiltration properties of n-alkanes in mesoporous biochar: the capacity of smokeless support for stability and energy storage publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.123041 – volume: 129 start-page: 105690 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib21 article-title: Form-stable phase change materials based on delignified wood flour for thermal management of buildings publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2019.105690 – volume: 200 start-page: 110037 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib29 article-title: Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2019.110037 – volume: 248 start-page: 12 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib31 article-title: A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.03.130 – volume: 153 start-page: 182 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib28 article-title: Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.008 – volume: 157 start-page: 715 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib16 article-title: Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.11.236 – volume: 420 start-page: 129942 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib30 article-title: Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129942 – volume: 158 start-page: 1184 year: 2018 ident: 10.1016/j.renene.2022.05.107_bib27 article-title: Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.033 – volume: 158 start-page: 1049 year: 2018 ident: 10.1016/j.renene.2022.05.107_bib25 article-title: Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.078 – volume: 2 start-page: 19963 issue: 47 year: 2014 ident: 10.1016/j.renene.2022.05.107_bib5 article-title: Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage publication-title: J. Mater. Chem. doi: 10.1039/C4TA04605F – volume: 36 start-page: 102420 issue: 2 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib15 article-title: Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102420 – start-page: 1 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib14 – volume: 193 start-page: 149 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib3 article-title: Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2019.01.007 – volume: 19 start-page: 2086 issue: 9 year: 2017 ident: 10.1016/j.renene.2022.05.107_bib1 article-title: Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid publication-title: Green Chem. doi: 10.1039/C7GC00503B – volume: 8 start-page: 21 year: 2020 ident: 10.1016/j.renene.2022.05.107_bib8 article-title: Experimental Investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building publication-title: ES Energy Environ. – volume: 14 start-page: 1 issue: 11 year: 2021 ident: 10.1016/j.renene.2022.05.107_bib10 article-title: The application of nanocapsule phase change material in the construction of civil engineering publication-title: Arabian J. Geosci. doi: 10.1007/s12517-021-07296-9 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.renene.2022.05.107_bib19 article-title: A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage publication-title: Sci. Rep. doi: 10.1038/s41598-019-47877-z – volume: 57 start-page: 15646 issue: 48 year: 2018 ident: 10.1016/j.renene.2022.05.107_bib13 article-title: Emerging carbon-nanofiber aerogels: chemosynthesis versus biosynthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802663 |
SSID | ssj0015874 |
Score | 2.547377 |
Snippet | The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 211 |
SubjectTerms | carbonization composite materials Daisy stem Energy-efficient buildings enthalpy ethanol evaporation PCM Porous structure raw materials renewable energy sources temperature Thermal energy storage water transportation |
Title | Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation |
URI | https://dx.doi.org/10.1016/j.renene.2022.05.107 https://www.proquest.com/docview/2675569571 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba90wDDalu6yH0W0t67oVD3b1XuLETnwsj5XXjZZBW9abkR0FMrb08fo62GW_fVLilLYMCr0lRjZBtqXPsfRJiI_ktG0ErFQg76aYn105C1a1WLYRa8zqIbfq5NQuLsovl-ZyQ8ynXBgOq0y2f7Tpg7VOLbOkzdmy62ZnDL4JzOeaf7eZmhk_y7LiVf7p722YR27qkYmZhBVLT-lzQ4wXs0b2TJapNfN35lxU9v_u6YGhHrzP0bZ4kWCjPBy_7KXYwP6V2LpDJvha_PpOsHEl8Tcs07TKrud7dGwkJ9kTSlbssxr5bX4iOa1ENtBd_5FM5SyhbyTTgLdt10sCsjKketmSyasS87JcjZXraewdcXH0-Xy-UKmYgopF4dbKRGzBuNYg6KwAB7UpQ2GxdBAAND0bzAPBlQhQGGhob2LlMOYxw8rarNgVm_1Vj2-ErBw0BAODNoUp29A4PlOCrYPRMWoT90Qx6dDHxDTOBS9--imk7IcfNe9Z8z4z1FrtCXXbazkybTwiX03T4--tGE_O4JGeH6bZ9LSZ-IYEery6ufaajk_GOlPlb588-r54zm9jSO87sble3eB7Ai7rcDCszAPx7PD46-L0HyE378Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEA72fGj7UGp_UKvWFPoabjfZZDePclTO6h2Cir6FSXYWtrTrcZ6F_vdmbrNSRRD6tmSTsEySmS87M98w9i0abRMAS-GjdRPEzy6sASMaLJqAFWbVOrdqNjfTi-LHlb7aYJMhF4bCKpPu73X6WlunlnGS5njRtuMzAt8RzOeSfrfpSr1gm8ROpUds8-DoeDq_dyboqidjjv0FDRgy6NZhXkQc2RFfppRE4ZlTXdmnLdQjXb02QIdv2ZuEHPlB_3FbbAO7d-z1P3yC79nvy4gclxz_wCKtLG87cqVjzSnPPgJlQWar5qeTGafMEl5De_OXE5szh67mxATeNG3HI5blPpXM5sRflciX-bIvXh_n_sAuDr-fT6Yi1VMQQSm7EjpgA9o2GkFmCixUuvDKYGHBA8j4rDH3EbEEAKWhjscTS4shDxmWxmTqIxt11x1-Yry0UEck6KVWumh8belaCabyWoYgddhmapChC4lsnGpe_HJDVNlP10vekeRdpmNruc3E_ahFT7bxTP9yWB73YNO4aA-eGfl1WE0XzxM5SaDD69sbJ-MNShury_zzf8--z15Oz2cn7uRofrzDXtGbPsJ3l41Wy1vcizhm5b-kfXoHVLXydQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+evaporation+inspired+biomass-based+PCM+from+daisy+stem+and+paraffin+for+building+temperature+regulation&rft.jtitle=Renewable+energy&rft.au=Wang%2C+Chongwei&rft.au=Cheng%2C+Chuanxiao&rft.au=Jin%2C+Tingxiang&rft.au=Dong%2C+Hongsheng&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=194&rft.spage=211&rft.epage=219&rft_id=info:doi/10.1016%2Fj.renene.2022.05.107&rft.externalDocID=S0960148122007583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |