Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation

The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 194; pp. 211 - 219
Main Authors Wang, Chongwei, Cheng, Chuanxiao, Jin, Tingxiang, Dong, Hongsheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation. •Daisy stem was selected as the porous skeleton to load PCM based on water transportation and capillary evaporation.•Daisy stem was facilely modified using ethanol to create a richer pore structure and increase the PCM loading amounts.•The obtained composite PCM with high phase change enthalpy and excellent stability could effectively regulate building temperature.
AbstractList The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation.
The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily available, and environmentally friendly composite PCMs with high enthalpy is still a great challenge. Herein, inspired by water transportation and capillary evaporation of natural plants, we selected the widely distributed and economically available wild daisy stem as the raw material for the first time to prepare form-stable composite PCMs for building temperature regulation. A hierarchical porous skeleton material was prepared by high temperature carbonization and chemical modification of wild daisy stem, and then it was impregnated with paraffin to obtain a composite PCM. The results show that the chemical modification using ethanol creates a richer pore structure and increases the PCM loading amounts. The obtained composite PCM was thermally, chemically and cyclically stable with the phase change enthalpy and phase change temperature of 213.6 J/g and 40.1 °C, respectively. Finally, the composite was applied to the temperature regulation of buildings, the center temperature of the phase change model was 5.1 °C lower than that of the ordinary house, indicating the building with the addition of the as-prepared PCM to the walls had significant thermal buffering effect under a simulated light compared to ordinary building with rapid temperature change. Thus, the excellent storage capacity of this composite material gives it great potential for application in building temperature regulation. •Daisy stem was selected as the porous skeleton to load PCM based on water transportation and capillary evaporation.•Daisy stem was facilely modified using ethanol to create a richer pore structure and increase the PCM loading amounts.•The obtained composite PCM with high phase change enthalpy and excellent stability could effectively regulate building temperature.
Author Jin, Tingxiang
Cheng, Chuanxiao
Dong, Hongsheng
Wang, Chongwei
Author_xml – sequence: 1
  givenname: Chongwei
  surname: Wang
  fullname: Wang, Chongwei
  organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
– sequence: 2
  givenname: Chuanxiao
  surname: Cheng
  fullname: Cheng, Chuanxiao
  organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
– sequence: 3
  givenname: Tingxiang
  surname: Jin
  fullname: Jin, Tingxiang
  email: txjin@126.com
  organization: School of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
– sequence: 4
  givenname: Hongsheng
  surname: Dong
  fullname: Dong, Hongsheng
  email: dhsh2009@126.com
  organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of the Ministry of Education, Dalian University of Technology, Dalian, 116024, China
BookMark eNqFkE1LxDAQhoOs4K76Dzzk6KVr0jZt40GQxS9Y0YPiMUzTqWRpk5q0C_vvja4nD8oc5vN9GZ4FmVlnkZAzzpac8eJis_RoYyxTlqZLJuK0PCBzXpUyYUWVzsicyYIlPK_4EVmEsGGMi6rM56R_gxE9xS0MzsNonKXGhsF4bGhtXA8hJDWE2D2vHmnrXU8bMGFHw4g9BdvQATy0rbG0dZ7Wk-kaY99p3A4YDSeP1OP71H17n5DDFrqApz_5mLze3rys7pP1093D6nqd6CyTYyI0tiBkKxBSloGESuR1VmAuoQZIYy2Q15mUGiAT0IiMYylRc82wLAqWHZPzve_g3ceEYVS9CRq7Diy6Kai0KIUopCh5PL3cn2rvQvDYKm3G72dHD6ZTnKkvxmqj9ozVF2PFRJyWUZz_Eg_e9OB3_8mu9jKMDLYGvQraoNXYRO56VI0zfxt8AimEnS0
CitedBy_id crossref_primary_10_1007_s42235_025_00647_2
crossref_primary_10_1016_j_est_2023_106911
crossref_primary_10_1016_j_ijrefrig_2023_12_015
crossref_primary_10_1016_j_est_2023_108959
crossref_primary_10_3390_polym14194089
crossref_primary_10_1515_polyeng_2023_0256
crossref_primary_10_1016_j_compositesb_2023_110885
crossref_primary_10_1016_j_renene_2024_122023
crossref_primary_10_1016_j_energy_2024_130715
crossref_primary_10_1016_j_cej_2022_139441
crossref_primary_10_1016_j_solmat_2024_112802
crossref_primary_10_1016_j_renene_2023_118987
crossref_primary_10_1016_j_tsep_2025_103237
crossref_primary_10_2139_ssrn_4187568
crossref_primary_10_1063_5_0102005
crossref_primary_10_1016_j_est_2023_108256
crossref_primary_10_1016_j_jobe_2023_108306
crossref_primary_10_1016_j_pes_2024_100023
crossref_primary_10_3390_en16124806
crossref_primary_10_1016_j_est_2023_108869
crossref_primary_10_1016_j_est_2023_108608
crossref_primary_10_1016_j_energy_2025_134962
crossref_primary_10_1007_s12355_025_01565_7
crossref_primary_10_1016_j_renene_2023_05_106
crossref_primary_10_1021_acssuschemeng_2c07635
crossref_primary_10_1016_j_solmat_2023_112617
crossref_primary_10_1016_j_ijft_2024_100712
crossref_primary_10_1016_j_est_2024_110621
crossref_primary_10_1016_j_est_2025_115725
crossref_primary_10_1016_j_solmat_2024_112910
crossref_primary_10_1016_j_solmat_2024_113306
crossref_primary_10_1016_j_carbon_2022_09_077
crossref_primary_10_1016_j_est_2024_111278
crossref_primary_10_1016_j_conbuildmat_2023_133367
crossref_primary_10_3390_f13101622
crossref_primary_10_1016_j_jobe_2022_105763
crossref_primary_10_1016_j_est_2023_109114
crossref_primary_10_1021_acssuschemeng_4c04264
crossref_primary_10_1039_D3TA07521D
Cites_doi 10.1016/j.solmat.2021.111140
10.1016/j.enconman.2015.01.084
10.1016/j.est.2021.102288
10.1016/j.solmat.2014.04.015
10.1016/j.enbuild.2017.08.057
10.1016/j.solener.2021.10.046
10.1016/j.energy.2019.115987
10.1039/C9TA07629H
10.1016/j.rser.2016.11.272
10.1016/j.carbon.2021.07.051
10.1016/j.apenergy.2011.10.037
10.1016/j.scs.2019.101833
10.1039/C7GC03595K
10.1016/j.jhazmat.2020.123041
10.1016/j.compositesa.2019.105690
10.1016/j.solmat.2019.110037
10.1016/j.matlet.2019.03.130
10.1016/j.renene.2020.02.008
10.1016/j.ijbiomac.2019.11.236
10.1016/j.cej.2021.129942
10.1016/j.enbuild.2017.11.033
10.1016/j.enbuild.2017.10.078
10.1039/C4TA04605F
10.1016/j.est.2021.102420
10.1016/j.solmat.2019.01.007
10.1039/C7GC00503B
10.1007/s12517-021-07296-9
10.1038/s41598-019-47877-z
10.1002/anie.201802663
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2022.05.107
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 219
ExternalDocumentID 10_1016_j_renene_2022_05_107
S0960148122007583
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-5cefa59f5ea203a9a854b36e49abaa24b35e1b399caa35ad531e79ec1c0e76603
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 10:54:17 EDT 2025
Thu Apr 24 22:54:24 EDT 2025
Tue Jul 01 03:20:32 EDT 2025
Fri Feb 23 02:41:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal energy storage
Porous structure
PCM
Energy-efficient buildings
Daisy stem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-5cefa59f5ea203a9a854b36e49abaa24b35e1b399caa35ad531e79ec1c0e76603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675569571
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2675569571
crossref_citationtrail_10_1016_j_renene_2022_05_107
crossref_primary_10_1016_j_renene_2022_05_107
elsevier_sciencedirect_doi_10_1016_j_renene_2022_05_107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Min, Huang, Liu, Wu (bib25) 2018; 158
Yang (bib10) 2021; 14
Wei, Li, Sun, Wu, Zhao (bib22) 2018; 20
Saafi, Daouas (bib9) 2019; 187
Wen, Liu, Yang, Zhu, Huang, Zhang, Gao (bib15) 2021; 36
Hekimolu, Sar, Kar, Kele, Saleh (bib24) 2021; 35
Harmen, Chhiti, Alaoui, Bentiss, Elkhouakhi, Deshayes, Jama, Duquesne, Bensitel (bib14) 2020
Shoja, Mohammadi-Roshandeh, Hemmati, Zandi, Farizeh (bib16) 2019; 157
Safari, Saidur, Sulaiman, Xu, Dong (bib4) 2017; 70
Liang, Lu, Li, Tu, Yang, Yuan (bib29) 2019; 200
Qian, Shen, Fang, Fan, Zhao, Xu (bib27) 2018; 158
Sharma, Ganesan, Tyagi, Metselaar, Sandaran (bib6) 2015; 95
Zhou, Wang, Zhao, Wang, Gu, Ji (bib20) 2021; 183
Wang, Liang, Yang, Liu, Sun, Zhu, Li (bib28) 2020; 153
Shi, Huang, Guo, Shan, Zou (bib8) 2020; 8
Pan, Zhang, Yuan, Shao, Zhong, Yang (bib26) 2021; 230
Atinafu, Chang, Kim (bib23) 2020; 399
Zhang, Huang, Yin, Zhang, Huang, Liu, Fang, Wu, Min (bib18) 2017; 154
Wan, Chen, Cui, Ding, Gao, Han, Gao (bib19) 2019; 9
Qiu, Fan, Shi, Zhang, Xin, Wang, Tang (bib11) 2019; 7
Gu, Liu, Liu, Peng, He (bib31) 2019; 248
Zhao, Deng, Zhao, Lu, He, Wang (bib30) 2021; 420
Huang, Xia, Zou (bib5) 2014; 2
Costa, Keane, Torrens, Corry (bib2) 2013; 101
Ye, Huang, Fang, Zhang (bib7) 2020; 52
Zeng, Gan, Zhu, Yu, Xiao, Yan, Zhu, Liu, Sun, Cao (bib12) 2014; 127
Cheng, Feng (bib21) 2020; 129
Fu, Zou, Liang, Wang, Gao, Zhang, Fang (bib3) 2019; 193
Wu, Liang, Hu, Yu (bib13) 2018; 57
Liu, Zheng, Qian, Wang, Wu, Wang (bib17) 2021; 229
Sun, Zhu, Kang, Liu, Qian, Ma, Zhang, Yang, Han (bib1) 2017; 19
Zhao (10.1016/j.renene.2022.05.107_bib30) 2021; 420
Ye (10.1016/j.renene.2022.05.107_bib7) 2020; 52
Huang (10.1016/j.renene.2022.05.107_bib5) 2014; 2
Saafi (10.1016/j.renene.2022.05.107_bib9) 2019; 187
Zhou (10.1016/j.renene.2022.05.107_bib20) 2021; 183
Cheng (10.1016/j.renene.2022.05.107_bib21) 2020; 129
Shoja (10.1016/j.renene.2022.05.107_bib16) 2019; 157
Yang (10.1016/j.renene.2022.05.107_bib10) 2021; 14
Atinafu (10.1016/j.renene.2022.05.107_bib23) 2020; 399
Sun (10.1016/j.renene.2022.05.107_bib1) 2017; 19
Zeng (10.1016/j.renene.2022.05.107_bib12) 2014; 127
Zhao (10.1016/j.renene.2022.05.107_bib25) 2018; 158
Shi (10.1016/j.renene.2022.05.107_bib8) 2020; 8
Liu (10.1016/j.renene.2022.05.107_bib17) 2021; 229
Hekimolu (10.1016/j.renene.2022.05.107_bib24) 2021; 35
Harmen (10.1016/j.renene.2022.05.107_bib14) 2020
Safari (10.1016/j.renene.2022.05.107_bib4) 2017; 70
Wen (10.1016/j.renene.2022.05.107_bib15) 2021; 36
Wu (10.1016/j.renene.2022.05.107_bib13) 2018; 57
Fu (10.1016/j.renene.2022.05.107_bib3) 2019; 193
Zhang (10.1016/j.renene.2022.05.107_bib18) 2017; 154
Pan (10.1016/j.renene.2022.05.107_bib26) 2021; 230
Liang (10.1016/j.renene.2022.05.107_bib29) 2019; 200
Sharma (10.1016/j.renene.2022.05.107_bib6) 2015; 95
Wei (10.1016/j.renene.2022.05.107_bib22) 2018; 20
Qian (10.1016/j.renene.2022.05.107_bib27) 2018; 158
Wang (10.1016/j.renene.2022.05.107_bib28) 2020; 153
Costa (10.1016/j.renene.2022.05.107_bib2) 2013; 101
Qiu (10.1016/j.renene.2022.05.107_bib11) 2019; 7
Wan (10.1016/j.renene.2022.05.107_bib19) 2019; 9
Gu (10.1016/j.renene.2022.05.107_bib31) 2019; 248
References_xml – start-page: 1
  year: 2020
  end-page: 6
  ident: bib14
  article-title: Storage Efficiency of Paraffin-LDPE-MWCNT Phase Change Material for Industrial Building Applications
– volume: 36
  start-page: 102420
  year: 2021
  ident: bib15
  article-title: Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings
  publication-title: J. Energy Storage
– volume: 101
  start-page: 310
  year: 2013
  end-page: 316
  ident: bib2
  article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit
  publication-title: Appl. Energy
– volume: 158
  start-page: 1184
  year: 2018
  end-page: 1188
  ident: bib27
  article-title: Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability
  publication-title: Energy Build.
– volume: 154
  start-page: 46
  year: 2017
  end-page: 54
  ident: bib18
  article-title: Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: preparation, characterization, and thermal conductivity enhancement
  publication-title: Energy Build.
– volume: 230
  start-page: 269
  year: 2021
  end-page: 277
  ident: bib26
  article-title: Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage
  publication-title: Sol. Energy
– volume: 229
  start-page: 111140
  year: 2021
  ident: bib17
  article-title: Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 399
  start-page: 123041
  year: 2020
  ident: bib23
  article-title: Infiltration properties of n-alkanes in mesoporous biochar: the capacity of smokeless support for stability and energy storage
  publication-title: J. Hazard Mater.
– volume: 7
  start-page: 21371
  year: 2019
  end-page: 21377
  ident: bib11
  article-title: PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content
  publication-title: J. Mater. Chem.
– volume: 19
  start-page: 2086
  year: 2017
  end-page: 2091
  ident: bib1
  article-title: Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO
  publication-title: Green Chem.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib10
  article-title: The application of nanocapsule phase change material in the construction of civil engineering
  publication-title: Arabian J. Geosci.
– volume: 153
  start-page: 182
  year: 2020
  end-page: 192
  ident: bib28
  article-title: Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage
  publication-title: Renew. Energy
– volume: 57
  start-page: 15646
  year: 2018
  end-page: 15662
  ident: bib13
  article-title: Emerging carbon-nanofiber aerogels: chemosynthesis versus biosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 35
  start-page: 102288
  year: 2021
  ident: bib24
  article-title: Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties
  publication-title: J. Energy Storage
– volume: 187
  start-page: 115987
  year: 2019
  ident: bib9
  article-title: Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate
  publication-title: Energy
– volume: 193
  start-page: 149
  year: 2019
  end-page: 156
  ident: bib3
  article-title: Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 158
  start-page: 1049
  year: 2018
  end-page: 1062
  ident: bib25
  article-title: Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage
  publication-title: Energy Build.
– volume: 95
  start-page: 193
  year: 2015
  end-page: 228
  ident: bib6
  article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage
  publication-title: Energy Convers. Manag.
– volume: 157
  start-page: 715
  year: 2019
  end-page: 725
  ident: bib16
  article-title: Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures
  publication-title: Int. J. Biol. Macromol.
– volume: 183
  start-page: 515
  year: 2021
  end-page: 524
  ident: bib20
  article-title: Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application
  publication-title: Carbon
– volume: 8
  start-page: 21
  year: 2020
  end-page: 28
  ident: bib8
  article-title: Experimental Investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building
  publication-title: ES Energy Environ.
– volume: 127
  start-page: 122
  year: 2014
  end-page: 128
  ident: bib12
  article-title: Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 20
  start-page: 1858
  year: 2018
  end-page: 1865
  ident: bib22
  article-title: Leakage-proof phase change composites supported by biomass carbon aerogels from succulents
  publication-title: Green Chem.
– volume: 420
  start-page: 129942
  year: 2021
  ident: bib30
  article-title: Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release
  publication-title: Chem. Eng. J.
– volume: 248
  start-page: 12
  year: 2019
  end-page: 15
  ident: bib31
  article-title: A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage
  publication-title: Mater. Lett.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib19
  article-title: A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage
  publication-title: Sci. Rep.
– volume: 52
  start-page: 101833
  year: 2020
  ident: bib7
  article-title: Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures
  publication-title: Sustain. Cities Soc.
– volume: 200
  start-page: 110037
  year: 2019
  ident: bib29
  article-title: Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 70
  start-page: 905
  year: 2017
  end-page: 919
  ident: bib4
  article-title: A review on supercooling of phase change materials in thermal energy storage systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 19963
  year: 2014
  end-page: 19968
  ident: bib5
  article-title: Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage
  publication-title: J. Mater. Chem.
– volume: 129
  start-page: 105690
  year: 2020
  ident: bib21
  article-title: Form-stable phase change materials based on delignified wood flour for thermal management of buildings
  publication-title: Compos. Appl. Sci. Manuf.
– volume: 229
  start-page: 111140
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib17
  article-title: Lamellar-structured phase change composites based on biomass-derived carbonaceous sheets and sodium acetate trihydrate for high-efficient solar photothermal energy harvest
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2021.111140
– volume: 95
  start-page: 193
  year: 2015
  ident: 10.1016/j.renene.2022.05.107_bib6
  article-title: Developments in organic solid–liquid phase change materials and their applications in thermal energy storage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.01.084
– volume: 35
  start-page: 102288
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib24
  article-title: Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102288
– volume: 127
  start-page: 122
  year: 2014
  ident: 10.1016/j.renene.2022.05.107_bib12
  article-title: Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2014.04.015
– volume: 154
  start-page: 46
  year: 2017
  ident: 10.1016/j.renene.2022.05.107_bib18
  article-title: Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: preparation, characterization, and thermal conductivity enhancement
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.057
– volume: 230
  start-page: 269
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib26
  article-title: Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.10.046
– volume: 187
  start-page: 115987
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib9
  article-title: Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115987
– volume: 7
  start-page: 21371
  issue: 37
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib11
  article-title: PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA07629H
– volume: 70
  start-page: 905
  year: 2017
  ident: 10.1016/j.renene.2022.05.107_bib4
  article-title: A review on supercooling of phase change materials in thermal energy storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.272
– volume: 183
  start-page: 515
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib20
  article-title: Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.07.051
– volume: 101
  start-page: 310
  year: 2013
  ident: 10.1016/j.renene.2022.05.107_bib2
  article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.10.037
– volume: 52
  start-page: 101833
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib7
  article-title: Simulative optimization on energy saving performance of phase change panels with different phase transition temperatures
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101833
– volume: 20
  start-page: 1858
  year: 2018
  ident: 10.1016/j.renene.2022.05.107_bib22
  article-title: Leakage-proof phase change composites supported by biomass carbon aerogels from succulents
  publication-title: Green Chem.
  doi: 10.1039/C7GC03595K
– volume: 399
  start-page: 123041
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib23
  article-title: Infiltration properties of n-alkanes in mesoporous biochar: the capacity of smokeless support for stability and energy storage
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.123041
– volume: 129
  start-page: 105690
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib21
  article-title: Form-stable phase change materials based on delignified wood flour for thermal management of buildings
  publication-title: Compos. Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2019.105690
– volume: 200
  start-page: 110037
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib29
  article-title: Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2019.110037
– volume: 248
  start-page: 12
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib31
  article-title: A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.03.130
– volume: 153
  start-page: 182
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib28
  article-title: Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.02.008
– volume: 157
  start-page: 715
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib16
  article-title: Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.11.236
– volume: 420
  start-page: 129942
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib30
  article-title: Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129942
– volume: 158
  start-page: 1184
  year: 2018
  ident: 10.1016/j.renene.2022.05.107_bib27
  article-title: Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.033
– volume: 158
  start-page: 1049
  year: 2018
  ident: 10.1016/j.renene.2022.05.107_bib25
  article-title: Honeycomb-like structured biological porous carbon encapsulating PEG: a shape-stable phase change material with enhanced thermal conductivity for thermal energy storage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.078
– volume: 2
  start-page: 19963
  issue: 47
  year: 2014
  ident: 10.1016/j.renene.2022.05.107_bib5
  article-title: Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage
  publication-title: J. Mater. Chem.
  doi: 10.1039/C4TA04605F
– volume: 36
  start-page: 102420
  issue: 2
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib15
  article-title: Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102420
– start-page: 1
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib14
– volume: 193
  start-page: 149
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib3
  article-title: Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2019.01.007
– volume: 19
  start-page: 2086
  issue: 9
  year: 2017
  ident: 10.1016/j.renene.2022.05.107_bib1
  article-title: Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid
  publication-title: Green Chem.
  doi: 10.1039/C7GC00503B
– volume: 8
  start-page: 21
  year: 2020
  ident: 10.1016/j.renene.2022.05.107_bib8
  article-title: Experimental Investigation and numerical validation on the energy-saving performance of a passive phase change material floor for a real scale building
  publication-title: ES Energy Environ.
– volume: 14
  start-page: 1
  issue: 11
  year: 2021
  ident: 10.1016/j.renene.2022.05.107_bib10
  article-title: The application of nanocapsule phase change material in the construction of civil engineering
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-021-07296-9
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.renene.2022.05.107_bib19
  article-title: A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47877-z
– volume: 57
  start-page: 15646
  issue: 48
  year: 2018
  ident: 10.1016/j.renene.2022.05.107_bib13
  article-title: Emerging carbon-nanofiber aerogels: chemosynthesis versus biosynthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802663
SSID ssj0015874
Score 2.547377
Snippet The addition of phase change materials (PCMs) to building wall can effectively regulate building temperature. However, the preparation of inexpensive, easily...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 211
SubjectTerms carbonization
composite materials
Daisy stem
Energy-efficient buildings
enthalpy
ethanol
evaporation
PCM
Porous structure
raw materials
renewable energy sources
temperature
Thermal energy storage
water transportation
Title Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation
URI https://dx.doi.org/10.1016/j.renene.2022.05.107
https://www.proquest.com/docview/2675569571
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba90wDDalu6yH0W0t67oVD3b1XuLETnwsj5XXjZZBW9abkR0FMrb08fo62GW_fVLilLYMCr0lRjZBtqXPsfRJiI_ktG0ErFQg76aYn105C1a1WLYRa8zqIbfq5NQuLsovl-ZyQ8ynXBgOq0y2f7Tpg7VOLbOkzdmy62ZnDL4JzOeaf7eZmhk_y7LiVf7p722YR27qkYmZhBVLT-lzQ4wXs0b2TJapNfN35lxU9v_u6YGhHrzP0bZ4kWCjPBy_7KXYwP6V2LpDJvha_PpOsHEl8Tcs07TKrud7dGwkJ9kTSlbssxr5bX4iOa1ENtBd_5FM5SyhbyTTgLdt10sCsjKketmSyasS87JcjZXraewdcXH0-Xy-UKmYgopF4dbKRGzBuNYg6KwAB7UpQ2GxdBAAND0bzAPBlQhQGGhob2LlMOYxw8rarNgVm_1Vj2-ErBw0BAODNoUp29A4PlOCrYPRMWoT90Qx6dDHxDTOBS9--imk7IcfNe9Z8z4z1FrtCXXbazkybTwiX03T4--tGE_O4JGeH6bZ9LSZ-IYEery6ufaajk_GOlPlb588-r54zm9jSO87sble3eB7Ai7rcDCszAPx7PD46-L0HyE378Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEA72fGj7UGp_UKvWFPoabjfZZDePclTO6h2Cir6FSXYWtrTrcZ6F_vdmbrNSRRD6tmSTsEySmS87M98w9i0abRMAS-GjdRPEzy6sASMaLJqAFWbVOrdqNjfTi-LHlb7aYJMhF4bCKpPu73X6WlunlnGS5njRtuMzAt8RzOeSfrfpSr1gm8ROpUds8-DoeDq_dyboqidjjv0FDRgy6NZhXkQc2RFfppRE4ZlTXdmnLdQjXb02QIdv2ZuEHPlB_3FbbAO7d-z1P3yC79nvy4gclxz_wCKtLG87cqVjzSnPPgJlQWar5qeTGafMEl5De_OXE5szh67mxATeNG3HI5blPpXM5sRflciX-bIvXh_n_sAuDr-fT6Yi1VMQQSm7EjpgA9o2GkFmCixUuvDKYGHBA8j4rDH3EbEEAKWhjscTS4shDxmWxmTqIxt11x1-Yry0UEck6KVWumh8belaCabyWoYgddhmapChC4lsnGpe_HJDVNlP10vekeRdpmNruc3E_ahFT7bxTP9yWB73YNO4aA-eGfl1WE0XzxM5SaDD69sbJ-MNShury_zzf8--z15Oz2cn7uRofrzDXtGbPsJ3l41Wy1vcizhm5b-kfXoHVLXydQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+evaporation+inspired+biomass-based+PCM+from+daisy+stem+and+paraffin+for+building+temperature+regulation&rft.jtitle=Renewable+energy&rft.au=Wang%2C+Chongwei&rft.au=Cheng%2C+Chuanxiao&rft.au=Jin%2C+Tingxiang&rft.au=Dong%2C+Hongsheng&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=194&rft.spage=211&rft.epage=219&rft_id=info:doi/10.1016%2Fj.renene.2022.05.107&rft.externalDocID=S0960148122007583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon