Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysi...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 372; no. 2027; p. 20140018
Main Authors Ding, Edwin, Tang, A. Y. S., Chow, K. W., Malomed, Boris A.
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 28.10.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.
AbstractList We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.
We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.
We introduce a system with one or two amplified nonlinear sites (‘hot spots’, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.
Author Ding, Edwin
Malomed, Boris A.
Tang, A. Y. S.
Chow, K. W.
Author_xml – sequence: 1
  givenname: Edwin
  surname: Ding
  fullname: Ding, Edwin
  organization: Department of Mathematics and Physics, Azusa Pacific University, Box 7000, Azusa, CA 91702-7000, USA
– sequence: 2
  givenname: A. Y. S.
  surname: Tang
  fullname: Tang, A. Y. S.
  organization: Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
– sequence: 3
  givenname: K. W.
  surname: Chow
  fullname: Chow, K. W.
  organization: Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
– sequence: 4
  givenname: Boris A.
  surname: Malomed
  fullname: Malomed, Boris A.
  email: malomed@eng.tau.ac.il
  organization: Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25246677$$D View this record in MEDLINE/PubMed
BookMark eNp1kL9PxCAYQIk5o566OpqOLq1QCr2OxvgrueQcNHEjFL4qlxYUaEz_e2lOHUycIPAe4XtLtLDOAkJnBBcEN6tLH6IsSkyqAmOy2kNHpKpJXja8XKQ95VXOMH05RMsQtokgnJUH6LBkZcV5XR-hzaOxFnQ2OA0hMzaLny7XZgAbjLOyz3oXwpT1MkajEvFp4ls6U-nmVSZcWp2lL_XGgvQmTidov5N9gNPv9Rg93948Xd_n683dw_XVOleUNjFnpASM21XXQq2rklLCCGMaasWqVmtWd20DTUeJIrRuSd0x4JyuAFrcgYKWHqOL3bvv3n2MEKIYTFDQ99KCG4MgjLM0ecWbhJ5_o2M7gBbv3gzST-InQgKKHaB8GtZD94sQLObKYq4s5spirpyE6o-gTJQxBYtemv5_je4076bUxikDcRJbN_oUOvxnfQGyxpO8
CitedBy_id crossref_primary_10_1007_s00332_023_09904_2
crossref_primary_10_1016_j_na_2021_112647
crossref_primary_10_1364_JOSAB_31_002460
crossref_primary_10_1098_rsta_2014_0101
crossref_primary_10_1103_PhysRevA_105_013519
crossref_primary_10_1103_PhysRevA_91_053821
crossref_primary_10_1103_PhysRevA_90_053820
crossref_primary_10_1103_PhysRevA_95_013816
Cites_doi 10.1016/S0167-2789(00)00176-7
10.1088/1751-8113/45/44/444008
10.1364/JOSAB.26.002290
10.1103/PhysRevE.84.066609
10.1364/OL.32.000674
10.1038/nature07012
10.1364/OL.36.000085
10.1103/PhysRevLett.91.183901
10.1109/LPT.2012.2201932
10.1103/PhysRevLett.105.263901
10.1103/PhysRevLett.66.2316
10.1364/JOSAB.19.000740
10.1063/1.2771078
10.1016/0167-2789(94)90102-3
10.1103/PhysRevA.76.043839
10.1364/OL.36.004323
10.1364/OE.20.002657
10.1140/epjst/e2009-01076-8
10.1364/OL.38.000480
10.1103/PhysRevE.71.036614
10.1364/OE.17.018320
10.1103/PhysRevA.83.041806
10.1140/epjst/e2009-01078-6
10.1103/PhysRevA.82.063818
10.1016/0167-2789(87)90052-2
10.1103/PhysRevLett.64.749
10.1103/PhysRevA.83.053844
10.1103/PhysRevE.80.046202
10.1364/OL.13.000794
10.1103/PhysRevE.86.036608
10.1016/S0030-4018(03)01457-3
10.1364/OL.38.002177
10.1209/0295-5075/11/1/004
10.1103/PhysRevA.42.6009
10.1016/j.optcom.2006.01.033
10.1007/s00339-007-4102-x
10.1103/PhysRevE.72.036220
10.1088/0022-3727/36/3/201
10.1103/PhysRevE.54.4371
10.1209/0295-5075/91/34003
10.1103/PhysRevE.88.022919
10.1209/0295-5075/97/44003
10.1140/epjd/e2010-00073-0
10.1103/PhysRevA.83.043837
10.1364/OL.36.003783
10.1103/PhysRevA.81.013606
10.1016/j.physrep.2008.04.004
10.1364/OE.17.021732
10.1137/S0036144504446357
10.1103/PhysRevE.82.056606
10.1103/PhysRevE.53.5365
10.1364/JOSAB.25.001002
10.1103/PhysRevA.85.063837
10.3934/dcds.2007.19.711
10.1016/j.physleta.2005.08.028
10.1103/PhysRevE.72.025604
10.1364/OL.36.001200
10.1103/PhysRevB.70.125113
10.1007/978-3-662-04792-7
10.1103/PhysRevA.79.041803
10.1103/PhysRevA.81.033850
10.1103/PhysRevE.82.056213
10.1364/OL.34.002982
10.1364/OE.18.008859
10.1364/OE.16.000636
10.1103/PhysRevLett.105.213901
10.1103/PhysRevE.67.026608
10.1103/PhysRevLett.79.4047
10.1103/PhysRevA.79.033812
10.1364/JOSAB.15.002757
10.1364/OL.36.001936
10.1103/PhysRevE.67.026606
10.1103/PhysRevA.77.023814
10.1103/PhysRevB.47.15330
10.1103/PhysRevB.55.894
10.1364/OE.14.006055
10.1364/OE.19.006616
ContentType Journal Article
Copyright 2014 The Author(s) Published by the Royal Society. All rights reserved.
Copyright_xml – notice: 2014 The Author(s) Published by the Royal Society. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1098/rsta.2014.0018
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
DocumentTitleAlternate Pinned modes in 2D lossy lattices
EISSN 1471-2962
ExternalDocumentID 25246677
10_1098_rsta_2014_0018
Genre Journal Article
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
ABBHK
ABFAN
ABPLY
ABPTK
ABTLG
ABXXB
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
ADODI
ADULT
ADZLD
AELPN
AEUPB
AEXZC
AFVYC
AFXKK
AJZGM
ALMA_UNASSIGNED_HOLDINGS
BGBPD
BTFSW
DCCCD
DIK
DNJUQ
DOOOF
DQDLB
DSRWC
DWIUU
EBS
ECEWR
EFSUC
EJD
F5P
HH5
HQ6
HZ~
ICLEN
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JMS
JPM
JSG
JSODD
JST
K-O
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RRY
SA0
TN5
TR2
V1E
W8F
XSW
YNT
~02
AAWIL
AAYXX
ABXSQ
ACHIC
ACRPL
ADNMO
ADQXQ
AGLNM
AGPVY
AGQPQ
AIHAF
ALMYZ
ALRMG
AQVQM
CITATION
H13
IPSME
NPM
7X8
ID FETCH-LOGICAL-c339t-512e00b8fbe7d423315155de7c54bdd57fb9e9f31c137b17f5e6638eeb0feceb3
ISSN 1364-503X
IngestDate Fri Jul 11 06:45:09 EDT 2025
Wed Feb 19 02:42:36 EST 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 01:48:20 EDT 2025
Wed Jan 17 02:37:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2027
Keywords discrete solitons
bistability
cubic–quintic nonlinearity
Ginzburg–Landau equation
Language English
License 2014 The Author(s) Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-512e00b8fbe7d423315155de7c54bdd57fb9e9f31c137b17f5e6638eeb0feceb3
Notes Theme Issue 'Localized structures in dissipative media: from optics to plant ecology' compiled and edited by Mustapha Tlidi, Kestutis Staliunas, Krassimir Panajotov, Andrei Vladimirov and Marcel Clerc
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25246677
PQID 1565503469
PQPubID 23479
ParticipantIDs crossref_primary_10_1098_rsta_2014_0018
crossref_citationtrail_10_1098_rsta_2014_0018
royalsociety_journals_10_1098_rsta_2014_0018
proquest_miscellaneous_1565503469
pubmed_primary_25246677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141028
2014-10-28
2014-Oct-28
PublicationDateYYYYMMDD 2014-10-28
PublicationDate_xml – month: 10
  year: 2014
  text: 20141028
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAbbrev Phil. Trans. R. Soc. A
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2014
Publisher The Royal Society Publishing
Publisher_xml – name: The Royal Society Publishing
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
Tlidi M (e_1_3_2_3_2) 2004; 6
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_18_2
  doi: 10.1016/S0167-2789(00)00176-7
– ident: e_1_3_2_47_2
  doi: 10.1088/1751-8113/45/44/444008
– ident: e_1_3_2_33_2
  doi: 10.1364/JOSAB.26.002290
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevE.84.066609
– ident: e_1_3_2_5_2
  doi: 10.1364/OL.32.000674
– ident: e_1_3_2_13_2
  doi: 10.1038/nature07012
– ident: e_1_3_2_50_2
  doi: 10.1364/OL.36.000085
– ident: e_1_3_2_70_2
  doi: 10.1103/PhysRevLett.91.183901
– ident: e_1_3_2_72_2
  doi: 10.1109/LPT.2012.2201932
– ident: e_1_3_2_77_2
  doi: 10.1103/PhysRevLett.105.263901
– ident: e_1_3_2_54_2
  doi: 10.1103/PhysRevLett.66.2316
– ident: e_1_3_2_55_2
  doi: 10.1364/JOSAB.19.000740
– ident: e_1_3_2_20_2
  doi: 10.1063/1.2771078
– ident: e_1_3_2_27_2
  doi: 10.1016/0167-2789(94)90102-3
– ident: e_1_3_2_63_2
  doi: 10.1103/PhysRevA.76.043839
– ident: e_1_3_2_21_2
  doi: 10.1364/OL.36.004323
– ident: e_1_3_2_56_2
  doi: 10.1364/OE.20.002657
– ident: e_1_3_2_34_2
  doi: 10.1140/epjst/e2009-01076-8
– ident: e_1_3_2_46_2
  doi: 10.1364/OL.38.000480
– volume: 6
  start-page: 60
  year: 2004
  ident: e_1_3_2_3_2
  article-title: Transverse dynamics in cavity nonlinear optics (2000–2003)
  publication-title: J. Opt.
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevE.71.036614
– ident: e_1_3_2_15_2
  doi: 10.1364/OE.17.018320
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevA.83.041806
– ident: e_1_3_2_65_2
  doi: 10.1140/epjst/e2009-01078-6
– ident: e_1_3_2_67_2
  doi: 10.1103/PhysRevA.82.063818
– ident: e_1_3_2_23_2
  doi: 10.1016/0167-2789(87)90052-2
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.64.749
– ident: e_1_3_2_75_2
  doi: 10.1103/PhysRevA.83.053844
– ident: e_1_3_2_66_2
  doi: 10.1103/PhysRevE.80.046202
– ident: e_1_3_2_78_2
  doi: 10.1364/OL.13.000794
– ident: e_1_3_2_57_2
  doi: 10.1103/PhysRevE.86.036608
– ident: e_1_3_2_59_2
  doi: 10.1016/S0030-4018(03)01457-3
– ident: e_1_3_2_53_2
  doi: 10.1364/OL.38.002177
– ident: e_1_3_2_25_2
  doi: 10.1209/0295-5075/11/1/004
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevA.42.6009
– ident: e_1_3_2_62_2
  doi: 10.1016/j.optcom.2006.01.033
– ident: e_1_3_2_6_2
  doi: 10.1007/s00339-007-4102-x
– ident: e_1_3_2_61_2
  doi: 10.1103/PhysRevE.72.036220
– ident: e_1_3_2_45_2
  doi: 10.1088/0022-3727/36/3/201
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevE.54.4371
– ident: e_1_3_2_35_2
  doi: 10.1209/0295-5075/91/34003
– ident: e_1_3_2_48_2
  doi: 10.1103/PhysRevE.88.022919
– ident: e_1_3_2_36_2
  doi: 10.1209/0295-5075/97/44003
– ident: e_1_3_2_38_2
  doi: 10.1140/epjd/e2010-00073-0
– ident: e_1_3_2_68_2
  doi: 10.1103/PhysRevA.83.043837
– ident: e_1_3_2_52_2
  doi: 10.1364/OL.36.003783
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevA.81.013606
– ident: e_1_3_2_69_2
  doi: 10.1016/j.physrep.2008.04.004
– ident: e_1_3_2_7_2
  doi: 10.1364/OE.17.021732
– ident: e_1_3_2_31_2
  doi: 10.1137/S0036144504446357
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevE.82.056606
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevE.53.5365
– ident: e_1_3_2_79_2
  doi: 10.1364/JOSAB.25.001002
– ident: e_1_3_2_22_2
  doi: 10.1103/PhysRevA.85.063837
– ident: e_1_3_2_64_2
  doi: 10.3934/dcds.2007.19.711
– ident: e_1_3_2_60_2
  doi: 10.1016/j.physleta.2005.08.028
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevE.72.025604
– ident: e_1_3_2_39_2
  doi: 10.1364/OL.36.001200
– ident: e_1_3_2_71_2
  doi: 10.1103/PhysRevB.70.125113
– ident: e_1_3_2_2_2
  doi: 10.1007/978-3-662-04792-7
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevA.79.041803
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevA.81.033850
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevE.82.056213
– ident: e_1_3_2_10_2
  doi: 10.1364/OL.34.002982
– ident: e_1_3_2_19_2
  doi: 10.1364/OE.18.008859
– ident: e_1_3_2_14_2
  doi: 10.1364/OE.16.000636
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRevLett.105.213901
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevE.67.026608
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevLett.79.4047
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevA.79.033812
– ident: e_1_3_2_28_2
  doi: 10.1364/JOSAB.15.002757
– ident: e_1_3_2_51_2
  doi: 10.1364/OL.36.001936
– ident: e_1_3_2_58_2
  doi: 10.1103/PhysRevE.67.026606
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevA.77.023814
– ident: e_1_3_2_73_2
  doi: 10.1103/PhysRevB.47.15330
– ident: e_1_3_2_74_2
  doi: 10.1103/PhysRevB.55.894
– ident: e_1_3_2_76_2
  doi: 10.1364/OE.14.006055
– ident: e_1_3_2_12_2
  doi: 10.1364/OE.19.006616
SSID ssj0011652
Score 2.182438
Snippet We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes...
We introduce a system with one or two amplified nonlinear sites (‘hot spots’, HSs) embedded into a two-dimensional linear lossy lattice. The system describes...
SourceID proquest
pubmed
crossref
royalsociety
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20140018
SubjectTerms Bistability
Cubic-Quintic Nonlinearity
Discrete Solitons
Ginzburg-Landau Equation
Title Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity
URI https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0018
https://www.ncbi.nlm.nih.gov/pubmed/25246677
https://www.proquest.com/docview/1565503469
Volume 372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiqAP4q638UYEQaW29pJe8rjIyuIyusIurk-lSVMZGGZk22HRP-rf8ZwkbTN7gdWX0glt05nvm3NOkpPzEfJKZpwzBSNVkWbcZ3ET-1xh2o6qK4G6AkxrHc4-Z_vH7NNJejKZ_HGyltadCOTvS_eV_A-q0Aa44i7Zf0B2eCg0wDngC0dAGI7XwvgQhbNqrWaj01q7s5VfY7l-U2rDW4AH_OUtqg4z3Ow-Nu28vB_V3GQhL02pjAo17NxA9bCXONAgdqOqeNtnFZiJhz7rE5catDJIgOYHht-enrmfDVVhtbCAnUgx59i9GsshetYZj0r3Vm5lrz6bj-nCdn57N_C-Q1fBmJ5gFqkOAu_b0DirFlhcQHN4BdYM7nJnOSKG7iF2DXOSMT8NtXYw-C3TBo7Vj_mmNU_y2KEtTu245hnHk6Ex-Bd8R8hxPwTuJ8KMPyyqbj3DRpHuc85zSGk0i_lFifeXeD9mCxY3yM0Yxi8orXHwdVzeijItBTV8qaGaaPF-s__NaOnCEAiipVMEuzVYO5HR0T1y1w5p6K7h5zaZqOUOueMUuoRPIw_aHXJLpx3j2bZ1LS19Y-ufv71PvhhaU01rOl_Sc7Smmta0pzVFWlNNa4q0psAr6tL6ATn-uHf0Yd-3uh--TBLe-RCDqjAURSNUXkO4n2DQndYqlykTdZ3mjeCKN0kkoyQXUd6kCuLmQikRNkoqkTwkW9CNekwox51okuVcFCETEIzLhoPXYVKg8lpSTYnf_76ltEXxUZtlUV6O55S8Hq7_acrBXHnlyx6uEiw2LsNVS7Vat2UEYygAnWV8Sh4ZHIdnxWnMsizPp-SdC2xpjU57RWdPrv1aT8nt8e_1jGx1p2v1HMLqTrzQFP0Lj-3MXw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pinned+modes+in+two-dimensional+lossy+lattices+with+local+gain+and+nonlinearity&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Ding%2C+Edwin&rft.au=Tang%2C+A.+Y.+S.&rft.au=Chow%2C+K.+W.&rft.au=Malomed%2C+Boris+A.&rft.date=2014-10-28&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=372&rft.issue=2027&rft.spage=20140018&rft_id=info:doi/10.1098%2Frsta.2014.0018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsta_2014_0018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon