Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity
We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysi...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 372; no. 2027; p. 20140018 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
28.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered. |
---|---|
AbstractList | We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered. We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered.We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered. We introduce a system with one or two amplified nonlinear sites (‘hot spots’, HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied to selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable and unstable when the nonlinearity includes the cubic loss and gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, whereas weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are also considered. |
Author | Ding, Edwin Malomed, Boris A. Tang, A. Y. S. Chow, K. W. |
Author_xml | – sequence: 1 givenname: Edwin surname: Ding fullname: Ding, Edwin organization: Department of Mathematics and Physics, Azusa Pacific University, Box 7000, Azusa, CA 91702-7000, USA – sequence: 2 givenname: A. Y. S. surname: Tang fullname: Tang, A. Y. S. organization: Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong – sequence: 3 givenname: K. W. surname: Chow fullname: Chow, K. W. organization: Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong – sequence: 4 givenname: Boris A. surname: Malomed fullname: Malomed, Boris A. email: malomed@eng.tau.ac.il organization: Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25246677$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kL9PxCAYQIk5o566OpqOLq1QCr2OxvgrueQcNHEjFL4qlxYUaEz_e2lOHUycIPAe4XtLtLDOAkJnBBcEN6tLH6IsSkyqAmOy2kNHpKpJXja8XKQ95VXOMH05RMsQtokgnJUH6LBkZcV5XR-hzaOxFnQ2OA0hMzaLny7XZgAbjLOyz3oXwpT1MkajEvFp4ls6U-nmVSZcWp2lL_XGgvQmTidov5N9gNPv9Rg93948Xd_n683dw_XVOleUNjFnpASM21XXQq2rklLCCGMaasWqVmtWd20DTUeJIrRuSd0x4JyuAFrcgYKWHqOL3bvv3n2MEKIYTFDQ99KCG4MgjLM0ecWbhJ5_o2M7gBbv3gzST-InQgKKHaB8GtZD94sQLObKYq4s5spirpyE6o-gTJQxBYtemv5_je4076bUxikDcRJbN_oUOvxnfQGyxpO8 |
CitedBy_id | crossref_primary_10_1007_s00332_023_09904_2 crossref_primary_10_1016_j_na_2021_112647 crossref_primary_10_1364_JOSAB_31_002460 crossref_primary_10_1098_rsta_2014_0101 crossref_primary_10_1103_PhysRevA_105_013519 crossref_primary_10_1103_PhysRevA_91_053821 crossref_primary_10_1103_PhysRevA_90_053820 crossref_primary_10_1103_PhysRevA_95_013816 |
Cites_doi | 10.1016/S0167-2789(00)00176-7 10.1088/1751-8113/45/44/444008 10.1364/JOSAB.26.002290 10.1103/PhysRevE.84.066609 10.1364/OL.32.000674 10.1038/nature07012 10.1364/OL.36.000085 10.1103/PhysRevLett.91.183901 10.1109/LPT.2012.2201932 10.1103/PhysRevLett.105.263901 10.1103/PhysRevLett.66.2316 10.1364/JOSAB.19.000740 10.1063/1.2771078 10.1016/0167-2789(94)90102-3 10.1103/PhysRevA.76.043839 10.1364/OL.36.004323 10.1364/OE.20.002657 10.1140/epjst/e2009-01076-8 10.1364/OL.38.000480 10.1103/PhysRevE.71.036614 10.1364/OE.17.018320 10.1103/PhysRevA.83.041806 10.1140/epjst/e2009-01078-6 10.1103/PhysRevA.82.063818 10.1016/0167-2789(87)90052-2 10.1103/PhysRevLett.64.749 10.1103/PhysRevA.83.053844 10.1103/PhysRevE.80.046202 10.1364/OL.13.000794 10.1103/PhysRevE.86.036608 10.1016/S0030-4018(03)01457-3 10.1364/OL.38.002177 10.1209/0295-5075/11/1/004 10.1103/PhysRevA.42.6009 10.1016/j.optcom.2006.01.033 10.1007/s00339-007-4102-x 10.1103/PhysRevE.72.036220 10.1088/0022-3727/36/3/201 10.1103/PhysRevE.54.4371 10.1209/0295-5075/91/34003 10.1103/PhysRevE.88.022919 10.1209/0295-5075/97/44003 10.1140/epjd/e2010-00073-0 10.1103/PhysRevA.83.043837 10.1364/OL.36.003783 10.1103/PhysRevA.81.013606 10.1016/j.physrep.2008.04.004 10.1364/OE.17.021732 10.1137/S0036144504446357 10.1103/PhysRevE.82.056606 10.1103/PhysRevE.53.5365 10.1364/JOSAB.25.001002 10.1103/PhysRevA.85.063837 10.3934/dcds.2007.19.711 10.1016/j.physleta.2005.08.028 10.1103/PhysRevE.72.025604 10.1364/OL.36.001200 10.1103/PhysRevB.70.125113 10.1007/978-3-662-04792-7 10.1103/PhysRevA.79.041803 10.1103/PhysRevA.81.033850 10.1103/PhysRevE.82.056213 10.1364/OL.34.002982 10.1364/OE.18.008859 10.1364/OE.16.000636 10.1103/PhysRevLett.105.213901 10.1103/PhysRevE.67.026608 10.1103/PhysRevLett.79.4047 10.1103/PhysRevA.79.033812 10.1364/JOSAB.15.002757 10.1364/OL.36.001936 10.1103/PhysRevE.67.026606 10.1103/PhysRevA.77.023814 10.1103/PhysRevB.47.15330 10.1103/PhysRevB.55.894 10.1364/OE.14.006055 10.1364/OE.19.006616 |
ContentType | Journal Article |
Copyright | 2014 The Author(s) Published by the Royal Society. All rights reserved. |
Copyright_xml | – notice: 2014 The Author(s) Published by the Royal Society. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1098/rsta.2014.0018 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics |
DocumentTitleAlternate | Pinned modes in 2D lossy lattices |
EISSN | 1471-2962 |
ExternalDocumentID | 25246677 10_1098_rsta_2014_0018 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE ABBHK ABFAN ABPLY ABPTK ABTLG ABXXB ABYWD ACGFO ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV ADODI ADULT ADZLD AELPN AEUPB AEXZC AFVYC AFXKK AJZGM ALMA_UNASSIGNED_HOLDINGS BGBPD BTFSW DCCCD DIK DNJUQ DOOOF DQDLB DSRWC DWIUU EBS ECEWR EFSUC EJD F5P HH5 HQ6 HZ~ ICLEN JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JMS JPM JSG JSODD JST K-O KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RRY SA0 TN5 TR2 V1E W8F XSW YNT ~02 AAWIL AAYXX ABXSQ ACHIC ACRPL ADNMO ADQXQ AGLNM AGPVY AGQPQ AIHAF ALMYZ ALRMG AQVQM CITATION H13 IPSME NPM 7X8 |
ID | FETCH-LOGICAL-c339t-512e00b8fbe7d423315155de7c54bdd57fb9e9f31c137b17f5e6638eeb0feceb3 |
ISSN | 1364-503X |
IngestDate | Fri Jul 11 06:45:09 EDT 2025 Wed Feb 19 02:42:36 EST 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 01:48:20 EDT 2025 Wed Jan 17 02:37:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2027 |
Keywords | discrete solitons bistability cubic–quintic nonlinearity Ginzburg–Landau equation |
Language | English |
License | 2014 The Author(s) Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-512e00b8fbe7d423315155de7c54bdd57fb9e9f31c137b17f5e6638eeb0feceb3 |
Notes | Theme Issue 'Localized structures in dissipative media: from optics to plant ecology' compiled and edited by Mustapha Tlidi, Kestutis Staliunas, Krassimir Panajotov, Andrei Vladimirov and Marcel Clerc ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25246677 |
PQID | 1565503469 |
PQPubID | 23479 |
ParticipantIDs | crossref_primary_10_1098_rsta_2014_0018 crossref_citationtrail_10_1098_rsta_2014_0018 royalsociety_journals_10_1098_rsta_2014_0018 proquest_miscellaneous_1565503469 pubmed_primary_25246677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20141028 2014-10-28 2014-Oct-28 |
PublicationDateYYYYMMDD | 2014-10-28 |
PublicationDate_xml | – month: 10 year: 2014 text: 20141028 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAbbrev | Phil. Trans. R. Soc. A |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2014 |
Publisher | The Royal Society Publishing |
Publisher_xml | – name: The Royal Society Publishing |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 Tlidi M (e_1_3_2_3_2) 2004; 6 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_18_2 doi: 10.1016/S0167-2789(00)00176-7 – ident: e_1_3_2_47_2 doi: 10.1088/1751-8113/45/44/444008 – ident: e_1_3_2_33_2 doi: 10.1364/JOSAB.26.002290 – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevE.84.066609 – ident: e_1_3_2_5_2 doi: 10.1364/OL.32.000674 – ident: e_1_3_2_13_2 doi: 10.1038/nature07012 – ident: e_1_3_2_50_2 doi: 10.1364/OL.36.000085 – ident: e_1_3_2_70_2 doi: 10.1103/PhysRevLett.91.183901 – ident: e_1_3_2_72_2 doi: 10.1109/LPT.2012.2201932 – ident: e_1_3_2_77_2 doi: 10.1103/PhysRevLett.105.263901 – ident: e_1_3_2_54_2 doi: 10.1103/PhysRevLett.66.2316 – ident: e_1_3_2_55_2 doi: 10.1364/JOSAB.19.000740 – ident: e_1_3_2_20_2 doi: 10.1063/1.2771078 – ident: e_1_3_2_27_2 doi: 10.1016/0167-2789(94)90102-3 – ident: e_1_3_2_63_2 doi: 10.1103/PhysRevA.76.043839 – ident: e_1_3_2_21_2 doi: 10.1364/OL.36.004323 – ident: e_1_3_2_56_2 doi: 10.1364/OE.20.002657 – ident: e_1_3_2_34_2 doi: 10.1140/epjst/e2009-01076-8 – ident: e_1_3_2_46_2 doi: 10.1364/OL.38.000480 – volume: 6 start-page: 60 year: 2004 ident: e_1_3_2_3_2 article-title: Transverse dynamics in cavity nonlinear optics (2000–2003) publication-title: J. Opt. – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevE.71.036614 – ident: e_1_3_2_15_2 doi: 10.1364/OE.17.018320 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevA.83.041806 – ident: e_1_3_2_65_2 doi: 10.1140/epjst/e2009-01078-6 – ident: e_1_3_2_67_2 doi: 10.1103/PhysRevA.82.063818 – ident: e_1_3_2_23_2 doi: 10.1016/0167-2789(87)90052-2 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevLett.64.749 – ident: e_1_3_2_75_2 doi: 10.1103/PhysRevA.83.053844 – ident: e_1_3_2_66_2 doi: 10.1103/PhysRevE.80.046202 – ident: e_1_3_2_78_2 doi: 10.1364/OL.13.000794 – ident: e_1_3_2_57_2 doi: 10.1103/PhysRevE.86.036608 – ident: e_1_3_2_59_2 doi: 10.1016/S0030-4018(03)01457-3 – ident: e_1_3_2_53_2 doi: 10.1364/OL.38.002177 – ident: e_1_3_2_25_2 doi: 10.1209/0295-5075/11/1/004 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevA.42.6009 – ident: e_1_3_2_62_2 doi: 10.1016/j.optcom.2006.01.033 – ident: e_1_3_2_6_2 doi: 10.1007/s00339-007-4102-x – ident: e_1_3_2_61_2 doi: 10.1103/PhysRevE.72.036220 – ident: e_1_3_2_45_2 doi: 10.1088/0022-3727/36/3/201 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevE.54.4371 – ident: e_1_3_2_35_2 doi: 10.1209/0295-5075/91/34003 – ident: e_1_3_2_48_2 doi: 10.1103/PhysRevE.88.022919 – ident: e_1_3_2_36_2 doi: 10.1209/0295-5075/97/44003 – ident: e_1_3_2_38_2 doi: 10.1140/epjd/e2010-00073-0 – ident: e_1_3_2_68_2 doi: 10.1103/PhysRevA.83.043837 – ident: e_1_3_2_52_2 doi: 10.1364/OL.36.003783 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevA.81.013606 – ident: e_1_3_2_69_2 doi: 10.1016/j.physrep.2008.04.004 – ident: e_1_3_2_7_2 doi: 10.1364/OE.17.021732 – ident: e_1_3_2_31_2 doi: 10.1137/S0036144504446357 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevE.82.056606 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevE.53.5365 – ident: e_1_3_2_79_2 doi: 10.1364/JOSAB.25.001002 – ident: e_1_3_2_22_2 doi: 10.1103/PhysRevA.85.063837 – ident: e_1_3_2_64_2 doi: 10.3934/dcds.2007.19.711 – ident: e_1_3_2_60_2 doi: 10.1016/j.physleta.2005.08.028 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevE.72.025604 – ident: e_1_3_2_39_2 doi: 10.1364/OL.36.001200 – ident: e_1_3_2_71_2 doi: 10.1103/PhysRevB.70.125113 – ident: e_1_3_2_2_2 doi: 10.1007/978-3-662-04792-7 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevA.79.041803 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevA.81.033850 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevE.82.056213 – ident: e_1_3_2_10_2 doi: 10.1364/OL.34.002982 – ident: e_1_3_2_19_2 doi: 10.1364/OE.18.008859 – ident: e_1_3_2_14_2 doi: 10.1364/OE.16.000636 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevLett.105.213901 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevE.67.026608 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevLett.79.4047 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevA.79.033812 – ident: e_1_3_2_28_2 doi: 10.1364/JOSAB.15.002757 – ident: e_1_3_2_51_2 doi: 10.1364/OL.36.001936 – ident: e_1_3_2_58_2 doi: 10.1103/PhysRevE.67.026606 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevA.77.023814 – ident: e_1_3_2_73_2 doi: 10.1103/PhysRevB.47.15330 – ident: e_1_3_2_74_2 doi: 10.1103/PhysRevB.55.894 – ident: e_1_3_2_76_2 doi: 10.1364/OE.14.006055 – ident: e_1_3_2_12_2 doi: 10.1364/OE.19.006616 |
SSID | ssj0011652 |
Score | 2.182438 |
Snippet | We introduce a system with one or two amplified nonlinear sites ('hot spots', HSs) embedded into a two-dimensional linear lossy lattice. The system describes... We introduce a system with one or two amplified nonlinear sites (‘hot spots’, HSs) embedded into a two-dimensional linear lossy lattice. The system describes... |
SourceID | proquest pubmed crossref royalsociety |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20140018 |
SubjectTerms | Bistability Cubic-Quintic Nonlinearity Discrete Solitons Ginzburg-Landau Equation |
Title | Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity |
URI | https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0018 https://www.ncbi.nlm.nih.gov/pubmed/25246677 https://www.proquest.com/docview/1565503469 |
Volume | 372 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiqAP4q638UYEQaW29pJe8rjIyuIyusIurk-lSVMZGGZk22HRP-rf8ZwkbTN7gdWX0glt05nvm3NOkpPzEfJKZpwzBSNVkWbcZ3ET-1xh2o6qK4G6AkxrHc4-Z_vH7NNJejKZ_HGyltadCOTvS_eV_A-q0Aa44i7Zf0B2eCg0wDngC0dAGI7XwvgQhbNqrWaj01q7s5VfY7l-U2rDW4AH_OUtqg4z3Ow-Nu28vB_V3GQhL02pjAo17NxA9bCXONAgdqOqeNtnFZiJhz7rE5catDJIgOYHht-enrmfDVVhtbCAnUgx59i9GsshetYZj0r3Vm5lrz6bj-nCdn57N_C-Q1fBmJ5gFqkOAu_b0DirFlhcQHN4BdYM7nJnOSKG7iF2DXOSMT8NtXYw-C3TBo7Vj_mmNU_y2KEtTu245hnHk6Ex-Bd8R8hxPwTuJ8KMPyyqbj3DRpHuc85zSGk0i_lFifeXeD9mCxY3yM0Yxi8orXHwdVzeijItBTV8qaGaaPF-s__NaOnCEAiipVMEuzVYO5HR0T1y1w5p6K7h5zaZqOUOueMUuoRPIw_aHXJLpx3j2bZ1LS19Y-ufv71PvhhaU01rOl_Sc7Smmta0pzVFWlNNa4q0psAr6tL6ATn-uHf0Yd-3uh--TBLe-RCDqjAURSNUXkO4n2DQndYqlykTdZ3mjeCKN0kkoyQXUd6kCuLmQikRNkoqkTwkW9CNekwox51okuVcFCETEIzLhoPXYVKg8lpSTYnf_76ltEXxUZtlUV6O55S8Hq7_acrBXHnlyx6uEiw2LsNVS7Vat2UEYygAnWV8Sh4ZHIdnxWnMsizPp-SdC2xpjU57RWdPrv1aT8nt8e_1jGx1p2v1HMLqTrzQFP0Lj-3MXw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pinned+modes+in+two-dimensional+lossy+lattices+with+local+gain+and+nonlinearity&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Ding%2C+Edwin&rft.au=Tang%2C+A.+Y.+S.&rft.au=Chow%2C+K.+W.&rft.au=Malomed%2C+Boris+A.&rft.date=2014-10-28&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=372&rft.issue=2027&rft.spage=20140018&rft_id=info:doi/10.1098%2Frsta.2014.0018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsta_2014_0018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |