Nanocomposite bioinks for 3D bioprinting

Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 151; pp. 45 - 69
Main Authors Cai, Yanli, Chang, Soon Yee, Gan, Soo Wah, Ma, Sha, Lu, Wen Feng, Yen, Ching-Chiuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications. [Display omitted]
AbstractList Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications. [Display omitted]
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
Author Lu, Wen Feng
Chang, Soon Yee
Ma, Sha
Yen, Ching-Chiuan
Gan, Soo Wah
Cai, Yanli
Author_xml – sequence: 1
  givenname: Yanli
  orcidid: 0000-0002-0494-8507
  surname: Cai
  fullname: Cai, Yanli
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
– sequence: 2
  givenname: Soon Yee
  surname: Chang
  fullname: Chang, Soon Yee
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
– sequence: 3
  givenname: Soo Wah
  surname: Gan
  fullname: Gan, Soo Wah
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
– sequence: 4
  givenname: Sha
  surname: Ma
  fullname: Ma, Sha
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
– sequence: 5
  givenname: Wen Feng
  surname: Lu
  fullname: Lu, Wen Feng
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
– sequence: 6
  givenname: Ching-Chiuan
  orcidid: 0000-0003-4325-1689
  surname: Yen
  fullname: Yen, Ching-Chiuan
  email: didyc@nus.edu.sg
  organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore
BookMark eNqFkMtKAzEUhoNUsK2-gYsuu5kxl5lJ4kKQeoWiG12HTC6SOk1qkgq-vSnjyoWuzjnwfz-cbwYmPngDwDmCNYKou9jUUuXehRpDjGvIaoiaIzBFjLKKth2blJ02uKKwQydgltIGQsIQZlOwfJI-qLDdheSyWZQS59_Twoa4IDeHcxedz86_nYJjK4dkzn7mHLze3b6sHqr18_3j6npdKUJ4rhqriCbIdlDylijaKYZabQm3puUWSmN7ipS2liDYt7ptGOec2t5a3emGMjIHy7F3F8PH3qQsti4pMwzSm7BPAlOIOaWEtiV6OUZVDClFY4VyWWYXfI7SDQJBcdAjNmLUIw56BGSi6Clw8wsun25l_PoPuxoxUxx8OhNFUs54ZbSLRmWhg_u74BvMhIMC
CitedBy_id crossref_primary_10_1007_s40820_024_01581_4
crossref_primary_10_3390_life13040954
crossref_primary_10_1002_admt_202400620
crossref_primary_10_1016_j_jmst_2024_01_001
crossref_primary_10_1007_s10570_024_05797_w
crossref_primary_10_1002_mabi_202200496
crossref_primary_10_1021_acsami_3c07077
crossref_primary_10_1088_1748_605X_ad9dce
crossref_primary_10_1016_j_bprint_2023_e00280
crossref_primary_10_1016_j_bprint_2025_e00405
crossref_primary_10_1007_s40726_024_00325_7
crossref_primary_10_1016_j_jmst_2023_07_018
crossref_primary_10_1021_acs_biomac_4c01546
crossref_primary_10_1002_smtd_202301121
crossref_primary_10_3389_fonc_2023_1143600
crossref_primary_10_7759_cureus_49800
crossref_primary_10_1007_s40820_024_01323_6
crossref_primary_10_1016_j_cis_2023_103013
crossref_primary_10_3390_bioengineering12010071
crossref_primary_10_1021_acsomega_4c02847
crossref_primary_10_1002_pc_28626
crossref_primary_10_3390_polym15102405
crossref_primary_10_1021_acsami_4c20131
crossref_primary_10_1016_j_ijbiomac_2024_131623
crossref_primary_10_34133_research_0197
crossref_primary_10_1021_acsomega_4c04123
crossref_primary_10_1016_j_ijbiomac_2024_133866
crossref_primary_10_1007_s42242_023_00238_2
crossref_primary_10_1016_j_apmt_2023_102035
crossref_primary_10_1002_smsc_202400236
crossref_primary_10_1016_j_bprint_2025_e00395
crossref_primary_10_1111_jace_19408
crossref_primary_10_3390_jfb15040082
crossref_primary_10_1016_j_bprint_2024_e00335
crossref_primary_10_1002_adhm_202303867
crossref_primary_10_1016_j_bprint_2024_e00356
crossref_primary_10_1016_j_mtcomm_2023_105696
crossref_primary_10_1093_rb_rbae066
crossref_primary_10_1016_j_addr_2024_115486
crossref_primary_10_1021_acsbiomaterials_4c00166
crossref_primary_10_1016_j_ymeth_2022_10_010
crossref_primary_10_1016_j_ijpharm_2023_123020
crossref_primary_10_1016_j_mtbio_2023_100930
crossref_primary_10_1016_j_ijbiomac_2023_123476
crossref_primary_10_1166_jbn_2024_3890
Cites_doi 10.1038/s41578-018-0006-y
10.1016/j.procir.2017.04.022
10.1089/ten.tec.2017.0346
10.1080/21691401.2019.1709855
10.1016/j.bprint.2020.e00080
10.1016/j.procir.2017.04.019
10.1007/s00253-014-5819-z
10.1002/adma.201302042
10.1016/S0032-3861(02)00559-1
10.1073/pnas.1716164115
10.1088/1758-5090/ab5158
10.1039/D0NR02581J
10.1021/acsbiomaterials.1c01193
10.3390/nano10040733
10.1089/ten.tea.2019.0298
10.1016/j.msec.2020.110905
10.1088/1758-5090/aa5c1c
10.1088/1742-6596/1213/4/042020
10.1002/adhm.201800894
10.1088/1758-5090/ab8753
10.1002/adma.201300584
10.1002/biot.201400305
10.1088/0957-4484/25/14/145101
10.1371/journal.pone.0189428
10.1002/adma.201506420
10.1021/acsami.8b05963
10.3390/ijms17121976
10.3390/ijms21228694
10.1021/acsabm.8b00665
10.1088/1361-6528/aaafa1
10.1016/j.intimp.2011.02.016
10.1002/adfm.201605352
10.1016/j.actbio.2019.08.045
10.1039/C9NR07643C
10.1039/C3CS60273G
10.1016/j.eurpolymj.2014.07.025
10.1016/j.carbpol.2021.118222
10.15376/biores.12.2.2941-2954
10.1016/j.ijbiomac.2017.01.089
10.1021/acsmacrolett.0c00845
10.1186/s40824-018-0152-8
10.1002/adhm.201700015
10.1038/s41551-019-0471-7
10.1088/1758-5090/aa91ec
10.1002/wnan.1317
10.1021/acsami.8b13166
10.18063/ijb.v6i1.250
10.1021/acs.nanolett.9b03182
10.1080/07388551.2020.1713721
10.1021/nn1010792
10.1021/acs.langmuir.7b02540
10.1002/anie.201001273
10.1007/s10439-016-1704-5
10.1007/s12010-012-9548-4
10.3390/ma3073867
10.1016/j.actbio.2020.12.026
10.1016/j.mser.2020.100543
10.1002/adma.201902026
10.1016/j.biomaterials.2019.119536
10.1088/1758-5090/aa7e96
10.1016/j.jnoncrysol.2013.12.010
10.1021/acs.chemrev.5b00008
10.3390/jfb13020040
10.1016/j.bprint.2019.e00073
10.1371/journal.pone.0085835
10.3390/polym11050898
10.1016/j.bprint.2016.08.003
10.1021/acsbiomaterials.9b00157
10.1089/ten.tec.2009.0280
10.1088/1758-5090/ab782d
10.1039/C8TB02382D
10.1021/acs.nanolett.7b03600
10.1016/j.msec.2014.07.040
10.1155/2020/3863428
10.1016/j.ijbiomac.2013.02.017
10.1002/bit.25160
10.1016/j.bprint.2020.e00075
10.1021/acsami.9b19037
10.1002/adfm.201804411
10.1021/bk-2017-1251.ch009
10.1021/acs.biomac.5b00188
10.1088/1758-5090/ab97a1
10.1002/bit.26349
10.1002/adma.201502422
10.1088/1758-5082/2/1/010201
10.1038/srep33178
10.1186/s12989-016-0168-y
10.1021/acsabm.0c01108
10.1089/ten.teb.2017.0081
10.1038/nbt.2958
10.1039/D2NR02176E
10.1021/acsami.7b13602
10.1002/adhm.201701175
10.1039/C7TB01594A
10.1021/nn401196a
10.1016/j.cbi.2019.04.036
10.1016/j.biomaterials.2020.120476
10.1016/j.msec.2014.02.036
10.1016/j.mattod.2013.06.004
10.1016/j.eurpolymj.2017.01.027
10.1186/s12989-019-0299-z
10.1016/j.actbio.2013.10.016
10.1021/acsbiomaterials.6b00196
10.1016/j.biomaterials.2015.10.076
10.1016/j.toxlet.2013.06.208
10.1021/acs.biomac.9b01266
10.1089/ten.2005.11.768
10.3390/bioengineering7020040
10.1088/1758-5082/1/3/035003
10.1016/j.progpolymsci.2019.101145
10.1016/j.bprint.2017.12.001
10.1002/adma.201101586
10.15171/apb.2015.061
10.1126/science.aaf3627
10.1021/acsami.7b19808
10.1016/j.msec.2017.08.069
10.3389/fsurg.2015.00039
10.1088/1758-5090/ab19fd
10.1088/1758-5090/ab0692
10.1088/1758-5090/8/3/035005
10.1007/s10570-009-9340-y
10.1088/1758-5090/ab0631
10.3389/fchem.2020.00297
10.1016/j.bprint.2019.e00058
10.1002/adma.201900332
10.1016/j.tiv.2015.06.012
10.1002/smll.200700217
10.1089/ten.tec.2019.0344
10.1002/adma.201001436
10.1021/acsnano.7b03038
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier Ltd.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.actbio.2022.08.014
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 69
ExternalDocumentID 10_1016_j_actbio_2022_08_014
S1742706122004901
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
RIG
SEW
SSH
7X8
ID FETCH-LOGICAL-c339t-4fc3d31f60a953c76c815df39fe59f0aefb71cdff310b5d5489997fbffd6d4783
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Thu Jul 10 19:11:08 EDT 2025
Tue Jul 01 01:17:40 EDT 2025
Thu Apr 24 23:06:38 EDT 2025
Fri Feb 23 02:38:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanocomposite
3D bioprinting
Biomedical applications
Cell-laden
Bioink
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-4fc3d31f60a953c76c815df39fe59f0aefb71cdff310b5d5489997fbffd6d4783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4325-1689
0000-0002-0494-8507
PQID 2702977375
PQPubID 23479
PageCount 25
ParticipantIDs proquest_miscellaneous_2702977375
crossref_citationtrail_10_1016_j_actbio_2022_08_014
crossref_primary_10_1016_j_actbio_2022_08_014
elsevier_sciencedirect_doi_10_1016_j_actbio_2022_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Acta biomaterialia
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Wang, Wang, Chen (bib0113) 2012; 166
Li, Wu, Chu, Gelinsky (bib0010) 2020; 140
Malda, Visser, Melchels, Jüngst, Hennink, Dhert, Groll, Hutmacher (bib0019) 2013; 25
Noh, Kim, Tran, Lee, Lee (bib0090) 2019; 23
Klemm, Kramer, Moritz, Lindström, Ankerfors, Gray, Dorris (bib0059) 2011; 50
Peak, Singh, Adlouni, Chen, Gaharwar (bib0031) 2019; 8
Cidonio, Glinka, Kim, Kanczler, Lanham, Ahlfeld, Lode, Dawson, Gelinsky, Oreffo (bib0033) 2020; 12
Ahn, Chantre, Gannon, Lind, Campbell, Grevesse, O'Connor, Parker (bib0064) 2018; 7
Zandi, Sani, Mostafavi, Ibrahim, Saleh, Shokrgozar, Tamjid, Weiss, Simchi, Annabi (bib0029) 2021; 267
Liu, Li, Lei, Cheng, Song, Gao, Hu, Wang, Zhang, Li, Wu, Sang, Bi, Pei (bib0028) 2020; 112
Cheng, Landish, Chi, Nannan, Jingyu, Sen, Xiangjin (bib0133) 2018; 82
Athukoralalage, Balu, Dutta, Roy Choudhury (bib0086) 2019; 11
Laffon, Fernández-Bertólez, Costa, Brandão, Teixeira, Pásaro, Valdiglesias (bib0115) 2018
Buyukhatipoglu, Chang, Sun, Clyne (bib0099) 2010; 16
Di Bella, Fosang, Donati, Wallace, Choong (bib0111) 2015; 2
Shin, Farzad, Tamayol, Manoharan, Mostafalu, Zhang, Akbari, Jung, Kim, Comotto, Annabi, Al-Hazmi, Dokmeci, Khademhosseini (bib0123) 2016; 28
Peak, Stein, Gold, Gaharwar (bib0024) 2018; 34
Carrow, Cross, Reese, Jaiswal, Gregory, Kaunas, Singh, Gaharwar (bib0040) 2018; 115
Wu, Yuan, Lin, Wenger, Tam, Shirley (bib0079) 2018; 9
Prestwich, Skardal, Zhang, McCoard, Oottamasathien (bib0104) 2010; 22
Rastin, Zhang, Mazinani, Hassan, Bi, Tung, Losic (bib0108) 2020; 12
Matai, Kaur, Seyedsalehi, McClinton, Laurencin (bib0008) 2020; 226
Cui, Li, Hartanto, Durham, Tang, Zhang, Hooper, Lim, Woodfield (bib0003) 2020; 1901648
Cidonio, Alcala-Orozco, Lim, Glinka, Mutreja, Kim, Dawson, Woodfield, Oreffo (bib0034) 2019; 11
Vakili-Ghartavol, Momtazi-Borojeni, Vakili-Ghartavol, Aiyelabegan, Jaafari, Rezayat, Arbabi Bidgoli (bib0114) 2020; 48
Malvindi, De Matteis, Galeone, Brunetti, Anyfantis, Athanassiou, Cingolani, Pompa (bib0117) 2014; 9
Trampe, Koren, Akkineni, Senwitz, Krujatz, Lode, Gelinsky, Kühl (bib0142) 2018; 28
Müller, Öztürk, Arlov, Gatenholm, Zenobi-Wong (bib0071) 2017; 45
Apelgren, Amoroso, Lindahl, Brantsing, Rotter, Gatenholm, Kölby (bib0088) 2017; 12
Zhu, Cui, Boualam, Masood, Flynn, Rao, Zhang, Zhang (bib0145) 2018; 29
Zhang, Eyisoylu, Qin, Rubert, Müller (bib0131) 2021; 121
Fard, Jafari, Eghbal (bib0138) 2015; 5
Zidarič, Milojević, Gradišnik, Kleinschek, Maver, Maver (bib0077) 2020; 10
Lin, Zhang, Chen, Zheng (bib0118) 2010; 4
Moroni, Burdick, Highley, Lee, Morimoto, Takeuchi, Yoo (bib0001) 2018; 3
Murphy, De Coppi, Atala (bib0148) 2020; 4
Mendes, Gómez-Florit, Hamilton, Detamore, Domingues, Reis, Gomes (bib0080) 2020; 12
Wenz, Borchers, Tovar, Kluger (bib0045) 2017; 9
Boularaoui, Shanti, Lanotte, Luo, Bawazir, Lee, Christoforou, Khan, Stefanini (bib0109) 2021; 7
Day (bib0055) 2005; 11
Murphy, Atala (bib0009) 2014; 32
Martínez Ávila, Schwarz, Rotter, Gatenholm (bib0068) 2016; 1–2
Börjesson, Westman (bib0060) 2015
You, Chen, Cooper, Chang, Eames (bib0044) 2019; 11
Ramos, Moroni (bib0011) 2020; 26
Zhang, Xu, Huang, Ling, Gao (bib0116) 2020; 16
Barua, Gogoi, Khan, Karak (bib0021) 2018
Ojansivu, Rashad, Ahlinder, Massera, Mishra, Syverud, Finne-Wistrand, Miettinen, Mustafa (bib0075) 2019; 11
Byambaa, Annabi, Yue, Trujillo-de Santiago, Alvarez, Jia, Kazemzadeh-Narbat, Shin, Tamayol, Khademhosseini (bib0030) 2017; 6
Ng, Chua, Shen (bib0012) 2019; 97
Madannejad, Shoaie, Jahanpeyma, Darvishi, Azimzadeh, Javadi (bib0135) 2019; 307
Kim, Kim (bib0047) 2020; 12
Research and Market (bib0150)
McKenna, Mikkelsen, Wehr, Gidley, Menzies (bib0096) 2009; 16
Wang, Wang, Xu (bib0084) 2020; 7
Chimene, Alge, Gaharwar (bib0023) 2015; 27
Kang, Il Kang, Le Thi, Park, Hong, Choi, Han, Park (bib0132) 2021; 10
Kolan, Semon, Bindbeutel, Day, Leu (bib0048) 2020; 18
Lee, Bae, Guillon, Chang, Arlov, Zenobi-Wong (bib0037) 2018; 10
Hauck, Ghazani, Chan (bib0119) 2008; 4
Gao, Schilling, Yonezawa, Wang, Dai, Cui (bib0042) 2014; 9
Gyles, Castro, Silva, Ribeiro-Costa (bib0091) 2017; 88
Lin, Dufresne (bib0061) 2014; 59
Zhai, Ruan, Ma, Cheng, Wu, Liu, Zhao, Pan, Lu (bib0146) 2018; 5
Ma, Cheung, Butcher (bib0094) 2021
Deo, Singh, Peak, Alge, Gaharwar (bib0004) 2020; 26
Dolati, Yu, Zhang, Jesus, Sander, Ozbolat (bib0127) 2014; 25
Luo, Song, Wang, Wang, Li, Wang, Liu, Liu, Wang (bib0073) 2020; 2020
Blanco Parte, Santoso, Chou, Verma, Wang, Ismadji, Cheng (bib0095) 2020; 40
Kollar, Závalová, Hošek, Havelka, Sopuch, Karpíšek, Třetinová, Suchý (bib0098) 2011; 11
Wüst, Godla, Müller, Hofmann (bib0043) 2014; 10
Chimene, Peak, Gentry, Carrow, Cross, Mondragon, Cardoso, Kaunas, Gaharwar (bib0027) 2018; 10
Lee, Bae, Levinson, Zenobi-Wong (bib0038) 2020; 12
Datta, Ozbolat, Ayan, Dhawan, Ozbolat (bib0089) 2017; 114
Bishop, Cena, Orandle, Yanamala, Dahm, Birch, Evans, Kodali, Eye, Battelli, Zeidler-Erdely, Casuccio, Bunker, Lupoi, Lersch, Stefaniak, Sager, Afshari, Schwegler-Berry, Friend, Kang, Siegrist, Mitchell, Lowry, Kashon, Mercer, Geraci, Schubauer-Berigan, Sargent, Erdely (bib0134) 2017; 11
Clark, Aleman, Mutkus, Skardal (bib0141) 2019; 16
Singh, Choudhury, Yu, Mironov, Naing (bib0147) 2020; 101
Nadernezhad, Caliskan, Topuz, Afghah, Erman, Koc (bib0025) 2019; 2
Apelgren, Karabulut, Amoroso, Mantas, Martínez Ávila, Kölby, Kondo, Toriz, Gatenholm (bib0081) 2019; 5
Leite, Sarker, Zehnder, Silva, Mano, Boccaccini (bib0041) 2016; 8
Sai Nievethitha, Subhapradha, Saravanan, Selvamurugan, Tsai, Srinivasan, Murugesan, Moorthi (bib0052) 2017; 98
Mobaraki, Ghaffari, Yazdanpanah, Luo, Mills (bib0014) 2020; 18
Fan, Shi, Yue, Sun, Yao (bib0046) 2019; 1213
Dufresne (bib0062) 2013; 16
Biju (bib0036) 2014; 43
Jessop, Al-Sabah, Gao, Kyle, Thomas, Badiei, Hawkins, Whitaker (bib0063) 2019; 11
Chimene, Miller, Cross, Jaiswal, Singh, Gaharwar (bib0016) 2020; 12
Gaharwar, Mihaila, Swami, Patel, Sant, Reis, Marques, Gomes, Khademhosseini (bib0039) 2013; 25
Möller, Amoroso, Hägg, Brantsing, Rotter, Apelgren, Lindahl, Kölby, Gatenholm (bib0070) 2017; 5
Malekpour, Chen (bib0149) 2022; 13
Alcala-Orozco, Mutreja, Cui, Kumar, Hooper, Lim, Woodfield (bib0106) 2020; 18
Moorthi, Parihar, Saravanan, Vairamani, Selvamurugan (bib0053) 2014; 43
Nie, Sun, Lv, Lu, Huangfu, Li, Zhang, Wang, Wang, Zhou (bib0110) 2022
Choe, Oh, Seok, Park, Lee (bib0006) 2019; 11
Zou, Tian, Luo, Yuan, Xu, Yang, Ma, Ye (bib0078) 2021; 269
Zhang, Yu, Dolati, Ozbolat (bib0126) 2014; 39
Gerhardt, Boccaccini (bib0056) 2010; 3
Nadernezhad, Khani, Koc (bib0125) 2017; 65
Guillemot, Mironov, Nakamura (bib0005) 2010; 2
Nguyen, Hgg, Forsman, Ekholm, Nimkingratana, Brantsing, Kalogeropoulos, Zaunz, Concaro, Brittberg, Lindahl, Gatenholm, Enejder, Simonsson (bib0069) 2017; 7
Boyles, Young, Brown, MacCalman, Cowie, Moisala, Smail, Smith, Proudfoot, Windle, Stone (bib0140) 2015; 29
Xin, Li, Ma, Pan, Shi (bib0107) 2020; 8
Barrère, Van Blitterswijk, de Groot (bib0057) 2006; 1
Chimene, Kaunas, Gaharwar (bib0018) 2020; 32
Amenta, Aschberger (bib0122) 2015; 7
Ozbolat, Hospodiuk (bib0013) 2016; 76
Hong, Diao, Antaris, Dai (bib0120) 2015; 115
Tognato, Armiento, Bonfrate, Levato, Malda, Alini, Eglin, Giancane, Serra (bib0102) 2019; 29
Trachsel, Broguiere, Rosenboom, Zenobi-Wong, Benetti (bib0092) 2018; 6
Nadernezhad, Khani, Skvortsov, Toprakhisar (bib0124) 2016; 6
Zhang, Khademhosseini (bib0017) 2017; 356
Iriarte-Mesa, López, Matos-Peralta, de la Vega-Hernández, Antuch (bib0112) 2020
Wan, Wang, Lv, Dong, Zhao, Yang, Guo (bib0139) 2013; 221
Gomes, Rodrigues, Domingues, Reis (bib0002) 2017; 23
Kolan, Liu, Baldridge, Murphy, Semon, Day, Leu (bib0050) 2017; 65
Sun, Starly, Daly, Burdick, Groll, Skeldon, Shu, Sakai, Shinohara, Nishikawa, Jang, Cho, Nie, Takeuchi, Ostrovidov, Khademhosseini, Kamm, Mironov, Moroni, Ozbolat (bib0007) 2020; 12
Axpe, Oyen (bib0085) 2016; 17
Martínez Ávila, Schwarz, Feldmann, Mantas, Von Bomhard, Gatenholm, Rotter (bib0097) 2014; 98
K. Syverud, Tissue engineering using plant-derived cellulose nanofibrils (CNF) as scaffold material, (2017) 171–189. 10.1021/bk-2017-1251.ch009.
Henriksson, Gatenholm, Hägg (bib0066) 2017; 9
Vallet-Regí, Ruiz-Hernández (bib0051) 2011; 23
Zhu, Harris, Zhang (bib0130) 2016; 2016
Yuan, Zhang, Sun, Wei, Wei (bib0136) 2019; 16
Izadifar, Chapman, Babyn, Chen, Kelly (bib0128) 2018; 24
Groll, Burdick, Cho, Derby, Gelinsky, Heilshorn, Jüngst, Malda, Mironov, Nakayama, Ovsianikov, Sun, Takeuchi, Yoo, Woodfield (bib0015) 2019; 11
Stanco, Boffito, Bogni, Puricelli, Barrero, Soldati, Ciardelli (bib0074) 2020; 21
Narayanan, Huebner, Fisher, Spang, Starly, Shirwaiker (bib0144) 2016; 2
Moorthi, Vimalraj, Avani, He, Partridge, Selvamurugan (bib0054) 2013; 56
Wang, Zhao, Liu, Weir, Zhou, Xu (bib0058) 2015; 2
Ahlfeld, Cidonio, Kilian, Duin, Akkineni, Dawson, Yang, Lode, Oreffo, Gelinsky (bib0032) 2017; 9
Adib, Sheikhi, Shahhosseini, Simeunović, Wu, Castro, Zhao, Khademhosseini, Hoelzle (bib0035) 2020; 12
Buyukhatipoglu, Jo, Sun, Clyne (bib0100) 2009; 1
Kim, Jang, Kim (bib0103) 2019; 19
Shin, Kwak, Hyun (bib0143) 2018; 10
Wilson, Cross, Peak, Gaharwar (bib0026) 2017; 9
Cha, Shin, Annabi, Dokmeci, Khademhosseini (bib0121) 2013; 7
Markstedt, Mantas, Tournier, Martínez Ávila, Hägg, Gatenholm (bib0067) 2015; 16
Kong, Lee, Mooney (bib0087) 2002; 43
Hoppe, Sarker, Detsch, Hild, Mohn, Stark, Boccaccini (bib0049) 2014; 387
Zhu, Shin, van Kempen, Li, Ponraj, Nasajpour, Mandla, Hu, Liu, Leijten, Lin, Hussain, Zhang, Tamayol, Khademhosseini (bib0105) 2017; 27
Gaharwar, Peppas, Khademhosseini (bib0020) 2014; 111
Maturavongsadit, Narayanan, Chansoria, Shirwaiker, Benhabbour (bib0076) 2021; 4
Ou, Song, Liang, Liu, Feng, Deng, Sun, Shao (bib0137) 2016; 13
Gaharwar, Cross, Peak, Gold, Carrow, Brokesh, Singh (bib0022) 2019; 31
Gantumur, Nakahata, Kojima, Sakai (bib0083) 2020; 6
Betsch, Cristian, Lin, Blaeser, Schöneberg, Vogt, Buhl, Fischer, Duarte Campos (bib0101) 2018; 7
Trachsel, Johnbosco, Lang, Benetti, Zenobi-Wong (bib0072) 2019; 20
Shin, Park, Park, Jeong, Na, Youn, Hyun (bib0082) 2017; 12
Huang, Kumar Shrestha, Ariga, Hsu (bib0129) 2017; 5
De France, Yager, Chan, Corbett, Cranston, Hoare (bib0093) 2017; 17
Kolan (10.1016/j.actbio.2022.08.014_bib0048) 2020; 18
Ozbolat (10.1016/j.actbio.2022.08.014_bib0013) 2016; 76
Athukoralalage (10.1016/j.actbio.2022.08.014_bib0086) 2019; 11
Li (10.1016/j.actbio.2022.08.014_bib0010) 2020; 140
Trampe (10.1016/j.actbio.2022.08.014_bib0142) 2018; 28
Zhu (10.1016/j.actbio.2022.08.014_bib0145) 2018; 29
Deo (10.1016/j.actbio.2022.08.014_bib0004) 2020; 26
Chimene (10.1016/j.actbio.2022.08.014_bib0018) 2020; 32
Nie (10.1016/j.actbio.2022.08.014_bib0110) 2022
Luo (10.1016/j.actbio.2022.08.014_bib0073) 2020; 2020
Datta (10.1016/j.actbio.2022.08.014_bib0089) 2017; 114
Zhang (10.1016/j.actbio.2022.08.014_bib0116) 2020; 16
Chimene (10.1016/j.actbio.2022.08.014_bib0016) 2020; 12
Gerhardt (10.1016/j.actbio.2022.08.014_bib0056) 2010; 3
Wang (10.1016/j.actbio.2022.08.014_bib0058) 2015; 2
Maturavongsadit (10.1016/j.actbio.2022.08.014_bib0076) 2021; 4
Stanco (10.1016/j.actbio.2022.08.014_bib0074) 2020; 21
Müller (10.1016/j.actbio.2022.08.014_bib0071) 2017; 45
Rastin (10.1016/j.actbio.2022.08.014_bib0108) 2020; 12
Nadernezhad (10.1016/j.actbio.2022.08.014_bib0025) 2019; 2
Wilson (10.1016/j.actbio.2022.08.014_bib0026) 2017; 9
Shin (10.1016/j.actbio.2022.08.014_bib0143) 2018; 10
Apelgren (10.1016/j.actbio.2022.08.014_bib0088) 2017; 12
Xin (10.1016/j.actbio.2022.08.014_bib0107) 2020; 8
Kong (10.1016/j.actbio.2022.08.014_bib0087) 2002; 43
Malvindi (10.1016/j.actbio.2022.08.014_bib0117) 2014; 9
Lee (10.1016/j.actbio.2022.08.014_bib0037) 2018; 10
Zidarič (10.1016/j.actbio.2022.08.014_bib0077) 2020; 10
Moorthi (10.1016/j.actbio.2022.08.014_bib0053) 2014; 43
Trachsel (10.1016/j.actbio.2022.08.014_bib0072) 2019; 20
Tognato (10.1016/j.actbio.2022.08.014_bib0102) 2019; 29
Dolati (10.1016/j.actbio.2022.08.014_bib0127) 2014; 25
Gao (10.1016/j.actbio.2022.08.014_bib0042) 2014; 9
McKenna (10.1016/j.actbio.2022.08.014_bib0096) 2009; 16
Leite (10.1016/j.actbio.2022.08.014_bib0041) 2016; 8
Wang (10.1016/j.actbio.2022.08.014_bib0084) 2020; 7
Cidonio (10.1016/j.actbio.2022.08.014_bib0034) 2019; 11
Mobaraki (10.1016/j.actbio.2022.08.014_bib0014) 2020; 18
Buyukhatipoglu (10.1016/j.actbio.2022.08.014_bib0099) 2010; 16
Gyles (10.1016/j.actbio.2022.08.014_bib0091) 2017; 88
Wu (10.1016/j.actbio.2022.08.014_bib0079) 2018; 9
Ma (10.1016/j.actbio.2022.08.014_bib0094) 2021
Moorthi (10.1016/j.actbio.2022.08.014_bib0054) 2013; 56
Nadernezhad (10.1016/j.actbio.2022.08.014_bib0124) 2016; 6
Peak (10.1016/j.actbio.2022.08.014_bib0024) 2018; 34
Hong (10.1016/j.actbio.2022.08.014_bib0120) 2015; 115
Zhang (10.1016/j.actbio.2022.08.014_bib0126) 2014; 39
Möller (10.1016/j.actbio.2022.08.014_bib0070) 2017; 5
Zhu (10.1016/j.actbio.2022.08.014_bib0105) 2017; 27
De France (10.1016/j.actbio.2022.08.014_bib0093) 2017; 17
Martínez Ávila (10.1016/j.actbio.2022.08.014_bib0097) 2014; 98
Cha (10.1016/j.actbio.2022.08.014_bib0121) 2013; 7
Moroni (10.1016/j.actbio.2022.08.014_bib0001) 2018; 3
Cui (10.1016/j.actbio.2022.08.014_bib0003) 2020; 1901648
Markstedt (10.1016/j.actbio.2022.08.014_bib0067) 2015; 16
Day (10.1016/j.actbio.2022.08.014_bib0055) 2005; 11
Huang (10.1016/j.actbio.2022.08.014_bib0129) 2017; 5
Fard (10.1016/j.actbio.2022.08.014_bib0138) 2015; 5
Sun (10.1016/j.actbio.2022.08.014_bib0007) 2020; 12
Nguyen (10.1016/j.actbio.2022.08.014_bib0069) 2017; 7
Betsch (10.1016/j.actbio.2022.08.014_bib0101) 2018; 7
Yuan (10.1016/j.actbio.2022.08.014_bib0136) 2019; 16
Boularaoui (10.1016/j.actbio.2022.08.014_bib0109) 2021; 7
Zhang (10.1016/j.actbio.2022.08.014_bib0131) 2021; 121
Singh (10.1016/j.actbio.2022.08.014_bib0147) 2020; 101
Kim (10.1016/j.actbio.2022.08.014_bib0103) 2019; 19
Gaharwar (10.1016/j.actbio.2022.08.014_bib0022) 2019; 31
Jiang (10.1016/j.actbio.2022.08.014_bib0113) 2012; 166
Klemm (10.1016/j.actbio.2022.08.014_bib0059) 2011; 50
Kim (10.1016/j.actbio.2022.08.014_bib0047) 2020; 12
Madannejad (10.1016/j.actbio.2022.08.014_bib0135) 2019; 307
Gantumur (10.1016/j.actbio.2022.08.014_bib0083) 2020; 6
Peak (10.1016/j.actbio.2022.08.014_bib0031) 2019; 8
Kang (10.1016/j.actbio.2022.08.014_bib0132) 2021; 10
Guillemot (10.1016/j.actbio.2022.08.014_bib0005) 2010; 2
Matai (10.1016/j.actbio.2022.08.014_bib0008) 2020; 226
Liu (10.1016/j.actbio.2022.08.014_bib0028) 2020; 112
You (10.1016/j.actbio.2022.08.014_bib0044) 2019; 11
Lin (10.1016/j.actbio.2022.08.014_bib0118) 2010; 4
Henriksson (10.1016/j.actbio.2022.08.014_bib0066) 2017; 9
Nadernezhad (10.1016/j.actbio.2022.08.014_bib0125) 2017; 65
Kolan (10.1016/j.actbio.2022.08.014_bib0050) 2017; 65
Adib (10.1016/j.actbio.2022.08.014_bib0035) 2020; 12
Clark (10.1016/j.actbio.2022.08.014_bib0141) 2019; 16
Biju (10.1016/j.actbio.2022.08.014_bib0036) 2014; 43
Ojansivu (10.1016/j.actbio.2022.08.014_bib0075) 2019; 11
Ramos (10.1016/j.actbio.2022.08.014_bib0011) 2020; 26
Gaharwar (10.1016/j.actbio.2022.08.014_bib0020) 2014; 111
Barrère (10.1016/j.actbio.2022.08.014_bib0057) 2006; 1
Prestwich (10.1016/j.actbio.2022.08.014_bib0104) 2010; 22
Kollar (10.1016/j.actbio.2022.08.014_bib0098) 2011; 11
Trachsel (10.1016/j.actbio.2022.08.014_bib0092) 2018; 6
Lee (10.1016/j.actbio.2022.08.014_bib0038) 2020; 12
Barua (10.1016/j.actbio.2022.08.014_bib0021) 2018
Izadifar (10.1016/j.actbio.2022.08.014_bib0128) 2018; 24
Amenta (10.1016/j.actbio.2022.08.014_bib0122) 2015; 7
Mendes (10.1016/j.actbio.2022.08.014_bib0080) 2020; 12
Gaharwar (10.1016/j.actbio.2022.08.014_bib0039) 2013; 25
Wenz (10.1016/j.actbio.2022.08.014_bib0045) 2017; 9
Zou (10.1016/j.actbio.2022.08.014_bib0078) 2021; 269
Ahn (10.1016/j.actbio.2022.08.014_bib0064) 2018; 7
Iriarte-Mesa (10.1016/j.actbio.2022.08.014_bib0112) 2020
Chimene (10.1016/j.actbio.2022.08.014_bib0027) 2018; 10
Research and Market (10.1016/j.actbio.2022.08.014_bib0150)
Choe (10.1016/j.actbio.2022.08.014_bib0006) 2019; 11
Cidonio (10.1016/j.actbio.2022.08.014_bib0033) 2020; 12
Ahlfeld (10.1016/j.actbio.2022.08.014_bib0032) 2017; 9
Lin (10.1016/j.actbio.2022.08.014_bib0061) 2014; 59
Shin (10.1016/j.actbio.2022.08.014_bib0082) 2017; 12
Alcala-Orozco (10.1016/j.actbio.2022.08.014_bib0106) 2020; 18
Apelgren (10.1016/j.actbio.2022.08.014_bib0081) 2019; 5
Boyles (10.1016/j.actbio.2022.08.014_bib0140) 2015; 29
Carrow (10.1016/j.actbio.2022.08.014_bib0040) 2018; 115
Shin (10.1016/j.actbio.2022.08.014_bib0123) 2016; 28
Groll (10.1016/j.actbio.2022.08.014_bib0015) 2019; 11
Jessop (10.1016/j.actbio.2022.08.014_bib0063) 2019; 11
Vakili-Ghartavol (10.1016/j.actbio.2022.08.014_bib0114) 2020; 48
Dufresne (10.1016/j.actbio.2022.08.014_bib0062) 2013; 16
Blanco Parte (10.1016/j.actbio.2022.08.014_bib0095) 2020; 40
Buyukhatipoglu (10.1016/j.actbio.2022.08.014_bib0100) 2009; 1
Noh (10.1016/j.actbio.2022.08.014_bib0090) 2019; 23
Laffon (10.1016/j.actbio.2022.08.014_bib0115) 2018
Zhu (10.1016/j.actbio.2022.08.014_bib0130) 2016; 2016
Wüst (10.1016/j.actbio.2022.08.014_bib0043) 2014; 10
Börjesson (10.1016/j.actbio.2022.08.014_bib0060) 2015
10.1016/j.actbio.2022.08.014_bib0065
Chimene (10.1016/j.actbio.2022.08.014_bib0023) 2015; 27
Cheng (10.1016/j.actbio.2022.08.014_bib0133) 2018; 82
Fan (10.1016/j.actbio.2022.08.014_bib0046) 2019; 1213
Byambaa (10.1016/j.actbio.2022.08.014_bib0030) 2017; 6
Hoppe (10.1016/j.actbio.2022.08.014_bib0049) 2014; 387
Ou (10.1016/j.actbio.2022.08.014_bib0137) 2016; 13
Malekpour (10.1016/j.actbio.2022.08.014_bib0149) 2022; 13
Zhang (10.1016/j.actbio.2022.08.014_bib0017) 2017; 356
Martínez Ávila (10.1016/j.actbio.2022.08.014_bib0068) 2016; 1–2
Narayanan (10.1016/j.actbio.2022.08.014_bib0144) 2016; 2
Malda (10.1016/j.actbio.2022.08.014_bib0019) 2013; 25
Zhai (10.1016/j.actbio.2022.08.014_bib0146) 2018; 5
Hauck (10.1016/j.actbio.2022.08.014_bib0119) 2008; 4
Wan (10.1016/j.actbio.2022.08.014_bib0139) 2013; 221
Murphy (10.1016/j.actbio.2022.08.014_bib0148) 2020; 4
Zandi (10.1016/j.actbio.2022.08.014_bib0029) 2021; 267
Axpe (10.1016/j.actbio.2022.08.014_bib0085) 2016; 17
Murphy (10.1016/j.actbio.2022.08.014_bib0009) 2014; 32
Di Bella (10.1016/j.actbio.2022.08.014_bib0111) 2015; 2
Ng (10.1016/j.actbio.2022.08.014_bib0012) 2019; 97
Sai Nievethitha (10.1016/j.actbio.2022.08.014_bib0052) 2017; 98
Bishop (10.1016/j.actbio.2022.08.014_bib0134) 2017; 11
Gomes (10.1016/j.actbio.2022.08.014_bib0002) 2017; 23
Vallet-Regí (10.1016/j.actbio.2022.08.014_bib0051) 2011; 23
References_xml – volume: 356
  year: 2017
  ident: bib0017
  article-title: Advances in engineering hydrogels
  publication-title: Science
– volume: 34
  start-page: 917
  year: 2018
  end-page: 925
  ident: bib0024
  article-title: Nanoengineered colloidal inks for 3D bioprinting
  publication-title: Langmuir
– volume: 6
  start-page: 1
  year: 2017
  end-page: 15
  ident: bib0030
  article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue
  publication-title: Adv. Healthc. Mater.
– volume: 5
  start-page: 8854
  year: 2017
  end-page: 8864
  ident: bib0129
  article-title: A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 630
  year: 2014
  end-page: 640
  ident: bib0043
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
– volume: 12
  year: 2020
  ident: bib0080
  article-title: Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures
  publication-title: Biofabrication
– volume: 39
  start-page: 126
  year: 2014
  end-page: 133
  ident: bib0126
  article-title: Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits
  publication-title: Mater. Sci. Eng. C
– volume: 2
  year: 2015
  ident: bib0058
  article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
  publication-title: Bone Res.
– volume: 20
  start-page: 4502
  year: 2019
  end-page: 4511
  ident: bib0072
  article-title: Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs
  publication-title: Biomacromolecules
– volume: 10
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib0077
  article-title: Polysaccharide-based bioink formulation for 3D bioprinting of an
  publication-title: Nanomaterials
– volume: 1–2
  start-page: 22
  year: 2016
  end-page: 35
  ident: bib0068
  article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration
  publication-title: Bioprinting
– volume: 18
  year: 2020
  ident: bib0106
  article-title: Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity
  publication-title: Bioprinting
– volume: 5
  start-page: 2482
  year: 2019
  end-page: 2490
  ident: bib0081
  article-title: human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink
  publication-title: ACS Biomater. Sci. Eng.
– volume: 6
  start-page: 7568
  year: 2018
  end-page: 7572
  ident: bib0092
  article-title: Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture
  publication-title: J. Mater. Chem. B
– volume: 11
  start-page: 768
  year: 2005
  end-page: 777
  ident: bib0055
  article-title: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis
  publication-title: Tissue Eng.
– volume: 19
  start-page: 8612
  year: 2019
  end-page: 8620
  ident: bib0103
  article-title: A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration
  publication-title: Nano Lett.
– volume: 16
  start-page: e00058
  year: 2019
  ident: bib0141
  article-title: A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles
  publication-title: Bioprinting
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0069
  article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib0107
  article-title: MXenes and their applications in wearable sensors
  publication-title: Front. Chem.
– reference: K. Syverud, Tissue engineering using plant-derived cellulose nanofibrils (CNF) as scaffold material, (2017) 171–189. 10.1021/bk-2017-1251.ch009.
– volume: 11
  year: 2019
  ident: bib0075
  article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
  publication-title: Biofabrication
– volume: 43
  start-page: 6239
  year: 2002
  end-page: 6246
  ident: bib0087
  article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration
  publication-title: Polymer
– volume: 10
  start-page: 23573
  year: 2018
  end-page: 23582
  ident: bib0143
  article-title: Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink
  publication-title: ACS Appl. Mater. Interfaces
– volume: 65
  start-page: 44
  year: 2017
  end-page: 47
  ident: bib0125
  article-title: Biomanufacturing of heterogeneous hydrogel structures with patterned electrically conductive regions
  publication-title: Procedia CIRP
– volume: 2016
  start-page: 4185
  year: 2016
  end-page: 4188
  ident: bib0130
  article-title: Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.
– volume: 3
  start-page: 21
  year: 2018
  end-page: 37
  ident: bib0001
  article-title: Biofabrication strategies for 3D
  publication-title: Nat. Rev. Mater.
– volume: 17
  year: 2016
  ident: bib0085
  article-title: Applications of alginate-based bioinks in 3D bioprinting
  publication-title: Int. J. Mol. Sci.
– volume: 1
  start-page: 317
  year: 2006
  end-page: 332
  ident: bib0057
  article-title: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
  publication-title: Int. J. Nanomed.
– volume: 23
  start-page: 1
  year: 2019
  end-page: 9
  ident: bib0090
  article-title: 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering
  publication-title: Biomater. Res.
– volume: 29
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0102
  article-title: A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: bib0009
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– volume: 114
  start-page: 2424
  year: 2017
  end-page: 2431
  ident: bib0089
  article-title: Bone tissue bioprinting for craniofacial reconstruction
  publication-title: Biotechnol. Bioeng.
– volume: 4
  start-page: 5421
  year: 2010
  end-page: 5429
  ident: bib0118
  article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship
  publication-title: ACS Nano
– volume: 25
  start-page: 3329
  year: 2013
  end-page: 3336
  ident: bib0039
  article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells
  publication-title: Adv. Mater.
– volume: 2
  year: 2010
  ident: bib0005
  article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux (3B’09)
  publication-title: Biofabrication
– volume: 12
  year: 2020
  ident: bib0035
  article-title: Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue
  publication-title: Biofabrication
– volume: 25
  start-page: 5011
  year: 2013
  end-page: 5028
  ident: bib0019
  article-title: 25th anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
– volume: 56
  start-page: 181
  year: 2013
  end-page: 185
  ident: bib0054
  article-title: Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment
  publication-title: Int. J. Biol. Macromol.
– volume: 59
  start-page: 302
  year: 2014
  end-page: 325
  ident: bib0061
  article-title: Nanocellulose in biomedicine: Current status and future prospect
  publication-title: Eur. Polym. J.
– volume: 2
  start-page: 796
  year: 2019
  end-page: 806
  ident: bib0025
  article-title: Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting
  publication-title: ACS Appl. Bio Mater.
– volume: 112
  year: 2020
  ident: bib0028
  article-title: 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model
  publication-title: Mater. Sci. Eng. C
– volume: 12
  start-page: 16069
  year: 2020
  end-page: 16080
  ident: bib0108
  article-title: 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks
  publication-title: Nanoscale
– volume: 16
  start-page: 1489
  year: 2015
  end-page: 1496
  ident: bib0067
  article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
– ident: bib0150
  article-title: 3D bioprinting market: global industry trends, share, size, growth, opportunity and forecast 2022–2027
– volume: 16
  start-page: 220
  year: 2013
  end-page: 227
  ident: bib0062
  article-title: Nanocellulose: a new ageless bionanomaterial
  publication-title: Mater. Today
– volume: 16
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib0116
  article-title: New insights into biocompatible iron oxide nanoparticles: a potential booster of gene delivery to stem cells
  publication-title: Small
– volume: 115
  start-page: 10816
  year: 2015
  end-page: 10906
  ident: bib0120
  article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy
  publication-title: Chem. Rev.
– volume: 269
  year: 2021
  ident: bib0078
  article-title: Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks
  publication-title: Carbohydr. Polym.
– volume: 22
  start-page: 4736
  year: 2010
  end-page: 4740
  ident: bib0104
  article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels
  publication-title: Adv. Mater.
– volume: 166
  start-page: 1533
  year: 2012
  end-page: 1551
  ident: bib0113
  article-title: Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment
  publication-title: Appl. Biochem. Biotechnol.
– volume: 31
  start-page: 1
  year: 2019
  end-page: 28
  ident: bib0022
  article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing
  publication-title: Adv. Mater.
– volume: 7
  start-page: 5810
  year: 2021
  end-page: 5822
  ident: bib0109
  article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues
  publication-title: ACS Biomater. Sci. Eng.
– volume: 5
  start-page: 447
  year: 2015
  end-page: 454
  ident: bib0138
  article-title: A review of molecular mechanisms involved in toxicity of nanoparticles
  publication-title: Adv. Pharm. Bull.
– volume: 267
  year: 2021
  ident: bib0029
  article-title: Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications
  publication-title: Biomaterials
– volume: 17
  start-page: 6487
  year: 2017
  end-page: 6495
  ident: bib0093
  article-title: Injectable anisotropic nanocomposite hydrogels direct
  publication-title: Nano Lett.
– year: 2020
  ident: bib0112
  article-title: Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications
– volume: 16
  start-page: 631
  year: 2010
  end-page: 642
  ident: bib0099
  article-title: Bioprinted nanoparticles for tissue engineering applications
  publication-title: Tissue Eng. Part C Methods
– volume: 12
  start-page: 2941
  year: 2017
  end-page: 2954
  ident: bib0082
  article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives
  publication-title: BioResources
– volume: 121
  start-page: 637
  year: 2021
  end-page: 652
  ident: bib0131
  article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization
  publication-title: Acta Biomater.
– volume: 13
  year: 2016
  ident: bib0137
  article-title: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms
  publication-title: Part. Fibre Toxicol.
– volume: 26
  start-page: 91
  year: 2020
  end-page: 106
  ident: bib0011
  article-title: Tissue engineering and regenerative medicine 2019: the role of biofabrication - a year in review
  publication-title: Tissue Eng. Part C Methods
– volume: 5
  year: 2018
  ident: bib0146
  article-title: 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both
  publication-title: Adv. Sci.
– volume: 43
  start-page: 458
  year: 2014
  end-page: 464
  ident: bib0053
  article-title: Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation
  publication-title: Mater. Sci. Eng. C
– volume: 18
  start-page: e00075
  year: 2020
  ident: bib0048
  article-title: Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells
  publication-title: Bioprinting
– volume: 221
  start-page: 118
  year: 2013
  end-page: 127
  ident: bib0139
  article-title: Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages
  publication-title: Toxicol. Lett.
– volume: 307
  start-page: 206
  year: 2019
  end-page: 222
  ident: bib0135
  article-title: Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems
  publication-title: Chem. Biol. Interact.
– volume: 2
  start-page: 1732
  year: 2016
  end-page: 1742
  ident: bib0144
  article-title: 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells
  publication-title: ACS Biomater. Sci. Eng.
– volume: 32
  year: 2020
  ident: bib0018
  article-title: Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies
  publication-title: Adv. Mater.
– volume: 6
  start-page: 33178
  year: 2016
  ident: bib0124
  article-title: Multifunctional 3D printing of heterogeneous hydrogel structures
  publication-title: Sci. Rep.
– volume: 11
  year: 2019
  ident: bib0034
  article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks
  publication-title: Biofabrication
– volume: 12
  year: 2017
  ident: bib0088
  article-title: Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage
  publication-title: PLoS One
– volume: 1
  year: 2009
  ident: bib0100
  article-title: The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system
  publication-title: Biofabrication
– volume: 12
  year: 2020
  ident: bib0033
  article-title: Nanoclay-based 3D printed scaffolds promote vascular ingrowth
  publication-title: Biofabrication
– volume: 11
  start-page: 898
  year: 2019
  ident: bib0086
  article-title: 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review
  publication-title: Polymers
– volume: 29
  year: 2018
  ident: bib0145
  article-title: 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering
  publication-title: Nanotechnology
– volume: 13
  year: 2022
  ident: bib0149
  article-title: Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views
  publication-title: J. Funct. Biomater.
– volume: 27
  start-page: 7261
  year: 2015
  end-page: 7284
  ident: bib0023
  article-title: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects
  publication-title: Adv. Mater.
– volume: 111
  start-page: 441
  year: 2014
  end-page: 453
  ident: bib0020
  article-title: Nanocomposite hydrogels for biomedical applications
  publication-title: Biotechnol. Bioeng.
– volume: 101
  start-page: 14
  year: 2020
  end-page: 25
  ident: bib0147
  article-title: bioprinting – bioprinting from benchside to bedside?
  publication-title: Acta Biomater.
– volume: 40
  start-page: 397
  year: 2020
  end-page: 414
  ident: bib0095
  article-title: Current progress on the production, modification, and applications of bacterial cellulose
  publication-title: Crit. Rev. Biotechnol.
– volume: 65
  start-page: 38
  year: 2017
  end-page: 43
  ident: bib0050
  article-title: Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications
  publication-title: Procedia CIRP
– volume: 2020
  year: 2020
  ident: bib0073
  article-title: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting
  publication-title: J. Nanomater.
– volume: 12
  year: 2020
  ident: bib0007
  article-title: The bioprinting roadmap
  publication-title: Biofabrication
– volume: 28
  start-page: 3280
  year: 2016
  end-page: 3289
  ident: bib0123
  article-title: A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics
  publication-title: Adv. Mater.
– volume: 10
  start-page: 37820
  year: 2018
  end-page: 37828
  ident: bib0037
  article-title: Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  ident: bib0044
  article-title: Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting
  publication-title: Biofabrication
– volume: 10
  start-page: 426
  year: 2021
  end-page: 432
  ident: bib0132
  article-title: Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation
  publication-title: ACS Macro Lett.
– volume: 82
  start-page: 244
  year: 2018
  end-page: 252
  ident: bib0133
  article-title: 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG
  publication-title: Mater. Sci. Eng. C
– volume: 23
  start-page: 211
  year: 2017
  end-page: 224
  ident: bib0002
  article-title: Tissue engineering and regenerative medicine: new trends and directions - a year in review
  publication-title: Tissue Eng. Part B Rev.
– volume: 10
  start-page: 9957
  year: 2018
  end-page: 9968
  ident: bib0027
  article-title: Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  ident: bib0063
  article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting
  publication-title: Biofabrication
– start-page: 1
  year: 2021
  end-page: 16
  ident: bib0094
  article-title: Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 16
  start-page: 1047
  year: 2009
  end-page: 1055
  ident: bib0096
  article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524
  publication-title: Cellulose
– volume: 43
  start-page: 744
  year: 2014
  end-page: 764
  ident: bib0036
  article-title: Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy
  publication-title: Chem. Soc. Rev.
– start-page: 199
  year: 2018
  end-page: 213
  ident: bib0115
  article-title: Cellular and molecular toxicity of iron oxide nanoparticles
  publication-title: Cellular and Molecular Toxicology of Nanoparticles
– volume: 4
  start-page: 153
  year: 2008
  end-page: 159
  ident: bib0119
  article-title: Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells
  publication-title: Small
– volume: 8
  year: 2016
  ident: bib0041
  article-title: Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles
  publication-title: Biofabrication
– volume: 11
  start-page: 8849
  year: 2017
  end-page: 8863
  ident: bib0134
  article-title: toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects
  publication-title: ACS Nano
– volume: 9
  start-page: 1304
  year: 2014
  end-page: 1311
  ident: bib0042
  article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
  publication-title: Biotechnol. J.
– volume: 387
  start-page: 41
  year: 2014
  end-page: 46
  ident: bib0049
  article-title: reactivity of Sr-containing bioactive glass (type 1393) nanoparticles
  publication-title: J. Non. Cryst. Solids
– volume: 98
  start-page: 67
  year: 2017
  end-page: 74
  ident: bib0052
  article-title: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 29
  start-page: 1513
  year: 2015
  end-page: 1528
  ident: bib0140
  article-title: Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos
  publication-title: Toxicol.
– volume: 45
  start-page: 210
  year: 2017
  end-page: 223
  ident: bib0071
  article-title: Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications
  publication-title: Ann. Biomed. Eng.
– volume: 7
  year: 2020
  ident: bib0084
  article-title: Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications—a mini review
  publication-title: Bioengineering
– volume: 88
  start-page: 373
  year: 2017
  end-page: 392
  ident: bib0091
  article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations
  publication-title: Eur. Polym. J.
– volume: 25
  year: 2014
  ident: bib0127
  article-title: evaluation of carbon-nanotube-reinforced bioprintable vascular conduits
  publication-title: Nanotechnology
– volume: 6
  start-page: 43
  year: 2020
  end-page: 52
  ident: bib0083
  article-title: Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation
  publication-title: Int. J. Bioprint.
– volume: 2
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0111
  article-title: 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines
  publication-title: Front. Surg.
– volume: 11
  start-page: 23275
  year: 2019
  end-page: 23285
  ident: bib0006
  article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications
  publication-title: Nanoscale
– volume: 226
  year: 2020
  ident: bib0008
  article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering
  publication-title: Biomaterials
– volume: 9
  year: 2017
  ident: bib0045
  article-title: Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting
  publication-title: Biofabrication
– volume: 7
  start-page: 371
  year: 2015
  end-page: 386
  ident: bib0122
  article-title: Carbon nanotubes: potential medical applications and safety concerns
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 97
  year: 2019
  ident: bib0012
  article-title: Print Me An organ! why we are not there yet
  publication-title: Prog. Polym. Sci.
– volume: 7
  start-page: 2891
  year: 2013
  end-page: 2897
  ident: bib0121
  article-title: Carbon-based nanomaterials: multifunctional materials for biomedical engineering
  publication-title: ACS Nano
– volume: 3
  start-page: 3867
  year: 2010
  end-page: 3910
  ident: bib0056
  article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
  publication-title: Materials
– volume: 9
  year: 2017
  ident: bib0032
  article-title: Development of a clay based bioink for 3D cell printing for skeletal application
  publication-title: Biofabrication
– volume: 50
  start-page: 5438
  year: 2011
  end-page: 5466
  ident: bib0059
  article-title: Nanocelluloses: a new family of nature-based materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib0079
  article-title: 3D bioprinting of liver-mimetic construct with alginate /cellulose nanocrystal hybrid bioink
  publication-title: Bioprinting
– volume: 26
  start-page: 318
  year: 2020
  end-page: 338
  ident: bib0004
  article-title: Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds
  publication-title: Tissue Eng. Part A
– year: 2015
  ident: bib0060
  article-title: Crystalline nanocellulose-preparation, modification, and properties
  publication-title: Cellulose - Fundamental Aspects and Current Trends
– volume: 21
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib0074
  article-title: 3D bioprinting of human adipose-derived stem cells and their tenogenic differentiation in clinical-grade medium
  publication-title: Int. J. Mol. Sci.
– volume: 9
  year: 2017
  ident: bib0066
  article-title: Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds
  publication-title: Biofabrication
– volume: 18
  start-page: e00080
  year: 2020
  ident: bib0014
  article-title: Bioinks and bioprinting: a focused review
  publication-title: Bioprinting
– volume: 11
  start-page: 997
  year: 2011
  end-page: 1001
  ident: bib0098
  article-title: Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells
  publication-title: Int. Immunopharmacol.
– start-page: 8112
  year: 2022
  end-page: 8129
  ident: bib0110
  article-title: 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models
  publication-title: Nanoscale
– volume: 28
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0142
  article-title: Functionalized bioink with optical sensor nanoparticles for O
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 15976
  year: 2020
  end-page: 15988
  ident: bib0016
  article-title: Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  ident: bib0015
  article-title: A definition of bioinks and their distinction from biomaterial inks
  publication-title: Biofabrication
– volume: 115
  start-page: E3905
  year: 2018
  end-page: E3913
  ident: bib0040
  article-title: Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 48
  start-page: 443
  year: 2020
  end-page: 451
  ident: bib0114
  article-title: Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues
  publication-title: Artif. Cells Nanomed. Biotechnol.
– year: 2018
  ident: bib0021
  article-title: Silicon-Based Nanomaterials and Their Polymer Nanocomposites
– volume: 12
  year: 2020
  ident: bib0038
  article-title: Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting
  publication-title: Biofabrication
– volume: 98
  start-page: 7423
  year: 2014
  end-page: 7435
  ident: bib0097
  article-title: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 5
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0070
  article-title: chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs
  publication-title: Plast. Reconstr. Surg. Glob. Open
– volume: 4
  start-page: 2342
  year: 2021
  end-page: 2353
  ident: bib0076
  article-title: Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation
  publication-title: ACS Appl. Bio Mater.
– volume: 4
  start-page: 370
  year: 2020
  end-page: 380
  ident: bib0148
  article-title: Opportunities and challenges of translational 3D bioprinting
  publication-title: Nat. Biomed. Eng.
– volume: 76
  start-page: 321
  year: 2016
  end-page: 343
  ident: bib0013
  article-title: Current advances and future perspectives in extrusion-based bioprinting
  publication-title: Biomaterials
– volume: 1213
  year: 2019
  ident: bib0046
  article-title: 3D composite cell printing gelatin/sodium alginate/n-HAP bioscaffold
  publication-title: J. Phys. Conf. Ser.
– volume: 140
  year: 2020
  ident: bib0010
  article-title: 3D printing of hydrogels: rational design strategies and emerging biomedical applications
  publication-title: Mater. Sci. Eng. R Rep.
– volume: 16
  year: 2019
  ident: bib0136
  article-title: Cellular toxicity and immunological effects of carbon-based nanomaterials
  publication-title: Part. Fibre Toxicol.
– volume: 9
  start-page: 43449
  year: 2017
  end-page: 43458
  ident: bib0026
  article-title: Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  ident: bib0105
  article-title: Gold nanocomposite bioink for printing 3D cardiac constructs
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0064
  article-title: Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing
  publication-title: Adv. Healthc. Mater.
– volume: 24
  start-page: 74
  year: 2018
  end-page: 88
  ident: bib0128
  article-title: UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering
  publication-title: Tissue Eng. Part C Methods
– volume: 1901648
  start-page: 1
  year: 2020
  end-page: 27
  ident: bib0003
  article-title: Advances in extrusion 3D bioprinting : a focus on multicomponent hydrogel-based bioinks
  publication-title: Adv. Healthc. Mater.
– volume: 12
  year: 2020
  ident: bib0047
  article-title: Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration
  publication-title: Biofabrication
– volume: 8
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0031
  article-title: Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration
  publication-title: Adv. Healthc. Mater.
– volume: 23
  start-page: 5177
  year: 2011
  end-page: 5218
  ident: bib0051
  article-title: Bioceramics: from bone regeneration to cancer nanomedicine
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0101
  article-title: Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues
  publication-title: Adv. Healthc. Mater.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0117
  article-title: Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering
  publication-title: PLoS One
– volume: 3
  start-page: 21
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0001
  article-title: Biofabrication strategies for 3D in vitro models and regenerative medicine
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0006-y
– volume: 65
  start-page: 38
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0050
  article-title: Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.04.022
– volume: 24
  start-page: 74
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0128
  article-title: UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2017.0346
– volume: 48
  start-page: 443
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0114
  article-title: Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2019.1709855
– volume: 18
  start-page: e00080
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0014
  article-title: Bioinks and bioprinting: a focused review
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2020.e00080
– volume: 65
  start-page: 44
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0125
  article-title: Biomanufacturing of heterogeneous hydrogel structures with patterned electrically conductive regions
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.04.019
– start-page: 199
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0115
  article-title: Cellular and molecular toxicity of iron oxide nanoparticles
– volume: 98
  start-page: 7423
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0097
  article-title: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5819-z
– volume: 25
  start-page: 5011
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0019
  article-title: 25th anniversary article: engineering hydrogels for biofabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302042
– volume: 43
  start-page: 6239
  year: 2002
  ident: 10.1016/j.actbio.2022.08.014_bib0087
  article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration
  publication-title: Polymer
  doi: 10.1016/S0032-3861(02)00559-1
– volume: 115
  start-page: E3905
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0040
  article-title: Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716164115
– volume: 2
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0058
  article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
  publication-title: Bone Res.
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0007
  article-title: The bioprinting roadmap
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab5158
– volume: 12
  start-page: 16069
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0108
  article-title: 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks
  publication-title: Nanoscale
  doi: 10.1039/D0NR02581J
– volume: 7
  start-page: 5810
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0109
  article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c01193
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0069
  article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0077
  article-title: Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis
  publication-title: Nanomaterials
  doi: 10.3390/nano10040733
– volume: 26
  start-page: 318
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0004
  article-title: Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2019.0298
– volume: 112
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0028
  article-title: 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.110905
– volume: 9
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0066
  article-title: Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa5c1c
– volume: 1213
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0046
  article-title: 3D composite cell printing gelatin/sodium alginate/n-HAP bioscaffold
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1213/4/042020
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0101
  article-title: Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800894
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0033
  article-title: Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab8753
– volume: 25
  start-page: 3329
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0039
  article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300584
– volume: 9
  start-page: 1304
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0042
  article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400305
– volume: 25
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0127
  article-title: In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/14/145101
– volume: 12
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0088
  article-title: Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189428
– volume: 11
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0015
  article-title: A definition of bioinks and their distinction from biomaterial inks
  publication-title: Biofabrication
– volume: 28
  start-page: 3280
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0123
  article-title: A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506420
– volume: 10
  start-page: 23573
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0143
  article-title: Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05963
– volume: 1901648
  start-page: 1
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0003
  article-title: Advances in extrusion 3D bioprinting : a focus on multicomponent hydrogel-based bioinks
  publication-title: Adv. Healthc. Mater.
– volume: 17
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0085
  article-title: Applications of alginate-based bioinks in 3D bioprinting
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17121976
– volume: 5
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0070
  article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs
  publication-title: Plast. Reconstr. Surg. Glob. Open
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0074
  article-title: 3D bioprinting of human adipose-derived stem cells and their tenogenic differentiation in clinical-grade medium
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21228694
– volume: 2
  start-page: 796
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0025
  article-title: Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00665
– volume: 29
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0145
  article-title: 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaafa1
– volume: 11
  start-page: 997
  year: 2011
  ident: 10.1016/j.actbio.2022.08.014_bib0098
  article-title: Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.02.016
– volume: 27
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0105
  article-title: Gold nanocomposite bioink for printing 3D cardiac constructs
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605352
– volume: 101
  start-page: 14
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0147
  article-title: In situ bioprinting – bioprinting from benchside to bedside?
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.08.045
– volume: 11
  start-page: 23275
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0006
  article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications
  publication-title: Nanoscale
  doi: 10.1039/C9NR07643C
– volume: 43
  start-page: 744
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0036
  article-title: Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60273G
– volume: 59
  start-page: 302
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0061
  article-title: Nanocellulose in biomedicine: Current status and future prospect
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.07.025
– year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0021
– volume: 29
  start-page: 1
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0102
  article-title: A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics
  publication-title: Adv. Funct. Mater.
– volume: 269
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0078
  article-title: Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118222
– volume: 12
  start-page: 2941
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0082
  article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives
  publication-title: BioResources
  doi: 10.15376/biores.12.2.2941-2954
– volume: 98
  start-page: 67
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0052
  article-title: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.01.089
– volume: 10
  start-page: 426
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0132
  article-title: Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00845
– volume: 23
  start-page: 1
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0090
  article-title: 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering
  publication-title: Biomater. Res.
  doi: 10.1186/s40824-018-0152-8
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0030
  article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700015
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0047
  article-title: Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration
  publication-title: Biofabrication
– volume: 4
  start-page: 370
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0148
  article-title: Opportunities and challenges of translational 3D bioprinting
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0471-7
– volume: 9
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0045
  article-title: Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa91ec
– volume: 7
  start-page: 371
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0122
  article-title: Carbon nanotubes: potential medical applications and safety concerns
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1317
– volume: 10
  start-page: 37820
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0037
  article-title: Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13166
– volume: 6
  start-page: 43
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0083
  article-title: Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation
  publication-title: Int. J. Bioprint.
  doi: 10.18063/ijb.v6i1.250
– volume: 19
  start-page: 8612
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0103
  article-title: A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03182
– volume: 40
  start-page: 397
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0095
  article-title: Current progress on the production, modification, and applications of bacterial cellulose
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2020.1713721
– volume: 4
  start-page: 5421
  year: 2010
  ident: 10.1016/j.actbio.2022.08.014_bib0118
  article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship
  publication-title: ACS Nano
  doi: 10.1021/nn1010792
– volume: 34
  start-page: 917
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0024
  article-title: Nanoengineered colloidal inks for 3D bioprinting
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b02540
– volume: 50
  start-page: 5438
  year: 2011
  ident: 10.1016/j.actbio.2022.08.014_bib0059
  article-title: Nanocelluloses: a new family of nature-based materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201001273
– volume: 45
  start-page: 210
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0071
  article-title: Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1704-5
– volume: 166
  start-page: 1533
  year: 2012
  ident: 10.1016/j.actbio.2022.08.014_bib0113
  article-title: Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-012-9548-4
– volume: 3
  start-page: 3867
  year: 2010
  ident: 10.1016/j.actbio.2022.08.014_bib0056
  article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
  publication-title: Materials
  doi: 10.3390/ma3073867
– volume: 121
  start-page: 637
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0131
  article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.12.026
– volume: 140
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0010
  article-title: 3D printing of hydrogels: rational design strategies and emerging biomedical applications
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2020.100543
– volume: 32
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0018
  article-title: Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902026
– volume: 226
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0008
  article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119536
– volume: 9
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0032
  article-title: Development of a clay based bioink for 3D cell printing for skeletal application
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa7e96
– volume: 16
  start-page: 1
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0116
  article-title: New insights into biocompatible iron oxide nanoparticles: a potential booster of gene delivery to stem cells
  publication-title: Small
– year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0112
– volume: 387
  start-page: 41
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0049
  article-title: In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles
  publication-title: J. Non. Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2013.12.010
– volume: 115
  start-page: 10816
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0120
  article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00008
– volume: 13
  year: 2022
  ident: 10.1016/j.actbio.2022.08.014_bib0149
  article-title: Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb13020040
– year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0060
  article-title: Crystalline nanocellulose-preparation, modification, and properties
– volume: 18
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0106
  article-title: Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00073
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0117
  article-title: Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085835
– volume: 11
  start-page: 898
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0086
  article-title: 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review
  publication-title: Polymers
  doi: 10.3390/polym11050898
– volume: 1
  start-page: 317
  year: 2006
  ident: 10.1016/j.actbio.2022.08.014_bib0057
  article-title: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics
  publication-title: Int. J. Nanomed.
– volume: 1–2
  start-page: 22
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0068
  article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2016.08.003
– volume: 5
  start-page: 2482
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0081
  article-title: In vivo human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00157
– start-page: 1
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0094
  article-title: Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications
  publication-title: J. Biomed. Mater. Res. Part A
– volume: 11
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0044
  article-title: Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting
  publication-title: Biofabrication
– volume: 16
  start-page: 631
  year: 2010
  ident: 10.1016/j.actbio.2022.08.014_bib0099
  article-title: Bioprinted nanoparticles for tissue engineering applications
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2009.0280
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0038
  article-title: Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab782d
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0080
  article-title: Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures
  publication-title: Biofabrication
– volume: 6
  start-page: 7568
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0092
  article-title: Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02382D
– volume: 17
  start-page: 6487
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0093
  article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03600
– volume: 5
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0146
  article-title: 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo
  publication-title: Adv. Sci.
– volume: 43
  start-page: 458
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0053
  article-title: Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.07.040
– volume: 2020
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0073
  article-title: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting
  publication-title: J. Nanomater.
  doi: 10.1155/2020/3863428
– volume: 56
  start-page: 181
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0054
  article-title: Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.02.017
– volume: 111
  start-page: 441
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0020
  article-title: Nanocomposite hydrogels for biomedical applications
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25160
– volume: 18
  start-page: e00075
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0048
  article-title: Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2020.e00075
– volume: 12
  start-page: 15976
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0016
  article-title: Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19037
– volume: 28
  start-page: 1
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0142
  article-title: Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804411
– ident: 10.1016/j.actbio.2022.08.014_bib0150
– ident: 10.1016/j.actbio.2022.08.014_bib0065
  doi: 10.1021/bk-2017-1251.ch009
– volume: 16
  start-page: 1489
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0067
  article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.5b00188
– volume: 12
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0035
  article-title: Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab97a1
– volume: 114
  start-page: 2424
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0089
  article-title: Bone tissue bioprinting for craniofacial reconstruction
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26349
– volume: 27
  start-page: 7261
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0023
  article-title: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502422
– volume: 2
  year: 2010
  ident: 10.1016/j.actbio.2022.08.014_bib0005
  article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux (3B’09)
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/2/1/010201
– volume: 6
  start-page: 33178
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0124
  article-title: Multifunctional 3D printing of heterogeneous hydrogel structures
  publication-title: Sci. Rep.
  doi: 10.1038/srep33178
– volume: 13
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0137
  article-title: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-016-0168-y
– volume: 4
  start-page: 2342
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0076
  article-title: Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c01108
– volume: 23
  start-page: 211
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0002
  article-title: Tissue engineering and regenerative medicine: new trends and directions - a year in review
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2017.0081
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0009
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– start-page: 8112
  year: 2022
  ident: 10.1016/j.actbio.2022.08.014_bib0110
  article-title: 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models
  publication-title: Nanoscale
  doi: 10.1039/D2NR02176E
– volume: 9
  start-page: 43449
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0026
  article-title: Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13602
– volume: 7
  start-page: 1
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0064
  article-title: Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701175
– volume: 5
  start-page: 8854
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0129
  article-title: A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01594A
– volume: 7
  start-page: 2891
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0121
  article-title: Carbon-based nanomaterials: multifunctional materials for biomedical engineering
  publication-title: ACS Nano
  doi: 10.1021/nn401196a
– volume: 307
  start-page: 206
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0135
  article-title: Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.04.036
– volume: 267
  year: 2021
  ident: 10.1016/j.actbio.2022.08.014_bib0029
  article-title: Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120476
– volume: 39
  start-page: 126
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0126
  article-title: Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.02.036
– volume: 16
  start-page: 220
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0062
  article-title: Nanocellulose: a new ageless bionanomaterial
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.06.004
– volume: 88
  start-page: 373
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0091
  article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.01.027
– volume: 16
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0136
  article-title: Cellular toxicity and immunological effects of carbon-based nanomaterials
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-019-0299-z
– volume: 10
  start-page: 630
  year: 2014
  ident: 10.1016/j.actbio.2022.08.014_bib0043
  article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.016
– volume: 2
  start-page: 1732
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0144
  article-title: 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00196
– volume: 76
  start-page: 321
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0013
  article-title: Current advances and future perspectives in extrusion-based bioprinting
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.10.076
– volume: 2016
  start-page: 4185
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0130
  article-title: Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting
  publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.
– volume: 221
  start-page: 118
  year: 2013
  ident: 10.1016/j.actbio.2022.08.014_bib0139
  article-title: Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2013.06.208
– volume: 20
  start-page: 4502
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0072
  article-title: Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01266
– volume: 11
  start-page: 768
  year: 2005
  ident: 10.1016/j.actbio.2022.08.014_bib0055
  article-title: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2005.11.768
– volume: 7
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0084
  article-title: Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications—a mini review
  publication-title: Bioengineering
  doi: 10.3390/bioengineering7020040
– volume: 1
  year: 2009
  ident: 10.1016/j.actbio.2022.08.014_bib0100
  article-title: The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/1/3/035003
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0031
  article-title: Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration
  publication-title: Adv. Healthc. Mater.
– volume: 97
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0012
  article-title: Print Me An organ! why we are not there yet
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.101145
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0079
  article-title: 3D bioprinting of liver-mimetic construct with alginate /cellulose nanocrystal hybrid bioink
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2017.12.001
– volume: 23
  start-page: 5177
  year: 2011
  ident: 10.1016/j.actbio.2022.08.014_bib0051
  article-title: Bioceramics: from bone regeneration to cancer nanomedicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201101586
– volume: 5
  start-page: 447
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0138
  article-title: A review of molecular mechanisms involved in toxicity of nanoparticles
  publication-title: Adv. Pharm. Bull.
  doi: 10.15171/apb.2015.061
– volume: 356
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0017
  article-title: Advances in engineering hydrogels
  publication-title: Science
  doi: 10.1126/science.aaf3627
– volume: 10
  start-page: 9957
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0027
  article-title: Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19808
– volume: 82
  start-page: 244
  year: 2018
  ident: 10.1016/j.actbio.2022.08.014_bib0133
  article-title: 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.08.069
– volume: 2
  start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0111
  article-title: 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines
  publication-title: Front. Surg.
  doi: 10.3389/fsurg.2015.00039
– volume: 11
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0034
  article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab19fd
– volume: 11
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0075
  article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab0692
– volume: 8
  year: 2016
  ident: 10.1016/j.actbio.2022.08.014_bib0041
  article-title: Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035005
– volume: 16
  start-page: 1047
  year: 2009
  ident: 10.1016/j.actbio.2022.08.014_bib0096
  article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524
  publication-title: Cellulose
  doi: 10.1007/s10570-009-9340-y
– volume: 11
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0063
  article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab0631
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0107
  article-title: MXenes and their applications in wearable sensors
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00297
– volume: 16
  start-page: e00058
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0141
  article-title: A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00058
– volume: 31
  start-page: 1
  year: 2019
  ident: 10.1016/j.actbio.2022.08.014_bib0022
  article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900332
– volume: 29
  start-page: 1513
  year: 2015
  ident: 10.1016/j.actbio.2022.08.014_bib0140
  article-title: Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2015.06.012
– volume: 4
  start-page: 153
  year: 2008
  ident: 10.1016/j.actbio.2022.08.014_bib0119
  article-title: Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells
  publication-title: Small
  doi: 10.1002/smll.200700217
– volume: 26
  start-page: 91
  year: 2020
  ident: 10.1016/j.actbio.2022.08.014_bib0011
  article-title: Tissue engineering and regenerative medicine 2019: the role of biofabrication - a year in review
  publication-title: Tissue Eng. Part C Methods
  doi: 10.1089/ten.tec.2019.0344
– volume: 22
  start-page: 4736
  year: 2010
  ident: 10.1016/j.actbio.2022.08.014_bib0104
  article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001436
– volume: 11
  start-page: 8849
  year: 2017
  ident: 10.1016/j.actbio.2022.08.014_bib0134
  article-title: In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03038
SSID ssj0038128
Score 2.5525858
SecondaryResourceType review_article
Snippet Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms 3D bioprinting
Bioink
Biomedical applications
Cell-laden
Nanocomposite
Title Nanocomposite bioinks for 3D bioprinting
URI https://dx.doi.org/10.1016/j.actbio.2022.08.014
https://www.proquest.com/docview/2702977375
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKzRPDgZW2TTXaTY6mWqtiLFnpb9gkVaYumV3-7M5tEVJCCt2zYzWN2M_Nt5psZQi4L49Ik9jHlluc05XCkCyUo18L3hBFKMYx3fhzz0SS9n2bTFhk0sTBIq6x1f6XTg7auz3RraXaXs1n3CbB0ItBCJ8F9FSLYU4Gr_Prji-YBBinUV8XOFHs34XOB46VMqWcYApgkIZFnnP5lnn4p6mB9hjtku4aNUb96sl3ScvM9svUtmeA-uQJFuUCGONKwXAR3RN9sBKA0YjfYxF94SHI-IJPh7fNgROs6CNQwVpQ09YZZFnveU0XGjOAmjzPrWeFdVviecl6L2FjvAarpzMIeBFCf8Np7y20qcnZI2vPF3B2RyAhnhWMwJzpLrdK5jRl3BeCuJMsBCR4T1ry-NHWScKxV8SobNtiLrIQmUWgSS1jGMIp-jVpWSTLW9BeNZOWPyZagx9eMvGgmQsJ3gM4NNXeL1bvEuDrAskxkJ_---inZxFbF1Tsj7fJt5c4Bc5S6ExZVh2z07x5G40-XPNXL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPfRvDgJbTJZneTY6mW1D4uttDbkn1BRdqi6f93Jg9RQQre8tjJJrPJzLfZb2YIuU-0jcLABT43PPYjDlsqyYTPlXAdoUWWUYx3Hk94Ooue52zeIL06FgZplZXtL216Ya2rI-1Km-31YtF-ASwdCvTQYbF8BVOgFmanYk3S6g6G6aQ2yOCTihKr2N5HgTqCrqB5ZTpXC4wCDMMil2cQ_eWhftnqwgH1D8h-hRy9bnlzh6Rhl0dk71s-wWPyALZyhSRxZGJZD3rE5VkPcKlHH3EX_-Ihz_mEzPpP017qV6UQfE1pkvuR09TQwPFOljCqBddxwIyjibMscZ3MOiUCbZwDtKaYgWkIAD_hlHOGm0jE9JQ0l6ulPSOeFtYIS2FYFItMpmITUG4TgF4hiwEMnhNaP77UVZ5wLFfxJmtC2KsslSZRaRKrWAYg5X9Jrcs8GVvai1qz8sd4SzDlWyTv6oGQ8Cng-ka2tKvNh8TQOoCzVLCLf1_9luyk0_FIjgaT4SXZxTMlde-KNPP3jb0GCJKrm-oV-wT6u9h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+bioinks+for+3D+bioprinting&rft.jtitle=Acta+biomaterialia&rft.au=Cai%2C+Yanli&rft.au=Chang%2C+Soon+Yee&rft.au=Gan%2C+Soo+Wah&rft.au=Ma%2C+Sha&rft.date=2022-10-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=151&rft.spage=45&rft_id=info:doi/10.1016%2Fj.actbio.2022.08.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon