Nanocomposite bioinks for 3D bioprinting
Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range...
Saved in:
Published in | Acta biomaterialia Vol. 151; pp. 45 - 69 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications.
3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
[Display omitted] |
---|---|
AbstractList | Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications.
3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.
[Display omitted] Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications.Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering and regenerative medicine. Nanocomposite reinforcement endows hydrogels with superior properties and tailored functionalities. A broad range of nanomaterials, including silicon-based, ceramic-based, cellulose-based, metal-based, and carbon-based nanomaterials, have been incorporated into hydrogel networks with encapsulated cells for improved performances. This review emphasizes the recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, focusing on their reinforcement effects and mechanisms, including viscosity, shear-thinning property, printability, mechanical properties, structural integrity, and biocompatibility. The cell-material interactions are discussed to elaborate on the underlying mechanisms between the cells and the nanomaterials. The biomedical applications of cell-laden nanocomposite bioinks are summarized with a focus on bone and cartilage tissue engineering. Finally, the limitations and challenges of current cell-laden nanocomposite bioinks are identified. The prospects are concluded in designing multi-component bioinks with multi-functionality for various biomedical applications. STATEMENT OF SIGNIFICANCE: 3D bioprinting, an emerging technology of additive manufacturing, has been one of the most innovative tools for tissue engineering and regenerative medicine. Recent developments of cell-laden nanocomposite bioinks for 3D bioprinting, and cell-materials interactions are the subject of this review paper. The reinforcement effects and mechanisms of nanocomposites on viscosity, printability and biocompatibility of bioinks and 3D printed scaffolds are addressed mainly for bone and cartilage tissue engineering. It provides detailed information for further designing and optimizing multi-component bioinks with multi-functionality for specialized biomedical applications. |
Author | Lu, Wen Feng Chang, Soon Yee Ma, Sha Yen, Ching-Chiuan Gan, Soo Wah Cai, Yanli |
Author_xml | – sequence: 1 givenname: Yanli orcidid: 0000-0002-0494-8507 surname: Cai fullname: Cai, Yanli organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore – sequence: 2 givenname: Soon Yee surname: Chang fullname: Chang, Soon Yee organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore – sequence: 3 givenname: Soo Wah surname: Gan fullname: Gan, Soo Wah organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore – sequence: 4 givenname: Sha surname: Ma fullname: Ma, Sha organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore – sequence: 5 givenname: Wen Feng surname: Lu fullname: Lu, Wen Feng organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore – sequence: 6 givenname: Ching-Chiuan orcidid: 0000-0003-4325-1689 surname: Yen fullname: Yen, Ching-Chiuan email: didyc@nus.edu.sg organization: NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore 117597, Singapore |
BookMark | eNqFkMtKAzEUhoNUsK2-gYsuu5kxl5lJ4kKQeoWiG12HTC6SOk1qkgq-vSnjyoWuzjnwfz-cbwYmPngDwDmCNYKou9jUUuXehRpDjGvIaoiaIzBFjLKKth2blJ02uKKwQydgltIGQsIQZlOwfJI-qLDdheSyWZQS59_Twoa4IDeHcxedz86_nYJjK4dkzn7mHLze3b6sHqr18_3j6npdKUJ4rhqriCbIdlDylijaKYZabQm3puUWSmN7ipS2liDYt7ptGOec2t5a3emGMjIHy7F3F8PH3qQsti4pMwzSm7BPAlOIOaWEtiV6OUZVDClFY4VyWWYXfI7SDQJBcdAjNmLUIw56BGSi6Clw8wsun25l_PoPuxoxUxx8OhNFUs54ZbSLRmWhg_u74BvMhIMC |
CitedBy_id | crossref_primary_10_1007_s40820_024_01581_4 crossref_primary_10_3390_life13040954 crossref_primary_10_1002_admt_202400620 crossref_primary_10_1016_j_jmst_2024_01_001 crossref_primary_10_1007_s10570_024_05797_w crossref_primary_10_1002_mabi_202200496 crossref_primary_10_1021_acsami_3c07077 crossref_primary_10_1088_1748_605X_ad9dce crossref_primary_10_1016_j_bprint_2023_e00280 crossref_primary_10_1016_j_bprint_2025_e00405 crossref_primary_10_1007_s40726_024_00325_7 crossref_primary_10_1016_j_jmst_2023_07_018 crossref_primary_10_1021_acs_biomac_4c01546 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_3389_fonc_2023_1143600 crossref_primary_10_7759_cureus_49800 crossref_primary_10_1007_s40820_024_01323_6 crossref_primary_10_1016_j_cis_2023_103013 crossref_primary_10_3390_bioengineering12010071 crossref_primary_10_1021_acsomega_4c02847 crossref_primary_10_1002_pc_28626 crossref_primary_10_3390_polym15102405 crossref_primary_10_1021_acsami_4c20131 crossref_primary_10_1016_j_ijbiomac_2024_131623 crossref_primary_10_34133_research_0197 crossref_primary_10_1021_acsomega_4c04123 crossref_primary_10_1016_j_ijbiomac_2024_133866 crossref_primary_10_1007_s42242_023_00238_2 crossref_primary_10_1016_j_apmt_2023_102035 crossref_primary_10_1002_smsc_202400236 crossref_primary_10_1016_j_bprint_2025_e00395 crossref_primary_10_1111_jace_19408 crossref_primary_10_3390_jfb15040082 crossref_primary_10_1016_j_bprint_2024_e00335 crossref_primary_10_1002_adhm_202303867 crossref_primary_10_1016_j_bprint_2024_e00356 crossref_primary_10_1016_j_mtcomm_2023_105696 crossref_primary_10_1093_rb_rbae066 crossref_primary_10_1016_j_addr_2024_115486 crossref_primary_10_1021_acsbiomaterials_4c00166 crossref_primary_10_1016_j_ymeth_2022_10_010 crossref_primary_10_1016_j_ijpharm_2023_123020 crossref_primary_10_1016_j_mtbio_2023_100930 crossref_primary_10_1016_j_ijbiomac_2023_123476 crossref_primary_10_1166_jbn_2024_3890 |
Cites_doi | 10.1038/s41578-018-0006-y 10.1016/j.procir.2017.04.022 10.1089/ten.tec.2017.0346 10.1080/21691401.2019.1709855 10.1016/j.bprint.2020.e00080 10.1016/j.procir.2017.04.019 10.1007/s00253-014-5819-z 10.1002/adma.201302042 10.1016/S0032-3861(02)00559-1 10.1073/pnas.1716164115 10.1088/1758-5090/ab5158 10.1039/D0NR02581J 10.1021/acsbiomaterials.1c01193 10.3390/nano10040733 10.1089/ten.tea.2019.0298 10.1016/j.msec.2020.110905 10.1088/1758-5090/aa5c1c 10.1088/1742-6596/1213/4/042020 10.1002/adhm.201800894 10.1088/1758-5090/ab8753 10.1002/adma.201300584 10.1002/biot.201400305 10.1088/0957-4484/25/14/145101 10.1371/journal.pone.0189428 10.1002/adma.201506420 10.1021/acsami.8b05963 10.3390/ijms17121976 10.3390/ijms21228694 10.1021/acsabm.8b00665 10.1088/1361-6528/aaafa1 10.1016/j.intimp.2011.02.016 10.1002/adfm.201605352 10.1016/j.actbio.2019.08.045 10.1039/C9NR07643C 10.1039/C3CS60273G 10.1016/j.eurpolymj.2014.07.025 10.1016/j.carbpol.2021.118222 10.15376/biores.12.2.2941-2954 10.1016/j.ijbiomac.2017.01.089 10.1021/acsmacrolett.0c00845 10.1186/s40824-018-0152-8 10.1002/adhm.201700015 10.1038/s41551-019-0471-7 10.1088/1758-5090/aa91ec 10.1002/wnan.1317 10.1021/acsami.8b13166 10.18063/ijb.v6i1.250 10.1021/acs.nanolett.9b03182 10.1080/07388551.2020.1713721 10.1021/nn1010792 10.1021/acs.langmuir.7b02540 10.1002/anie.201001273 10.1007/s10439-016-1704-5 10.1007/s12010-012-9548-4 10.3390/ma3073867 10.1016/j.actbio.2020.12.026 10.1016/j.mser.2020.100543 10.1002/adma.201902026 10.1016/j.biomaterials.2019.119536 10.1088/1758-5090/aa7e96 10.1016/j.jnoncrysol.2013.12.010 10.1021/acs.chemrev.5b00008 10.3390/jfb13020040 10.1016/j.bprint.2019.e00073 10.1371/journal.pone.0085835 10.3390/polym11050898 10.1016/j.bprint.2016.08.003 10.1021/acsbiomaterials.9b00157 10.1089/ten.tec.2009.0280 10.1088/1758-5090/ab782d 10.1039/C8TB02382D 10.1021/acs.nanolett.7b03600 10.1016/j.msec.2014.07.040 10.1155/2020/3863428 10.1016/j.ijbiomac.2013.02.017 10.1002/bit.25160 10.1016/j.bprint.2020.e00075 10.1021/acsami.9b19037 10.1002/adfm.201804411 10.1021/bk-2017-1251.ch009 10.1021/acs.biomac.5b00188 10.1088/1758-5090/ab97a1 10.1002/bit.26349 10.1002/adma.201502422 10.1088/1758-5082/2/1/010201 10.1038/srep33178 10.1186/s12989-016-0168-y 10.1021/acsabm.0c01108 10.1089/ten.teb.2017.0081 10.1038/nbt.2958 10.1039/D2NR02176E 10.1021/acsami.7b13602 10.1002/adhm.201701175 10.1039/C7TB01594A 10.1021/nn401196a 10.1016/j.cbi.2019.04.036 10.1016/j.biomaterials.2020.120476 10.1016/j.msec.2014.02.036 10.1016/j.mattod.2013.06.004 10.1016/j.eurpolymj.2017.01.027 10.1186/s12989-019-0299-z 10.1016/j.actbio.2013.10.016 10.1021/acsbiomaterials.6b00196 10.1016/j.biomaterials.2015.10.076 10.1016/j.toxlet.2013.06.208 10.1021/acs.biomac.9b01266 10.1089/ten.2005.11.768 10.3390/bioengineering7020040 10.1088/1758-5082/1/3/035003 10.1016/j.progpolymsci.2019.101145 10.1016/j.bprint.2017.12.001 10.1002/adma.201101586 10.15171/apb.2015.061 10.1126/science.aaf3627 10.1021/acsami.7b19808 10.1016/j.msec.2017.08.069 10.3389/fsurg.2015.00039 10.1088/1758-5090/ab19fd 10.1088/1758-5090/ab0692 10.1088/1758-5090/8/3/035005 10.1007/s10570-009-9340-y 10.1088/1758-5090/ab0631 10.3389/fchem.2020.00297 10.1016/j.bprint.2019.e00058 10.1002/adma.201900332 10.1016/j.tiv.2015.06.012 10.1002/smll.200700217 10.1089/ten.tec.2019.0344 10.1002/adma.201001436 10.1021/acsnano.7b03038 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.actbio.2022.08.014 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 69 |
ExternalDocumentID | 10_1016_j_actbio_2022_08_014 S1742706122004901 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD RIG SEW SSH 7X8 |
ID | FETCH-LOGICAL-c339t-4fc3d31f60a953c76c815df39fe59f0aefb71cdff310b5d5489997fbffd6d4783 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Thu Jul 10 19:11:08 EDT 2025 Tue Jul 01 01:17:40 EDT 2025 Thu Apr 24 23:06:38 EDT 2025 Fri Feb 23 02:38:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanocomposite 3D bioprinting Biomedical applications Cell-laden Bioink |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-4fc3d31f60a953c76c815df39fe59f0aefb71cdff310b5d5489997fbffd6d4783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4325-1689 0000-0002-0494-8507 |
PQID | 2702977375 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2702977375 crossref_citationtrail_10_1016_j_actbio_2022_08_014 crossref_primary_10_1016_j_actbio_2022_08_014 elsevier_sciencedirect_doi_10_1016_j_actbio_2022_08_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acta biomaterialia |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jiang, Wang, Wang, Chen (bib0113) 2012; 166 Li, Wu, Chu, Gelinsky (bib0010) 2020; 140 Malda, Visser, Melchels, Jüngst, Hennink, Dhert, Groll, Hutmacher (bib0019) 2013; 25 Noh, Kim, Tran, Lee, Lee (bib0090) 2019; 23 Klemm, Kramer, Moritz, Lindström, Ankerfors, Gray, Dorris (bib0059) 2011; 50 Peak, Singh, Adlouni, Chen, Gaharwar (bib0031) 2019; 8 Cidonio, Glinka, Kim, Kanczler, Lanham, Ahlfeld, Lode, Dawson, Gelinsky, Oreffo (bib0033) 2020; 12 Ahn, Chantre, Gannon, Lind, Campbell, Grevesse, O'Connor, Parker (bib0064) 2018; 7 Zandi, Sani, Mostafavi, Ibrahim, Saleh, Shokrgozar, Tamjid, Weiss, Simchi, Annabi (bib0029) 2021; 267 Liu, Li, Lei, Cheng, Song, Gao, Hu, Wang, Zhang, Li, Wu, Sang, Bi, Pei (bib0028) 2020; 112 Cheng, Landish, Chi, Nannan, Jingyu, Sen, Xiangjin (bib0133) 2018; 82 Athukoralalage, Balu, Dutta, Roy Choudhury (bib0086) 2019; 11 Laffon, Fernández-Bertólez, Costa, Brandão, Teixeira, Pásaro, Valdiglesias (bib0115) 2018 Buyukhatipoglu, Chang, Sun, Clyne (bib0099) 2010; 16 Di Bella, Fosang, Donati, Wallace, Choong (bib0111) 2015; 2 Shin, Farzad, Tamayol, Manoharan, Mostafalu, Zhang, Akbari, Jung, Kim, Comotto, Annabi, Al-Hazmi, Dokmeci, Khademhosseini (bib0123) 2016; 28 Peak, Stein, Gold, Gaharwar (bib0024) 2018; 34 Carrow, Cross, Reese, Jaiswal, Gregory, Kaunas, Singh, Gaharwar (bib0040) 2018; 115 Wu, Yuan, Lin, Wenger, Tam, Shirley (bib0079) 2018; 9 Prestwich, Skardal, Zhang, McCoard, Oottamasathien (bib0104) 2010; 22 Rastin, Zhang, Mazinani, Hassan, Bi, Tung, Losic (bib0108) 2020; 12 Matai, Kaur, Seyedsalehi, McClinton, Laurencin (bib0008) 2020; 226 Cui, Li, Hartanto, Durham, Tang, Zhang, Hooper, Lim, Woodfield (bib0003) 2020; 1901648 Cidonio, Alcala-Orozco, Lim, Glinka, Mutreja, Kim, Dawson, Woodfield, Oreffo (bib0034) 2019; 11 Vakili-Ghartavol, Momtazi-Borojeni, Vakili-Ghartavol, Aiyelabegan, Jaafari, Rezayat, Arbabi Bidgoli (bib0114) 2020; 48 Malvindi, De Matteis, Galeone, Brunetti, Anyfantis, Athanassiou, Cingolani, Pompa (bib0117) 2014; 9 Trampe, Koren, Akkineni, Senwitz, Krujatz, Lode, Gelinsky, Kühl (bib0142) 2018; 28 Müller, Öztürk, Arlov, Gatenholm, Zenobi-Wong (bib0071) 2017; 45 Apelgren, Amoroso, Lindahl, Brantsing, Rotter, Gatenholm, Kölby (bib0088) 2017; 12 Zhu, Cui, Boualam, Masood, Flynn, Rao, Zhang, Zhang (bib0145) 2018; 29 Zhang, Eyisoylu, Qin, Rubert, Müller (bib0131) 2021; 121 Fard, Jafari, Eghbal (bib0138) 2015; 5 Zidarič, Milojević, Gradišnik, Kleinschek, Maver, Maver (bib0077) 2020; 10 Lin, Zhang, Chen, Zheng (bib0118) 2010; 4 Moroni, Burdick, Highley, Lee, Morimoto, Takeuchi, Yoo (bib0001) 2018; 3 Murphy, De Coppi, Atala (bib0148) 2020; 4 Mendes, Gómez-Florit, Hamilton, Detamore, Domingues, Reis, Gomes (bib0080) 2020; 12 Wenz, Borchers, Tovar, Kluger (bib0045) 2017; 9 Boularaoui, Shanti, Lanotte, Luo, Bawazir, Lee, Christoforou, Khan, Stefanini (bib0109) 2021; 7 Day (bib0055) 2005; 11 Murphy, Atala (bib0009) 2014; 32 Martínez Ávila, Schwarz, Rotter, Gatenholm (bib0068) 2016; 1–2 Börjesson, Westman (bib0060) 2015 You, Chen, Cooper, Chang, Eames (bib0044) 2019; 11 Ramos, Moroni (bib0011) 2020; 26 Zhang, Xu, Huang, Ling, Gao (bib0116) 2020; 16 Barua, Gogoi, Khan, Karak (bib0021) 2018 Ojansivu, Rashad, Ahlinder, Massera, Mishra, Syverud, Finne-Wistrand, Miettinen, Mustafa (bib0075) 2019; 11 Byambaa, Annabi, Yue, Trujillo-de Santiago, Alvarez, Jia, Kazemzadeh-Narbat, Shin, Tamayol, Khademhosseini (bib0030) 2017; 6 Ng, Chua, Shen (bib0012) 2019; 97 Madannejad, Shoaie, Jahanpeyma, Darvishi, Azimzadeh, Javadi (bib0135) 2019; 307 Kim, Kim (bib0047) 2020; 12 Research and Market (bib0150) McKenna, Mikkelsen, Wehr, Gidley, Menzies (bib0096) 2009; 16 Wang, Wang, Xu (bib0084) 2020; 7 Chimene, Alge, Gaharwar (bib0023) 2015; 27 Kang, Il Kang, Le Thi, Park, Hong, Choi, Han, Park (bib0132) 2021; 10 Kolan, Semon, Bindbeutel, Day, Leu (bib0048) 2020; 18 Lee, Bae, Guillon, Chang, Arlov, Zenobi-Wong (bib0037) 2018; 10 Hauck, Ghazani, Chan (bib0119) 2008; 4 Gao, Schilling, Yonezawa, Wang, Dai, Cui (bib0042) 2014; 9 Gyles, Castro, Silva, Ribeiro-Costa (bib0091) 2017; 88 Lin, Dufresne (bib0061) 2014; 59 Zhai, Ruan, Ma, Cheng, Wu, Liu, Zhao, Pan, Lu (bib0146) 2018; 5 Ma, Cheung, Butcher (bib0094) 2021 Deo, Singh, Peak, Alge, Gaharwar (bib0004) 2020; 26 Dolati, Yu, Zhang, Jesus, Sander, Ozbolat (bib0127) 2014; 25 Luo, Song, Wang, Wang, Li, Wang, Liu, Liu, Wang (bib0073) 2020; 2020 Blanco Parte, Santoso, Chou, Verma, Wang, Ismadji, Cheng (bib0095) 2020; 40 Kollar, Závalová, Hošek, Havelka, Sopuch, Karpíšek, Třetinová, Suchý (bib0098) 2011; 11 Wüst, Godla, Müller, Hofmann (bib0043) 2014; 10 Chimene, Peak, Gentry, Carrow, Cross, Mondragon, Cardoso, Kaunas, Gaharwar (bib0027) 2018; 10 Lee, Bae, Levinson, Zenobi-Wong (bib0038) 2020; 12 Datta, Ozbolat, Ayan, Dhawan, Ozbolat (bib0089) 2017; 114 Bishop, Cena, Orandle, Yanamala, Dahm, Birch, Evans, Kodali, Eye, Battelli, Zeidler-Erdely, Casuccio, Bunker, Lupoi, Lersch, Stefaniak, Sager, Afshari, Schwegler-Berry, Friend, Kang, Siegrist, Mitchell, Lowry, Kashon, Mercer, Geraci, Schubauer-Berigan, Sargent, Erdely (bib0134) 2017; 11 Clark, Aleman, Mutkus, Skardal (bib0141) 2019; 16 Singh, Choudhury, Yu, Mironov, Naing (bib0147) 2020; 101 Nadernezhad, Caliskan, Topuz, Afghah, Erman, Koc (bib0025) 2019; 2 Apelgren, Karabulut, Amoroso, Mantas, Martínez Ávila, Kölby, Kondo, Toriz, Gatenholm (bib0081) 2019; 5 Leite, Sarker, Zehnder, Silva, Mano, Boccaccini (bib0041) 2016; 8 Sai Nievethitha, Subhapradha, Saravanan, Selvamurugan, Tsai, Srinivasan, Murugesan, Moorthi (bib0052) 2017; 98 Mobaraki, Ghaffari, Yazdanpanah, Luo, Mills (bib0014) 2020; 18 Fan, Shi, Yue, Sun, Yao (bib0046) 2019; 1213 Dufresne (bib0062) 2013; 16 Biju (bib0036) 2014; 43 Jessop, Al-Sabah, Gao, Kyle, Thomas, Badiei, Hawkins, Whitaker (bib0063) 2019; 11 Chimene, Miller, Cross, Jaiswal, Singh, Gaharwar (bib0016) 2020; 12 Gaharwar, Mihaila, Swami, Patel, Sant, Reis, Marques, Gomes, Khademhosseini (bib0039) 2013; 25 Möller, Amoroso, Hägg, Brantsing, Rotter, Apelgren, Lindahl, Kölby, Gatenholm (bib0070) 2017; 5 Malekpour, Chen (bib0149) 2022; 13 Alcala-Orozco, Mutreja, Cui, Kumar, Hooper, Lim, Woodfield (bib0106) 2020; 18 Moorthi, Parihar, Saravanan, Vairamani, Selvamurugan (bib0053) 2014; 43 Nie, Sun, Lv, Lu, Huangfu, Li, Zhang, Wang, Wang, Zhou (bib0110) 2022 Choe, Oh, Seok, Park, Lee (bib0006) 2019; 11 Zou, Tian, Luo, Yuan, Xu, Yang, Ma, Ye (bib0078) 2021; 269 Zhang, Yu, Dolati, Ozbolat (bib0126) 2014; 39 Gerhardt, Boccaccini (bib0056) 2010; 3 Nadernezhad, Khani, Koc (bib0125) 2017; 65 Guillemot, Mironov, Nakamura (bib0005) 2010; 2 Nguyen, Hgg, Forsman, Ekholm, Nimkingratana, Brantsing, Kalogeropoulos, Zaunz, Concaro, Brittberg, Lindahl, Gatenholm, Enejder, Simonsson (bib0069) 2017; 7 Boyles, Young, Brown, MacCalman, Cowie, Moisala, Smail, Smith, Proudfoot, Windle, Stone (bib0140) 2015; 29 Xin, Li, Ma, Pan, Shi (bib0107) 2020; 8 Barrère, Van Blitterswijk, de Groot (bib0057) 2006; 1 Chimene, Kaunas, Gaharwar (bib0018) 2020; 32 Amenta, Aschberger (bib0122) 2015; 7 Ozbolat, Hospodiuk (bib0013) 2016; 76 Hong, Diao, Antaris, Dai (bib0120) 2015; 115 Tognato, Armiento, Bonfrate, Levato, Malda, Alini, Eglin, Giancane, Serra (bib0102) 2019; 29 Trachsel, Broguiere, Rosenboom, Zenobi-Wong, Benetti (bib0092) 2018; 6 Nadernezhad, Khani, Skvortsov, Toprakhisar (bib0124) 2016; 6 Zhang, Khademhosseini (bib0017) 2017; 356 Iriarte-Mesa, López, Matos-Peralta, de la Vega-Hernández, Antuch (bib0112) 2020 Wan, Wang, Lv, Dong, Zhao, Yang, Guo (bib0139) 2013; 221 Gomes, Rodrigues, Domingues, Reis (bib0002) 2017; 23 Kolan, Liu, Baldridge, Murphy, Semon, Day, Leu (bib0050) 2017; 65 Sun, Starly, Daly, Burdick, Groll, Skeldon, Shu, Sakai, Shinohara, Nishikawa, Jang, Cho, Nie, Takeuchi, Ostrovidov, Khademhosseini, Kamm, Mironov, Moroni, Ozbolat (bib0007) 2020; 12 Axpe, Oyen (bib0085) 2016; 17 Martínez Ávila, Schwarz, Feldmann, Mantas, Von Bomhard, Gatenholm, Rotter (bib0097) 2014; 98 K. Syverud, Tissue engineering using plant-derived cellulose nanofibrils (CNF) as scaffold material, (2017) 171–189. 10.1021/bk-2017-1251.ch009. Henriksson, Gatenholm, Hägg (bib0066) 2017; 9 Vallet-Regí, Ruiz-Hernández (bib0051) 2011; 23 Zhu, Harris, Zhang (bib0130) 2016; 2016 Yuan, Zhang, Sun, Wei, Wei (bib0136) 2019; 16 Izadifar, Chapman, Babyn, Chen, Kelly (bib0128) 2018; 24 Groll, Burdick, Cho, Derby, Gelinsky, Heilshorn, Jüngst, Malda, Mironov, Nakayama, Ovsianikov, Sun, Takeuchi, Yoo, Woodfield (bib0015) 2019; 11 Stanco, Boffito, Bogni, Puricelli, Barrero, Soldati, Ciardelli (bib0074) 2020; 21 Narayanan, Huebner, Fisher, Spang, Starly, Shirwaiker (bib0144) 2016; 2 Moorthi, Vimalraj, Avani, He, Partridge, Selvamurugan (bib0054) 2013; 56 Wang, Zhao, Liu, Weir, Zhou, Xu (bib0058) 2015; 2 Ahlfeld, Cidonio, Kilian, Duin, Akkineni, Dawson, Yang, Lode, Oreffo, Gelinsky (bib0032) 2017; 9 Adib, Sheikhi, Shahhosseini, Simeunović, Wu, Castro, Zhao, Khademhosseini, Hoelzle (bib0035) 2020; 12 Buyukhatipoglu, Jo, Sun, Clyne (bib0100) 2009; 1 Kim, Jang, Kim (bib0103) 2019; 19 Shin, Kwak, Hyun (bib0143) 2018; 10 Wilson, Cross, Peak, Gaharwar (bib0026) 2017; 9 Cha, Shin, Annabi, Dokmeci, Khademhosseini (bib0121) 2013; 7 Markstedt, Mantas, Tournier, Martínez Ávila, Hägg, Gatenholm (bib0067) 2015; 16 Kong, Lee, Mooney (bib0087) 2002; 43 Hoppe, Sarker, Detsch, Hild, Mohn, Stark, Boccaccini (bib0049) 2014; 387 Zhu, Shin, van Kempen, Li, Ponraj, Nasajpour, Mandla, Hu, Liu, Leijten, Lin, Hussain, Zhang, Tamayol, Khademhosseini (bib0105) 2017; 27 Gaharwar, Peppas, Khademhosseini (bib0020) 2014; 111 Maturavongsadit, Narayanan, Chansoria, Shirwaiker, Benhabbour (bib0076) 2021; 4 Ou, Song, Liang, Liu, Feng, Deng, Sun, Shao (bib0137) 2016; 13 Gaharwar, Cross, Peak, Gold, Carrow, Brokesh, Singh (bib0022) 2019; 31 Gantumur, Nakahata, Kojima, Sakai (bib0083) 2020; 6 Betsch, Cristian, Lin, Blaeser, Schöneberg, Vogt, Buhl, Fischer, Duarte Campos (bib0101) 2018; 7 Trachsel, Johnbosco, Lang, Benetti, Zenobi-Wong (bib0072) 2019; 20 Shin, Park, Park, Jeong, Na, Youn, Hyun (bib0082) 2017; 12 Huang, Kumar Shrestha, Ariga, Hsu (bib0129) 2017; 5 De France, Yager, Chan, Corbett, Cranston, Hoare (bib0093) 2017; 17 Kolan (10.1016/j.actbio.2022.08.014_bib0048) 2020; 18 Ozbolat (10.1016/j.actbio.2022.08.014_bib0013) 2016; 76 Athukoralalage (10.1016/j.actbio.2022.08.014_bib0086) 2019; 11 Li (10.1016/j.actbio.2022.08.014_bib0010) 2020; 140 Trampe (10.1016/j.actbio.2022.08.014_bib0142) 2018; 28 Zhu (10.1016/j.actbio.2022.08.014_bib0145) 2018; 29 Deo (10.1016/j.actbio.2022.08.014_bib0004) 2020; 26 Chimene (10.1016/j.actbio.2022.08.014_bib0018) 2020; 32 Nie (10.1016/j.actbio.2022.08.014_bib0110) 2022 Luo (10.1016/j.actbio.2022.08.014_bib0073) 2020; 2020 Datta (10.1016/j.actbio.2022.08.014_bib0089) 2017; 114 Zhang (10.1016/j.actbio.2022.08.014_bib0116) 2020; 16 Chimene (10.1016/j.actbio.2022.08.014_bib0016) 2020; 12 Gerhardt (10.1016/j.actbio.2022.08.014_bib0056) 2010; 3 Wang (10.1016/j.actbio.2022.08.014_bib0058) 2015; 2 Maturavongsadit (10.1016/j.actbio.2022.08.014_bib0076) 2021; 4 Stanco (10.1016/j.actbio.2022.08.014_bib0074) 2020; 21 Müller (10.1016/j.actbio.2022.08.014_bib0071) 2017; 45 Rastin (10.1016/j.actbio.2022.08.014_bib0108) 2020; 12 Nadernezhad (10.1016/j.actbio.2022.08.014_bib0025) 2019; 2 Wilson (10.1016/j.actbio.2022.08.014_bib0026) 2017; 9 Shin (10.1016/j.actbio.2022.08.014_bib0143) 2018; 10 Apelgren (10.1016/j.actbio.2022.08.014_bib0088) 2017; 12 Xin (10.1016/j.actbio.2022.08.014_bib0107) 2020; 8 Kong (10.1016/j.actbio.2022.08.014_bib0087) 2002; 43 Malvindi (10.1016/j.actbio.2022.08.014_bib0117) 2014; 9 Lee (10.1016/j.actbio.2022.08.014_bib0037) 2018; 10 Zidarič (10.1016/j.actbio.2022.08.014_bib0077) 2020; 10 Moorthi (10.1016/j.actbio.2022.08.014_bib0053) 2014; 43 Trachsel (10.1016/j.actbio.2022.08.014_bib0072) 2019; 20 Tognato (10.1016/j.actbio.2022.08.014_bib0102) 2019; 29 Dolati (10.1016/j.actbio.2022.08.014_bib0127) 2014; 25 Gao (10.1016/j.actbio.2022.08.014_bib0042) 2014; 9 McKenna (10.1016/j.actbio.2022.08.014_bib0096) 2009; 16 Leite (10.1016/j.actbio.2022.08.014_bib0041) 2016; 8 Wang (10.1016/j.actbio.2022.08.014_bib0084) 2020; 7 Cidonio (10.1016/j.actbio.2022.08.014_bib0034) 2019; 11 Mobaraki (10.1016/j.actbio.2022.08.014_bib0014) 2020; 18 Buyukhatipoglu (10.1016/j.actbio.2022.08.014_bib0099) 2010; 16 Gyles (10.1016/j.actbio.2022.08.014_bib0091) 2017; 88 Wu (10.1016/j.actbio.2022.08.014_bib0079) 2018; 9 Ma (10.1016/j.actbio.2022.08.014_bib0094) 2021 Moorthi (10.1016/j.actbio.2022.08.014_bib0054) 2013; 56 Nadernezhad (10.1016/j.actbio.2022.08.014_bib0124) 2016; 6 Peak (10.1016/j.actbio.2022.08.014_bib0024) 2018; 34 Hong (10.1016/j.actbio.2022.08.014_bib0120) 2015; 115 Zhang (10.1016/j.actbio.2022.08.014_bib0126) 2014; 39 Möller (10.1016/j.actbio.2022.08.014_bib0070) 2017; 5 Zhu (10.1016/j.actbio.2022.08.014_bib0105) 2017; 27 De France (10.1016/j.actbio.2022.08.014_bib0093) 2017; 17 Martínez Ávila (10.1016/j.actbio.2022.08.014_bib0097) 2014; 98 Cha (10.1016/j.actbio.2022.08.014_bib0121) 2013; 7 Moroni (10.1016/j.actbio.2022.08.014_bib0001) 2018; 3 Cui (10.1016/j.actbio.2022.08.014_bib0003) 2020; 1901648 Markstedt (10.1016/j.actbio.2022.08.014_bib0067) 2015; 16 Day (10.1016/j.actbio.2022.08.014_bib0055) 2005; 11 Huang (10.1016/j.actbio.2022.08.014_bib0129) 2017; 5 Fard (10.1016/j.actbio.2022.08.014_bib0138) 2015; 5 Sun (10.1016/j.actbio.2022.08.014_bib0007) 2020; 12 Nguyen (10.1016/j.actbio.2022.08.014_bib0069) 2017; 7 Betsch (10.1016/j.actbio.2022.08.014_bib0101) 2018; 7 Yuan (10.1016/j.actbio.2022.08.014_bib0136) 2019; 16 Boularaoui (10.1016/j.actbio.2022.08.014_bib0109) 2021; 7 Zhang (10.1016/j.actbio.2022.08.014_bib0131) 2021; 121 Singh (10.1016/j.actbio.2022.08.014_bib0147) 2020; 101 Kim (10.1016/j.actbio.2022.08.014_bib0103) 2019; 19 Gaharwar (10.1016/j.actbio.2022.08.014_bib0022) 2019; 31 Jiang (10.1016/j.actbio.2022.08.014_bib0113) 2012; 166 Klemm (10.1016/j.actbio.2022.08.014_bib0059) 2011; 50 Kim (10.1016/j.actbio.2022.08.014_bib0047) 2020; 12 Madannejad (10.1016/j.actbio.2022.08.014_bib0135) 2019; 307 Gantumur (10.1016/j.actbio.2022.08.014_bib0083) 2020; 6 Peak (10.1016/j.actbio.2022.08.014_bib0031) 2019; 8 Kang (10.1016/j.actbio.2022.08.014_bib0132) 2021; 10 Guillemot (10.1016/j.actbio.2022.08.014_bib0005) 2010; 2 Matai (10.1016/j.actbio.2022.08.014_bib0008) 2020; 226 Liu (10.1016/j.actbio.2022.08.014_bib0028) 2020; 112 You (10.1016/j.actbio.2022.08.014_bib0044) 2019; 11 Lin (10.1016/j.actbio.2022.08.014_bib0118) 2010; 4 Henriksson (10.1016/j.actbio.2022.08.014_bib0066) 2017; 9 Nadernezhad (10.1016/j.actbio.2022.08.014_bib0125) 2017; 65 Kolan (10.1016/j.actbio.2022.08.014_bib0050) 2017; 65 Adib (10.1016/j.actbio.2022.08.014_bib0035) 2020; 12 Clark (10.1016/j.actbio.2022.08.014_bib0141) 2019; 16 Biju (10.1016/j.actbio.2022.08.014_bib0036) 2014; 43 Ojansivu (10.1016/j.actbio.2022.08.014_bib0075) 2019; 11 Ramos (10.1016/j.actbio.2022.08.014_bib0011) 2020; 26 Gaharwar (10.1016/j.actbio.2022.08.014_bib0020) 2014; 111 Barrère (10.1016/j.actbio.2022.08.014_bib0057) 2006; 1 Prestwich (10.1016/j.actbio.2022.08.014_bib0104) 2010; 22 Kollar (10.1016/j.actbio.2022.08.014_bib0098) 2011; 11 Trachsel (10.1016/j.actbio.2022.08.014_bib0092) 2018; 6 Lee (10.1016/j.actbio.2022.08.014_bib0038) 2020; 12 Barua (10.1016/j.actbio.2022.08.014_bib0021) 2018 Izadifar (10.1016/j.actbio.2022.08.014_bib0128) 2018; 24 Amenta (10.1016/j.actbio.2022.08.014_bib0122) 2015; 7 Mendes (10.1016/j.actbio.2022.08.014_bib0080) 2020; 12 Gaharwar (10.1016/j.actbio.2022.08.014_bib0039) 2013; 25 Wenz (10.1016/j.actbio.2022.08.014_bib0045) 2017; 9 Zou (10.1016/j.actbio.2022.08.014_bib0078) 2021; 269 Ahn (10.1016/j.actbio.2022.08.014_bib0064) 2018; 7 Iriarte-Mesa (10.1016/j.actbio.2022.08.014_bib0112) 2020 Chimene (10.1016/j.actbio.2022.08.014_bib0027) 2018; 10 Research and Market (10.1016/j.actbio.2022.08.014_bib0150) Choe (10.1016/j.actbio.2022.08.014_bib0006) 2019; 11 Cidonio (10.1016/j.actbio.2022.08.014_bib0033) 2020; 12 Ahlfeld (10.1016/j.actbio.2022.08.014_bib0032) 2017; 9 Lin (10.1016/j.actbio.2022.08.014_bib0061) 2014; 59 Shin (10.1016/j.actbio.2022.08.014_bib0082) 2017; 12 Alcala-Orozco (10.1016/j.actbio.2022.08.014_bib0106) 2020; 18 Apelgren (10.1016/j.actbio.2022.08.014_bib0081) 2019; 5 Boyles (10.1016/j.actbio.2022.08.014_bib0140) 2015; 29 Carrow (10.1016/j.actbio.2022.08.014_bib0040) 2018; 115 Shin (10.1016/j.actbio.2022.08.014_bib0123) 2016; 28 Groll (10.1016/j.actbio.2022.08.014_bib0015) 2019; 11 Jessop (10.1016/j.actbio.2022.08.014_bib0063) 2019; 11 Vakili-Ghartavol (10.1016/j.actbio.2022.08.014_bib0114) 2020; 48 Dufresne (10.1016/j.actbio.2022.08.014_bib0062) 2013; 16 Blanco Parte (10.1016/j.actbio.2022.08.014_bib0095) 2020; 40 Buyukhatipoglu (10.1016/j.actbio.2022.08.014_bib0100) 2009; 1 Noh (10.1016/j.actbio.2022.08.014_bib0090) 2019; 23 Laffon (10.1016/j.actbio.2022.08.014_bib0115) 2018 Zhu (10.1016/j.actbio.2022.08.014_bib0130) 2016; 2016 Wüst (10.1016/j.actbio.2022.08.014_bib0043) 2014; 10 Börjesson (10.1016/j.actbio.2022.08.014_bib0060) 2015 10.1016/j.actbio.2022.08.014_bib0065 Chimene (10.1016/j.actbio.2022.08.014_bib0023) 2015; 27 Cheng (10.1016/j.actbio.2022.08.014_bib0133) 2018; 82 Fan (10.1016/j.actbio.2022.08.014_bib0046) 2019; 1213 Byambaa (10.1016/j.actbio.2022.08.014_bib0030) 2017; 6 Hoppe (10.1016/j.actbio.2022.08.014_bib0049) 2014; 387 Ou (10.1016/j.actbio.2022.08.014_bib0137) 2016; 13 Malekpour (10.1016/j.actbio.2022.08.014_bib0149) 2022; 13 Zhang (10.1016/j.actbio.2022.08.014_bib0017) 2017; 356 Martínez Ávila (10.1016/j.actbio.2022.08.014_bib0068) 2016; 1–2 Narayanan (10.1016/j.actbio.2022.08.014_bib0144) 2016; 2 Malda (10.1016/j.actbio.2022.08.014_bib0019) 2013; 25 Zhai (10.1016/j.actbio.2022.08.014_bib0146) 2018; 5 Hauck (10.1016/j.actbio.2022.08.014_bib0119) 2008; 4 Wan (10.1016/j.actbio.2022.08.014_bib0139) 2013; 221 Murphy (10.1016/j.actbio.2022.08.014_bib0148) 2020; 4 Zandi (10.1016/j.actbio.2022.08.014_bib0029) 2021; 267 Axpe (10.1016/j.actbio.2022.08.014_bib0085) 2016; 17 Murphy (10.1016/j.actbio.2022.08.014_bib0009) 2014; 32 Di Bella (10.1016/j.actbio.2022.08.014_bib0111) 2015; 2 Ng (10.1016/j.actbio.2022.08.014_bib0012) 2019; 97 Sai Nievethitha (10.1016/j.actbio.2022.08.014_bib0052) 2017; 98 Bishop (10.1016/j.actbio.2022.08.014_bib0134) 2017; 11 Gomes (10.1016/j.actbio.2022.08.014_bib0002) 2017; 23 Vallet-Regí (10.1016/j.actbio.2022.08.014_bib0051) 2011; 23 |
References_xml | – volume: 356 year: 2017 ident: bib0017 article-title: Advances in engineering hydrogels publication-title: Science – volume: 34 start-page: 917 year: 2018 end-page: 925 ident: bib0024 article-title: Nanoengineered colloidal inks for 3D bioprinting publication-title: Langmuir – volume: 6 start-page: 1 year: 2017 end-page: 15 ident: bib0030 article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue publication-title: Adv. Healthc. Mater. – volume: 5 start-page: 8854 year: 2017 end-page: 8864 ident: bib0129 article-title: A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells publication-title: J. Mater. Chem. B – volume: 10 start-page: 630 year: 2014 end-page: 640 ident: bib0043 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. – volume: 12 year: 2020 ident: bib0080 article-title: Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures publication-title: Biofabrication – volume: 39 start-page: 126 year: 2014 end-page: 133 ident: bib0126 article-title: Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits publication-title: Mater. Sci. Eng. C – volume: 2 year: 2015 ident: bib0058 article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells publication-title: Bone Res. – volume: 20 start-page: 4502 year: 2019 end-page: 4511 ident: bib0072 article-title: Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs publication-title: Biomacromolecules – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: bib0077 article-title: Polysaccharide-based bioink formulation for 3D bioprinting of an publication-title: Nanomaterials – volume: 1–2 start-page: 22 year: 2016 end-page: 35 ident: bib0068 article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration publication-title: Bioprinting – volume: 18 year: 2020 ident: bib0106 article-title: Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity publication-title: Bioprinting – volume: 5 start-page: 2482 year: 2019 end-page: 2490 ident: bib0081 article-title: human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink publication-title: ACS Biomater. Sci. Eng. – volume: 6 start-page: 7568 year: 2018 end-page: 7572 ident: bib0092 article-title: Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture publication-title: J. Mater. Chem. B – volume: 11 start-page: 768 year: 2005 end-page: 777 ident: bib0055 article-title: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis publication-title: Tissue Eng. – volume: 19 start-page: 8612 year: 2019 end-page: 8620 ident: bib0103 article-title: A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration publication-title: Nano Lett. – volume: 16 start-page: e00058 year: 2019 ident: bib0141 article-title: A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles publication-title: Bioprinting – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: bib0069 article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink publication-title: Sci. Rep. – volume: 8 start-page: 1 year: 2020 end-page: 14 ident: bib0107 article-title: MXenes and their applications in wearable sensors publication-title: Front. Chem. – reference: K. Syverud, Tissue engineering using plant-derived cellulose nanofibrils (CNF) as scaffold material, (2017) 171–189. 10.1021/bk-2017-1251.ch009. – volume: 11 year: 2019 ident: bib0075 article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells publication-title: Biofabrication – volume: 43 start-page: 6239 year: 2002 end-page: 6246 ident: bib0087 article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration publication-title: Polymer – volume: 10 start-page: 23573 year: 2018 end-page: 23582 ident: bib0143 article-title: Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink publication-title: ACS Appl. Mater. Interfaces – volume: 65 start-page: 44 year: 2017 end-page: 47 ident: bib0125 article-title: Biomanufacturing of heterogeneous hydrogel structures with patterned electrically conductive regions publication-title: Procedia CIRP – volume: 2016 start-page: 4185 year: 2016 end-page: 4188 ident: bib0130 article-title: Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. – volume: 3 start-page: 21 year: 2018 end-page: 37 ident: bib0001 article-title: Biofabrication strategies for 3D publication-title: Nat. Rev. Mater. – volume: 17 year: 2016 ident: bib0085 article-title: Applications of alginate-based bioinks in 3D bioprinting publication-title: Int. J. Mol. Sci. – volume: 1 start-page: 317 year: 2006 end-page: 332 ident: bib0057 article-title: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics publication-title: Int. J. Nanomed. – volume: 23 start-page: 1 year: 2019 end-page: 9 ident: bib0090 article-title: 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering publication-title: Biomater. Res. – volume: 29 start-page: 1 year: 2019 end-page: 10 ident: bib0102 article-title: A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics publication-title: Adv. Funct. Mater. – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib0009 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – volume: 114 start-page: 2424 year: 2017 end-page: 2431 ident: bib0089 article-title: Bone tissue bioprinting for craniofacial reconstruction publication-title: Biotechnol. Bioeng. – volume: 4 start-page: 5421 year: 2010 end-page: 5429 ident: bib0118 article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship publication-title: ACS Nano – volume: 25 start-page: 3329 year: 2013 end-page: 3336 ident: bib0039 article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells publication-title: Adv. Mater. – volume: 2 year: 2010 ident: bib0005 article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux (3B’09) publication-title: Biofabrication – volume: 12 year: 2020 ident: bib0035 article-title: Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue publication-title: Biofabrication – volume: 25 start-page: 5011 year: 2013 end-page: 5028 ident: bib0019 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. – volume: 56 start-page: 181 year: 2013 end-page: 185 ident: bib0054 article-title: Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment publication-title: Int. J. Biol. Macromol. – volume: 59 start-page: 302 year: 2014 end-page: 325 ident: bib0061 article-title: Nanocellulose in biomedicine: Current status and future prospect publication-title: Eur. Polym. J. – volume: 2 start-page: 796 year: 2019 end-page: 806 ident: bib0025 article-title: Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting publication-title: ACS Appl. Bio Mater. – volume: 112 year: 2020 ident: bib0028 article-title: 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model publication-title: Mater. Sci. Eng. C – volume: 12 start-page: 16069 year: 2020 end-page: 16080 ident: bib0108 article-title: 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks publication-title: Nanoscale – volume: 16 start-page: 1489 year: 2015 end-page: 1496 ident: bib0067 article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules – ident: bib0150 article-title: 3D bioprinting market: global industry trends, share, size, growth, opportunity and forecast 2022–2027 – volume: 16 start-page: 220 year: 2013 end-page: 227 ident: bib0062 article-title: Nanocellulose: a new ageless bionanomaterial publication-title: Mater. Today – volume: 16 start-page: 1 year: 2020 end-page: 22 ident: bib0116 article-title: New insights into biocompatible iron oxide nanoparticles: a potential booster of gene delivery to stem cells publication-title: Small – volume: 115 start-page: 10816 year: 2015 end-page: 10906 ident: bib0120 article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy publication-title: Chem. Rev. – volume: 269 year: 2021 ident: bib0078 article-title: Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks publication-title: Carbohydr. Polym. – volume: 22 start-page: 4736 year: 2010 end-page: 4740 ident: bib0104 article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels publication-title: Adv. Mater. – volume: 166 start-page: 1533 year: 2012 end-page: 1551 ident: bib0113 article-title: Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment publication-title: Appl. Biochem. Biotechnol. – volume: 31 start-page: 1 year: 2019 end-page: 28 ident: bib0022 article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing publication-title: Adv. Mater. – volume: 7 start-page: 5810 year: 2021 end-page: 5822 ident: bib0109 article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues publication-title: ACS Biomater. Sci. Eng. – volume: 5 start-page: 447 year: 2015 end-page: 454 ident: bib0138 article-title: A review of molecular mechanisms involved in toxicity of nanoparticles publication-title: Adv. Pharm. Bull. – volume: 267 year: 2021 ident: bib0029 article-title: Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications publication-title: Biomaterials – volume: 17 start-page: 6487 year: 2017 end-page: 6495 ident: bib0093 article-title: Injectable anisotropic nanocomposite hydrogels direct publication-title: Nano Lett. – year: 2020 ident: bib0112 article-title: Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications – volume: 16 start-page: 631 year: 2010 end-page: 642 ident: bib0099 article-title: Bioprinted nanoparticles for tissue engineering applications publication-title: Tissue Eng. Part C Methods – volume: 12 start-page: 2941 year: 2017 end-page: 2954 ident: bib0082 article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives publication-title: BioResources – volume: 121 start-page: 637 year: 2021 end-page: 652 ident: bib0131 article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization publication-title: Acta Biomater. – volume: 13 year: 2016 ident: bib0137 article-title: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms publication-title: Part. Fibre Toxicol. – volume: 26 start-page: 91 year: 2020 end-page: 106 ident: bib0011 article-title: Tissue engineering and regenerative medicine 2019: the role of biofabrication - a year in review publication-title: Tissue Eng. Part C Methods – volume: 5 year: 2018 ident: bib0146 article-title: 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both publication-title: Adv. Sci. – volume: 43 start-page: 458 year: 2014 end-page: 464 ident: bib0053 article-title: Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation publication-title: Mater. Sci. Eng. C – volume: 18 start-page: e00075 year: 2020 ident: bib0048 article-title: Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells publication-title: Bioprinting – volume: 221 start-page: 118 year: 2013 end-page: 127 ident: bib0139 article-title: Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages publication-title: Toxicol. Lett. – volume: 307 start-page: 206 year: 2019 end-page: 222 ident: bib0135 article-title: Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems publication-title: Chem. Biol. Interact. – volume: 2 start-page: 1732 year: 2016 end-page: 1742 ident: bib0144 article-title: 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells publication-title: ACS Biomater. Sci. Eng. – volume: 32 year: 2020 ident: bib0018 article-title: Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies publication-title: Adv. Mater. – volume: 6 start-page: 33178 year: 2016 ident: bib0124 article-title: Multifunctional 3D printing of heterogeneous hydrogel structures publication-title: Sci. Rep. – volume: 11 year: 2019 ident: bib0034 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks publication-title: Biofabrication – volume: 12 year: 2017 ident: bib0088 article-title: Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage publication-title: PLoS One – volume: 1 year: 2009 ident: bib0100 article-title: The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system publication-title: Biofabrication – volume: 12 year: 2020 ident: bib0033 article-title: Nanoclay-based 3D printed scaffolds promote vascular ingrowth publication-title: Biofabrication – volume: 11 start-page: 898 year: 2019 ident: bib0086 article-title: 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review publication-title: Polymers – volume: 29 year: 2018 ident: bib0145 article-title: 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering publication-title: Nanotechnology – volume: 13 year: 2022 ident: bib0149 article-title: Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views publication-title: J. Funct. Biomater. – volume: 27 start-page: 7261 year: 2015 end-page: 7284 ident: bib0023 article-title: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects publication-title: Adv. Mater. – volume: 111 start-page: 441 year: 2014 end-page: 453 ident: bib0020 article-title: Nanocomposite hydrogels for biomedical applications publication-title: Biotechnol. Bioeng. – volume: 101 start-page: 14 year: 2020 end-page: 25 ident: bib0147 article-title: bioprinting – bioprinting from benchside to bedside? publication-title: Acta Biomater. – volume: 40 start-page: 397 year: 2020 end-page: 414 ident: bib0095 article-title: Current progress on the production, modification, and applications of bacterial cellulose publication-title: Crit. Rev. Biotechnol. – volume: 65 start-page: 38 year: 2017 end-page: 43 ident: bib0050 article-title: Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications publication-title: Procedia CIRP – volume: 2020 year: 2020 ident: bib0073 article-title: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting publication-title: J. Nanomater. – volume: 12 year: 2020 ident: bib0007 article-title: The bioprinting roadmap publication-title: Biofabrication – volume: 28 start-page: 3280 year: 2016 end-page: 3289 ident: bib0123 article-title: A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics publication-title: Adv. Mater. – volume: 10 start-page: 37820 year: 2018 end-page: 37828 ident: bib0037 article-title: Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 ident: bib0044 article-title: Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting publication-title: Biofabrication – volume: 10 start-page: 426 year: 2021 end-page: 432 ident: bib0132 article-title: Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation publication-title: ACS Macro Lett. – volume: 82 start-page: 244 year: 2018 end-page: 252 ident: bib0133 article-title: 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG publication-title: Mater. Sci. Eng. C – volume: 23 start-page: 211 year: 2017 end-page: 224 ident: bib0002 article-title: Tissue engineering and regenerative medicine: new trends and directions - a year in review publication-title: Tissue Eng. Part B Rev. – volume: 10 start-page: 9957 year: 2018 end-page: 9968 ident: bib0027 article-title: Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 ident: bib0063 article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting publication-title: Biofabrication – start-page: 1 year: 2021 end-page: 16 ident: bib0094 article-title: Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications publication-title: J. Biomed. Mater. Res. Part A – volume: 16 start-page: 1047 year: 2009 end-page: 1055 ident: bib0096 article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524 publication-title: Cellulose – volume: 43 start-page: 744 year: 2014 end-page: 764 ident: bib0036 article-title: Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy publication-title: Chem. Soc. Rev. – start-page: 199 year: 2018 end-page: 213 ident: bib0115 article-title: Cellular and molecular toxicity of iron oxide nanoparticles publication-title: Cellular and Molecular Toxicology of Nanoparticles – volume: 4 start-page: 153 year: 2008 end-page: 159 ident: bib0119 article-title: Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells publication-title: Small – volume: 8 year: 2016 ident: bib0041 article-title: Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles publication-title: Biofabrication – volume: 11 start-page: 8849 year: 2017 end-page: 8863 ident: bib0134 article-title: toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects publication-title: ACS Nano – volume: 9 start-page: 1304 year: 2014 end-page: 1311 ident: bib0042 article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells publication-title: Biotechnol. J. – volume: 387 start-page: 41 year: 2014 end-page: 46 ident: bib0049 article-title: reactivity of Sr-containing bioactive glass (type 1393) nanoparticles publication-title: J. Non. Cryst. Solids – volume: 98 start-page: 67 year: 2017 end-page: 74 ident: bib0052 article-title: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 29 start-page: 1513 year: 2015 end-page: 1528 ident: bib0140 article-title: Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos publication-title: Toxicol. – volume: 45 start-page: 210 year: 2017 end-page: 223 ident: bib0071 article-title: Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications publication-title: Ann. Biomed. Eng. – volume: 7 year: 2020 ident: bib0084 article-title: Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications—a mini review publication-title: Bioengineering – volume: 88 start-page: 373 year: 2017 end-page: 392 ident: bib0091 article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations publication-title: Eur. Polym. J. – volume: 25 year: 2014 ident: bib0127 article-title: evaluation of carbon-nanotube-reinforced bioprintable vascular conduits publication-title: Nanotechnology – volume: 6 start-page: 43 year: 2020 end-page: 52 ident: bib0083 article-title: Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation publication-title: Int. J. Bioprint. – volume: 2 start-page: 1 year: 2015 end-page: 7 ident: bib0111 article-title: 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines publication-title: Front. Surg. – volume: 11 start-page: 23275 year: 2019 end-page: 23285 ident: bib0006 article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications publication-title: Nanoscale – volume: 226 year: 2020 ident: bib0008 article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering publication-title: Biomaterials – volume: 9 year: 2017 ident: bib0045 article-title: Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting publication-title: Biofabrication – volume: 7 start-page: 371 year: 2015 end-page: 386 ident: bib0122 article-title: Carbon nanotubes: potential medical applications and safety concerns publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 97 year: 2019 ident: bib0012 article-title: Print Me An organ! why we are not there yet publication-title: Prog. Polym. Sci. – volume: 7 start-page: 2891 year: 2013 end-page: 2897 ident: bib0121 article-title: Carbon-based nanomaterials: multifunctional materials for biomedical engineering publication-title: ACS Nano – volume: 3 start-page: 3867 year: 2010 end-page: 3910 ident: bib0056 article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering publication-title: Materials – volume: 9 year: 2017 ident: bib0032 article-title: Development of a clay based bioink for 3D cell printing for skeletal application publication-title: Biofabrication – volume: 50 start-page: 5438 year: 2011 end-page: 5466 ident: bib0059 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1 year: 2018 end-page: 6 ident: bib0079 article-title: 3D bioprinting of liver-mimetic construct with alginate /cellulose nanocrystal hybrid bioink publication-title: Bioprinting – volume: 26 start-page: 318 year: 2020 end-page: 338 ident: bib0004 article-title: Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds publication-title: Tissue Eng. Part A – year: 2015 ident: bib0060 article-title: Crystalline nanocellulose-preparation, modification, and properties publication-title: Cellulose - Fundamental Aspects and Current Trends – volume: 21 start-page: 1 year: 2020 end-page: 23 ident: bib0074 article-title: 3D bioprinting of human adipose-derived stem cells and their tenogenic differentiation in clinical-grade medium publication-title: Int. J. Mol. Sci. – volume: 9 year: 2017 ident: bib0066 article-title: Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds publication-title: Biofabrication – volume: 18 start-page: e00080 year: 2020 ident: bib0014 article-title: Bioinks and bioprinting: a focused review publication-title: Bioprinting – volume: 11 start-page: 997 year: 2011 end-page: 1001 ident: bib0098 article-title: Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells publication-title: Int. Immunopharmacol. – start-page: 8112 year: 2022 end-page: 8129 ident: bib0110 article-title: 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models publication-title: Nanoscale – volume: 28 start-page: 1 year: 2018 end-page: 11 ident: bib0142 article-title: Functionalized bioink with optical sensor nanoparticles for O publication-title: Adv. Funct. Mater. – volume: 12 start-page: 15976 year: 2020 end-page: 15988 ident: bib0016 article-title: Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 ident: bib0015 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication – volume: 115 start-page: E3905 year: 2018 end-page: E3913 ident: bib0040 article-title: Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates publication-title: Proc. Natl. Acad. Sci. USA – volume: 48 start-page: 443 year: 2020 end-page: 451 ident: bib0114 article-title: Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues publication-title: Artif. Cells Nanomed. Biotechnol. – year: 2018 ident: bib0021 article-title: Silicon-Based Nanomaterials and Their Polymer Nanocomposites – volume: 12 year: 2020 ident: bib0038 article-title: Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting publication-title: Biofabrication – volume: 98 start-page: 7423 year: 2014 end-page: 7435 ident: bib0097 article-title: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 1 year: 2017 end-page: 7 ident: bib0070 article-title: chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs publication-title: Plast. Reconstr. Surg. Glob. Open – volume: 4 start-page: 2342 year: 2021 end-page: 2353 ident: bib0076 article-title: Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation publication-title: ACS Appl. Bio Mater. – volume: 4 start-page: 370 year: 2020 end-page: 380 ident: bib0148 article-title: Opportunities and challenges of translational 3D bioprinting publication-title: Nat. Biomed. Eng. – volume: 76 start-page: 321 year: 2016 end-page: 343 ident: bib0013 article-title: Current advances and future perspectives in extrusion-based bioprinting publication-title: Biomaterials – volume: 1213 year: 2019 ident: bib0046 article-title: 3D composite cell printing gelatin/sodium alginate/n-HAP bioscaffold publication-title: J. Phys. Conf. Ser. – volume: 140 year: 2020 ident: bib0010 article-title: 3D printing of hydrogels: rational design strategies and emerging biomedical applications publication-title: Mater. Sci. Eng. R Rep. – volume: 16 year: 2019 ident: bib0136 article-title: Cellular toxicity and immunological effects of carbon-based nanomaterials publication-title: Part. Fibre Toxicol. – volume: 9 start-page: 43449 year: 2017 end-page: 43458 ident: bib0026 article-title: Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 ident: bib0105 article-title: Gold nanocomposite bioink for printing 3D cardiac constructs publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1 year: 2018 end-page: 13 ident: bib0064 article-title: Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing publication-title: Adv. Healthc. Mater. – volume: 24 start-page: 74 year: 2018 end-page: 88 ident: bib0128 article-title: UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering publication-title: Tissue Eng. Part C Methods – volume: 1901648 start-page: 1 year: 2020 end-page: 27 ident: bib0003 article-title: Advances in extrusion 3D bioprinting : a focus on multicomponent hydrogel-based bioinks publication-title: Adv. Healthc. Mater. – volume: 12 year: 2020 ident: bib0047 article-title: Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration publication-title: Biofabrication – volume: 8 start-page: 1 year: 2019 end-page: 10 ident: bib0031 article-title: Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration publication-title: Adv. Healthc. Mater. – volume: 23 start-page: 5177 year: 2011 end-page: 5218 ident: bib0051 article-title: Bioceramics: from bone regeneration to cancer nanomedicine publication-title: Adv. Mater. – volume: 7 start-page: 1 year: 2018 end-page: 9 ident: bib0101 article-title: Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues publication-title: Adv. Healthc. Mater. – volume: 9 start-page: 1 year: 2014 end-page: 11 ident: bib0117 article-title: Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering publication-title: PLoS One – volume: 3 start-page: 21 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0001 article-title: Biofabrication strategies for 3D in vitro models and regenerative medicine publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0006-y – volume: 65 start-page: 38 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0050 article-title: Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.04.022 – volume: 24 start-page: 74 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0128 article-title: UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2017.0346 – volume: 48 start-page: 443 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0114 article-title: Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2019.1709855 – volume: 18 start-page: e00080 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0014 article-title: Bioinks and bioprinting: a focused review publication-title: Bioprinting doi: 10.1016/j.bprint.2020.e00080 – volume: 65 start-page: 44 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0125 article-title: Biomanufacturing of heterogeneous hydrogel structures with patterned electrically conductive regions publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.04.019 – start-page: 199 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0115 article-title: Cellular and molecular toxicity of iron oxide nanoparticles – volume: 98 start-page: 7423 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0097 article-title: Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5819-z – volume: 25 start-page: 5011 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0019 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. doi: 10.1002/adma.201302042 – volume: 43 start-page: 6239 year: 2002 ident: 10.1016/j.actbio.2022.08.014_bib0087 article-title: Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration publication-title: Polymer doi: 10.1016/S0032-3861(02)00559-1 – volume: 115 start-page: E3905 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0040 article-title: Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716164115 – volume: 2 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0058 article-title: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells publication-title: Bone Res. – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0007 article-title: The bioprinting roadmap publication-title: Biofabrication doi: 10.1088/1758-5090/ab5158 – volume: 12 start-page: 16069 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0108 article-title: 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks publication-title: Nanoscale doi: 10.1039/D0NR02581J – volume: 7 start-page: 5810 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0109 article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c01193 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0069 article-title: Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink publication-title: Sci. Rep. – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0077 article-title: Polysaccharide-based bioink formulation for 3D bioprinting of an in vitro model of the human dermis publication-title: Nanomaterials doi: 10.3390/nano10040733 – volume: 26 start-page: 318 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0004 article-title: Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2019.0298 – volume: 112 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0028 article-title: 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110905 – volume: 9 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0066 article-title: Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds publication-title: Biofabrication doi: 10.1088/1758-5090/aa5c1c – volume: 1213 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0046 article-title: 3D composite cell printing gelatin/sodium alginate/n-HAP bioscaffold publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1213/4/042020 – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0101 article-title: Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800894 – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0033 article-title: Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo publication-title: Biofabrication doi: 10.1088/1758-5090/ab8753 – volume: 25 start-page: 3329 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0039 article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells publication-title: Adv. Mater. doi: 10.1002/adma.201300584 – volume: 9 start-page: 1304 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0042 article-title: Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells publication-title: Biotechnol. J. doi: 10.1002/biot.201400305 – volume: 25 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0127 article-title: In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits publication-title: Nanotechnology doi: 10.1088/0957-4484/25/14/145101 – volume: 12 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0088 article-title: Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo publication-title: PLoS One doi: 10.1371/journal.pone.0189428 – volume: 11 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0015 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication – volume: 28 start-page: 3280 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0123 article-title: A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics publication-title: Adv. Mater. doi: 10.1002/adma.201506420 – volume: 10 start-page: 23573 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0143 article-title: Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly(ethylene glycol)-tetraacrylate bio-ink publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05963 – volume: 1901648 start-page: 1 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0003 article-title: Advances in extrusion 3D bioprinting : a focus on multicomponent hydrogel-based bioinks publication-title: Adv. Healthc. Mater. – volume: 17 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0085 article-title: Applications of alginate-based bioinks in 3D bioprinting publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17121976 – volume: 5 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0070 article-title: In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs publication-title: Plast. Reconstr. Surg. Glob. Open – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0074 article-title: 3D bioprinting of human adipose-derived stem cells and their tenogenic differentiation in clinical-grade medium publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21228694 – volume: 2 start-page: 796 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0025 article-title: Nanocomposite bioinks based on agarose and 2D nanosilicates with tunable flow properties and bioactivity for 3D bioprinting publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00665 – volume: 29 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0145 article-title: 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering publication-title: Nanotechnology doi: 10.1088/1361-6528/aaafa1 – volume: 11 start-page: 997 year: 2011 ident: 10.1016/j.actbio.2022.08.014_bib0098 article-title: Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2011.02.016 – volume: 27 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0105 article-title: Gold nanocomposite bioink for printing 3D cardiac constructs publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605352 – volume: 101 start-page: 14 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0147 article-title: In situ bioprinting – bioprinting from benchside to bedside? publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.08.045 – volume: 11 start-page: 23275 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0006 article-title: Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications publication-title: Nanoscale doi: 10.1039/C9NR07643C – volume: 43 start-page: 744 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0036 article-title: Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60273G – volume: 59 start-page: 302 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0061 article-title: Nanocellulose in biomedicine: Current status and future prospect publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.07.025 – year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0021 – volume: 29 start-page: 1 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0102 article-title: A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics publication-title: Adv. Funct. Mater. – volume: 269 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0078 article-title: Agarose composite hydrogel and PVA sacrificial materials for bioprinting large-scale, personalized face-like with nutrient networks publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118222 – volume: 12 start-page: 2941 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0082 article-title: Cellulose nanofibers for the enhancement of printability of low viscosity gelatin derivatives publication-title: BioResources doi: 10.15376/biores.12.2.2941-2954 – volume: 98 start-page: 67 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0052 article-title: Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.01.089 – volume: 10 start-page: 426 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0132 article-title: Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.0c00845 – volume: 23 start-page: 1 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0090 article-title: 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering publication-title: Biomater. Res. doi: 10.1186/s40824-018-0152-8 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0030 article-title: Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700015 – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0047 article-title: Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration publication-title: Biofabrication – volume: 4 start-page: 370 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0148 article-title: Opportunities and challenges of translational 3D bioprinting publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0471-7 – volume: 9 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0045 article-title: Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/aa91ec – volume: 7 start-page: 371 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0122 article-title: Carbon nanotubes: potential medical applications and safety concerns publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1317 – volume: 10 start-page: 37820 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0037 article-title: Exploitation of cationic silica nanoparticles for bioprinting of large-scale constructs with high printing fidelity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13166 – volume: 6 start-page: 43 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0083 article-title: Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation publication-title: Int. J. Bioprint. doi: 10.18063/ijb.v6i1.250 – volume: 19 start-page: 8612 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0103 article-title: A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03182 – volume: 40 start-page: 397 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0095 article-title: Current progress on the production, modification, and applications of bacterial cellulose publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2020.1713721 – volume: 4 start-page: 5421 year: 2010 ident: 10.1016/j.actbio.2022.08.014_bib0118 article-title: Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship publication-title: ACS Nano doi: 10.1021/nn1010792 – volume: 34 start-page: 917 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0024 article-title: Nanoengineered colloidal inks for 3D bioprinting publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02540 – volume: 50 start-page: 5438 year: 2011 ident: 10.1016/j.actbio.2022.08.014_bib0059 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001273 – volume: 45 start-page: 210 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0071 article-title: Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1704-5 – volume: 166 start-page: 1533 year: 2012 ident: 10.1016/j.actbio.2022.08.014_bib0113 article-title: Gold nanomaterials: preparation, chemical modification, biomedical applications and potential risk assessment publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-012-9548-4 – volume: 3 start-page: 3867 year: 2010 ident: 10.1016/j.actbio.2022.08.014_bib0056 article-title: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering publication-title: Materials doi: 10.3390/ma3073867 – volume: 121 start-page: 637 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0131 article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.026 – volume: 140 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0010 article-title: 3D printing of hydrogels: rational design strategies and emerging biomedical applications publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2020.100543 – volume: 32 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0018 article-title: Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies publication-title: Adv. Mater. doi: 10.1002/adma.201902026 – volume: 226 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0008 article-title: Progress in 3D bioprinting technology for tissue/organ regenerative engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119536 – volume: 9 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0032 article-title: Development of a clay based bioink for 3D cell printing for skeletal application publication-title: Biofabrication doi: 10.1088/1758-5090/aa7e96 – volume: 16 start-page: 1 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0116 article-title: New insights into biocompatible iron oxide nanoparticles: a potential booster of gene delivery to stem cells publication-title: Small – year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0112 – volume: 387 start-page: 41 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0049 article-title: In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles publication-title: J. Non. Cryst. Solids doi: 10.1016/j.jnoncrysol.2013.12.010 – volume: 115 start-page: 10816 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0120 article-title: Carbon nanomaterials for biological imaging and nanomedicinal therapy publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00008 – volume: 13 year: 2022 ident: 10.1016/j.actbio.2022.08.014_bib0149 article-title: Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views publication-title: J. Funct. Biomater. doi: 10.3390/jfb13020040 – year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0060 article-title: Crystalline nanocellulose-preparation, modification, and properties – volume: 18 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0106 article-title: Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00073 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0117 article-title: Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering publication-title: PLoS One doi: 10.1371/journal.pone.0085835 – volume: 11 start-page: 898 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0086 article-title: 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review publication-title: Polymers doi: 10.3390/polym11050898 – volume: 1 start-page: 317 year: 2006 ident: 10.1016/j.actbio.2022.08.014_bib0057 article-title: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics publication-title: Int. J. Nanomed. – volume: 1–2 start-page: 22 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0068 article-title: 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration publication-title: Bioprinting doi: 10.1016/j.bprint.2016.08.003 – volume: 5 start-page: 2482 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0081 article-title: In vivo human cartilage formation in three-dimensional bioprinted constructs with a novel bacterial nanocellulose bioink publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00157 – start-page: 1 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0094 article-title: Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications publication-title: J. Biomed. Mater. Res. Part A – volume: 11 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0044 article-title: Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting publication-title: Biofabrication – volume: 16 start-page: 631 year: 2010 ident: 10.1016/j.actbio.2022.08.014_bib0099 article-title: Bioprinted nanoparticles for tissue engineering applications publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2009.0280 – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0038 article-title: Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/ab782d – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0080 article-title: Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures publication-title: Biofabrication – volume: 6 start-page: 7568 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0092 article-title: Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02382D – volume: 17 start-page: 6487 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0093 article-title: Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03600 – volume: 5 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0146 article-title: 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo publication-title: Adv. Sci. – volume: 43 start-page: 458 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0053 article-title: Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.07.040 – volume: 2020 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0073 article-title: Printability optimization of gelatin-alginate bioinks by cellulose nanofiber modification for potential meniscus bioprinting publication-title: J. Nanomater. doi: 10.1155/2020/3863428 – volume: 56 start-page: 181 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0054 article-title: Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.02.017 – volume: 111 start-page: 441 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0020 article-title: Nanocomposite hydrogels for biomedical applications publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25160 – volume: 18 start-page: e00075 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0048 article-title: Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells publication-title: Bioprinting doi: 10.1016/j.bprint.2020.e00075 – volume: 12 start-page: 15976 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0016 article-title: Nanoengineered osteoinductive bioink for 3D bioprinting bone tissue publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19037 – volume: 28 start-page: 1 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0142 article-title: Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804411 – ident: 10.1016/j.actbio.2022.08.014_bib0150 – ident: 10.1016/j.actbio.2022.08.014_bib0065 doi: 10.1021/bk-2017-1251.ch009 – volume: 16 start-page: 1489 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0067 article-title: 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00188 – volume: 12 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0035 article-title: Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue publication-title: Biofabrication doi: 10.1088/1758-5090/ab97a1 – volume: 114 start-page: 2424 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0089 article-title: Bone tissue bioprinting for craniofacial reconstruction publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26349 – volume: 27 start-page: 7261 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0023 article-title: Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects publication-title: Adv. Mater. doi: 10.1002/adma.201502422 – volume: 2 year: 2010 ident: 10.1016/j.actbio.2022.08.014_bib0005 article-title: Bioprinting is coming of age: report from the international conference on bioprinting and biofabrication in bordeaux (3B’09) publication-title: Biofabrication doi: 10.1088/1758-5082/2/1/010201 – volume: 6 start-page: 33178 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0124 article-title: Multifunctional 3D printing of heterogeneous hydrogel structures publication-title: Sci. Rep. doi: 10.1038/srep33178 – volume: 13 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0137 article-title: Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-016-0168-y – volume: 4 start-page: 2342 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0076 article-title: Cell-laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c01108 – volume: 23 start-page: 211 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0002 article-title: Tissue engineering and regenerative medicine: new trends and directions - a year in review publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2017.0081 – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0009 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – start-page: 8112 year: 2022 ident: 10.1016/j.actbio.2022.08.014_bib0110 article-title: 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models publication-title: Nanoscale doi: 10.1039/D2NR02176E – volume: 9 start-page: 43449 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0026 article-title: Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13602 – volume: 7 start-page: 1 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0064 article-title: Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701175 – volume: 5 start-page: 8854 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0129 article-title: A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01594A – volume: 7 start-page: 2891 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0121 article-title: Carbon-based nanomaterials: multifunctional materials for biomedical engineering publication-title: ACS Nano doi: 10.1021/nn401196a – volume: 307 start-page: 206 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0135 article-title: Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.04.036 – volume: 267 year: 2021 ident: 10.1016/j.actbio.2022.08.014_bib0029 article-title: Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120476 – volume: 39 start-page: 126 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0126 article-title: Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.02.036 – volume: 16 start-page: 220 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0062 article-title: Nanocellulose: a new ageless bionanomaterial publication-title: Mater. Today doi: 10.1016/j.mattod.2013.06.004 – volume: 88 start-page: 373 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0091 article-title: A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.01.027 – volume: 16 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0136 article-title: Cellular toxicity and immunological effects of carbon-based nanomaterials publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-019-0299-z – volume: 10 start-page: 630 year: 2014 ident: 10.1016/j.actbio.2022.08.014_bib0043 article-title: Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.016 – volume: 2 start-page: 1732 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0144 article-title: 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00196 – volume: 76 start-page: 321 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0013 article-title: Current advances and future perspectives in extrusion-based bioprinting publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.076 – volume: 2016 start-page: 4185 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0130 article-title: Gelatin methacrylamide hydrogel with graphene nanoplatelets for neural cell-laden 3D bioprinting publication-title: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. – volume: 221 start-page: 118 year: 2013 ident: 10.1016/j.actbio.2022.08.014_bib0139 article-title: Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2013.06.208 – volume: 20 start-page: 4502 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0072 article-title: Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01266 – volume: 11 start-page: 768 year: 2005 ident: 10.1016/j.actbio.2022.08.014_bib0055 article-title: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro publication-title: Tissue Eng. doi: 10.1089/ten.2005.11.768 – volume: 7 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0084 article-title: Nanocellulose-based inks for 3d bioprinting: Key aspects in research development and challenging perspectives in applications—a mini review publication-title: Bioengineering doi: 10.3390/bioengineering7020040 – volume: 1 year: 2009 ident: 10.1016/j.actbio.2022.08.014_bib0100 article-title: The role of printing parameters and scaffold biopolymer properties in the efficacy of a new hybrid nano-bioprinting system publication-title: Biofabrication doi: 10.1088/1758-5082/1/3/035003 – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0031 article-title: Printing therapeutic proteins in 3D using nanoengineered bioink to control and direct cell migration publication-title: Adv. Healthc. Mater. – volume: 97 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0012 article-title: Print Me An organ! why we are not there yet publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101145 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0079 article-title: 3D bioprinting of liver-mimetic construct with alginate /cellulose nanocrystal hybrid bioink publication-title: Bioprinting doi: 10.1016/j.bprint.2017.12.001 – volume: 23 start-page: 5177 year: 2011 ident: 10.1016/j.actbio.2022.08.014_bib0051 article-title: Bioceramics: from bone regeneration to cancer nanomedicine publication-title: Adv. Mater. doi: 10.1002/adma.201101586 – volume: 5 start-page: 447 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0138 article-title: A review of molecular mechanisms involved in toxicity of nanoparticles publication-title: Adv. Pharm. Bull. doi: 10.15171/apb.2015.061 – volume: 356 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0017 article-title: Advances in engineering hydrogels publication-title: Science doi: 10.1126/science.aaf3627 – volume: 10 start-page: 9957 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0027 article-title: Nanoengineered ionic-covalent entanglement (NICE) bioinks for 3D bioprinting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19808 – volume: 82 start-page: 244 year: 2018 ident: 10.1016/j.actbio.2022.08.014_bib0133 article-title: 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.08.069 – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0111 article-title: 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines publication-title: Front. Surg. doi: 10.3389/fsurg.2015.00039 – volume: 11 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0034 article-title: Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks publication-title: Biofabrication doi: 10.1088/1758-5090/ab19fd – volume: 11 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0075 article-title: Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells publication-title: Biofabrication doi: 10.1088/1758-5090/ab0692 – volume: 8 year: 2016 ident: 10.1016/j.actbio.2022.08.014_bib0041 article-title: Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035005 – volume: 16 start-page: 1047 year: 2009 ident: 10.1016/j.actbio.2022.08.014_bib0096 article-title: Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524 publication-title: Cellulose doi: 10.1007/s10570-009-9340-y – volume: 11 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0063 article-title: Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/ab0631 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0107 article-title: MXenes and their applications in wearable sensors publication-title: Front. Chem. doi: 10.3389/fchem.2020.00297 – volume: 16 start-page: e00058 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0141 article-title: A mechanically robust thixotropic collagen and hyaluronic acid bioink supplemented with gelatin nanoparticles publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00058 – volume: 31 start-page: 1 year: 2019 ident: 10.1016/j.actbio.2022.08.014_bib0022 article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing publication-title: Adv. Mater. doi: 10.1002/adma.201900332 – volume: 29 start-page: 1513 year: 2015 ident: 10.1016/j.actbio.2022.08.014_bib0140 article-title: Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2015.06.012 – volume: 4 start-page: 153 year: 2008 ident: 10.1016/j.actbio.2022.08.014_bib0119 article-title: Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells publication-title: Small doi: 10.1002/smll.200700217 – volume: 26 start-page: 91 year: 2020 ident: 10.1016/j.actbio.2022.08.014_bib0011 article-title: Tissue engineering and regenerative medicine 2019: the role of biofabrication - a year in review publication-title: Tissue Eng. Part C Methods doi: 10.1089/ten.tec.2019.0344 – volume: 22 start-page: 4736 year: 2010 ident: 10.1016/j.actbio.2022.08.014_bib0104 article-title: Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201001436 – volume: 11 start-page: 8849 year: 2017 ident: 10.1016/j.actbio.2022.08.014_bib0134 article-title: In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects publication-title: ACS Nano doi: 10.1021/acsnano.7b03038 |
SSID | ssj0038128 |
Score | 2.5525858 |
SecondaryResourceType | review_article |
Snippet | Three-dimensional (3D) bioprinting is an advanced technology to fabricate artificial 3D tissue constructs containing cells and hydrogels for tissue engineering... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | 3D bioprinting Bioink Biomedical applications Cell-laden Nanocomposite |
Title | Nanocomposite bioinks for 3D bioprinting |
URI | https://dx.doi.org/10.1016/j.actbio.2022.08.014 https://www.proquest.com/docview/2702977375 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKzRPDgZW2TTXaTY6mWqtiLFnpb9gkVaYumV3-7M5tEVJCCt2zYzWN2M_Nt5psZQi4L49Ik9jHlluc05XCkCyUo18L3hBFKMYx3fhzz0SS9n2bTFhk0sTBIq6x1f6XTg7auz3RraXaXs1n3CbB0ItBCJ8F9FSLYU4Gr_Prji-YBBinUV8XOFHs34XOB46VMqWcYApgkIZFnnP5lnn4p6mB9hjtku4aNUb96sl3ScvM9svUtmeA-uQJFuUCGONKwXAR3RN9sBKA0YjfYxF94SHI-IJPh7fNgROs6CNQwVpQ09YZZFnveU0XGjOAmjzPrWeFdVviecl6L2FjvAarpzMIeBFCf8Np7y20qcnZI2vPF3B2RyAhnhWMwJzpLrdK5jRl3BeCuJMsBCR4T1ry-NHWScKxV8SobNtiLrIQmUWgSS1jGMIp-jVpWSTLW9BeNZOWPyZagx9eMvGgmQsJ3gM4NNXeL1bvEuDrAskxkJ_---inZxFbF1Tsj7fJt5c4Bc5S6ExZVh2z07x5G40-XPNXL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPfRvDgJbTJZneTY6mW1D4uttDbkn1BRdqi6f93Jg9RQQre8tjJJrPJzLfZb2YIuU-0jcLABT43PPYjDlsqyYTPlXAdoUWWUYx3Hk94Ooue52zeIL06FgZplZXtL216Ya2rI-1Km-31YtF-ASwdCvTQYbF8BVOgFmanYk3S6g6G6aQ2yOCTihKr2N5HgTqCrqB5ZTpXC4wCDMMil2cQ_eWhftnqwgH1D8h-hRy9bnlzh6Rhl0dk71s-wWPyALZyhSRxZGJZD3rE5VkPcKlHH3EX_-Ihz_mEzPpP017qV6UQfE1pkvuR09TQwPFOljCqBddxwIyjibMscZ3MOiUCbZwDtKaYgWkIAD_hlHOGm0jE9JQ0l6ulPSOeFtYIS2FYFItMpmITUG4TgF4hiwEMnhNaP77UVZ5wLFfxJmtC2KsslSZRaRKrWAYg5X9Jrcs8GVvai1qz8sd4SzDlWyTv6oGQ8Cng-ka2tKvNh8TQOoCzVLCLf1_9luyk0_FIjgaT4SXZxTMlde-KNPP3jb0GCJKrm-oV-wT6u9h8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocomposite+bioinks+for+3D+bioprinting&rft.jtitle=Acta+biomaterialia&rft.au=Cai%2C+Yanli&rft.au=Chang%2C+Soon+Yee&rft.au=Gan%2C+Soo+Wah&rft.au=Ma%2C+Sha&rft.date=2022-10-01&rft.issn=1878-7568&rft.eissn=1878-7568&rft.volume=151&rft.spage=45&rft_id=info:doi/10.1016%2Fj.actbio.2022.08.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |