Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability

Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 576; pp. 131 - 141
Main Authors Wu, Mengyuan, Yuan, Jinqiu, Wu, Hong, Su, Yanlei, Yang, Hao, You, Xinda, Zhang, Runnan, He, Xueyi, Khan, Niaz Ali, Kasher, Roni, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes. [Display omitted] •The 11 nm-thick NF membranes were prepared on PDA-COF hybrid interlayer.•The hybrid interlayer controlled the adsorption/diffusion of amine monomers.•The PA/PDA-COF/PAN membrane showed highest water flux of 207.07 L m−2 h−1 MPa−1.•The TFC membranes exhibited high rejections to Na2SO4 (93.4%) and dyes (94.5–100%).•The PA/PDA-COF/PAN membrane showed satisfying structural stability.
AbstractList Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes. [Display omitted] •The 11 nm-thick NF membranes were prepared on PDA-COF hybrid interlayer.•The hybrid interlayer controlled the adsorption/diffusion of amine monomers.•The PA/PDA-COF/PAN membrane showed highest water flux of 207.07 L m−2 h−1 MPa−1.•The TFC membranes exhibited high rejections to Na2SO4 (93.4%) and dyes (94.5–100%).•The PA/PDA-COF/PAN membrane showed satisfying structural stability.
Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes.
Author You, Xinda
He, Xueyi
Wu, Mengyuan
Zhang, Runnan
Jiang, Zhongyi
Yang, Hao
Yuan, Jinqiu
Wu, Hong
Su, Yanlei
Khan, Niaz Ali
Kasher, Roni
Author_xml – sequence: 1
  givenname: Mengyuan
  surname: Wu
  fullname: Wu, Mengyuan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Jinqiu
  surname: Yuan
  fullname: Yuan, Jinqiu
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Yanlei
  surname: Su
  fullname: Su, Yanlei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 5
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 6
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 7
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 8
  givenname: Xueyi
  surname: He
  fullname: He, Xueyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 9
  givenname: Niaz Ali
  surname: Khan
  fullname: Khan, Niaz Ali
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 10
  givenname: Roni
  surname: Kasher
  fullname: Kasher, Roni
  organization: Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
– sequence: 11
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
BookMark eNqFUctuFDEQtFCQ2CT8AQcfucykbc-TAxKKgCBF4pKcLY_dw3rx2IPtTbT_kI_Gm82JAzn1q6qkrjonZz54JOQDg5oB66529YJL0rbmwMYaWA0NvCEbNvSiEoyLM7IB0XdVL4bhHTlPaQfAehjGDXm6dzmqvLWeeuXDbJ9HGzwtklNUHumjzVu6BncwYVWL9Vjp8KAc-kxD_KW81XSOasHHEH9T6zNGpw4Y6RwiRb9VXqOhK8YF1WSdzQeqvKEpx73O-6hcaV8Ol-TtrFzC9y_1gtx_-3p3fVPd_vz-4_rLbaWFGHPVYD91BtvW8Mm0ozLNaKZpbJlWILoWhrYbm45NZSFADdNsOoRmbExrsOGmERfk40l3jeHPHlOWi00anSvvhn2SnHMGLeMcCvTTCapjSCniLLXNzwYVn6yTDOQxArmTpwjkMQIJTJYICrn5h7xGu6h4eI32-UTD4sGDxSgLAo822og6SxPs_wX-Al4fqjc
CitedBy_id crossref_primary_10_1021_acsestengg_2c00201
crossref_primary_10_1016_j_memsci_2023_121956
crossref_primary_10_1016_j_apsusc_2023_159021
crossref_primary_10_1016_j_jcis_2024_02_077
crossref_primary_10_1021_acsami_1c14420
crossref_primary_10_1016_j_polymertesting_2020_107000
crossref_primary_10_1016_j_desal_2023_117092
crossref_primary_10_1016_j_jwpe_2023_104432
crossref_primary_10_1021_acsapm_4c01307
crossref_primary_10_1016_j_seppur_2020_117817
crossref_primary_10_1016_j_jece_2021_105762
crossref_primary_10_1016_j_memsci_2022_120590
crossref_primary_10_1016_j_memsci_2023_122250
crossref_primary_10_1007_s11706_024_0692_x
crossref_primary_10_1016_j_progpolymsci_2024_101815
crossref_primary_10_1016_j_seppur_2023_123411
crossref_primary_10_1016_j_desal_2021_115222
crossref_primary_10_1016_j_memsci_2021_119523
crossref_primary_10_1126_sciadv_abe8706
crossref_primary_10_1016_j_desal_2019_114197
crossref_primary_10_1021_acs_est_1c06156
crossref_primary_10_1016_j_seppur_2021_119046
crossref_primary_10_1016_j_cej_2020_127425
crossref_primary_10_1016_j_seppur_2021_120390
crossref_primary_10_1021_acsami_0c12704
crossref_primary_10_1016_j_cjche_2022_08_007
crossref_primary_10_1002_adfm_202416458
crossref_primary_10_1016_j_memsci_2023_122387
crossref_primary_10_1016_j_desal_2022_116168
crossref_primary_10_1016_j_memsci_2020_118706
crossref_primary_10_1038_s41467_020_19809_3
crossref_primary_10_1016_j_seppur_2022_120777
crossref_primary_10_1016_j_memsci_2021_119536
crossref_primary_10_1016_j_fpsl_2024_101288
crossref_primary_10_5004_dwt_2020_24903
crossref_primary_10_3390_polym15153290
crossref_primary_10_1016_j_seppur_2020_117356
crossref_primary_10_1016_j_seppur_2022_123031
crossref_primary_10_1016_j_memsci_2020_118282
crossref_primary_10_1016_j_memsci_2023_121377
crossref_primary_10_1038_s41467_023_36848_8
crossref_primary_10_1016_j_desal_2024_117949
crossref_primary_10_1016_j_desal_2022_116255
crossref_primary_10_1016_j_reactfunctpolym_2021_105015
crossref_primary_10_1021_acsanm_0c01860
crossref_primary_10_1016_j_cis_2020_102204
crossref_primary_10_1007_s42247_021_00273_8
crossref_primary_10_1016_j_memsci_2020_118611
crossref_primary_10_1016_j_memsci_2022_120679
crossref_primary_10_3390_w16070988
crossref_primary_10_1016_j_memsci_2022_120673
crossref_primary_10_1039_C9CP05551G
crossref_primary_10_1016_j_jwpe_2024_106322
crossref_primary_10_1016_j_cej_2022_139457
crossref_primary_10_1016_j_memsci_2024_122780
crossref_primary_10_1016_j_desal_2024_117957
crossref_primary_10_1016_j_cej_2021_132400
crossref_primary_10_1016_j_jhazmat_2023_133049
crossref_primary_10_1016_j_desal_2024_117712
crossref_primary_10_1016_j_seppur_2023_123200
crossref_primary_10_1016_j_memsci_2020_118727
crossref_primary_10_1021_acs_langmuir_3c01440
crossref_primary_10_1016_j_desal_2022_116265
crossref_primary_10_1016_j_seppur_2022_120798
crossref_primary_10_1016_j_seppur_2024_127945
crossref_primary_10_1016_j_mtadv_2023_100369
crossref_primary_10_1016_j_memsci_2020_118104
crossref_primary_10_3390_membranes12101011
crossref_primary_10_1016_j_memsci_2020_118465
crossref_primary_10_1016_j_memsci_2023_121517
crossref_primary_10_1016_j_advmem_2022_100032
crossref_primary_10_1016_j_seppur_2020_118027
crossref_primary_10_1016_j_memsci_2023_121877
crossref_primary_10_1016_j_memsci_2022_120269
crossref_primary_10_1016_j_jwpe_2024_105168
crossref_primary_10_1016_j_jece_2021_106896
crossref_primary_10_3390_membranes12100967
crossref_primary_10_1016_j_memsci_2019_117641
crossref_primary_10_1016_j_desal_2023_116598
crossref_primary_10_1021_acsapm_3c00852
crossref_primary_10_1016_j_seppur_2023_124543
crossref_primary_10_3390_batteries9090432
crossref_primary_10_1002_app_53967
crossref_primary_10_1016_j_desal_2024_118277
crossref_primary_10_1021_acs_est_1c06238
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1016_j_seppur_2021_119885
crossref_primary_10_1039_D2RA06304B
crossref_primary_10_1016_j_seppur_2022_122198
crossref_primary_10_3390_membranes12070675
crossref_primary_10_3390_nano12010041
crossref_primary_10_1021_acsami_1c19525
crossref_primary_10_1016_j_memsci_2022_120253
crossref_primary_10_1016_j_memsci_2024_123525
crossref_primary_10_1021_acsami_0c11136
crossref_primary_10_1016_j_seppur_2020_117604
crossref_primary_10_1016_j_desal_2020_114861
crossref_primary_10_1021_acsami_1c03628
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1016_j_apcatb_2022_122175
crossref_primary_10_1021_acsami_1c02776
crossref_primary_10_3390_membranes12100955
crossref_primary_10_1007_s10311_022_01413_0
crossref_primary_10_1016_j_desal_2020_114869
crossref_primary_10_1016_j_desal_2024_117977
crossref_primary_10_1016_j_memsci_2020_118901
crossref_primary_10_1016_j_memsci_2019_117658
crossref_primary_10_1007_s40201_021_00624_x
crossref_primary_10_1016_j_eng_2020_06_033
crossref_primary_10_1016_j_desal_2024_118167
crossref_primary_10_1016_j_memsci_2021_119618
crossref_primary_10_1016_j_memsci_2023_121858
crossref_primary_10_1016_j_seppur_2020_117153
crossref_primary_10_1016_j_memsci_2024_123319
crossref_primary_10_1016_j_seppur_2021_118649
crossref_primary_10_1016_j_ces_2025_121569
crossref_primary_10_1021_acs_est_9b06779
crossref_primary_10_1016_j_cej_2022_138711
crossref_primary_10_1021_acs_est_0c06835
crossref_primary_10_1039_D1TA07413J
crossref_primary_10_1002_adma_202108457
crossref_primary_10_1016_j_memsci_2021_119863
crossref_primary_10_1016_j_memsci_2021_119984
crossref_primary_10_1039_D4CC02669A
crossref_primary_10_1016_j_memsci_2021_119623
crossref_primary_10_1016_j_seppur_2022_122547
crossref_primary_10_1016_j_jece_2024_115135
crossref_primary_10_1016_j_desal_2023_117221
crossref_primary_10_1016_j_jiec_2022_08_004
crossref_primary_10_1016_j_jclepro_2023_137282
crossref_primary_10_1016_j_memsci_2023_121506
crossref_primary_10_1016_j_mtcomm_2025_111742
crossref_primary_10_1016_j_matt_2024_01_028
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1016_j_seppur_2020_117387
crossref_primary_10_1039_D1TA05005B
crossref_primary_10_1016_j_memsci_2023_121863
crossref_primary_10_1016_j_watres_2021_116976
crossref_primary_10_1016_j_memsci_2022_121330
crossref_primary_10_1016_j_desal_2023_116806
crossref_primary_10_1016_j_seppur_2023_125300
crossref_primary_10_1016_j_desal_2020_114525
crossref_primary_10_1002_advs_202103814
crossref_primary_10_1016_j_seppur_2025_132092
crossref_primary_10_1016_j_rineng_2024_101932
crossref_primary_10_1016_j_polymer_2022_124988
crossref_primary_10_1016_j_seppur_2020_118069
crossref_primary_10_1016_j_memsci_2022_120507
crossref_primary_10_1016_j_colsurfa_2023_131075
crossref_primary_10_1039_D2EW00430E
crossref_primary_10_1016_j_desal_2023_116716
crossref_primary_10_1021_acs_macromol_3c00614
crossref_primary_10_1039_D4NJ00540F
crossref_primary_10_1016_j_seppur_2022_120947
crossref_primary_10_1002_aic_18038
crossref_primary_10_1016_j_desal_2022_115582
crossref_primary_10_1021_acsanm_3c00619
crossref_primary_10_1016_j_memsci_2021_119369
crossref_primary_10_1016_j_seppur_2023_124469
crossref_primary_10_1016_j_memsci_2020_118433
crossref_primary_10_1039_D0TA09319J
crossref_primary_10_1016_j_jcis_2020_03_044
crossref_primary_10_1039_D3SU00212H
crossref_primary_10_1016_j_memsci_2022_120730
crossref_primary_10_1002_smll_202300456
crossref_primary_10_1016_j_memsci_2022_121273
crossref_primary_10_1002_mame_202000818
crossref_primary_10_1002_EXP_20210101
crossref_primary_10_1016_j_jtice_2019_04_044
crossref_primary_10_1016_j_memsci_2021_119498
crossref_primary_10_1039_D1NJ00609F
crossref_primary_10_1016_j_seppur_2023_123821
crossref_primary_10_1016_j_desal_2023_117031
crossref_primary_10_1016_j_jes_2023_05_027
crossref_primary_10_1016_j_memsci_2020_118202
crossref_primary_10_1016_j_cej_2020_127857
crossref_primary_10_1002_macp_202200088
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1007_s00289_023_04748_y
crossref_primary_10_1016_j_memsci_2021_119144
crossref_primary_10_1016_j_desal_2020_114834
crossref_primary_10_2139_ssrn_4054197
crossref_primary_10_2139_ssrn_4184455
crossref_primary_10_3390_membranes13050497
crossref_primary_10_1016_j_cej_2019_122462
crossref_primary_10_1016_j_desal_2025_118797
crossref_primary_10_1016_j_chempr_2023_04_012
crossref_primary_10_1016_j_desal_2024_117441
crossref_primary_10_1016_j_seppur_2020_118038
crossref_primary_10_1016_j_memsci_2023_121424
crossref_primary_10_1021_acs_est_0c05377
crossref_primary_10_1007_s11705_020_1943_8
crossref_primary_10_1016_j_seppur_2024_129169
crossref_primary_10_1016_j_progpolymsci_2020_101308
crossref_primary_10_1016_j_memsci_2020_117916
crossref_primary_10_1016_j_desal_2021_115397
crossref_primary_10_1016_j_desal_2022_116301
crossref_primary_10_1021_acs_iecr_1c03105
crossref_primary_10_3390_membranes13050486
crossref_primary_10_1016_j_desal_2024_118523
crossref_primary_10_1016_j_progpolymsci_2022_101504
crossref_primary_10_1016_j_desal_2023_117176
crossref_primary_10_1016_j_memsci_2022_120306
crossref_primary_10_1021_acsanm_4c04034
crossref_primary_10_1016_j_memsci_2020_118067
crossref_primary_10_1016_j_memsci_2020_118065
crossref_primary_10_1016_j_jece_2024_111963
crossref_primary_10_1016_j_seppur_2022_122361
crossref_primary_10_1016_j_memsci_2022_120782
crossref_primary_10_2139_ssrn_4105409
crossref_primary_10_1016_j_memsci_2022_120544
crossref_primary_10_1016_j_memsci_2023_121478
crossref_primary_10_3390_polym12122817
crossref_primary_10_1016_j_cej_2024_152321
crossref_primary_10_1016_j_memsci_2021_119680
crossref_primary_10_1016_j_seppur_2024_130265
crossref_primary_10_1039_D0CS01599G
crossref_primary_10_1039_D0EN01101K
crossref_primary_10_1016_j_desal_2022_116355
crossref_primary_10_1016_j_memsci_2020_118738
crossref_primary_10_1016_j_seppur_2021_118391
crossref_primary_10_2139_ssrn_3968822
crossref_primary_10_1016_j_watres_2023_120774
crossref_primary_10_1016_j_cjche_2022_09_014
crossref_primary_10_1016_j_memsci_2022_120537
crossref_primary_10_1021_acsestwater_1c00233
crossref_primary_10_1016_j_memsci_2024_122831
crossref_primary_10_1016_j_cherd_2020_03_011
crossref_primary_10_1016_j_memsci_2024_123377
crossref_primary_10_1016_j_desal_2020_114342
crossref_primary_10_1016_j_memsci_2022_121076
crossref_primary_10_1016_j_memsci_2022_121070
crossref_primary_10_1016_j_memsci_2019_117375
crossref_primary_10_1016_j_desal_2025_118528
crossref_primary_10_1021_acsestwater_2c00213
crossref_primary_10_1007_s12393_022_09320_4
crossref_primary_10_1016_j_memsci_2021_119216
crossref_primary_10_1016_j_watres_2022_118264
crossref_primary_10_1016_j_jece_2024_112711
crossref_primary_10_1021_acs_iecr_1c01919
crossref_primary_10_1016_j_desal_2022_115929
crossref_primary_10_1016_j_seppur_2021_118802
crossref_primary_10_1016_j_seppur_2024_127082
crossref_primary_10_1021_acsami_0c06417
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1038_s41545_023_00271_9
crossref_primary_10_1016_j_isci_2021_102369
crossref_primary_10_1016_j_mattod_2021_06_013
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1016_j_desal_2022_115806
crossref_primary_10_1016_j_memsci_2019_05_082
crossref_primary_10_1021_acs_est_2c00551
crossref_primary_10_1016_j_mtener_2021_100856
crossref_primary_10_1016_j_memsci_2021_119905
crossref_primary_10_1021_acsami_0c14825
crossref_primary_10_1002_smll_202205714
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_1016_j_memsci_2024_122853
crossref_primary_10_1016_j_memsci_2020_118090
crossref_primary_10_1016_j_jece_2021_107015
crossref_primary_10_21597_jist_684130
crossref_primary_10_1021_acsami_1c17086
crossref_primary_10_1016_j_desal_2021_115519
crossref_primary_10_1016_j_desal_2020_114802
crossref_primary_10_1016_j_seppur_2024_127745
crossref_primary_10_1002_batt_202200124
crossref_primary_10_1016_j_desal_2022_116227
crossref_primary_10_1002_app_56626
Cites_doi 10.1038/nmat4638
10.1039/C7TA00501F
10.1021/acsami.6b10693
10.1016/j.desal.2015.08.020
10.1126/science.aaa5058
10.1016/j.memsci.2014.11.011
10.1016/j.desal.2013.06.016
10.1021/la049725x
10.1002/anie.201510724
10.1016/j.memsci.2018.07.087
10.1002/smll.201601253
10.1021/la202877k
10.1021/acsami.5b07128
10.1021/ja308278w
10.1039/C8TA05687K
10.1016/j.watres.2015.04.037
10.1016/j.memsci.2018.05.036
10.1021/acsami.7b14017
10.1016/j.desal.2011.04.004
10.1021/acs.estlett.8b00169
10.1021/ja4017842
10.1021/jacs.7b12121
10.1038/nnano.2017.21
10.1016/j.memsci.2009.03.024
10.1021/la020920q
10.1016/j.memsci.2015.01.025
10.1021/acs.langmuir.6b04465
10.1021/acsami.8b00339
10.1038/s41570-017-0056
10.1016/j.cej.2013.12.104
10.1016/j.memsci.2016.05.056
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2019.01.040
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 141
ExternalDocumentID 10_1016_j_memsci_2019_01_040
S0376738818328096
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c339t-4e7b6de55d2bd59ad49dbb951ca036508569461b51c30a8bfd6e0494d5de42d43
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 12:31:32 EDT 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:28:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High flux
Covalent organic framework
Nanofiltration membrane
Interfacial polymerization
Structural stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-4e7b6de55d2bd59ad49dbb951ca036508569461b51c30a8bfd6e0494d5de42d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2221051220
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2221051220
crossref_citationtrail_10_1016_j_memsci_2019_01_040
crossref_primary_10_1016_j_memsci_2019_01_040
elsevier_sciencedirect_doi_10_1016_j_memsci_2019_01_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lalia, Kochkodan, Hashaikeh, Hilal (bib6) 2013; 326
Freger (bib11) 2003; 19
Jin, Hu, Zhang (bib29) 2017; 1
Zhou, Hu, Boo, Liu, Li, Deng, An (bib19) 2018; 5
Sharma, Thampi, Suggala, Bhattacharya (bib24) 2004; 20
Lau, Ismail, Misdan, Kassim (bib5) 2012; 287
Wang, Fang, Liu, He, Li, Lei (bib23) 2015; 7
Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib15) 2018; 6
Jimenezsolomon, Song, Jelfs, Munozibanez, Livingston (bib13) 2016; 15
Biswal, Chandra, Kandambeth, Lukose, Heine, Banerjee (bib30) 2013; 135
Yang, Wu, Xu, Mu, Lin, Cheng, Liu, Pan, Cao, Jiang (bib32) 2018; 561
Zhu, Xie, Gao, Zhang, Zhang, Liu, Jin (bib21) 2016; 12
Abraham, Vasu, Williams, Gopinadhan, Su, Cherian, Dix, Prestat, Haigh, Grigorieva (bib1) 2017; 12
Zheng, Chen, Wang, Zhang (bib3) 2014; 242
Wang, Yang, Wu, Zhang, Xu (bib20) 2017; 5
Wu, Lv, Yang, Liu, Zhang, Xu (bib14) 2016; 515
Shan, Gu, Fan, Ji, Zhang (bib16) 2017; 9
Huang, Mccutcheon (bib12) 2015; 483
Ghosh, Hoek (bib10) 2009; 336
Kandambeth, Mallick, Lukose, Mane, Heine, Banerjee (bib31) 2012; 134
Zhou, Zhu, Fu, Zhu, Xue (bib2) 2015; 376
Wu, Li, Cui, Wang, Cao, Zhang, Zheng (bib7) 2018; 10
Zhang, Ou, Lei, Wan, Ji, Xu (bib25) 2016; 55
Lau, Stephen, Matsuura, Emadzadeh, Paul, Ismail (bib4) 2015; 80
Nowbahar, Mansard, Mecca, Paul, Arrowood, Squires (bib8) 2018; 140
Hu, Zhang, He, Zhao, Zhu (bib9) 2018; 564
Yang, Du, Zhang, He, Xu (bib18) 2017; 33
Yang, Waldman, Wu, Hou, Chen, Darling, Xu (bib26) 2018; 28
Jiang, Zhu, Zhu, Zhu, Xu (bib27) 2011; 27
Karan, Jiang, Livingston (bib17) 2015; 348
Li, Su, Li, Zhao, Zhang, Fan, Zhu, Ma, Liu, Jiang (bib28) 2015; 476
Zhang, Lv, Yang, Du, Xu (bib22) 2016; 8
Jiang (10.1016/j.memsci.2019.01.040_bib27) 2011; 27
Freger (10.1016/j.memsci.2019.01.040_bib11) 2003; 19
Sharma (10.1016/j.memsci.2019.01.040_bib24) 2004; 20
Shan (10.1016/j.memsci.2019.01.040_bib16) 2017; 9
Nowbahar (10.1016/j.memsci.2019.01.040_bib8) 2018; 140
Zhang (10.1016/j.memsci.2019.01.040_bib25) 2016; 55
Abraham (10.1016/j.memsci.2019.01.040_bib1) 2017; 12
Yang (10.1016/j.memsci.2019.01.040_bib32) 2018; 561
Zhou (10.1016/j.memsci.2019.01.040_bib19) 2018; 5
Hu (10.1016/j.memsci.2019.01.040_bib9) 2018; 564
Lau (10.1016/j.memsci.2019.01.040_bib5) 2012; 287
Wu (10.1016/j.memsci.2019.01.040_bib7) 2018; 10
Lalia (10.1016/j.memsci.2019.01.040_bib6) 2013; 326
Zhu (10.1016/j.memsci.2019.01.040_bib15) 2018; 6
Biswal (10.1016/j.memsci.2019.01.040_bib30) 2013; 135
Yang (10.1016/j.memsci.2019.01.040_bib26) 2018; 28
Li (10.1016/j.memsci.2019.01.040_bib28) 2015; 476
Jimenezsolomon (10.1016/j.memsci.2019.01.040_bib13) 2016; 15
Zhang (10.1016/j.memsci.2019.01.040_bib22) 2016; 8
Zheng (10.1016/j.memsci.2019.01.040_bib3) 2014; 242
Zhu (10.1016/j.memsci.2019.01.040_bib21) 2016; 12
Kandambeth (10.1016/j.memsci.2019.01.040_bib31) 2012; 134
Zhou (10.1016/j.memsci.2019.01.040_bib2) 2015; 376
Ghosh (10.1016/j.memsci.2019.01.040_bib10) 2009; 336
Jin (10.1016/j.memsci.2019.01.040_bib29) 2017; 1
Wang (10.1016/j.memsci.2019.01.040_bib23) 2015; 7
Wang (10.1016/j.memsci.2019.01.040_bib20) 2017; 5
Lau (10.1016/j.memsci.2019.01.040_bib4) 2015; 80
Huang (10.1016/j.memsci.2019.01.040_bib12) 2015; 483
Karan (10.1016/j.memsci.2019.01.040_bib17) 2015; 348
Yang (10.1016/j.memsci.2019.01.040_bib18) 2017; 33
Wu (10.1016/j.memsci.2019.01.040_bib14) 2016; 515
References_xml – volume: 6
  start-page: 15701
  year: 2018
  end-page: 15709
  ident: bib15
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 16289
  year: 2017
  end-page: 16295
  ident: bib20
  article-title: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 5034
  year: 2016
  end-page: 5041
  ident: bib21
  article-title: Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination
  publication-title: Small
– volume: 476
  start-page: 10
  year: 2015
  end-page: 19
  ident: bib28
  article-title: Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine
  publication-title: J. Membr. Sci.
– volume: 140
  start-page: 3173
  year: 2018
  end-page: 3176
  ident: bib8
  article-title: Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry
  publication-title: J. Am. Chem. Soc.
– volume: 561
  start-page: 79
  year: 2018
  end-page: 88
  ident: bib32
  article-title: Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation
  publication-title: J. Membr. Sci.
– volume: 12
  start-page: 546
  year: 2017
  ident: bib1
  article-title: Tunable sieving of ions using graphene oxide membranes
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2017
  ident: bib16
  article-title: Micro-phase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 4708
  year: 2004
  end-page: 4714
  ident: bib24
  article-title: Pervaporation from a dense membrane: roles of permeant−membrane interactions, kelvin effect, and membrane swelling
  publication-title: Langmuir
– volume: 80
  start-page: 306
  year: 2015
  end-page: 324
  ident: bib4
  article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches
  publication-title: Water Res.
– volume: 1
  start-page: 0056
  year: 2017
  ident: bib29
  article-title: Tessellated multiporous two-dimensional covalent organic frameworks
  publication-title: Nat. Rev. Chem.
– volume: 564
  start-page: 813
  year: 2018
  end-page: 819
  ident: bib9
  article-title: Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization
  publication-title: J. Membr. Sci.
– volume: 27
  start-page: 14180
  year: 2011
  end-page: 14187
  ident: bib27
  article-title: Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films
  publication-title: Langmuir
– volume: 376
  start-page: 109
  year: 2015
  end-page: 116
  ident: bib2
  article-title: Development of lower cost seawater desalination processes using nanofiltration technologies — a review
  publication-title: Desalination
– volume: 5
  start-page: 243
  year: 2018
  end-page: 248
  ident: bib19
  article-title: High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer
  publication-title: Environ. Sci. Technol. Lett.
– volume: 336
  start-page: 140
  year: 2009
  end-page: 148
  ident: bib10
  article-title: Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes
  publication-title: J. Membr. Sci.
– volume: 287
  start-page: 190
  year: 2012
  end-page: 199
  ident: bib5
  article-title: A recent progress in thin film composite membrane: a review
  publication-title: Desalination
– volume: 8
  start-page: 32512
  year: 2016
  end-page: 32519
  ident: bib22
  article-title: Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 5328
  year: 2013
  ident: bib30
  article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 24082
  year: 2015
  end-page: 24093
  ident: bib23
  article-title: Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 348
  start-page: 1347
  year: 2015
  end-page: 1351
  ident: bib17
  article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
– volume: 55
  start-page: 3054
  year: 2016
  ident: bib25
  article-title: CuSO4 /H2 O2 -induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability
  publication-title: Angew. Chem.
– volume: 242
  start-page: 404
  year: 2014
  end-page: 413
  ident: bib3
  article-title: Seawater desalination in China: retrospect and prospect
  publication-title: Chem. Eng. J.
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  ident: bib31
  article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  ident: bib26
  article-title: Dopamine: just the right medicine for membranes
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 2318
  year: 2017
  end-page: 2324
  ident: bib18
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
– volume: 326
  start-page: 77
  year: 2013
  end-page: 95
  ident: bib6
  article-title: A review on membrane fabrication: structure, properties and performance relationship
  publication-title: Desalination
– volume: 10
  start-page: 10445
  year: 2018
  end-page: 10453
  ident: bib7
  article-title: Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 4791
  year: 2003
  end-page: 4797
  ident: bib11
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
– volume: 515
  start-page: 238
  year: 2016
  end-page: 244
  ident: bib14
  article-title: Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances
  publication-title: J. Membr. Sci.
– volume: 483
  start-page: 25
  year: 2015
  end-page: 33
  ident: bib12
  article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis
  publication-title: J. Membr. Sci.
– volume: 15
  start-page: 760
  year: 2016
  end-page: 767
  ident: bib13
  article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization
  publication-title: Nat. Mater.
– volume: 15
  start-page: 760
  year: 2016
  ident: 10.1016/j.memsci.2019.01.040_bib13
  article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4638
– volume: 5
  start-page: 16289
  year: 2017
  ident: 10.1016/j.memsci.2019.01.040_bib20
  article-title: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00501F
– volume: 8
  start-page: 32512
  year: 2016
  ident: 10.1016/j.memsci.2019.01.040_bib22
  article-title: Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10693
– volume: 376
  start-page: 109
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib2
  article-title: Development of lower cost seawater desalination processes using nanofiltration technologies — a review
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.08.020
– volume: 348
  start-page: 1347
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib17
  article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation
  publication-title: Science
  doi: 10.1126/science.aaa5058
– volume: 476
  start-page: 10
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib28
  article-title: Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.011
– volume: 326
  start-page: 77
  year: 2013
  ident: 10.1016/j.memsci.2019.01.040_bib6
  article-title: A review on membrane fabrication: structure, properties and performance relationship
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.06.016
– volume: 20
  start-page: 4708
  year: 2004
  ident: 10.1016/j.memsci.2019.01.040_bib24
  article-title: Pervaporation from a dense membrane: roles of permeant−membrane interactions, kelvin effect, and membrane swelling
  publication-title: Langmuir
  doi: 10.1021/la049725x
– volume: 55
  start-page: 3054
  year: 2016
  ident: 10.1016/j.memsci.2019.01.040_bib25
  article-title: CuSO4 /H2 O2 -induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201510724
– volume: 564
  start-page: 813
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib9
  article-title: Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.07.087
– volume: 12
  start-page: 5034
  year: 2016
  ident: 10.1016/j.memsci.2019.01.040_bib21
  article-title: Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 27
  start-page: 14180
  year: 2011
  ident: 10.1016/j.memsci.2019.01.040_bib27
  article-title: Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films
  publication-title: Langmuir
  doi: 10.1021/la202877k
– volume: 7
  start-page: 24082
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib23
  article-title: Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07128
– volume: 134
  start-page: 19524
  year: 2012
  ident: 10.1016/j.memsci.2019.01.040_bib31
  article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 6
  start-page: 15701
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib15
  article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05687K
– volume: 80
  start-page: 306
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib4
  article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.037
– volume: 561
  start-page: 79
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib32
  article-title: Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.05.036
– volume: 9
  year: 2017
  ident: 10.1016/j.memsci.2019.01.040_bib16
  article-title: Micro-phase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14017
– volume: 28
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib26
  article-title: Dopamine: just the right medicine for membranes
  publication-title: Adv. Funct. Mater.
– volume: 287
  start-page: 190
  year: 2012
  ident: 10.1016/j.memsci.2019.01.040_bib5
  article-title: A recent progress in thin film composite membrane: a review
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.04.004
– volume: 5
  start-page: 243
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib19
  article-title: High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00169
– volume: 135
  start-page: 5328
  year: 2013
  ident: 10.1016/j.memsci.2019.01.040_bib30
  article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 140
  start-page: 3173
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib8
  article-title: Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12121
– volume: 12
  start-page: 546
  year: 2017
  ident: 10.1016/j.memsci.2019.01.040_bib1
  article-title: Tunable sieving of ions using graphene oxide membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– volume: 336
  start-page: 140
  year: 2009
  ident: 10.1016/j.memsci.2019.01.040_bib10
  article-title: Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.03.024
– volume: 19
  start-page: 4791
  year: 2003
  ident: 10.1016/j.memsci.2019.01.040_bib11
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
  doi: 10.1021/la020920q
– volume: 483
  start-page: 25
  year: 2015
  ident: 10.1016/j.memsci.2019.01.040_bib12
  article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.01.025
– volume: 33
  start-page: 2318
  year: 2017
  ident: 10.1016/j.memsci.2019.01.040_bib18
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b04465
– volume: 10
  start-page: 10445
  year: 2018
  ident: 10.1016/j.memsci.2019.01.040_bib7
  article-title: Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00339
– volume: 1
  start-page: 0056
  year: 2017
  ident: 10.1016/j.memsci.2019.01.040_bib29
  article-title: Tessellated multiporous two-dimensional covalent organic frameworks
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0056
– volume: 242
  start-page: 404
  year: 2014
  ident: 10.1016/j.memsci.2019.01.040_bib3
  article-title: Seawater desalination in China: retrospect and prospect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.104
– volume: 515
  start-page: 238
  year: 2016
  ident: 10.1016/j.memsci.2019.01.040_bib14
  article-title: Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.05.056
SSID ssj0017089
Score 2.65863
Snippet Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms adsorption
asymmetric membranes
Covalent organic framework
desalination
dyes
High flux
hydrophilicity
Interfacial polymerization
nanofiltration
Nanofiltration membrane
permeability
polyacrylonitrile
polyamides
polymerization
porosity
sodium sulfate
solutes
Structural stability
water purification
Title Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
URI https://dx.doi.org/10.1016/j.memsci.2019.01.040
https://www.proquest.com/docview/2221051220
Volume 576
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzMhKrqZPYiTNWFVUB0QUqdbPi2BVFrVtBGbrwC_jR3OVRAUKqxJY4thP5Lnef7fN3hFzx0AljBSivCi2DS8NSmTrGbSwtTD8yHuJp5Id-3BuIu6EcNkinPguDYZWV7S9temGtq5JWNZqt-XjceuRIRBIphUqpAInjCXaRoJZff6zCPIKEF2nwsDLD2vXxuSLGa-qm0DUGeKUFeScugfztnn4Z6sL7dHfJTgUbabv8sj3ScH6fbH8jEzwgn4MJMs0-jz31mcdM3BUjLoX3w5zYO4qLrnQ-mywtTJWn0JTlM9A08Du0zO6U01EdrEWRSOJ1kgEkpwBsqfPPRbAAnYMtdyW795Jm3tKSghbpO-CyenBIBt2bp06PVbkWWB5F6YIJl5jYOiltaKxMMytSawzArzwDHwcoTsapiAMDBRHPlBnZ2CG1jJXWidCK6Ihs-Jl3x4SqWCmRxwBFYSpmMugvUmBHEstHUjkenZCoHmKdV0TkmA9jouuIsxddCkajYDQPNAjmhLBVq3lJxLGmflJLT_9QKA2-Yk3Ly1rYGv413EABEc3e3zRgKYCjQRjy03_3fka28A43pAJ5TjZARO4CcM3CNAvFbZLN9u19r_8F3r_8bg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrKaiSupk5ip84RVVQFChdaiZsVx65a1LoVy4ELX8BHM5OlAoSExM2Kl0SZycwbZ_yGkDMeOmGsAOVVoWXQNCyRiWPcxtJC-JHyEE8j397F3YG4fpAPNdKuzsJgWmVp-wubnlvr8kqzfJvN-XjcvOdIRBIphUqpAIkvkWUBny-WMTh_X-R5BC2e18HD0QyHV-fn8iSvqZvC2pjhleTsnbgH8rt_-mGpc_fT2SDrJW6kF8WjbZKa81tk7Qub4Db5GEyQanY09tSnHktxl5S4FO4PQbF3FHdd6Xw2ebMQK09hKstmoGrgeGhR3imjwypbiyKTxNMkBUxOAdlS50d5tgCdgzF3Bb33G029pQUHLfJ3QLPs2CGDzmW_3WVlsQWWRVHywoRrmdg6KW1orExSKxJrDOCvLAUnBzBOxomIAwMXIp4qM7SxQ24ZK60ToRXRLqn7mXd7hKpYKZHFgEUhFjMprBcpMCQty4dSOR41SFS9Yp2VTORYEGOiq5SzR10IRqNgNA80CKZB2GLWvGDi-GN8q5Ke_qZRGpzFHzNPK2Fr-NjwDwqIaPb6rAFMAR4NwpDv_3v1E7LS7d_2dO_q7uaArGIP_p0K5CGpg7jcEYCcF3OcK_Enlbv9_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+nanofiltration+membrane+with+polydopamine-covalent+organic+framework+interlayer+for+enhanced+permeability+and+structural+stability&rft.jtitle=Journal+of+membrane+science&rft.au=Wu%2C+Mengyuan&rft.au=Yuan%2C+Jinqiu&rft.au=Wu%2C+Hong&rft.au=Su%2C+Yanlei&rft.date=2019-04-15&rft.issn=0376-7388&rft.volume=576&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.memsci.2019.01.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2019_01_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon