Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved...
Saved in:
Published in | Journal of membrane science Vol. 576; pp. 131 - 141 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes.
[Display omitted]
•The 11 nm-thick NF membranes were prepared on PDA-COF hybrid interlayer.•The hybrid interlayer controlled the adsorption/diffusion of amine monomers.•The PA/PDA-COF/PAN membrane showed highest water flux of 207.07 L m−2 h−1 MPa−1.•The TFC membranes exhibited high rejections to Na2SO4 (93.4%) and dyes (94.5–100%).•The PA/PDA-COF/PAN membrane showed satisfying structural stability. |
---|---|
AbstractList | Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes.
[Display omitted]
•The 11 nm-thick NF membranes were prepared on PDA-COF hybrid interlayer.•The hybrid interlayer controlled the adsorption/diffusion of amine monomers.•The PA/PDA-COF/PAN membrane showed highest water flux of 207.07 L m−2 h−1 MPa−1.•The TFC membranes exhibited high rejections to Na2SO4 (93.4%) and dyes (94.5–100%).•The PA/PDA-COF/PAN membrane showed satisfying structural stability. Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick and less controllable selective layer. Herein, the ultrathin composite membranes with enhanced nanofiltration (NF) performance were achieved by interfacial polymerization mediated by polydopamine (PDA)-covalent organic framework (COF) interlayer. The hybrid interlayer with exceptional surface hydrophilicity and high porosity controlled the adsorption/diffusion of amine monomers during the interfacial polymerization process and generated an ultrathin and dense polyamide (PA) layer, which was immensely reduced from 79 nm to 11 nm in thickness. The PA/PDA-COF/PAN nanofiltration membrane exhibited desirable desalination ratio (93.4% for Na2SO4) and dye rejection (94.5% for Orange GII), along with outstanding water permeation flux of 207.07 L m−2 h−1 MPa−1, 3 times higher than that of commercial NF membranes with similar solute rejection. Moreover, the hybrid interlayer significantly strengthened the interfacial interaction between the PA layer and the polyacrylonitrile (PAN) support, rendering the composite membrane with superior structural stability. The proposed strategy provided novel insight into the rational design of multifunctional interlayer to manipulate interfacial polymerization for high-performance PA membranes. |
Author | You, Xinda He, Xueyi Wu, Mengyuan Zhang, Runnan Jiang, Zhongyi Yang, Hao Yuan, Jinqiu Wu, Hong Su, Yanlei Khan, Niaz Ali Kasher, Roni |
Author_xml | – sequence: 1 givenname: Mengyuan surname: Wu fullname: Wu, Mengyuan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 2 givenname: Jinqiu surname: Yuan fullname: Yuan, Jinqiu organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Hong surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Yanlei surname: Su fullname: Su, Yanlei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 5 givenname: Hao surname: Yang fullname: Yang, Hao organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 6 givenname: Xinda surname: You fullname: You, Xinda organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 7 givenname: Runnan surname: Zhang fullname: Zhang, Runnan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 8 givenname: Xueyi surname: He fullname: He, Xueyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 9 givenname: Niaz Ali surname: Khan fullname: Khan, Niaz Ali organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 10 givenname: Roni surname: Kasher fullname: Kasher, Roni organization: Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel – sequence: 11 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China |
BookMark | eNqFUctuFDEQtFCQ2CT8AQcfucykbc-TAxKKgCBF4pKcLY_dw3rx2IPtTbT_kI_Gm82JAzn1q6qkrjonZz54JOQDg5oB66529YJL0rbmwMYaWA0NvCEbNvSiEoyLM7IB0XdVL4bhHTlPaQfAehjGDXm6dzmqvLWeeuXDbJ9HGzwtklNUHumjzVu6BncwYVWL9Vjp8KAc-kxD_KW81XSOasHHEH9T6zNGpw4Y6RwiRb9VXqOhK8YF1WSdzQeqvKEpx73O-6hcaV8Ol-TtrFzC9y_1gtx_-3p3fVPd_vz-4_rLbaWFGHPVYD91BtvW8Mm0ozLNaKZpbJlWILoWhrYbm45NZSFADdNsOoRmbExrsOGmERfk40l3jeHPHlOWi00anSvvhn2SnHMGLeMcCvTTCapjSCniLLXNzwYVn6yTDOQxArmTpwjkMQIJTJYICrn5h7xGu6h4eI32-UTD4sGDxSgLAo822og6SxPs_wX-Al4fqjc |
CitedBy_id | crossref_primary_10_1021_acsestengg_2c00201 crossref_primary_10_1016_j_memsci_2023_121956 crossref_primary_10_1016_j_apsusc_2023_159021 crossref_primary_10_1016_j_jcis_2024_02_077 crossref_primary_10_1021_acsami_1c14420 crossref_primary_10_1016_j_polymertesting_2020_107000 crossref_primary_10_1016_j_desal_2023_117092 crossref_primary_10_1016_j_jwpe_2023_104432 crossref_primary_10_1021_acsapm_4c01307 crossref_primary_10_1016_j_seppur_2020_117817 crossref_primary_10_1016_j_jece_2021_105762 crossref_primary_10_1016_j_memsci_2022_120590 crossref_primary_10_1016_j_memsci_2023_122250 crossref_primary_10_1007_s11706_024_0692_x crossref_primary_10_1016_j_progpolymsci_2024_101815 crossref_primary_10_1016_j_seppur_2023_123411 crossref_primary_10_1016_j_desal_2021_115222 crossref_primary_10_1016_j_memsci_2021_119523 crossref_primary_10_1126_sciadv_abe8706 crossref_primary_10_1016_j_desal_2019_114197 crossref_primary_10_1021_acs_est_1c06156 crossref_primary_10_1016_j_seppur_2021_119046 crossref_primary_10_1016_j_cej_2020_127425 crossref_primary_10_1016_j_seppur_2021_120390 crossref_primary_10_1021_acsami_0c12704 crossref_primary_10_1016_j_cjche_2022_08_007 crossref_primary_10_1002_adfm_202416458 crossref_primary_10_1016_j_memsci_2023_122387 crossref_primary_10_1016_j_desal_2022_116168 crossref_primary_10_1016_j_memsci_2020_118706 crossref_primary_10_1038_s41467_020_19809_3 crossref_primary_10_1016_j_seppur_2022_120777 crossref_primary_10_1016_j_memsci_2021_119536 crossref_primary_10_1016_j_fpsl_2024_101288 crossref_primary_10_5004_dwt_2020_24903 crossref_primary_10_3390_polym15153290 crossref_primary_10_1016_j_seppur_2020_117356 crossref_primary_10_1016_j_seppur_2022_123031 crossref_primary_10_1016_j_memsci_2020_118282 crossref_primary_10_1016_j_memsci_2023_121377 crossref_primary_10_1038_s41467_023_36848_8 crossref_primary_10_1016_j_desal_2024_117949 crossref_primary_10_1016_j_desal_2022_116255 crossref_primary_10_1016_j_reactfunctpolym_2021_105015 crossref_primary_10_1021_acsanm_0c01860 crossref_primary_10_1016_j_cis_2020_102204 crossref_primary_10_1007_s42247_021_00273_8 crossref_primary_10_1016_j_memsci_2020_118611 crossref_primary_10_1016_j_memsci_2022_120679 crossref_primary_10_3390_w16070988 crossref_primary_10_1016_j_memsci_2022_120673 crossref_primary_10_1039_C9CP05551G crossref_primary_10_1016_j_jwpe_2024_106322 crossref_primary_10_1016_j_cej_2022_139457 crossref_primary_10_1016_j_memsci_2024_122780 crossref_primary_10_1016_j_desal_2024_117957 crossref_primary_10_1016_j_cej_2021_132400 crossref_primary_10_1016_j_jhazmat_2023_133049 crossref_primary_10_1016_j_desal_2024_117712 crossref_primary_10_1016_j_seppur_2023_123200 crossref_primary_10_1016_j_memsci_2020_118727 crossref_primary_10_1021_acs_langmuir_3c01440 crossref_primary_10_1016_j_desal_2022_116265 crossref_primary_10_1016_j_seppur_2022_120798 crossref_primary_10_1016_j_seppur_2024_127945 crossref_primary_10_1016_j_mtadv_2023_100369 crossref_primary_10_1016_j_memsci_2020_118104 crossref_primary_10_3390_membranes12101011 crossref_primary_10_1016_j_memsci_2020_118465 crossref_primary_10_1016_j_memsci_2023_121517 crossref_primary_10_1016_j_advmem_2022_100032 crossref_primary_10_1016_j_seppur_2020_118027 crossref_primary_10_1016_j_memsci_2023_121877 crossref_primary_10_1016_j_memsci_2022_120269 crossref_primary_10_1016_j_jwpe_2024_105168 crossref_primary_10_1016_j_jece_2021_106896 crossref_primary_10_3390_membranes12100967 crossref_primary_10_1016_j_memsci_2019_117641 crossref_primary_10_1016_j_desal_2023_116598 crossref_primary_10_1021_acsapm_3c00852 crossref_primary_10_1016_j_seppur_2023_124543 crossref_primary_10_3390_batteries9090432 crossref_primary_10_1002_app_53967 crossref_primary_10_1016_j_desal_2024_118277 crossref_primary_10_1021_acs_est_1c06238 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1016_j_seppur_2021_119885 crossref_primary_10_1039_D2RA06304B crossref_primary_10_1016_j_seppur_2022_122198 crossref_primary_10_3390_membranes12070675 crossref_primary_10_3390_nano12010041 crossref_primary_10_1021_acsami_1c19525 crossref_primary_10_1016_j_memsci_2022_120253 crossref_primary_10_1016_j_memsci_2024_123525 crossref_primary_10_1021_acsami_0c11136 crossref_primary_10_1016_j_seppur_2020_117604 crossref_primary_10_1016_j_desal_2020_114861 crossref_primary_10_1021_acsami_1c03628 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1016_j_apcatb_2022_122175 crossref_primary_10_1021_acsami_1c02776 crossref_primary_10_3390_membranes12100955 crossref_primary_10_1007_s10311_022_01413_0 crossref_primary_10_1016_j_desal_2020_114869 crossref_primary_10_1016_j_desal_2024_117977 crossref_primary_10_1016_j_memsci_2020_118901 crossref_primary_10_1016_j_memsci_2019_117658 crossref_primary_10_1007_s40201_021_00624_x crossref_primary_10_1016_j_eng_2020_06_033 crossref_primary_10_1016_j_desal_2024_118167 crossref_primary_10_1016_j_memsci_2021_119618 crossref_primary_10_1016_j_memsci_2023_121858 crossref_primary_10_1016_j_seppur_2020_117153 crossref_primary_10_1016_j_memsci_2024_123319 crossref_primary_10_1016_j_seppur_2021_118649 crossref_primary_10_1016_j_ces_2025_121569 crossref_primary_10_1021_acs_est_9b06779 crossref_primary_10_1016_j_cej_2022_138711 crossref_primary_10_1021_acs_est_0c06835 crossref_primary_10_1039_D1TA07413J crossref_primary_10_1002_adma_202108457 crossref_primary_10_1016_j_memsci_2021_119863 crossref_primary_10_1016_j_memsci_2021_119984 crossref_primary_10_1039_D4CC02669A crossref_primary_10_1016_j_memsci_2021_119623 crossref_primary_10_1016_j_seppur_2022_122547 crossref_primary_10_1016_j_jece_2024_115135 crossref_primary_10_1016_j_desal_2023_117221 crossref_primary_10_1016_j_jiec_2022_08_004 crossref_primary_10_1016_j_jclepro_2023_137282 crossref_primary_10_1016_j_memsci_2023_121506 crossref_primary_10_1016_j_mtcomm_2025_111742 crossref_primary_10_1016_j_matt_2024_01_028 crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1016_j_seppur_2020_117387 crossref_primary_10_1039_D1TA05005B crossref_primary_10_1016_j_memsci_2023_121863 crossref_primary_10_1016_j_watres_2021_116976 crossref_primary_10_1016_j_memsci_2022_121330 crossref_primary_10_1016_j_desal_2023_116806 crossref_primary_10_1016_j_seppur_2023_125300 crossref_primary_10_1016_j_desal_2020_114525 crossref_primary_10_1002_advs_202103814 crossref_primary_10_1016_j_seppur_2025_132092 crossref_primary_10_1016_j_rineng_2024_101932 crossref_primary_10_1016_j_polymer_2022_124988 crossref_primary_10_1016_j_seppur_2020_118069 crossref_primary_10_1016_j_memsci_2022_120507 crossref_primary_10_1016_j_colsurfa_2023_131075 crossref_primary_10_1039_D2EW00430E crossref_primary_10_1016_j_desal_2023_116716 crossref_primary_10_1021_acs_macromol_3c00614 crossref_primary_10_1039_D4NJ00540F crossref_primary_10_1016_j_seppur_2022_120947 crossref_primary_10_1002_aic_18038 crossref_primary_10_1016_j_desal_2022_115582 crossref_primary_10_1021_acsanm_3c00619 crossref_primary_10_1016_j_memsci_2021_119369 crossref_primary_10_1016_j_seppur_2023_124469 crossref_primary_10_1016_j_memsci_2020_118433 crossref_primary_10_1039_D0TA09319J crossref_primary_10_1016_j_jcis_2020_03_044 crossref_primary_10_1039_D3SU00212H crossref_primary_10_1016_j_memsci_2022_120730 crossref_primary_10_1002_smll_202300456 crossref_primary_10_1016_j_memsci_2022_121273 crossref_primary_10_1002_mame_202000818 crossref_primary_10_1002_EXP_20210101 crossref_primary_10_1016_j_jtice_2019_04_044 crossref_primary_10_1016_j_memsci_2021_119498 crossref_primary_10_1039_D1NJ00609F crossref_primary_10_1016_j_seppur_2023_123821 crossref_primary_10_1016_j_desal_2023_117031 crossref_primary_10_1016_j_jes_2023_05_027 crossref_primary_10_1016_j_memsci_2020_118202 crossref_primary_10_1016_j_cej_2020_127857 crossref_primary_10_1002_macp_202200088 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1007_s00289_023_04748_y crossref_primary_10_1016_j_memsci_2021_119144 crossref_primary_10_1016_j_desal_2020_114834 crossref_primary_10_2139_ssrn_4054197 crossref_primary_10_2139_ssrn_4184455 crossref_primary_10_3390_membranes13050497 crossref_primary_10_1016_j_cej_2019_122462 crossref_primary_10_1016_j_desal_2025_118797 crossref_primary_10_1016_j_chempr_2023_04_012 crossref_primary_10_1016_j_desal_2024_117441 crossref_primary_10_1016_j_seppur_2020_118038 crossref_primary_10_1016_j_memsci_2023_121424 crossref_primary_10_1021_acs_est_0c05377 crossref_primary_10_1007_s11705_020_1943_8 crossref_primary_10_1016_j_seppur_2024_129169 crossref_primary_10_1016_j_progpolymsci_2020_101308 crossref_primary_10_1016_j_memsci_2020_117916 crossref_primary_10_1016_j_desal_2021_115397 crossref_primary_10_1016_j_desal_2022_116301 crossref_primary_10_1021_acs_iecr_1c03105 crossref_primary_10_3390_membranes13050486 crossref_primary_10_1016_j_desal_2024_118523 crossref_primary_10_1016_j_progpolymsci_2022_101504 crossref_primary_10_1016_j_desal_2023_117176 crossref_primary_10_1016_j_memsci_2022_120306 crossref_primary_10_1021_acsanm_4c04034 crossref_primary_10_1016_j_memsci_2020_118067 crossref_primary_10_1016_j_memsci_2020_118065 crossref_primary_10_1016_j_jece_2024_111963 crossref_primary_10_1016_j_seppur_2022_122361 crossref_primary_10_1016_j_memsci_2022_120782 crossref_primary_10_2139_ssrn_4105409 crossref_primary_10_1016_j_memsci_2022_120544 crossref_primary_10_1016_j_memsci_2023_121478 crossref_primary_10_3390_polym12122817 crossref_primary_10_1016_j_cej_2024_152321 crossref_primary_10_1016_j_memsci_2021_119680 crossref_primary_10_1016_j_seppur_2024_130265 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1039_D0EN01101K crossref_primary_10_1016_j_desal_2022_116355 crossref_primary_10_1016_j_memsci_2020_118738 crossref_primary_10_1016_j_seppur_2021_118391 crossref_primary_10_2139_ssrn_3968822 crossref_primary_10_1016_j_watres_2023_120774 crossref_primary_10_1016_j_cjche_2022_09_014 crossref_primary_10_1016_j_memsci_2022_120537 crossref_primary_10_1021_acsestwater_1c00233 crossref_primary_10_1016_j_memsci_2024_122831 crossref_primary_10_1016_j_cherd_2020_03_011 crossref_primary_10_1016_j_memsci_2024_123377 crossref_primary_10_1016_j_desal_2020_114342 crossref_primary_10_1016_j_memsci_2022_121076 crossref_primary_10_1016_j_memsci_2022_121070 crossref_primary_10_1016_j_memsci_2019_117375 crossref_primary_10_1016_j_desal_2025_118528 crossref_primary_10_1021_acsestwater_2c00213 crossref_primary_10_1007_s12393_022_09320_4 crossref_primary_10_1016_j_memsci_2021_119216 crossref_primary_10_1016_j_watres_2022_118264 crossref_primary_10_1016_j_jece_2024_112711 crossref_primary_10_1021_acs_iecr_1c01919 crossref_primary_10_1016_j_desal_2022_115929 crossref_primary_10_1016_j_seppur_2021_118802 crossref_primary_10_1016_j_seppur_2024_127082 crossref_primary_10_1021_acsami_0c06417 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1038_s41545_023_00271_9 crossref_primary_10_1016_j_isci_2021_102369 crossref_primary_10_1016_j_mattod_2021_06_013 crossref_primary_10_1146_annurev_chembioeng_112019_084830 crossref_primary_10_1016_j_desal_2022_115806 crossref_primary_10_1016_j_memsci_2019_05_082 crossref_primary_10_1021_acs_est_2c00551 crossref_primary_10_1016_j_mtener_2021_100856 crossref_primary_10_1016_j_memsci_2021_119905 crossref_primary_10_1021_acsami_0c14825 crossref_primary_10_1002_smll_202205714 crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_1016_j_memsci_2024_122853 crossref_primary_10_1016_j_memsci_2020_118090 crossref_primary_10_1016_j_jece_2021_107015 crossref_primary_10_21597_jist_684130 crossref_primary_10_1021_acsami_1c17086 crossref_primary_10_1016_j_desal_2021_115519 crossref_primary_10_1016_j_desal_2020_114802 crossref_primary_10_1016_j_seppur_2024_127745 crossref_primary_10_1002_batt_202200124 crossref_primary_10_1016_j_desal_2022_116227 crossref_primary_10_1002_app_56626 |
Cites_doi | 10.1038/nmat4638 10.1039/C7TA00501F 10.1021/acsami.6b10693 10.1016/j.desal.2015.08.020 10.1126/science.aaa5058 10.1016/j.memsci.2014.11.011 10.1016/j.desal.2013.06.016 10.1021/la049725x 10.1002/anie.201510724 10.1016/j.memsci.2018.07.087 10.1002/smll.201601253 10.1021/la202877k 10.1021/acsami.5b07128 10.1021/ja308278w 10.1039/C8TA05687K 10.1016/j.watres.2015.04.037 10.1016/j.memsci.2018.05.036 10.1021/acsami.7b14017 10.1016/j.desal.2011.04.004 10.1021/acs.estlett.8b00169 10.1021/ja4017842 10.1021/jacs.7b12121 10.1038/nnano.2017.21 10.1016/j.memsci.2009.03.024 10.1021/la020920q 10.1016/j.memsci.2015.01.025 10.1021/acs.langmuir.6b04465 10.1021/acsami.8b00339 10.1038/s41570-017-0056 10.1016/j.cej.2013.12.104 10.1016/j.memsci.2016.05.056 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2019.01.040 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
EndPage | 141 |
ExternalDocumentID | 10_1016_j_memsci_2019_01_040 S0376738818328096 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-4e7b6de55d2bd59ad49dbb951ca036508569461b51c30a8bfd6e0494d5de42d43 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 12:31:32 EDT 2025 Tue Jul 01 02:49:31 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Fri Feb 23 02:28:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High flux Covalent organic framework Nanofiltration membrane Interfacial polymerization Structural stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-4e7b6de55d2bd59ad49dbb951ca036508569461b51c30a8bfd6e0494d5de42d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2221051220 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2221051220 crossref_citationtrail_10_1016_j_memsci_2019_01_040 crossref_primary_10_1016_j_memsci_2019_01_040 elsevier_sciencedirect_doi_10_1016_j_memsci_2019_01_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lalia, Kochkodan, Hashaikeh, Hilal (bib6) 2013; 326 Freger (bib11) 2003; 19 Jin, Hu, Zhang (bib29) 2017; 1 Zhou, Hu, Boo, Liu, Li, Deng, An (bib19) 2018; 5 Sharma, Thampi, Suggala, Bhattacharya (bib24) 2004; 20 Lau, Ismail, Misdan, Kassim (bib5) 2012; 287 Wang, Fang, Liu, He, Li, Lei (bib23) 2015; 7 Zhu, Hou, Zhang, Yuan, Li, Tian, Wang, Zhang, Volodin, Van der Bruggen (bib15) 2018; 6 Jimenezsolomon, Song, Jelfs, Munozibanez, Livingston (bib13) 2016; 15 Biswal, Chandra, Kandambeth, Lukose, Heine, Banerjee (bib30) 2013; 135 Yang, Wu, Xu, Mu, Lin, Cheng, Liu, Pan, Cao, Jiang (bib32) 2018; 561 Zhu, Xie, Gao, Zhang, Zhang, Liu, Jin (bib21) 2016; 12 Abraham, Vasu, Williams, Gopinadhan, Su, Cherian, Dix, Prestat, Haigh, Grigorieva (bib1) 2017; 12 Zheng, Chen, Wang, Zhang (bib3) 2014; 242 Wang, Yang, Wu, Zhang, Xu (bib20) 2017; 5 Wu, Lv, Yang, Liu, Zhang, Xu (bib14) 2016; 515 Shan, Gu, Fan, Ji, Zhang (bib16) 2017; 9 Huang, Mccutcheon (bib12) 2015; 483 Ghosh, Hoek (bib10) 2009; 336 Kandambeth, Mallick, Lukose, Mane, Heine, Banerjee (bib31) 2012; 134 Zhou, Zhu, Fu, Zhu, Xue (bib2) 2015; 376 Wu, Li, Cui, Wang, Cao, Zhang, Zheng (bib7) 2018; 10 Zhang, Ou, Lei, Wan, Ji, Xu (bib25) 2016; 55 Lau, Stephen, Matsuura, Emadzadeh, Paul, Ismail (bib4) 2015; 80 Nowbahar, Mansard, Mecca, Paul, Arrowood, Squires (bib8) 2018; 140 Hu, Zhang, He, Zhao, Zhu (bib9) 2018; 564 Yang, Du, Zhang, He, Xu (bib18) 2017; 33 Yang, Waldman, Wu, Hou, Chen, Darling, Xu (bib26) 2018; 28 Jiang, Zhu, Zhu, Zhu, Xu (bib27) 2011; 27 Karan, Jiang, Livingston (bib17) 2015; 348 Li, Su, Li, Zhao, Zhang, Fan, Zhu, Ma, Liu, Jiang (bib28) 2015; 476 Zhang, Lv, Yang, Du, Xu (bib22) 2016; 8 Jiang (10.1016/j.memsci.2019.01.040_bib27) 2011; 27 Freger (10.1016/j.memsci.2019.01.040_bib11) 2003; 19 Sharma (10.1016/j.memsci.2019.01.040_bib24) 2004; 20 Shan (10.1016/j.memsci.2019.01.040_bib16) 2017; 9 Nowbahar (10.1016/j.memsci.2019.01.040_bib8) 2018; 140 Zhang (10.1016/j.memsci.2019.01.040_bib25) 2016; 55 Abraham (10.1016/j.memsci.2019.01.040_bib1) 2017; 12 Yang (10.1016/j.memsci.2019.01.040_bib32) 2018; 561 Zhou (10.1016/j.memsci.2019.01.040_bib19) 2018; 5 Hu (10.1016/j.memsci.2019.01.040_bib9) 2018; 564 Lau (10.1016/j.memsci.2019.01.040_bib5) 2012; 287 Wu (10.1016/j.memsci.2019.01.040_bib7) 2018; 10 Lalia (10.1016/j.memsci.2019.01.040_bib6) 2013; 326 Zhu (10.1016/j.memsci.2019.01.040_bib15) 2018; 6 Biswal (10.1016/j.memsci.2019.01.040_bib30) 2013; 135 Yang (10.1016/j.memsci.2019.01.040_bib26) 2018; 28 Li (10.1016/j.memsci.2019.01.040_bib28) 2015; 476 Jimenezsolomon (10.1016/j.memsci.2019.01.040_bib13) 2016; 15 Zhang (10.1016/j.memsci.2019.01.040_bib22) 2016; 8 Zheng (10.1016/j.memsci.2019.01.040_bib3) 2014; 242 Zhu (10.1016/j.memsci.2019.01.040_bib21) 2016; 12 Kandambeth (10.1016/j.memsci.2019.01.040_bib31) 2012; 134 Zhou (10.1016/j.memsci.2019.01.040_bib2) 2015; 376 Ghosh (10.1016/j.memsci.2019.01.040_bib10) 2009; 336 Jin (10.1016/j.memsci.2019.01.040_bib29) 2017; 1 Wang (10.1016/j.memsci.2019.01.040_bib23) 2015; 7 Wang (10.1016/j.memsci.2019.01.040_bib20) 2017; 5 Lau (10.1016/j.memsci.2019.01.040_bib4) 2015; 80 Huang (10.1016/j.memsci.2019.01.040_bib12) 2015; 483 Karan (10.1016/j.memsci.2019.01.040_bib17) 2015; 348 Yang (10.1016/j.memsci.2019.01.040_bib18) 2017; 33 Wu (10.1016/j.memsci.2019.01.040_bib14) 2016; 515 |
References_xml | – volume: 6 start-page: 15701 year: 2018 end-page: 15709 ident: bib15 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A – volume: 5 start-page: 16289 year: 2017 end-page: 16295 ident: bib20 article-title: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance publication-title: J. Mater. Chem. A – volume: 12 start-page: 5034 year: 2016 end-page: 5041 ident: bib21 article-title: Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination publication-title: Small – volume: 476 start-page: 10 year: 2015 end-page: 19 ident: bib28 article-title: Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine publication-title: J. Membr. Sci. – volume: 140 start-page: 3173 year: 2018 end-page: 3176 ident: bib8 article-title: Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry publication-title: J. Am. Chem. Soc. – volume: 561 start-page: 79 year: 2018 end-page: 88 ident: bib32 article-title: Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation publication-title: J. Membr. Sci. – volume: 12 start-page: 546 year: 2017 ident: bib1 article-title: Tunable sieving of ions using graphene oxide membranes publication-title: Nat. Nanotechnol. – volume: 9 year: 2017 ident: bib16 article-title: Micro-phase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 4708 year: 2004 end-page: 4714 ident: bib24 article-title: Pervaporation from a dense membrane: roles of permeant−membrane interactions, kelvin effect, and membrane swelling publication-title: Langmuir – volume: 80 start-page: 306 year: 2015 end-page: 324 ident: bib4 article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches publication-title: Water Res. – volume: 1 start-page: 0056 year: 2017 ident: bib29 article-title: Tessellated multiporous two-dimensional covalent organic frameworks publication-title: Nat. Rev. Chem. – volume: 564 start-page: 813 year: 2018 end-page: 819 ident: bib9 article-title: Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization publication-title: J. Membr. Sci. – volume: 27 start-page: 14180 year: 2011 end-page: 14187 ident: bib27 article-title: Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films publication-title: Langmuir – volume: 376 start-page: 109 year: 2015 end-page: 116 ident: bib2 article-title: Development of lower cost seawater desalination processes using nanofiltration technologies — a review publication-title: Desalination – volume: 5 start-page: 243 year: 2018 end-page: 248 ident: bib19 article-title: High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer publication-title: Environ. Sci. Technol. Lett. – volume: 336 start-page: 140 year: 2009 end-page: 148 ident: bib10 article-title: Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes publication-title: J. Membr. Sci. – volume: 287 start-page: 190 year: 2012 end-page: 199 ident: bib5 article-title: A recent progress in thin film composite membrane: a review publication-title: Desalination – volume: 8 start-page: 32512 year: 2016 end-page: 32519 ident: bib22 article-title: Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 5328 year: 2013 ident: bib30 article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 24082 year: 2015 end-page: 24093 ident: bib23 article-title: Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications publication-title: ACS Appl. Mater. Interfaces – volume: 348 start-page: 1347 year: 2015 end-page: 1351 ident: bib17 article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science – volume: 55 start-page: 3054 year: 2016 ident: bib25 article-title: CuSO4 /H2 O2 -induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability publication-title: Angew. Chem. – volume: 242 start-page: 404 year: 2014 end-page: 413 ident: bib3 article-title: Seawater desalination in China: retrospect and prospect publication-title: Chem. Eng. J. – volume: 134 start-page: 19524 year: 2012 end-page: 19527 ident: bib31 article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 ident: bib26 article-title: Dopamine: just the right medicine for membranes publication-title: Adv. Funct. Mater. – volume: 33 start-page: 2318 year: 2017 end-page: 2324 ident: bib18 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir – volume: 326 start-page: 77 year: 2013 end-page: 95 ident: bib6 article-title: A review on membrane fabrication: structure, properties and performance relationship publication-title: Desalination – volume: 10 start-page: 10445 year: 2018 end-page: 10453 ident: bib7 article-title: Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 4791 year: 2003 end-page: 4797 ident: bib11 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir – volume: 515 start-page: 238 year: 2016 end-page: 244 ident: bib14 article-title: Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances publication-title: J. Membr. Sci. – volume: 483 start-page: 25 year: 2015 end-page: 33 ident: bib12 article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis publication-title: J. Membr. Sci. – volume: 15 start-page: 760 year: 2016 end-page: 767 ident: bib13 article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization publication-title: Nat. Mater. – volume: 15 start-page: 760 year: 2016 ident: 10.1016/j.memsci.2019.01.040_bib13 article-title: Polymer nanofilms with enhanced microporosity by interfacial polymerization publication-title: Nat. Mater. doi: 10.1038/nmat4638 – volume: 5 start-page: 16289 year: 2017 ident: 10.1016/j.memsci.2019.01.040_bib20 article-title: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00501F – volume: 8 start-page: 32512 year: 2016 ident: 10.1016/j.memsci.2019.01.040_bib22 article-title: Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10693 – volume: 376 start-page: 109 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib2 article-title: Development of lower cost seawater desalination processes using nanofiltration technologies — a review publication-title: Desalination doi: 10.1016/j.desal.2015.08.020 – volume: 348 start-page: 1347 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib17 article-title: Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation publication-title: Science doi: 10.1126/science.aaa5058 – volume: 476 start-page: 10 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib28 article-title: Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.11.011 – volume: 326 start-page: 77 year: 2013 ident: 10.1016/j.memsci.2019.01.040_bib6 article-title: A review on membrane fabrication: structure, properties and performance relationship publication-title: Desalination doi: 10.1016/j.desal.2013.06.016 – volume: 20 start-page: 4708 year: 2004 ident: 10.1016/j.memsci.2019.01.040_bib24 article-title: Pervaporation from a dense membrane: roles of permeant−membrane interactions, kelvin effect, and membrane swelling publication-title: Langmuir doi: 10.1021/la049725x – volume: 55 start-page: 3054 year: 2016 ident: 10.1016/j.memsci.2019.01.040_bib25 article-title: CuSO4 /H2 O2 -induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability publication-title: Angew. Chem. doi: 10.1002/anie.201510724 – volume: 564 start-page: 813 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib9 article-title: Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.07.087 – volume: 12 start-page: 5034 year: 2016 ident: 10.1016/j.memsci.2019.01.040_bib21 article-title: Single-walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high-flux and high-rejection desalination publication-title: Small doi: 10.1002/smll.201601253 – volume: 27 start-page: 14180 year: 2011 ident: 10.1016/j.memsci.2019.01.040_bib27 article-title: Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films publication-title: Langmuir doi: 10.1021/la202877k – volume: 7 start-page: 24082 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib23 article-title: Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07128 – volume: 134 start-page: 19524 year: 2012 ident: 10.1016/j.memsci.2019.01.040_bib31 article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 6 start-page: 15701 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib15 article-title: Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05687K – volume: 80 start-page: 306 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib4 article-title: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches publication-title: Water Res. doi: 10.1016/j.watres.2015.04.037 – volume: 561 start-page: 79 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib32 article-title: Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.05.036 – volume: 9 year: 2017 ident: 10.1016/j.memsci.2019.01.040_bib16 article-title: Micro-phase diffusion-controlled interfacial polymerization for an ultrahigh permeability nanofiltration membrane publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14017 – volume: 28 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib26 article-title: Dopamine: just the right medicine for membranes publication-title: Adv. Funct. Mater. – volume: 287 start-page: 190 year: 2012 ident: 10.1016/j.memsci.2019.01.040_bib5 article-title: A recent progress in thin film composite membrane: a review publication-title: Desalination doi: 10.1016/j.desal.2011.04.004 – volume: 5 start-page: 243 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib19 article-title: High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00169 – volume: 135 start-page: 5328 year: 2013 ident: 10.1016/j.memsci.2019.01.040_bib30 article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 140 start-page: 3173 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib8 article-title: Measuring Interfacial Polymerization Kinetics Using Microfluidic Interferometry publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12121 – volume: 12 start-page: 546 year: 2017 ident: 10.1016/j.memsci.2019.01.040_bib1 article-title: Tunable sieving of ions using graphene oxide membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – volume: 336 start-page: 140 year: 2009 ident: 10.1016/j.memsci.2019.01.040_bib10 article-title: Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.03.024 – volume: 19 start-page: 4791 year: 2003 ident: 10.1016/j.memsci.2019.01.040_bib11 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir doi: 10.1021/la020920q – volume: 483 start-page: 25 year: 2015 ident: 10.1016/j.memsci.2019.01.040_bib12 article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.01.025 – volume: 33 start-page: 2318 year: 2017 ident: 10.1016/j.memsci.2019.01.040_bib18 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04465 – volume: 10 start-page: 10445 year: 2018 ident: 10.1016/j.memsci.2019.01.040_bib7 article-title: Adsorption-assisted interfacial polymerization toward ultrathin active layers for ultrafast organic permeation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00339 – volume: 1 start-page: 0056 year: 2017 ident: 10.1016/j.memsci.2019.01.040_bib29 article-title: Tessellated multiporous two-dimensional covalent organic frameworks publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0056 – volume: 242 start-page: 404 year: 2014 ident: 10.1016/j.memsci.2019.01.040_bib3 article-title: Seawater desalination in China: retrospect and prospect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.104 – volume: 515 start-page: 238 year: 2016 ident: 10.1016/j.memsci.2019.01.040_bib14 article-title: Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.05.056 |
SSID | ssj0017089 |
Score | 2.65863 |
Snippet | Nanofiltration is a promising technology towards desalination and water purification. However, the pursuit for separation efficiency was hampered by the thick... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | adsorption asymmetric membranes Covalent organic framework desalination dyes High flux hydrophilicity Interfacial polymerization nanofiltration Nanofiltration membrane permeability polyacrylonitrile polyamides polymerization porosity sodium sulfate solutes Structural stability water purification |
Title | Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability |
URI | https://dx.doi.org/10.1016/j.memsci.2019.01.040 https://www.proquest.com/docview/2221051220 |
Volume | 576 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWzMhKrqZPYiTNWFVUB0QUqdbPi2BVFrVtBGbrwC_jR3OVRAUKqxJY4thP5Lnef7fN3hFzx0AljBSivCi2DS8NSmTrGbSwtTD8yHuJp5Id-3BuIu6EcNkinPguDYZWV7S9temGtq5JWNZqt-XjceuRIRBIphUqpAInjCXaRoJZff6zCPIKEF2nwsDLD2vXxuSLGa-qm0DUGeKUFeScugfztnn4Z6sL7dHfJTgUbabv8sj3ScH6fbH8jEzwgn4MJMs0-jz31mcdM3BUjLoX3w5zYO4qLrnQ-mywtTJWn0JTlM9A08Du0zO6U01EdrEWRSOJ1kgEkpwBsqfPPRbAAnYMtdyW795Jm3tKSghbpO-CyenBIBt2bp06PVbkWWB5F6YIJl5jYOiltaKxMMytSawzArzwDHwcoTsapiAMDBRHPlBnZ2CG1jJXWidCK6Ihs-Jl3x4SqWCmRxwBFYSpmMugvUmBHEstHUjkenZCoHmKdV0TkmA9jouuIsxddCkajYDQPNAjmhLBVq3lJxLGmflJLT_9QKA2-Yk3Ly1rYGv413EABEc3e3zRgKYCjQRjy03_3fka28A43pAJ5TjZARO4CcM3CNAvFbZLN9u19r_8F3r_8bg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCrKaiSupk5ip84RVVQFChdaiZsVx65a1LoVy4ELX8BHM5OlAoSExM2Kl0SZycwbZ_yGkDMeOmGsAOVVoWXQNCyRiWPcxtJC-JHyEE8j397F3YG4fpAPNdKuzsJgWmVp-wubnlvr8kqzfJvN-XjcvOdIRBIphUqpAIkvkWUBny-WMTh_X-R5BC2e18HD0QyHV-fn8iSvqZvC2pjhleTsnbgH8rt_-mGpc_fT2SDrJW6kF8WjbZKa81tk7Qub4Db5GEyQanY09tSnHktxl5S4FO4PQbF3FHdd6Xw2ebMQK09hKstmoGrgeGhR3imjwypbiyKTxNMkBUxOAdlS50d5tgCdgzF3Bb33G029pQUHLfJ3QLPs2CGDzmW_3WVlsQWWRVHywoRrmdg6KW1orExSKxJrDOCvLAUnBzBOxomIAwMXIp4qM7SxQ24ZK60ToRXRLqn7mXd7hKpYKZHFgEUhFjMprBcpMCQty4dSOR41SFS9Yp2VTORYEGOiq5SzR10IRqNgNA80CKZB2GLWvGDi-GN8q5Ke_qZRGpzFHzNPK2Fr-NjwDwqIaPb6rAFMAR4NwpDv_3v1E7LS7d_2dO_q7uaArGIP_p0K5CGpg7jcEYCcF3OcK_Enlbv9_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+nanofiltration+membrane+with+polydopamine-covalent+organic+framework+interlayer+for+enhanced+permeability+and+structural+stability&rft.jtitle=Journal+of+membrane+science&rft.au=Wu%2C+Mengyuan&rft.au=Yuan%2C+Jinqiu&rft.au=Wu%2C+Hong&rft.au=Su%2C+Yanlei&rft.date=2019-04-15&rft.issn=0376-7388&rft.volume=576&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.memsci.2019.01.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2019_01_040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |