Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots
Endophytic microorganisms live inside the host plant and contribute in various biological processes, without causing any harmful effect. Inorganic phosphate solubilization, through microorganisms, is one of the major mechanisms involved in plant growth. The present study highlights the potential of...
Saved in:
Published in | Rhizosphere Vol. 9; pp. 2 - 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endophytic microorganisms live inside the host plant and contribute in various biological processes, without causing any harmful effect. Inorganic phosphate solubilization, through microorganisms, is one of the major mechanisms involved in plant growth. The present study highlights the potential of endophytic fungi for their ability to solubilize insoluble phosphates in presence of tricalcium (TCP), aluminium (AlP), and iron phosphate (FeP) at different temperatures through production of phosphatases, phytases and organic acids. Five endophytic fungi, isolated from the roots of Taxus wallichiana, were identified following their phenotypic and molecular characters. Three fungal isolates showed maximum similarity with species of Penicillium (GBPI TWR_F1, GBPI TWR_F2, and GBPI TWR_F3) and two with species of Aspergillus (GBPI TWR_F4 and GBPI TWR_F5). All the endophytes solubilized phosphate by utilizing the substrates namely calcium, aluminium and iron phosphate along with the production of phosphatase and phytase enzymes. Maximum phosphate solubilization and phytase activity was recorded in case of the fungal isolate GBPI TWR_F2 (P. daleae) being 83.42 ± 3.41 µg/ml TCP, 57.63 ± 0.79 µg/ml AlP, and 57.76 ± 1.70 µg/ml FeP at 15 °C. GBPI TWR_F2 and GBPI TWR_F5 (Aspergillus sp.) produced maximum calcium phytase at 25 and 15 °C, 10.33 ± 0.13 and 10.37 ± 0.37 µM/ml, respectively. Phosphatase production was higher in acidic conditions in comparison to alkaline. In quantification of organic acids through HPLC, malic and succinic acids were determined in maximum quantity 0.97 ± 0.003 and 0.92 ± 0.008 µg/ml, respectively, followed by oxalic (0.71 ± 0.006 µg/ml) and lactic acid (0.61 ± 0.005 µg/ml). Citric acid was estimated in minimum quantity.
[Display omitted] |
---|---|
AbstractList | Endophytic microorganisms live inside the host plant and contribute in various biological processes, without causing any harmful effect. Inorganic phosphate solubilization, through microorganisms, is one of the major mechanisms involved in plant growth. The present study highlights the potential of endophytic fungi for their ability to solubilize insoluble phosphates in presence of tricalcium (TCP), aluminium (AlP), and iron phosphate (FeP) at different temperatures through production of phosphatases, phytases and organic acids. Five endophytic fungi, isolated from the roots of Taxus wallichiana, were identified following their phenotypic and molecular characters. Three fungal isolates showed maximum similarity with species of Penicillium (GBPI TWR_F1, GBPI TWR_F2, and GBPI TWR_F3) and two with species of Aspergillus (GBPI TWR_F4 and GBPI TWR_F5). All the endophytes solubilized phosphate by utilizing the substrates namely calcium, aluminium and iron phosphate along with the production of phosphatase and phytase enzymes. Maximum phosphate solubilization and phytase activity was recorded in case of the fungal isolate GBPI TWR_F2 (P. daleae) being 83.42 ± 3.41 µg/ml TCP, 57.63 ± 0.79 µg/ml AlP, and 57.76 ± 1.70 µg/ml FeP at 15 °C. GBPI TWR_F2 and GBPI TWR_F5 (Aspergillus sp.) produced maximum calcium phytase at 25 and 15 °C, 10.33 ± 0.13 and 10.37 ± 0.37 µM/ml, respectively. Phosphatase production was higher in acidic conditions in comparison to alkaline. In quantification of organic acids through HPLC, malic and succinic acids were determined in maximum quantity 0.97 ± 0.003 and 0.92 ± 0.008 µg/ml, respectively, followed by oxalic (0.71 ± 0.006 µg/ml) and lactic acid (0.61 ± 0.005 µg/ml). Citric acid was estimated in minimum quantity.
[Display omitted] Endophytic microorganisms live inside the host plant and contribute in various biological processes, without causing any harmful effect. Inorganic phosphate solubilization, through microorganisms, is one of the major mechanisms involved in plant growth. The present study highlights the potential of endophytic fungi for their ability to solubilize insoluble phosphates in presence of tricalcium (TCP), aluminium (AlP), and iron phosphate (FeP) at different temperatures through production of phosphatases, phytases and organic acids. Five endophytic fungi, isolated from the roots of Taxus wallichiana, were identified following their phenotypic and molecular characters. Three fungal isolates showed maximum similarity with species of Penicillium (GBPI TWR_F1, GBPI TWR_F2, and GBPI TWR_F3) and two with species of Aspergillus (GBPI TWR_F4 and GBPI TWR_F5). All the endophytes solubilized phosphate by utilizing the substrates namely calcium, aluminium and iron phosphate along with the production of phosphatase and phytase enzymes. Maximum phosphate solubilization and phytase activity was recorded in case of the fungal isolate GBPI TWR_F2 (P. daleae) being 83.42 ± 3.41 µg/ml TCP, 57.63 ± 0.79 µg/ml AlP, and 57.76 ± 1.70 µg/ml FeP at 15 °C. GBPI TWR_F2 and GBPI TWR_F5 (Aspergillus sp.) produced maximum calcium phytase at 25 and 15 °C, 10.33 ± 0.13 and 10.37 ± 0.37 µM/ml, respectively. Phosphatase production was higher in acidic conditions in comparison to alkaline. In quantification of organic acids through HPLC, malic and succinic acids were determined in maximum quantity 0.97 ± 0.003 and 0.92 ± 0.008 µg/ml, respectively, followed by oxalic (0.71 ± 0.006 µg/ml) and lactic acid (0.61 ± 0.005 µg/ml). Citric acid was estimated in minimum quantity. |
Author | Adhikari, Priyanka Pandey, Anita |
Author_xml | – sequence: 1 givenname: Priyanka surname: Adhikari fullname: Adhikari, Priyanka – sequence: 2 givenname: Anita surname: Pandey fullname: Pandey, Anita email: anita@gbpihed.nic.in |
BookMark | eNqFkDtvFDEUhS0UJELIP6BwmWYnfszDkyISikhAigRFaGgsr33N3JXXHmxPIPx6JixFRBGqe4rzHel-r8lRTBEIectZwxnvz3dNnrDMUyMYVw3nDWPiBTkWbSc2go_q6El-RU5L2THG-NDLrpfHZPt5SitsKtCSwrLFgL9MxRTpnCrEiibQ5ClEl-bpoaKlfonfkOLaXiFHfU57emd-LoX-MCGgndBEQ78u1jY0p1TLG_LSm1Dg9O89IV-u399dfdjcfrr5ePXudmOlHOumdd0wWu7Biw4Uc5J3UrXDOPR-MGPveT-2onfOKmW2Vm09qK4VQirZDhYGJ0_I2WF3zun7AqXqPRYLIZgIaSlacDV23chavlYvDlWbUykZvLZY_7xds8GgOdOPbvVOH9zqR7eac726XeH2H3jOuDf54X_Y5QGD1cE9QtbFIkQLDjPYql3C5wd-A8MZmW0 |
CitedBy_id | crossref_primary_10_1007_s00284_023_03349_2 crossref_primary_10_1016_j_rhisph_2023_100829 crossref_primary_10_13080_z_a_2022_109_004 crossref_primary_10_1007_s00284_023_03283_3 crossref_primary_10_3389_fmicb_2020_585215 crossref_primary_10_1016_j_heliyon_2023_e19487 crossref_primary_10_1007_s13165_021_00375_x crossref_primary_10_1016_j_micres_2020_126536 crossref_primary_10_3390_plants13141989 crossref_primary_10_1007_s11356_020_11152_w crossref_primary_10_1007_s00284_022_02926_1 crossref_primary_10_1007_s42770_024_01259_4 crossref_primary_10_1016_j_scitotenv_2023_161685 crossref_primary_10_1128_msystems_00814_21 crossref_primary_10_3389_fenvs_2022_949371 crossref_primary_10_3389_fpls_2021_741804 crossref_primary_10_1186_s12866_022_02651_6 crossref_primary_10_1016_j_rhisph_2023_100710 crossref_primary_10_3390_jof8020094 crossref_primary_10_1007_s42729_024_01638_8 crossref_primary_10_1007_s00253_018_9515_2 crossref_primary_10_3390_plants12203630 crossref_primary_10_1080_01490451_2025_2457660 crossref_primary_10_1155_2021_9930210 crossref_primary_10_3390_biology10100961 crossref_primary_10_1016_j_rhisph_2021_100379 crossref_primary_10_1016_j_bcab_2022_102510 crossref_primary_10_1016_j_rhisph_2020_100237 crossref_primary_10_1016_j_rhisph_2021_100332 crossref_primary_10_1007_s11756_021_00886_8 crossref_primary_10_1016_j_bcab_2022_102392 crossref_primary_10_1016_j_cpb_2023_100281 crossref_primary_10_3389_fagro_2021_637196 crossref_primary_10_1007_s11274_024_04086_9 crossref_primary_10_1007_s13225_025_00550_5 crossref_primary_10_3390_agronomy11020392 crossref_primary_10_12677_HJAS_2022_126065 crossref_primary_10_3389_fmicb_2022_933017 crossref_primary_10_1007_s13199_023_00928_6 crossref_primary_10_17221_134_2021_PPS crossref_primary_10_1016_j_fbr_2023_100308 crossref_primary_10_3390_microorganisms8091337 crossref_primary_10_1007_s12223_022_01004_0 crossref_primary_10_3390_metabo12111100 crossref_primary_10_3390_microorganisms8020257 crossref_primary_10_1007_s10886_025_01583_5 crossref_primary_10_3389_fmicb_2021_689367 crossref_primary_10_1007_s11756_024_01650_4 crossref_primary_10_1007_s00248_021_01702_1 crossref_primary_10_1007_s13199_022_00887_4 crossref_primary_10_1007_s13205_022_03145_y crossref_primary_10_3390_microorganisms12030616 crossref_primary_10_1007_s42729_020_00342_7 crossref_primary_10_1007_s11104_021_04829_9 crossref_primary_10_1016_j_rhisph_2024_100931 crossref_primary_10_1111_1462_2920_14949 crossref_primary_10_1080_07388551_2020_1805403 crossref_primary_10_1002_pei3_10146 crossref_primary_10_1007_s42770_023_00924_4 crossref_primary_10_3389_fmicb_2023_1287582 crossref_primary_10_1016_j_funbio_2023_10_002 crossref_primary_10_1088_1755_1315_978_1_012012 crossref_primary_10_3389_fpls_2022_930340 crossref_primary_10_3389_fmicb_2024_1494859 crossref_primary_10_3389_fmicb_2025_1520459 crossref_primary_10_1007_s12223_023_01051_1 crossref_primary_10_3390_jof8111178 crossref_primary_10_1016_j_sajb_2020_03_021 crossref_primary_10_17221_25_2023_PPS crossref_primary_10_56027_JOASD_122024 crossref_primary_10_1080_09583157_2024_2395878 crossref_primary_10_3389_fmicb_2022_1024001 crossref_primary_10_1007_s12223_021_00939_0 |
Cites_doi | 10.1016/j.apsoil.2016.11.010 10.4103/2225-4110.136544 10.1007/s13199-012-0154-6 10.1016/S0031-9422(02)00115-2 10.1126/science.8097061 10.1007/s11274-007-9444-1 10.1016/j.rhisph.2016.08.005 10.1016/j.rhisph.2018.02.003 10.1007/s00284-012-0235-z 10.1007/s11274-010-0550-0 10.1007/s13213-017-1256-4 10.1042/BA20080110 10.1186/gb-2013-14-6-121 10.1007/s12298-011-0062-x 10.3389/fmicb.2016.00906 10.1007/s00253-015-6487-3 10.1007/s10295-014-1496-2 10.1016/j.funbio.2015.07.007 10.1016/j.micres.2015.11.008 10.1016/j.jgeb.2017.01.003 10.1155/2013/598541 10.1007/s00253-016-7285-2 10.2174/1874437001408010001 10.1016/j.jep.2013.02.031 10.1007/s13199-014-0273-3 10.1016/j.apsoil.2005.08.005 10.1016/S0960-8524(02)00145-1 10.1007/BF00253604 10.1007/s13213-015-1153-7 10.1007/S10267-010-0036-9 10.1007/BF02857856 10.1016/j.cell.2018.02.024 10.1007/s40789-018-0201-x 10.1111/j.1365-2672.2009.04305.x 10.1007/s40011-018-1002-0 10.1111/j.1469-8137.2009.02773.x 10.1111/j.1574-6968.2009.01481.x 10.1016/j.rhisph.2017.04.012 10.1186/1471-2180-13-71 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rhisph.2018.11.002 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
EndPage | 9 |
ExternalDocumentID | 10_1016_j_rhisph_2018_11_002 S245221981830106X |
GroupedDBID | --M 0R~ AABVA AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-4d579c1fef25e80d3153847976f7a96f169426ddc88abc8bfe8542238347ce7d3 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Fri Jul 11 16:00:10 EDT 2025 Tue Jul 01 03:12:53 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 23 02:29:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fungal endophytes Aspergillus Phosphate solubilization Taxus wallichiana Penicillium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-4d579c1fef25e80d3153847976f7a96f169426ddc88abc8bfe8542238347ce7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2189559041 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2189559041 crossref_citationtrail_10_1016_j_rhisph_2018_11_002 crossref_primary_10_1016_j_rhisph_2018_11_002 elsevier_sciencedirect_doi_10_1016_j_rhisph_2018_11_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationTitle | Rhizosphere |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rinu, Pandey, Palni (bib26) 2012 Velazquez, Rodríguez (bib40) 2007; 102 Kumaran, Hur (bib15) 2009; 54 Wani, Ashraf, Mohiuddin, Hassan (bib42) 2015; 99 Vasundhara, Baranwal, Sivaramaiah, Kumar (bib39) 2017; 67 Kumar, Blaxter (bib14) 2011; 55 Tarafdar, Gharu (bib36) 2006; 32 Ahkami, White, Handakumbura, Jansson (bib4) 2017 Spagnoletti, Tobar, Fernandez, Chiocchio, Lavado (bib34) 2016; 111 Pandey, Sati, Malviya, Singh, Kumar (bib19) 2014; 106 Wani, Ashraf, Mohiuddin, Riyaz-Ul-Hassan (bib41) 2015; 99 Adhikari, Pandey, Agnihotri, Pandey (bib2) 2018; 8 The IUCN Red List of Threatened Species 2011: e.T46171879A9730085. Yarzábal (bib46) 2014 Thomas, P., Farjon, A., 2011. Rey, Schornack (bib23) 2013; 14 Dhakar, Pandey (bib10) 2016; 100 Saleem, Law, Sahib, Pervaiz, Zhang (bib29) 2018; 6 Xiang, Lu, Wu (bib44) 2003; 14 Frankena, Van, Stouthamer (bib11) 1985; 22 Rodriguez, White, Arnold, Redman (bib28) 2009; 182 Adl, S.M., 2016. Rhizosphere, food security, and climate change: A critical role for plant-soil research. Rhizosphere 1, 1-3. Singh, Pandey (bib32) 2017 Somjaipeng, Medina, Kwaśna, Ortiz, Magan (bib33) 2015; 119 Zheng, Qiao, Miao, Liu, Chen, Xu, Zhao (bib49) 2016; 66 Behera, Yadav, Singh, Mishra, Sethi, Dutta, Thatoi (bib6) 2017; 15 Santoyo, Hagelsieb, Mosqueda (bib30) 2016; 183 Juyal, Thawani, Thaledi, Joshi (bib13) 2014; 4 Stierle, Strobel, Stierle (bib35) 1993; 260 Nadeem, Rikhari, Kumar, Palni, Nandi (bib16) 2002; 60 Casey, Walsh (bib8) 2003; 86 Bakker, Pieterse, Jonge, Berendsen (bib5) 2018; 172 Rinu, Malviya, Sati, Tiwari, Pandey (bib27) 2013 Zhao, Ping, Li, Hao, Zhao, Gao, Zhou (bib48) 2009; 107 Rinu, Pandey (bib25) 2011; 27 Rai, Rathod, Agarkar, Dar, Brestic, Pastore, Junior (bib22) 2014; 62 Singh, Satyanarayana (bib31) 2011; 17 Zhang, Zhou, Yu (bib47) 2009; 293 Poudel, Goa, Moeller, Baral, Uprety, Liu, Li (bib21) 2013; 147 Xiong, Yang, Zhao, Wang (bib45) 2013; 13 Bi, Zhang, Zou (bib7) 2018; 5 Wu, Han, Li, Jia, Xue, Rahman, Qin (bib43) 2013; 66 Nicoletti, Fiorentino, Scognamiglio (bib17) 2014; 8 Tayung, Jha (bib37) 2006; 2 Corrêa, Rhoden, Mota, Azevedo, Pamphile, de Souza, Polizeli,Mde, Bracht, Peralta (bib9) 2014; 41 Adhikari, Pandey (bib1) 2017; 4 Pandey, Das, Kumar, Rinu, Trivedi (bib18) 2008; 24 Jia, Chen, Xin, Zheng, Rahman, Han, Qin (bib12) 2016; 7 Rinu, Pandey (bib24) 2010; 51 Pandey, Dhakar, Jain, Pandey, Gupta, Kooliyottil, Dhyani, Malviya, Adhikari (bib20) 2018 10.1016/j.rhisph.2018.11.002_bib38 Wani (10.1016/j.rhisph.2018.11.002_bib42) 2015; 99 Frankena (10.1016/j.rhisph.2018.11.002_bib11) 1985; 22 Rey (10.1016/j.rhisph.2018.11.002_bib23) 2013; 14 Rinu (10.1016/j.rhisph.2018.11.002_bib26) 2012 Singh (10.1016/j.rhisph.2018.11.002_bib32) 2017 Juyal (10.1016/j.rhisph.2018.11.002_bib13) 2014; 4 Adhikari (10.1016/j.rhisph.2018.11.002_bib2) 2018; 8 Nicoletti (10.1016/j.rhisph.2018.11.002_bib17) 2014; 8 Santoyo (10.1016/j.rhisph.2018.11.002_bib30) 2016; 183 Yarzábal (10.1016/j.rhisph.2018.11.002_bib46) 2014 Kumar (10.1016/j.rhisph.2018.11.002_bib14) 2011; 55 Singh (10.1016/j.rhisph.2018.11.002_bib31) 2011; 17 Bi (10.1016/j.rhisph.2018.11.002_bib7) 2018; 5 Tayung (10.1016/j.rhisph.2018.11.002_bib37) 2006; 2 Zheng (10.1016/j.rhisph.2018.11.002_bib49) 2016; 66 Rai (10.1016/j.rhisph.2018.11.002_bib22) 2014; 62 Rinu (10.1016/j.rhisph.2018.11.002_bib24) 2010; 51 Bakker (10.1016/j.rhisph.2018.11.002_bib5) 2018; 172 Zhang (10.1016/j.rhisph.2018.11.002_bib47) 2009; 293 Jia (10.1016/j.rhisph.2018.11.002_bib12) 2016; 7 Nadeem (10.1016/j.rhisph.2018.11.002_bib16) 2002; 60 Velazquez (10.1016/j.rhisph.2018.11.002_bib40) 2007; 102 Adhikari (10.1016/j.rhisph.2018.11.002_bib1) 2017; 4 Wu (10.1016/j.rhisph.2018.11.002_bib43) 2013; 66 Saleem (10.1016/j.rhisph.2018.11.002_bib29) 2018; 6 Casey (10.1016/j.rhisph.2018.11.002_bib8) 2003; 86 Spagnoletti (10.1016/j.rhisph.2018.11.002_bib34) 2016; 111 Pandey (10.1016/j.rhisph.2018.11.002_bib19) 2014; 106 Kumaran (10.1016/j.rhisph.2018.11.002_bib15) 2009; 54 Corrêa (10.1016/j.rhisph.2018.11.002_bib9) 2014; 41 10.1016/j.rhisph.2018.11.002_bib3 Rodriguez (10.1016/j.rhisph.2018.11.002_bib28) 2009; 182 Zhao (10.1016/j.rhisph.2018.11.002_bib48) 2009; 107 Rinu (10.1016/j.rhisph.2018.11.002_bib25) 2011; 27 Poudel (10.1016/j.rhisph.2018.11.002_bib21) 2013; 147 Wani (10.1016/j.rhisph.2018.11.002_bib41) 2015; 99 Xiang (10.1016/j.rhisph.2018.11.002_bib44) 2003; 14 Dhakar (10.1016/j.rhisph.2018.11.002_bib10) 2016; 100 Pandey (10.1016/j.rhisph.2018.11.002_bib20) 2018 Ahkami (10.1016/j.rhisph.2018.11.002_bib4) 2017 Behera (10.1016/j.rhisph.2018.11.002_bib6) 2017; 15 Somjaipeng (10.1016/j.rhisph.2018.11.002_bib33) 2015; 119 Xiong (10.1016/j.rhisph.2018.11.002_bib45) 2013; 13 Rinu (10.1016/j.rhisph.2018.11.002_bib27) 2013 Tarafdar (10.1016/j.rhisph.2018.11.002_bib36) 2006; 32 Pandey (10.1016/j.rhisph.2018.11.002_bib18) 2008; 24 Stierle (10.1016/j.rhisph.2018.11.002_bib35) 1993; 260 Vasundhara (10.1016/j.rhisph.2018.11.002_bib39) 2017; 67 |
References_xml | – volume: 22 start-page: 169 year: 1985 end-page: 176 ident: bib11 article-title: A countinious culture study of bioenergetics aspect of growth and production of exocellular protease in publication-title: Appl. Microbiol. Biotechnol. – volume: 260 start-page: 214 year: 1993 end-page: 216 ident: bib35 article-title: Taxol and taxane production by publication-title: Science – volume: 4 start-page: 159 year: 2014 end-page: 161 ident: bib13 article-title: Ethnomedical properties of publication-title: J. Tradit. Complement. Med. – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: bib2 article-title: Selection of solvent and extraction method for determination of antimicrobial potential of publication-title: Res. Pharm. – start-page: 77 year: 2012 end-page: 90 ident: bib26 article-title: Utilization of psychrotolerant phosphate solubilizing fungi under low temperature conditions of the mountain ecosystem publication-title: Microorganisms in Sustainable Agriculture and Biotechnology – start-page: 113 year: 2014 end-page: 136 ident: bib46 article-title: Cold-Tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the World publication-title: Phosphate Solubilizing Microorganisms – volume: 107 start-page: 1202 year: 2009 end-page: 1207 ident: bib48 article-title: Aspergillusniger subsp. taxi, a new species variant of taxol producing fungus isolated from publication-title: J. Appl. Microbiol. – volume: 100 start-page: 2499 year: 2016 end-page: 2510 ident: bib10 article-title: Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology publication-title: Appl. Microbiol. Biotechnol. – reference: Adl, S.M., 2016. Rhizosphere, food security, and climate change: A critical role for plant-soil research. Rhizosphere 1, 1-3. – reference: Thomas, P., Farjon, A., 2011. – volume: 102 year: 2007 ident: bib40 publication-title: First international meeting on microbial phosphate solubilization – volume: 2 start-page: 489 year: 2006 end-page: 494 ident: bib37 article-title: Antimicrobial evaluation of some fungal endophytes isolated from the bark of Himalayan yew publication-title: World J Agric. Sci. – volume: 54 start-page: 21 year: 2009 end-page: 30 ident: bib15 article-title: Screening of species of the endophytic fungus publication-title: Biotechnol. Appl. Biochem. – volume: 182 start-page: 314 year: 2009 end-page: 330 ident: bib28 article-title: Fungal endophytes: diversity and functional roles publication-title: New Phytol. – volume: 15 start-page: 169 year: 2017 end-page: 178 ident: bib6 article-title: Phosphate solubilization and acid phosphatase activity of publication-title: J. Genet. Eng. Biotechnol. – start-page: 233 year: 2017 end-page: 243 ident: bib4 article-title: Rhizosphere engineering: enhancing sustainable plant ecosystem productivity publication-title: Rhizosphere – volume: 147 start-page: 190 year: 2013 end-page: 203 ident: bib21 article-title: Yews (Taxus) along the Hindu Kush-Himalayan region: exploring the ethnopharmacological relevance among communities of Mongol and Caucasian origins publication-title: J. Ethnopharmacol. – volume: 66 start-page: 529 year: 2016 end-page: 542 ident: bib49 article-title: Diversity, distribution and biotechnological potential of endophytic fungi publication-title: Ann. Microbiol. – volume: 106 start-page: 25 year: 2014 ident: bib19 article-title: Use of endophytic bacterium ( publication-title: Curr. Sci. – volume: 7 start-page: 906 year: 2016 ident: bib12 article-title: A friendly relationship between endophytic fungi and medicinal plants: a systematic review publication-title: Front. Microbiol. – year: 2013 ident: bib27 article-title: Response of cold-tolerant publication-title: ISRN Soil Sci. – volume: 99 start-page: 2955 year: 2015 end-page: 2965 ident: bib42 article-title: Plant-endophyte symbiosis, an ecological perspective publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 47 year: 2018 end-page: 53 ident: bib7 article-title: Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas publication-title: Int. J. Coal Sci. Technol. – volume: 66 start-page: 40 year: 2013 end-page: 48 ident: bib43 article-title: Geographic and tissue influences on endophytic fungal communities of publication-title: Curr. Microbiol. – volume: 172 start-page: 1178 year: 2018 end-page: 1180 ident: bib5 article-title: The soil-borne legacy publication-title: Cell – volume: 62 start-page: 63 year: 2014 end-page: 79 ident: bib22 article-title: Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture publication-title: Symbiosis – reference: . The IUCN Red List of Threatened Species 2011: e.T46171879A9730085. – volume: 183 start-page: 92 year: 2016 end-page: 99 ident: bib30 article-title: Plant growth-promoting bacterial endophytes publication-title: Microbiol. Res. – volume: 41 start-page: 1467 year: 2014 end-page: 1478 ident: bib9 article-title: Endophytic fungi: expanding the arsenal of industrial enzyme producers publication-title: J. Ind. Microbiol. Biotechnol. – volume: 8 start-page: 1 year: 2014 end-page: 26 ident: bib17 article-title: Endophytism of publication-title: Open Mycol. J. – volume: 4 start-page: 555 year: 2017 end-page: 650 ident: bib1 article-title: Zucc. (Himalayan Yew) in antimicrobial perspective publication-title: Adv. Biotechnol. Microbiol. – volume: 55 start-page: 119 year: 2011 end-page: 126 ident: bib14 article-title: Simultaneous genome sequencing of symbionts and their hosts publication-title: Symbiosis – volume: 111 start-page: 25 year: 2016 end-page: 32 ident: bib34 article-title: Dark septate endophytes present different potential to solubilize calcium, iron and aluminium phosphates publication-title: Appl. Soil. Ecol. – volume: 14 start-page: 290 year: 2003 end-page: 294 ident: bib44 article-title: Identification of publication-title: J. For. Res. – volume: 119 start-page: 1022 year: 2015 end-page: 1031 ident: bib33 article-title: Isolation, identification, and ecology of growth and taxol production by an endophytic strain of publication-title: Fungal Biol. – volume: 67 start-page: 255 year: 2017 end-page: 261 ident: bib39 article-title: Isolation and characterization of trichalasin-producing endophytic fungus from publication-title: Ann. Microbiol. – year: 2018 ident: bib20 article-title: Cold Adapted Fungi from Indian Himalaya: untapped Source for Bioprospecting publication-title: Proc. Natl. Acad. Sci. India, Sect. B Biol. Sci. – volume: 27 start-page: 1055 year: 2011 end-page: 1062 ident: bib25 article-title: Slow and steady phosphate solubilization by psychrotolerant strain of publication-title: World J. Microbiol. Biotechnol. – volume: 86 start-page: 183 year: 2003 end-page: 188 ident: bib8 article-title: Purification and characterization of extracellular phytase from publication-title: Biores. Technol. – volume: 6 start-page: 47 year: 2018 end-page: 51 ident: bib29 article-title: Impact of root system architecture on rhizosphere and root microbiome publication-title: Rhizosphere – volume: 13 start-page: 71 year: 2013 ident: bib45 article-title: Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media publication-title: BMC Microbiol. – volume: 60 start-page: 627 year: 2002 end-page: 631 ident: bib16 article-title: Taxol content in the bark of Himalayan Yew in relation to tree age and sex publication-title: Phytochemistry – volume: 99 start-page: 2955 year: 2015 end-page: 2965 ident: bib41 article-title: Plant-endophyte symbiosis, an ecological perspective publication-title: Appl. Microbiol. Biotechnol. – volume: 24 start-page: 97 year: 2008 end-page: 102 ident: bib18 article-title: Phosphate solubilization by publication-title: World J. Microbiol. Biotechnol. – volume: 14 start-page: 121 year: 2013 ident: bib23 article-title: Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts publication-title: Genome Biol. – volume: 17 start-page: 93 year: 2011 end-page: 103 ident: bib31 article-title: Microbial phytases in phosphorus acquisition and plant growth promotion publication-title: Physiol. Mol. Biol. Plants – volume: 51 start-page: 263 year: 2010 end-page: 271 ident: bib24 article-title: Temperature-dependent phosphate solubilization by old tolerant species of publication-title: Mycoscience – start-page: 249 year: 2017 end-page: 265 ident: bib32 article-title: Plant-associated microbial endophytes: promising source for bioprospecting publication-title: Mining of Microbial Wealth and Meta Genomics – volume: 32 start-page: 273 year: 2006 end-page: 283 ident: bib36 article-title: Mobilization of organic acid and poorly soluble phosphatase by publication-title: Appl. Soil Ecol. – volume: 293 start-page: 155 year: 2009 end-page: 159 ident: bib47 article-title: An endophytictaxol-producing fungus from Taxus x media, publication-title: FEMS Microbiol. Lett. – volume: 111 start-page: 25 year: 2016 ident: 10.1016/j.rhisph.2018.11.002_bib34 article-title: Dark septate endophytes present different potential to solubilize calcium, iron and aluminium phosphates publication-title: Appl. Soil. Ecol. doi: 10.1016/j.apsoil.2016.11.010 – volume: 4 start-page: 159 issue: 3 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib13 article-title: Ethnomedical properties of Taxus wallichiana Zucc. (Himalayan Yew) publication-title: J. Tradit. Complement. Med. doi: 10.4103/2225-4110.136544 – volume: 55 start-page: 119 year: 2011 ident: 10.1016/j.rhisph.2018.11.002_bib14 article-title: Simultaneous genome sequencing of symbionts and their hosts publication-title: Symbiosis doi: 10.1007/s13199-012-0154-6 – volume: 60 start-page: 627 year: 2002 ident: 10.1016/j.rhisph.2018.11.002_bib16 article-title: Taxol content in the bark of Himalayan Yew in relation to tree age and sex publication-title: Phytochemistry doi: 10.1016/S0031-9422(02)00115-2 – volume: 260 start-page: 214 year: 1993 ident: 10.1016/j.rhisph.2018.11.002_bib35 article-title: Taxol and taxane production by Taxomyces andreanae, anendophytic fungus of Pacific yew publication-title: Science doi: 10.1126/science.8097061 – volume: 24 start-page: 97 year: 2008 ident: 10.1016/j.rhisph.2018.11.002_bib18 article-title: Phosphate solubilization by Penicillium spp. isolated from soil sample of Indian Himalayan Region publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-007-9444-1 – ident: 10.1016/j.rhisph.2018.11.002_bib3 doi: 10.1016/j.rhisph.2016.08.005 – volume: 4 start-page: 555 issue: 5 year: 2017 ident: 10.1016/j.rhisph.2018.11.002_bib1 article-title: Taxus wallichiana Zucc. (Himalayan Yew) in antimicrobial perspective publication-title: Adv. Biotechnol. Microbiol. – volume: 6 start-page: 47 year: 2018 ident: 10.1016/j.rhisph.2018.11.002_bib29 article-title: Impact of root system architecture on rhizosphere and root microbiome publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.02.003 – volume: 66 start-page: 40 issue: 1 year: 2013 ident: 10.1016/j.rhisph.2018.11.002_bib43 article-title: Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China publication-title: Curr. Microbiol. doi: 10.1007/s00284-012-0235-z – volume: 27 start-page: 1055 year: 2011 ident: 10.1016/j.rhisph.2018.11.002_bib25 article-title: Slow and steady phosphate solubilization by psychrotolerant strain of Paecilomyces hepiali (MTCC 9621) publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0550-0 – volume: 67 start-page: 255 year: 2017 ident: 10.1016/j.rhisph.2018.11.002_bib39 article-title: Isolation and characterization of trichalasin-producing endophytic fungus from Taxus baccata publication-title: Ann. Microbiol. doi: 10.1007/s13213-017-1256-4 – volume: 54 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.rhisph.2018.11.002_bib15 article-title: Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol publication-title: Biotechnol. Appl. Biochem. doi: 10.1042/BA20080110 – volume: 106 start-page: 25 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib19 article-title: Use of endophytic bacterium (Pseudomonas sp., MTCC9476) in propagation and conservation of Ginkgo biloba L.: a living fossil publication-title: Curr. Sci. – volume: 14 start-page: 121 year: 2013 ident: 10.1016/j.rhisph.2018.11.002_bib23 article-title: Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-121 – volume: 17 start-page: 93 issue: 2 year: 2011 ident: 10.1016/j.rhisph.2018.11.002_bib31 article-title: Microbial phytases in phosphorus acquisition and plant growth promotion publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-011-0062-x – volume: 7 start-page: 906 year: 2016 ident: 10.1016/j.rhisph.2018.11.002_bib12 article-title: A friendly relationship between endophytic fungi and medicinal plants: a systematic review publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00906 – volume: 99 start-page: 2955 issue: 7 year: 2015 ident: 10.1016/j.rhisph.2018.11.002_bib41 article-title: Plant-endophyte symbiosis, an ecological perspective publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6487-3 – volume: 41 start-page: 1467 issue: 10 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib9 article-title: Endophytic fungi: expanding the arsenal of industrial enzyme producers publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-014-1496-2 – start-page: 77 year: 2012 ident: 10.1016/j.rhisph.2018.11.002_bib26 article-title: Utilization of psychrotolerant phosphate solubilizing fungi under low temperature conditions of the mountain ecosystem – volume: 119 start-page: 1022 year: 2015 ident: 10.1016/j.rhisph.2018.11.002_bib33 article-title: Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata) publication-title: Fungal Biol. doi: 10.1016/j.funbio.2015.07.007 – volume: 183 start-page: 92 year: 2016 ident: 10.1016/j.rhisph.2018.11.002_bib30 article-title: Plant growth-promoting bacterial endophytes publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.11.008 – volume: 102 year: 2007 ident: 10.1016/j.rhisph.2018.11.002_bib40 – volume: 15 start-page: 169 year: 2017 ident: 10.1016/j.rhisph.2018.11.002_bib6 article-title: Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India publication-title: J. Genet. Eng. Biotechnol. doi: 10.1016/j.jgeb.2017.01.003 – year: 2013 ident: 10.1016/j.rhisph.2018.11.002_bib27 article-title: Response of cold-tolerant Aspergillus spp. to solubilization of Fe and Al phosphate in presence of different nutritional sources publication-title: ISRN Soil Sci. doi: 10.1155/2013/598541 – volume: 100 start-page: 2499 year: 2016 ident: 10.1016/j.rhisph.2018.11.002_bib10 article-title: Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7285-2 – start-page: 113 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib46 article-title: Cold-Tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the World – volume: 2 start-page: 489 year: 2006 ident: 10.1016/j.rhisph.2018.11.002_bib37 article-title: Antimicrobial evaluation of some fungal endophytes isolated from the bark of Himalayan yew publication-title: World J Agric. Sci. – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.rhisph.2018.11.002_bib2 article-title: Selection of solvent and extraction method for determination of antimicrobial potential of Taxus wallichiana Zucc publication-title: Res. Pharm. – volume: 8 start-page: 1 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib17 article-title: Endophytism of Penicillium species in woody plants publication-title: Open Mycol. J. doi: 10.2174/1874437001408010001 – volume: 147 start-page: 190 issue: 1 year: 2013 ident: 10.1016/j.rhisph.2018.11.002_bib21 article-title: Yews (Taxus) along the Hindu Kush-Himalayan region: exploring the ethnopharmacological relevance among communities of Mongol and Caucasian origins publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2013.02.031 – volume: 62 start-page: 63 year: 2014 ident: 10.1016/j.rhisph.2018.11.002_bib22 article-title: Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture publication-title: Symbiosis doi: 10.1007/s13199-014-0273-3 – start-page: 249 year: 2017 ident: 10.1016/j.rhisph.2018.11.002_bib32 article-title: Plant-associated microbial endophytes: promising source for bioprospecting – volume: 32 start-page: 273 year: 2006 ident: 10.1016/j.rhisph.2018.11.002_bib36 article-title: Mobilization of organic acid and poorly soluble phosphatase by Chaetomium globosum publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2005.08.005 – volume: 86 start-page: 183 year: 2003 ident: 10.1016/j.rhisph.2018.11.002_bib8 article-title: Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142 publication-title: Biores. Technol. doi: 10.1016/S0960-8524(02)00145-1 – volume: 99 start-page: 2955 issue: 7 year: 2015 ident: 10.1016/j.rhisph.2018.11.002_bib42 article-title: Plant-endophyte symbiosis, an ecological perspective publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6487-3 – volume: 22 start-page: 169 year: 1985 ident: 10.1016/j.rhisph.2018.11.002_bib11 article-title: A countinious culture study of bioenergetics aspect of growth and production of exocellular protease in Bacillus licheniformis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00253604 – volume: 66 start-page: 529 year: 2016 ident: 10.1016/j.rhisph.2018.11.002_bib49 article-title: Diversity, distribution and biotechnological potential of endophytic fungi publication-title: Ann. Microbiol. doi: 10.1007/s13213-015-1153-7 – ident: 10.1016/j.rhisph.2018.11.002_bib38 – volume: 51 start-page: 263 year: 2010 ident: 10.1016/j.rhisph.2018.11.002_bib24 article-title: Temperature-dependent phosphate solubilization by old tolerant species of Aspergillus isolated from Himalayan Soil publication-title: Mycoscience doi: 10.1007/S10267-010-0036-9 – volume: 14 start-page: 290 year: 2003 ident: 10.1016/j.rhisph.2018.11.002_bib44 article-title: Identification of Taxus cuspidata Sieb. et Zucc. endophytic fungi new species, species known and their metabolite publication-title: J. For. Res. doi: 10.1007/BF02857856 – volume: 172 start-page: 1178 year: 2018 ident: 10.1016/j.rhisph.2018.11.002_bib5 article-title: The soil-borne legacy publication-title: Cell doi: 10.1016/j.cell.2018.02.024 – volume: 5 start-page: 47 issue: 1 year: 2018 ident: 10.1016/j.rhisph.2018.11.002_bib7 article-title: Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas publication-title: Int. J. Coal Sci. Technol. doi: 10.1007/s40789-018-0201-x – volume: 107 start-page: 1202 year: 2009 ident: 10.1016/j.rhisph.2018.11.002_bib48 article-title: Aspergillusniger subsp. taxi, a new species variant of taxol producing fungus isolated from Taxus cuspidata in China publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04305.x – year: 2018 ident: 10.1016/j.rhisph.2018.11.002_bib20 article-title: Cold Adapted Fungi from Indian Himalaya: untapped Source for Bioprospecting publication-title: Proc. Natl. Acad. Sci. India, Sect. B Biol. Sci. doi: 10.1007/s40011-018-1002-0 – volume: 182 start-page: 314 year: 2009 ident: 10.1016/j.rhisph.2018.11.002_bib28 article-title: Fungal endophytes: diversity and functional roles publication-title: New Phytol. doi: 10.1111/j.1469-8137.2009.02773.x – volume: 293 start-page: 155 issue: 2 year: 2009 ident: 10.1016/j.rhisph.2018.11.002_bib47 article-title: An endophytictaxol-producing fungus from Taxus x media, Aspergillus candidus MD3 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01481.x – start-page: 233 year: 2017 ident: 10.1016/j.rhisph.2018.11.002_bib4 article-title: Rhizosphere engineering: enhancing sustainable plant ecosystem productivity publication-title: Rhizosphere doi: 10.1016/j.rhisph.2017.04.012 – volume: 13 start-page: 71 year: 2013 ident: 10.1016/j.rhisph.2018.11.002_bib45 article-title: Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media publication-title: BMC Microbiol. doi: 10.1186/1471-2180-13-71 |
SSID | ssj0001763563 |
Score | 2.3865292 |
Snippet | Endophytic microorganisms live inside the host plant and contribute in various biological processes, without causing any harmful effect. Inorganic phosphate... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2 |
SubjectTerms | aluminum Aspergillus calcium citric acid endophytes enzyme activity Fungal endophytes fungi high performance liquid chromatography host plants iron phosphates lactic acid Penicillium phenotype Phosphate solubilization phytases plant growth rhizosphere roots solubilization Taxus wallichiana temperature |
Title | Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots |
URI | https://dx.doi.org/10.1016/j.rhisph.2018.11.002 https://www.proquest.com/docview/2189559041 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL15EUfFNBK-x3Sb7yFGKpSqKoELxEvLUlbJb7Bb9-c50dxVFEDxuyBeWSTIzyXwzIeQkTazucRkzL7VgIrKOZSEYJmPbN45LZw3mDl_fJKMHcTmOx0tk0ObCIK2y0f21Tl9o66al20izO83z7h3GDGG_gcXheLAZL5OVPljXXoesnF1cjW6-rloWRdgw1owQhpg2iW7B9Hp9zmdTDExE2SlW9GyuWH4xUj_U9cIGDdfJWuM80rP6_zbIki82ibl9LmFg8BkpriMku9aplXRaVsgFAkQZqC9cCSIFJAVb9pTTHHoDyFHMMKH3-n0-o296MsmR_Vxo-ji39pSCY13NtsjD8Px-MGLNywnMci4rJlycShsFH_qxz3qOo14TKbgeIdUyCVEiwTI7Z7NMG5uZ4LNYgKOQcZFanzq-TTpFWfgdQjGsFhvPhdF9EWyQiZacaxG5RPjEhF3CW1Ep25QVx9ctJqrlj72oWsAKBQwnDgUC3iXsEzWty2r80T9tZ0F9Wx4KNP8fyON20hTsHAyH6MKX85kC5wbL7_VEtPfv0ffJKnzJmpR2QDrV69wfgpdSmaNmFX4AqJzorQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZpckgvISUJddOkCvQq22tpHzoa0-C8TCAOmFyEnvUWs2viNcnP74x3tyWhYOh1V59YRqOZT5rHEvI9TazucxkzL7VgIrKOZSEYJmM7MI5LZw3WDt9NkvGjuJ7Fsx0yamthMK2ysf21Td9Y6-ZJr5Fmb5nnvQeMGcJ-A4_D8WAz-0D2sDsVqPne8OpmPPl71bJpwoaxZoQwxLRFdJtMr-d5vlpiYCLKutjRs7li-YeTemeuNz7o8pAcNOSRDuvv-0R2fHFEzP28hImBM1LUI0x2rUsr6bKsMBcIEGWgvnAliBSQFHzZz5zmMBpAjmKFCZ3q1_WKvujFIsfs50LTp7W1XQrEulodk8fLH9PRmDV_TmCWc1kx4eJU2ij4MIh91ncc7ZpIgXqEVMskRIkEz-yczTJtbGaCz2IBRCHjIrU-dfyE7BZl4T8TimG12HgujB6IYINMtORci8glwicmdAhvRaVs01Yc_26xUG3-2C9VC1ihgOHEoUDAHcL-oJZ1W40t49N2FdQb9VBg-bcgL9pFU7BzMByiC1-uVwrIDbbf64voy3_P_o3sj6d3t-r2anJzSj7CG1knqH0lu9Xz2p8BY6nMeaORvwG-Quuc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphate+solubilization+potential+of+endophytic+fungi+isolated+from+Taxus+wallichiana+Zucc.+roots&rft.jtitle=Rhizosphere&rft.au=Adhikari%2C+Priyanka&rft.au=Pandey%2C+Anita&rft.date=2019-03-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=9&rft.spage=2&rft.epage=9&rft_id=info:doi/10.1016%2Fj.rhisph.2018.11.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rhisph_2018_11_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |