The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines
Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. How...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1810; no. 2; pp. 226 - 235 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.02.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones.
We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells.
Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture.
Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation. |
---|---|
AbstractList | Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones.BACKGROUNDInduced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones.We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells.METHODSWe infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells.Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture.RESULTSEarly iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture.Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.GENERAL SIGNIFICANCEOur results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation. Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones. We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells. Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture. Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation. BACKGROUND: Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones. METHODS: We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells. RESULTS: Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture. GENERAL SIGNIFICANCE: Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation. |
Author | Yoneda, Yoshihiro Okada, Minoru |
Author_xml | – sequence: 1 givenname: Minoru surname: Okada fullname: Okada, Minoru – sequence: 2 givenname: Yoshihiro surname: Yoneda fullname: Yoneda, Yoshihiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20965232$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PBCEURSk06qr_wBg6bXaFAebDzhi_kk1s1powzBtlw8AKjMZ_L-NqY7E0JJdzXl64M7TnvAOEzihZUELLq_WibdUruEVBfqIFIXwPHRFG-JzTUhyiWYxrko9oxAE6LEhTioIVRwhWb4CTGYx7xb7HAVLwHyYoi6Ox4PSUax8CWJUg4k-T3nDKyvuorElfk2NcN2ro8MaOwWx8ApdwTDBgDdZiaxzEE7TfKxvh9Pc-Ri_3d6vbx_ny-eHp9mY514w1ac5bSnhZ1nXBda10x9umIzQvSuqe9mXVFqLte86E6LpK0YwBLfMTrRQArXt2jC62czfBv48QkxxMnNZQDvwYZV1QXleiopm83EnSijHBOeNNRs9_0bEdoJObYAYVvuTfJ2bgegvo4GMM0EttkkrGuxSUsZISObUk13LbkpxamtLcUpb5P_lv_k7tG59umsI |
CitedBy_id | crossref_primary_10_1371_journal_pone_0158046 crossref_primary_10_1002_stem_2089 crossref_primary_10_1016_j_cels_2022_11_005 crossref_primary_10_3389_fcell_2015_00015 crossref_primary_10_1093_biolre_ioac119 crossref_primary_10_3389_fbioe_2024_1346810 crossref_primary_10_1089_hgtb_2013_011 crossref_primary_10_1155_2013_659739 crossref_primary_10_1242_bio_022111 crossref_primary_10_3390_ijms17091494 crossref_primary_10_1016_j_celrep_2019_10_010 crossref_primary_10_1007_s00018_023_05101_2 crossref_primary_10_1002_jcb_24477 crossref_primary_10_1016_j_bbrc_2011_06_194 crossref_primary_10_3389_fcell_2023_1196273 crossref_primary_10_1128_MCB_01293_14 crossref_primary_10_1002_mabi_201500273 crossref_primary_10_1371_journal_pone_0074202 |
Cites_doi | 10.1002/stem.201 10.1126/science.1162494 10.1038/nature09017 10.1073/pnas.0711983105 10.1016/j.cell.2008.07.041 10.1016/j.cell.2008.01.015 10.1016/j.stem.2008.01.004 10.1038/nbt1374 10.1038/sj.gt.3301206 10.1038/nbt1335 10.1016/j.cell.2007.11.019 10.1023/A:1018418914106 10.1038/nature08310 10.1038/nature06534 10.1016/j.stem.2009.07.001 10.1126/science.1164270 10.1016/j.cell.2008.03.028 10.1126/science.1152092 10.1016/j.stem.2008.02.001 10.1016/j.stem.2007.05.014 10.1038/nature05934 10.1038/nprot.2007.418 10.1016/j.cell.2006.07.024 10.1126/science.1154884 10.1016/j.stem.2009.04.005 10.1038/nature08267 10.1016/j.bbagen.2010.04.004 10.1126/science.1158799 10.1016/j.stem.2009.05.005 10.1016/j.cell.2009.03.034 10.1038/nature05944 10.1016/j.stem.2008.11.008 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2010 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.bbagen.2010.10.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EndPage | 235 |
ExternalDocumentID | 20965232 10_1016_j_bbagen_2010_10_004 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7S9 EFKBS L.6 7X8 |
ID | FETCH-LOGICAL-c339t-4b104668824c8acd4b9d0152308f1f67b25bff4355dd7a1824e168f117aee18f3 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Jul 10 18:40:37 EDT 2025 Sun Aug 24 03:56:17 EDT 2025 Mon Jul 21 05:30:56 EDT 2025 Tue Jul 01 00:21:57 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2010 Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-4b104668824c8acd4b9d0152308f1f67b25bff4355dd7a1824e168f117aee18f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20965232 |
PQID | 1733544349 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_821487571 proquest_miscellaneous_1733544349 pubmed_primary_20965232 crossref_citationtrail_10_1016_j_bbagen_2010_10_004 crossref_primary_10_1016_j_bbagen_2010_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-00 2011-Feb 20110201 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-00 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2011 |
References | Okita (10.1016/j.bbagen.2010.10.004_bb0120) 2008; 322 Hanna (10.1016/j.bbagen.2010.10.004_bb0020) 2008; 133 Maherali (10.1016/j.bbagen.2010.10.004_bb0035) 2007; 1 Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0110) 2008; 322 Longo (10.1016/j.bbagen.2010.10.004_bb0100) 1997; 6 Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0140) 2010; 465 Okita (10.1016/j.bbagen.2010.10.004_bb0045) 2007; 448 Meissner (10.1016/j.bbagen.2010.10.004_bb0010) 2007; 25 Aoi (10.1016/j.bbagen.2010.10.004_bb0135) 2008; 321 Park (10.1016/j.bbagen.2010.10.004_bb0030) 2008; 451 Brambrink (10.1016/j.bbagen.2010.10.004_bb0075) 2008; 2 Takahashi (10.1016/j.bbagen.2010.10.004_bb0025) 2007; 131 Jaenisch (10.1016/j.bbagen.2010.10.004_bb0065) 2008; 132 Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0080) 2008; 2 Boland (10.1016/j.bbagen.2010.10.004_bb0155) 2009; 461 Takahashi (10.1016/j.bbagen.2010.10.004_bb0005) 2006; 126 Nakagawa (10.1016/j.bbagen.2010.10.004_bb0105) 2008; 26 Zhao (10.1016/j.bbagen.2010.10.004_bb0150) 2009; 461 Okada (10.1016/j.bbagen.2010.10.004_bb0085) 2010; 1800 Zhou (10.1016/j.bbagen.2010.10.004_bb0125) 2009; 4 Hanna (10.1016/j.bbagen.2010.10.004_bb0050) 2007; 318 Lowry (10.1016/j.bbagen.2010.10.004_bb0015) 2008; 105 Kim (10.1016/j.bbagen.2010.10.004_bb0130) 2009; 4 Yamanaka (10.1016/j.bbagen.2010.10.004_bb0145) 2009; 137 Zhou (10.1016/j.bbagen.2010.10.004_bb0115) 2009; 11 Wernig (10.1016/j.bbagen.2010.10.004_bb0040) 2007; 448 Kang (10.1016/j.bbagen.2010.10.004_bb0160) 2009; 5 Park (10.1016/j.bbagen.2010.10.004_bb0060) 2008; 134 Maherali (10.1016/j.bbagen.2010.10.004_bb0070) 2008; 3 Takahashi (10.1016/j.bbagen.2010.10.004_bb0095) 2007; 2 Morita (10.1016/j.bbagen.2010.10.004_bb0090) 2000; 7 Dimos (10.1016/j.bbagen.2010.10.004_bb0055) 2008; 321 |
References_xml | – volume: 11 start-page: 2667 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0115 article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells publication-title: Stem Cells doi: 10.1002/stem.201 – volume: 322 start-page: 945 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0110 article-title: Induced pluripotent stem cells generated without viral integration publication-title: Science doi: 10.1126/science.1162494 – volume: 465 start-page: 175 year: 2010 ident: 10.1016/j.bbagen.2010.10.004_bb0140 article-title: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature09017 – volume: 105 start-page: 2883 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0015 article-title: Generation of human induced pluripotent stem cells from dermal fibroblasts publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0711983105 – volume: 134 start-page: 877 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0060 article-title: Disease-specific induced pluripotent stem cells publication-title: Cell doi: 10.1016/j.cell.2008.07.041 – volume: 132 start-page: 567 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0065 article-title: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming publication-title: Cell doi: 10.1016/j.cell.2008.01.015 – volume: 2 start-page: 151 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0075 article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.01.004 – volume: 26 start-page: 101 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0105 article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts publication-title: Nat. Biotechnol. doi: 10.1038/nbt1374 – volume: 7 start-page: 1063 year: 2000 ident: 10.1016/j.bbagen.2010.10.004_bb0090 article-title: Plat-E: an efficient and stable system for transient packaging of retroviruses publication-title: Gene Ther. doi: 10.1038/sj.gt.3301206 – volume: 25 start-page: 1177 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0010 article-title: Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt1335 – volume: 131 start-page: 861 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0025 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 6 start-page: 321 year: 1997 ident: 10.1016/j.bbagen.2010.10.004_bb0100 article-title: The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism publication-title: Transgenic Res. doi: 10.1023/A:1018418914106 – volume: 461 start-page: 91 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0155 article-title: Adult mice generated from induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature08310 – volume: 451 start-page: 141 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0030 article-title: Reprogramming of human somatic cells to pluripotency with defined factors publication-title: Nature doi: 10.1038/nature06534 – volume: 5 start-page: 135 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0160 article-title: iPS cells support full-term development of tetraploid blastocyst-complemented embryos publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.07.001 – volume: 322 start-page: 949 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0120 article-title: Generation of mouse induced pluripotent stem cells without viral vectors publication-title: Science doi: 10.1126/science.1164270 – volume: 133 start-page: 250 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0020 article-title: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency publication-title: Cell doi: 10.1016/j.cell.2008.03.028 – volume: 318 start-page: 1920 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0050 article-title: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin publication-title: Science doi: 10.1126/science.1152092 – volume: 2 start-page: 230 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0080 article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.02.001 – volume: 1 start-page: 55 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0035 article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.014 – volume: 448 start-page: 313 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0045 article-title: Generation of germline-competent induced pluripotent stem cells publication-title: Nature doi: 10.1038/nature05934 – volume: 2 start-page: 3081 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0095 article-title: Induction of pluripotent stem cells from fibroblast cultures publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.418 – volume: 126 start-page: 663 year: 2006 ident: 10.1016/j.bbagen.2010.10.004_bb0005 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 321 start-page: 699 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0135 article-title: Generation of pluripotent stem cells from adult mouse liver and stomach cells publication-title: Science doi: 10.1126/science.1154884 – volume: 4 start-page: 381 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0125 article-title: Generation of induced pluripotent stem cells using recombinant proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.005 – volume: 461 start-page: 86 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0150 article-title: iPS cells produce viable mice through tetraploid complementation publication-title: Nature doi: 10.1038/nature08267 – volume: 1800 start-page: 956 year: 2010 ident: 10.1016/j.bbagen.2010.10.004_bb0085 article-title: Effective culture conditions for the induction of pluripotent stem cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.04.004 – volume: 321 start-page: 1218 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0055 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons publication-title: Science doi: 10.1126/science.1158799 – volume: 4 start-page: 472 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0130 article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.005 – volume: 137 start-page: 13 year: 2009 ident: 10.1016/j.bbagen.2010.10.004_bb0145 article-title: A fresh look at iPS cells publication-title: Cell doi: 10.1016/j.cell.2009.03.034 – volume: 448 start-page: 318 year: 2007 ident: 10.1016/j.bbagen.2010.10.004_bb0040 article-title: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state publication-title: Nature doi: 10.1038/nature05944 – volume: 3 start-page: 595 year: 2008 ident: 10.1016/j.bbagen.2010.10.004_bb0070 article-title: Guidelines and techniques for the generation of induced pluripotent stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.11.008 |
SSID | ssj0000595 ssj0025309 |
Score | 2.0814865 |
Snippet | Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that... BACKGROUND: Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 226 |
SubjectTerms | adults Animals Cell Line Cells, Cultured chimerism clones Embryo, Mammalian - cytology Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Female fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Gene Expression Profiling germ cells green fluorescent protein Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Karyotyping Kruppel-Like Transcription Factors - genetics Kruppel-Like Transcription Factors - metabolism Male Mice Mice, Inbred C57BL Mice, Inbred ICR Microscopy, Fluorescence Nanog Homeobox Protein Octamer Transcription Factor-3 - genetics Octamer Transcription Factor-3 - metabolism Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Retroviridae Retroviridae - genetics Reverse Transcriptase Polymerase Chain Reaction somatic cells SOXB1 Transcription Factors - genetics SOXB1 Transcription Factors - metabolism stem cells Time Factors transcription factors Transduction, Genetic transgenes |
Title | The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20965232 https://www.proquest.com/docview/1733544349 https://www.proquest.com/docview/821487571 |
Volume | 1810 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtQmkvpU1f20dQoTdjs7blh44hJIQmTaDs0u3JSLLMOg324schPfS3d8byY0MamvZiFtlemZnP8sxovhlCPkkuZCSzzJZBFuA2o7K5nGube4rHTCh_rpCc_OU8PFmyz6tgNZUn6NgljXTUzz_ySv5HqzAGekWW7D9odvxTGIDfoF84gobheG8dN9iWq0tcrnSD8QFk3Nc5cokMn7bq6Cq6p7GhnWmIlNemWkTaYgbA5qqF1aNsMDMASztbGNC30AStb2z75qVa51hhwNKNJfPSBEYEluQQzlDD2qpbieGd0Vy_-CFSYZL0i7Jqp5UG1vhu_HtZr_N1XpXbQQiMqo4JHT35as5A06btw7Sw9hmrBkKetXHA2LM9P9heMb1w6-Pbn7u1rpsQw6UjJVxVmIy8LimPTd-xYe_-_CI5Xp6dJYuj1eIh2fXAf8DWFs6vKfcHbMrAbC-Zpx44lV3i3-05btosdzginUGyeEae9p4EPTCweE4e6GKPPDK9Ra_3yOPDoZXfC6IBKNQAhZYZnYBCR6DQCSgUgUIBKLQHCt7TA4VuAYUiUCgChXZAeUmWx0eLwxO7769hK9_njc0kbvCH4GMxFQuVMslTsA7BKY0zNwsj6QXwFoM9HaRpJMARZdoN4ZQbCa3dOPNfkZ0CkPKG0Hjus5hpxiWLmJIu50KnLOY6DJRMQ29G_EGCieqLz2MPlKtkyDK8TIzcE5Q7joLcZ8Qe79qY4it_uf7joJwEJIwCEIUu2zpxI9_HSo-Mzwi945rYc9F7j9wZeW0UO07qYY0k8D3e3mOCd-TJ9Ia8JztN1eoPYLg2cr8D4T7ZPTj9-u30N6EHnnY |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+timing+of+retroviral+silencing+correlates+with+the+quality+of+induced+pluripotent+stem+cell+lines&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Okada%2C+Minoru&rft.au=Yoneda%2C+Yoshihiro&rft.date=2011-02-01&rft.issn=0304-4165&rft.volume=1810&rft.issue=2+p.226-235&rft.spage=226&rft.epage=235&rft_id=info:doi/10.1016%2Fj.bbagen.2010.10.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |