The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines

Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. How...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1810; no. 2; pp. 226 - 235
Main Authors Okada, Minoru, Yoneda, Yoshihiro
Format Journal Article
LanguageEnglish
Published Netherlands 01.02.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones. We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells. Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture. Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.
AbstractList Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones.BACKGROUNDInduced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones.We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells.METHODSWe infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells.Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture.RESULTSEarly iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture.Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.GENERAL SIGNIFICANCEOur results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.
Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones. We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells. Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture. Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.
BACKGROUND: Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that iPS cell technology may be useful for medical applications, the quality of iPS cells needs to be maintained during prolonged cultivation. However, it is unclear whether there are any differences in stability among different iPS clones. METHODS: We infected mouse embryonic and adult fibroblasts with retroviruses encoding Oct4, Sox2, Klf4, c-Myc, and green fluorescent protein (GFP). We obtained embryonic stem (ES) cell-like colonies with silenced retroviral transgenes and divided these colonies into two groups: ES cell-like colonies that underwent retroviral silencing (i) on around day 14 (called early iPS) or (ii) on around day 30 (called late iPS), after infection. We compared morphology, proliferation efficiency, pluripotency marker expression, and karyotype between early iPS and late iPS cells. RESULTS: Early iPS cells were more stable than late iPS cells. At passage 20, most of the early iPS clones maintained ES cell-like morphology, expressed pluripotency markers, and showed proliferation efficiency similar to ES cells. Furthermore, early iPS clones derived from both embryonic and adult fibroblasts gave rise to chimeras and could show germ line competency. In contrast, late iPS clones tended to lose their ES cell-like morphology and normal karyotype in prolonged culture. GENERAL SIGNIFICANCE: Our results provide useful information on the efficient derivation of stable iPS cells that may be useful for germline transmission in mouse. This study suggests that early completion of full reprogramming allows for superior iPS cell generation.
Author Yoneda, Yoshihiro
Okada, Minoru
Author_xml – sequence: 1
  givenname: Minoru
  surname: Okada
  fullname: Okada, Minoru
– sequence: 2
  givenname: Yoshihiro
  surname: Yoneda
  fullname: Yoneda, Yoshihiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20965232$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PBCEURSk06qr_wBg6bXaFAebDzhi_kk1s1powzBtlw8AKjMZ_L-NqY7E0JJdzXl64M7TnvAOEzihZUELLq_WibdUruEVBfqIFIXwPHRFG-JzTUhyiWYxrko9oxAE6LEhTioIVRwhWb4CTGYx7xb7HAVLwHyYoi6Ox4PSUax8CWJUg4k-T3nDKyvuorElfk2NcN2ro8MaOwWx8ApdwTDBgDdZiaxzEE7TfKxvh9Pc-Ri_3d6vbx_ny-eHp9mY514w1ac5bSnhZ1nXBda10x9umIzQvSuqe9mXVFqLte86E6LpK0YwBLfMTrRQArXt2jC62czfBv48QkxxMnNZQDvwYZV1QXleiopm83EnSijHBOeNNRs9_0bEdoJObYAYVvuTfJ2bgegvo4GMM0EttkkrGuxSUsZISObUk13LbkpxamtLcUpb5P_lv_k7tG59umsI
CitedBy_id crossref_primary_10_1371_journal_pone_0158046
crossref_primary_10_1002_stem_2089
crossref_primary_10_1016_j_cels_2022_11_005
crossref_primary_10_3389_fcell_2015_00015
crossref_primary_10_1093_biolre_ioac119
crossref_primary_10_3389_fbioe_2024_1346810
crossref_primary_10_1089_hgtb_2013_011
crossref_primary_10_1155_2013_659739
crossref_primary_10_1242_bio_022111
crossref_primary_10_3390_ijms17091494
crossref_primary_10_1016_j_celrep_2019_10_010
crossref_primary_10_1007_s00018_023_05101_2
crossref_primary_10_1002_jcb_24477
crossref_primary_10_1016_j_bbrc_2011_06_194
crossref_primary_10_3389_fcell_2023_1196273
crossref_primary_10_1128_MCB_01293_14
crossref_primary_10_1002_mabi_201500273
crossref_primary_10_1371_journal_pone_0074202
Cites_doi 10.1002/stem.201
10.1126/science.1162494
10.1038/nature09017
10.1073/pnas.0711983105
10.1016/j.cell.2008.07.041
10.1016/j.cell.2008.01.015
10.1016/j.stem.2008.01.004
10.1038/nbt1374
10.1038/sj.gt.3301206
10.1038/nbt1335
10.1016/j.cell.2007.11.019
10.1023/A:1018418914106
10.1038/nature08310
10.1038/nature06534
10.1016/j.stem.2009.07.001
10.1126/science.1164270
10.1016/j.cell.2008.03.028
10.1126/science.1152092
10.1016/j.stem.2008.02.001
10.1016/j.stem.2007.05.014
10.1038/nature05934
10.1038/nprot.2007.418
10.1016/j.cell.2006.07.024
10.1126/science.1154884
10.1016/j.stem.2009.04.005
10.1038/nature08267
10.1016/j.bbagen.2010.04.004
10.1126/science.1158799
10.1016/j.stem.2009.05.005
10.1016/j.cell.2009.03.034
10.1038/nature05944
10.1016/j.stem.2008.11.008
ContentType Journal Article
Copyright Copyright © 2010 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2010 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1016/j.bbagen.2010.10.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EndPage 235
ExternalDocumentID 20965232
10_1016_j_bbagen_2010_10_004
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7S9
EFKBS
L.6
7X8
ID FETCH-LOGICAL-c339t-4b104668824c8acd4b9d0152308f1f67b25bff4355dd7a1824e168f117aee18f3
ISSN 0304-4165
0006-3002
IngestDate Thu Jul 10 18:40:37 EDT 2025
Sun Aug 24 03:56:17 EDT 2025
Mon Jul 21 05:30:56 EDT 2025
Tue Jul 01 00:21:57 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2010 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-4b104668824c8acd4b9d0152308f1f67b25bff4355dd7a1824e168f117aee18f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20965232
PQID 1733544349
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_821487571
proquest_miscellaneous_1733544349
pubmed_primary_20965232
crossref_citationtrail_10_1016_j_bbagen_2010_10_004
crossref_primary_10_1016_j_bbagen_2010_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-00
2011-Feb
20110201
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-00
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2011
References Okita (10.1016/j.bbagen.2010.10.004_bb0120) 2008; 322
Hanna (10.1016/j.bbagen.2010.10.004_bb0020) 2008; 133
Maherali (10.1016/j.bbagen.2010.10.004_bb0035) 2007; 1
Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0110) 2008; 322
Longo (10.1016/j.bbagen.2010.10.004_bb0100) 1997; 6
Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0140) 2010; 465
Okita (10.1016/j.bbagen.2010.10.004_bb0045) 2007; 448
Meissner (10.1016/j.bbagen.2010.10.004_bb0010) 2007; 25
Aoi (10.1016/j.bbagen.2010.10.004_bb0135) 2008; 321
Park (10.1016/j.bbagen.2010.10.004_bb0030) 2008; 451
Brambrink (10.1016/j.bbagen.2010.10.004_bb0075) 2008; 2
Takahashi (10.1016/j.bbagen.2010.10.004_bb0025) 2007; 131
Jaenisch (10.1016/j.bbagen.2010.10.004_bb0065) 2008; 132
Stadtfeld (10.1016/j.bbagen.2010.10.004_bb0080) 2008; 2
Boland (10.1016/j.bbagen.2010.10.004_bb0155) 2009; 461
Takahashi (10.1016/j.bbagen.2010.10.004_bb0005) 2006; 126
Nakagawa (10.1016/j.bbagen.2010.10.004_bb0105) 2008; 26
Zhao (10.1016/j.bbagen.2010.10.004_bb0150) 2009; 461
Okada (10.1016/j.bbagen.2010.10.004_bb0085) 2010; 1800
Zhou (10.1016/j.bbagen.2010.10.004_bb0125) 2009; 4
Hanna (10.1016/j.bbagen.2010.10.004_bb0050) 2007; 318
Lowry (10.1016/j.bbagen.2010.10.004_bb0015) 2008; 105
Kim (10.1016/j.bbagen.2010.10.004_bb0130) 2009; 4
Yamanaka (10.1016/j.bbagen.2010.10.004_bb0145) 2009; 137
Zhou (10.1016/j.bbagen.2010.10.004_bb0115) 2009; 11
Wernig (10.1016/j.bbagen.2010.10.004_bb0040) 2007; 448
Kang (10.1016/j.bbagen.2010.10.004_bb0160) 2009; 5
Park (10.1016/j.bbagen.2010.10.004_bb0060) 2008; 134
Maherali (10.1016/j.bbagen.2010.10.004_bb0070) 2008; 3
Takahashi (10.1016/j.bbagen.2010.10.004_bb0095) 2007; 2
Morita (10.1016/j.bbagen.2010.10.004_bb0090) 2000; 7
Dimos (10.1016/j.bbagen.2010.10.004_bb0055) 2008; 321
References_xml – volume: 11
  start-page: 2667
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0115
  article-title: Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.201
– volume: 322
  start-page: 945
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0110
  article-title: Induced pluripotent stem cells generated without viral integration
  publication-title: Science
  doi: 10.1126/science.1162494
– volume: 465
  start-page: 175
  year: 2010
  ident: 10.1016/j.bbagen.2010.10.004_bb0140
  article-title: Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature09017
– volume: 105
  start-page: 2883
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0015
  article-title: Generation of human induced pluripotent stem cells from dermal fibroblasts
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0711983105
– volume: 134
  start-page: 877
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0060
  article-title: Disease-specific induced pluripotent stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.07.041
– volume: 132
  start-page: 567
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0065
  article-title: Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.015
– volume: 2
  start-page: 151
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0075
  article-title: Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.01.004
– volume: 26
  start-page: 101
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0105
  article-title: Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1374
– volume: 7
  start-page: 1063
  year: 2000
  ident: 10.1016/j.bbagen.2010.10.004_bb0090
  article-title: Plat-E: an efficient and stable system for transient packaging of retroviruses
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301206
– volume: 25
  start-page: 1177
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0010
  article-title: Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1335
– volume: 131
  start-page: 861
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0025
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 6
  start-page: 321
  year: 1997
  ident: 10.1016/j.bbagen.2010.10.004_bb0100
  article-title: The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism
  publication-title: Transgenic Res.
  doi: 10.1023/A:1018418914106
– volume: 461
  start-page: 91
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0155
  article-title: Adult mice generated from induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature08310
– volume: 451
  start-page: 141
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0030
  article-title: Reprogramming of human somatic cells to pluripotency with defined factors
  publication-title: Nature
  doi: 10.1038/nature06534
– volume: 5
  start-page: 135
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0160
  article-title: iPS cells support full-term development of tetraploid blastocyst-complemented embryos
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.07.001
– volume: 322
  start-page: 949
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0120
  article-title: Generation of mouse induced pluripotent stem cells without viral vectors
  publication-title: Science
  doi: 10.1126/science.1164270
– volume: 133
  start-page: 250
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0020
  article-title: Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.028
– volume: 318
  start-page: 1920
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0050
  article-title: Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin
  publication-title: Science
  doi: 10.1126/science.1152092
– volume: 2
  start-page: 230
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0080
  article-title: Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.02.001
– volume: 1
  start-page: 55
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0035
  article-title: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.014
– volume: 448
  start-page: 313
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0045
  article-title: Generation of germline-competent induced pluripotent stem cells
  publication-title: Nature
  doi: 10.1038/nature05934
– volume: 2
  start-page: 3081
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0095
  article-title: Induction of pluripotent stem cells from fibroblast cultures
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.418
– volume: 126
  start-page: 663
  year: 2006
  ident: 10.1016/j.bbagen.2010.10.004_bb0005
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 321
  start-page: 699
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0135
  article-title: Generation of pluripotent stem cells from adult mouse liver and stomach cells
  publication-title: Science
  doi: 10.1126/science.1154884
– volume: 4
  start-page: 381
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0125
  article-title: Generation of induced pluripotent stem cells using recombinant proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.04.005
– volume: 461
  start-page: 86
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0150
  article-title: iPS cells produce viable mice through tetraploid complementation
  publication-title: Nature
  doi: 10.1038/nature08267
– volume: 1800
  start-page: 956
  year: 2010
  ident: 10.1016/j.bbagen.2010.10.004_bb0085
  article-title: Effective culture conditions for the induction of pluripotent stem cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.04.004
– volume: 321
  start-page: 1218
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0055
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 4
  start-page: 472
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0130
  article-title: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.005
– volume: 137
  start-page: 13
  year: 2009
  ident: 10.1016/j.bbagen.2010.10.004_bb0145
  article-title: A fresh look at iPS cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.034
– volume: 448
  start-page: 318
  year: 2007
  ident: 10.1016/j.bbagen.2010.10.004_bb0040
  article-title: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state
  publication-title: Nature
  doi: 10.1038/nature05944
– volume: 3
  start-page: 595
  year: 2008
  ident: 10.1016/j.bbagen.2010.10.004_bb0070
  article-title: Guidelines and techniques for the generation of induced pluripotent stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.11.008
SSID ssj0000595
ssj0025309
Score 2.0814865
Snippet Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc. Given that...
BACKGROUND: Induced pluripotent stem (iPS) cells can be generated from somatic cells by introducing the four transcription factors Oct4, Sox2, Klf4, and c-Myc....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 226
SubjectTerms adults
Animals
Cell Line
Cells, Cultured
chimerism
clones
Embryo, Mammalian - cytology
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Female
fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Gene Expression Profiling
germ cells
green fluorescent protein
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Karyotyping
Kruppel-Like Transcription Factors - genetics
Kruppel-Like Transcription Factors - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
Microscopy, Fluorescence
Nanog Homeobox Protein
Octamer Transcription Factor-3 - genetics
Octamer Transcription Factor-3 - metabolism
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Retroviridae
Retroviridae - genetics
Reverse Transcriptase Polymerase Chain Reaction
somatic cells
SOXB1 Transcription Factors - genetics
SOXB1 Transcription Factors - metabolism
stem cells
Time Factors
transcription factors
Transduction, Genetic
transgenes
Title The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines
URI https://www.ncbi.nlm.nih.gov/pubmed/20965232
https://www.proquest.com/docview/1733544349
https://www.proquest.com/docview/821487571
Volume 1810
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtQmkvpU1f20dQoTdjs7blh44hJIQmTaDs0u3JSLLMOg324schPfS3d8byY0MamvZiFtlemZnP8sxovhlCPkkuZCSzzJZBFuA2o7K5nGube4rHTCh_rpCc_OU8PFmyz6tgNZUn6NgljXTUzz_ySv5HqzAGekWW7D9odvxTGIDfoF84gobheG8dN9iWq0tcrnSD8QFk3Nc5cokMn7bq6Cq6p7GhnWmIlNemWkTaYgbA5qqF1aNsMDMASztbGNC30AStb2z75qVa51hhwNKNJfPSBEYEluQQzlDD2qpbieGd0Vy_-CFSYZL0i7Jqp5UG1vhu_HtZr_N1XpXbQQiMqo4JHT35as5A06btw7Sw9hmrBkKetXHA2LM9P9heMb1w6-Pbn7u1rpsQw6UjJVxVmIy8LimPTd-xYe_-_CI5Xp6dJYuj1eIh2fXAf8DWFs6vKfcHbMrAbC-Zpx44lV3i3-05btosdzginUGyeEae9p4EPTCweE4e6GKPPDK9Ra_3yOPDoZXfC6IBKNQAhZYZnYBCR6DQCSgUgUIBKLQHCt7TA4VuAYUiUCgChXZAeUmWx0eLwxO7769hK9_njc0kbvCH4GMxFQuVMslTsA7BKY0zNwsj6QXwFoM9HaRpJMARZdoN4ZQbCa3dOPNfkZ0CkPKG0Hjus5hpxiWLmJIu50KnLOY6DJRMQ29G_EGCieqLz2MPlKtkyDK8TIzcE5Q7joLcZ8Qe79qY4it_uf7joJwEJIwCEIUu2zpxI9_HSo-Mzwi945rYc9F7j9wZeW0UO07qYY0k8D3e3mOCd-TJ9Ia8JztN1eoPYLg2cr8D4T7ZPTj9-u30N6EHnnY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+timing+of+retroviral+silencing+correlates+with+the+quality+of+induced+pluripotent+stem+cell+lines&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Okada%2C+Minoru&rft.au=Yoneda%2C+Yoshihiro&rft.date=2011-02-01&rft.issn=0304-4165&rft.volume=1810&rft.issue=2+p.226-235&rft.spage=226&rft.epage=235&rft_id=info:doi/10.1016%2Fj.bbagen.2010.10.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon