Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking

[Display omitted] •A novel Hybrid SCA-DE algorithm is introduced for global optimization and object tracking.•The proposed hybrid algorithm has better capability to escape from local optima with faster convergence.•The performance of the Hybrid SCA-DE algorithm was better than with other state-of-th...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 62; pp. 1019 - 1043
Main Authors Nenavath, Hathiram, Jatoth, Ravi Kumar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A novel Hybrid SCA-DE algorithm is introduced for global optimization and object tracking.•The proposed hybrid algorithm has better capability to escape from local optima with faster convergence.•The performance of the Hybrid SCA-DE algorithm was better than with other state-of-the-art metaheuristic algorithms.•The hybrid SCA-DE algorithm is applied for visual tracking as a real thought- provoking case study to demonstrate and verify the performance of this algorithm in practice. A new optimization algorithm called Hybrid Sine-Cosine Algorithm with Differential Evolution algorithm (Hybrid SCA-DE) is proposed in this paper for solving optimization problems and object tracking. The proposed hybrid algorithm has better capability to escape from local optima with faster convergence than the standard SCA and DE. The effectiveness of this algorithm is evaluated using 23 benchmark functions, which are divided into three groups: unimodal, multimodal, and fixed dimension multimodal functions. Statistical parameters have been employed to observe the efficiency of the Hybrid SCA-DE qualitatively and results prove that the proposed algorithm is very competitive compared to the state-of-the-art metaheuristic algorithms. The proposed algorithm is applied for object tracking as a real thought-provoking case study. To demonstrate the tracking ability of a Hybrid SCA-DE-based tracker, a comparative study of tracking accuracy and speed of the Hybrid SCA-DE-based tracker with four other trackers, namely, Particle Filter, Scale-invariant feature transform, Particle swarm optimization and Bat algorithm are presented. Comparative results show that the Hybrid SCA-DE-based tracker can robustly track an arbitrary target in various challenging conditions than the other trackers.
AbstractList [Display omitted] •A novel Hybrid SCA-DE algorithm is introduced for global optimization and object tracking.•The proposed hybrid algorithm has better capability to escape from local optima with faster convergence.•The performance of the Hybrid SCA-DE algorithm was better than with other state-of-the-art metaheuristic algorithms.•The hybrid SCA-DE algorithm is applied for visual tracking as a real thought- provoking case study to demonstrate and verify the performance of this algorithm in practice. A new optimization algorithm called Hybrid Sine-Cosine Algorithm with Differential Evolution algorithm (Hybrid SCA-DE) is proposed in this paper for solving optimization problems and object tracking. The proposed hybrid algorithm has better capability to escape from local optima with faster convergence than the standard SCA and DE. The effectiveness of this algorithm is evaluated using 23 benchmark functions, which are divided into three groups: unimodal, multimodal, and fixed dimension multimodal functions. Statistical parameters have been employed to observe the efficiency of the Hybrid SCA-DE qualitatively and results prove that the proposed algorithm is very competitive compared to the state-of-the-art metaheuristic algorithms. The proposed algorithm is applied for object tracking as a real thought-provoking case study. To demonstrate the tracking ability of a Hybrid SCA-DE-based tracker, a comparative study of tracking accuracy and speed of the Hybrid SCA-DE-based tracker with four other trackers, namely, Particle Filter, Scale-invariant feature transform, Particle swarm optimization and Bat algorithm are presented. Comparative results show that the Hybrid SCA-DE-based tracker can robustly track an arbitrary target in various challenging conditions than the other trackers.
Author Nenavath, Hathiram
Jatoth, Ravi Kumar
Author_xml – sequence: 1
  givenname: Hathiram
  surname: Nenavath
  fullname: Nenavath, Hathiram
  email: hathiram.iisc@gmail.com, hathiram@student.nitw.ac.in
– sequence: 2
  givenname: Ravi Kumar
  surname: Jatoth
  fullname: Jatoth, Ravi Kumar
  email: jrk.nitw@gmail.com
BookMark eNp9kM1KAzEUhYNUsFVfwFVeYMYk8xtwI0WtUHCj65DJT73jNCmZWGmf3rR15aKbey4HvsO9Z4YmzjuD0B0lOSW0vu9zOXqVM0KbnPCcFPwCTWnbsIzXLZ2kvarbrORlfYVm49iTBHHWThEsdl0ADXtwKzyCM1j5o8hh5QPEzzX-SRNrsNYE4yLIAZutH74jeIetD3g1-C6ZfhNhDXt59KXT2He9URHHINVXSr9Bl1YOo7n902v08fz0Pl9ky7eX1_njMlNFwWNWSsaYNco0naoaowjTrLaGW20b3WltO9VVtmE1V1VdVJx0hdZl0VLNLC1kW1yj9pSrgh_HYKxQEI9XpUtgEJSIQ2WiF4fKxKEyQbhIlSWU_UM3AdYy7M5DDyfIpKe2YIIYFRinjIaQ_hfawzn8FyVijCQ
CitedBy_id crossref_primary_10_1007_s10044_019_00791_6
crossref_primary_10_1109_ACCESS_2023_3294993
crossref_primary_10_1007_s00500_021_06039_y
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_engappai_2021_104506
crossref_primary_10_1016_j_isci_2023_106679
crossref_primary_10_1007_s00521_021_05880_4
crossref_primary_10_1142_S0219622021500176
crossref_primary_10_1016_j_knosys_2019_105169
crossref_primary_10_1155_2020_4968063
crossref_primary_10_1088_1742_6596_1879_3_032048
crossref_primary_10_1016_j_asoc_2023_110554
crossref_primary_10_1016_j_compbiomed_2023_107166
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1038_s41598_025_91778_3
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1007_s11227_023_05427_5
crossref_primary_10_3390_app122312179
crossref_primary_10_1016_j_isci_2023_107896
crossref_primary_10_1016_j_jocs_2020_101219
crossref_primary_10_1177_0142331218811453
crossref_primary_10_1016_j_eswa_2022_118372
crossref_primary_10_1016_j_compbiomed_2024_108439
crossref_primary_10_1016_j_knosys_2020_106388
crossref_primary_10_1142_S1469026824500159
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1016_j_eswa_2022_116516
crossref_primary_10_3390_math10020276
crossref_primary_10_1016_j_compstruc_2024_107496
crossref_primary_10_3390_sym14020331
crossref_primary_10_1016_j_compbiomed_2023_107293
crossref_primary_10_1007_s42235_024_00479_6
crossref_primary_10_1002_tee_23876
crossref_primary_10_3390_math11051195
crossref_primary_10_1007_s00366_020_01083_y
crossref_primary_10_1109_ACCESS_2019_2954500
crossref_primary_10_1002_ese3_1273
crossref_primary_10_1016_j_eswa_2018_11_032
crossref_primary_10_1007_s00500_024_10315_y
crossref_primary_10_1007_s00500_020_05032_1
crossref_primary_10_1016_j_neucom_2024_128289
crossref_primary_10_1016_j_eswa_2022_116625
crossref_primary_10_1109_ACCESS_2019_2900486
crossref_primary_10_1016_j_asoc_2019_105938
crossref_primary_10_1016_j_neucom_2023_02_010
crossref_primary_10_1007_s00521_021_06216_y
crossref_primary_10_1016_j_eswa_2020_114122
crossref_primary_10_1002_er_8011
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_1016_j_compbiomed_2023_107197
crossref_primary_10_3390_biomimetics9010020
crossref_primary_10_1007_s00521_021_05963_2
crossref_primary_10_1016_j_asoc_2021_107623
crossref_primary_10_1016_j_compbiomed_2024_108341
crossref_primary_10_1080_15325008_2020_1731870
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1016_j_bspc_2024_106492
crossref_primary_10_1111_bcpt_13959
crossref_primary_10_1016_j_bspc_2022_104350
crossref_primary_10_3390_biomimetics9060334
crossref_primary_10_1016_j_seta_2021_101310
crossref_primary_10_1002_aisy_202300746
crossref_primary_10_1016_j_jocs_2023_102105
crossref_primary_10_1108_COMPEL_08_2021_0296
crossref_primary_10_1016_j_asoc_2021_107197
crossref_primary_10_1016_j_cie_2022_108164
crossref_primary_10_1080_08839514_2020_1848276
crossref_primary_10_1016_j_asoc_2022_108562
crossref_primary_10_3390_biomimetics8060484
crossref_primary_10_1016_j_knosys_2020_106461
crossref_primary_10_1016_j_engappai_2022_105620
crossref_primary_10_1007_s12065_019_00290_x
crossref_primary_10_1080_02626667_2020_1828889
crossref_primary_10_1007_s12065_019_00251_4
crossref_primary_10_1049_rpg2_12973
crossref_primary_10_3233_JIFS_221178
crossref_primary_10_1111_exsy_12779
crossref_primary_10_32604_cmes_2023_024247
crossref_primary_10_1016_j_compbiomed_2022_105618
crossref_primary_10_1016_j_compbiomed_2024_108599
crossref_primary_10_1016_j_jocs_2021_101477
crossref_primary_10_1080_0305215X_2024_2340054
crossref_primary_10_1016_j_aej_2021_12_072
crossref_primary_10_1016_j_compbiomed_2023_107653
crossref_primary_10_1016_j_eswa_2023_121402
crossref_primary_10_3390_math10183368
crossref_primary_10_1007_s10462_022_10277_3
crossref_primary_10_37394_23202_2022_21_18
crossref_primary_10_1080_0952813X_2021_1924870
crossref_primary_10_1177_14613484241311951
crossref_primary_10_1016_j_asoc_2019_105723
crossref_primary_10_1093_jcde_qwac021
crossref_primary_10_1016_j_displa_2024_102727
crossref_primary_10_1016_j_knosys_2022_109326
crossref_primary_10_1007_s00366_021_01464_x
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1016_j_bspc_2023_105423
crossref_primary_10_1016_j_compbiomed_2021_104910
crossref_primary_10_1016_j_bspc_2022_104373
crossref_primary_10_1016_j_enconman_2020_112764
crossref_primary_10_1016_j_compbiomed_2023_107544
crossref_primary_10_1007_s42235_023_00367_5
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_3233_JIFS_223907
crossref_primary_10_1007_s12539_021_00430_x
crossref_primary_10_3390_app13137755
crossref_primary_10_1109_ACCESS_2024_3455550
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1016_j_engappai_2022_104753
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_3390_math10234509
crossref_primary_10_1007_s00521_021_05708_1
crossref_primary_10_32604_cmc_2022_021719
crossref_primary_10_1371_journal_pone_0222706
crossref_primary_10_1016_j_eswa_2019_112970
crossref_primary_10_1016_j_eswa_2021_114864
crossref_primary_10_1109_ACCESS_2020_2982796
crossref_primary_10_3390_math10071166
crossref_primary_10_1016_j_bspc_2024_107457
crossref_primary_10_1007_s11356_023_28777_2
crossref_primary_10_1109_ACCESS_2021_3077616
crossref_primary_10_1007_s00500_023_09038_3
crossref_primary_10_1155_2018_4231647
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_3390_e24081065
crossref_primary_10_1016_j_compbiomed_2023_107551
crossref_primary_10_1016_j_cie_2022_108032
crossref_primary_10_1371_journal_pone_0317224
crossref_primary_10_1155_2021_6315010
crossref_primary_10_1007_s11235_021_00833_7
crossref_primary_10_3934_mbe_2023195
crossref_primary_10_1016_j_engappai_2020_103779
crossref_primary_10_1155_2019_2039872
crossref_primary_10_3389_fpls_2021_789911
crossref_primary_10_1007_s42235_023_00408_z
crossref_primary_10_1155_2020_8184254
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1108_IJPCC_02_2021_0037
crossref_primary_10_1016_j_swevo_2020_100821
crossref_primary_10_1007_s10489_018_1267_2
crossref_primary_10_1155_2020_6084917
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1016_j_compbiomed_2024_108035
crossref_primary_10_1016_j_knosys_2018_12_008
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_1007_s10462_020_09909_3
crossref_primary_10_1007_s00366_020_00962_8
crossref_primary_10_1016_j_knosys_2020_106425
crossref_primary_10_1016_j_enconman_2022_116246
crossref_primary_10_3389_fninf_2022_1041799
crossref_primary_10_1109_ACCESS_2019_2918026
crossref_primary_10_1155_2019_9517568
crossref_primary_10_1016_j_asoc_2022_109682
crossref_primary_10_1109_ACCESS_2020_2981968
crossref_primary_10_1016_j_asoc_2019_04_044
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1016_j_eswa_2021_116417
crossref_primary_10_3390_math12223464
crossref_primary_10_1016_j_ijleo_2024_172115
crossref_primary_10_1007_s13748_021_00244_4
crossref_primary_10_1109_ACCESS_2020_2983451
crossref_primary_10_1007_s00521_021_05923_w
crossref_primary_10_1016_j_compbiomed_2024_108600
crossref_primary_10_1088_1742_6596_2591_1_012050
crossref_primary_10_1007_s10462_021_10026_y
crossref_primary_10_1016_j_eswa_2022_118642
crossref_primary_10_1016_j_displa_2024_102799
crossref_primary_10_1016_j_ces_2024_120507
crossref_primary_10_1142_S2737480724410024
crossref_primary_10_1016_j_eswa_2022_119041
crossref_primary_10_1007_s00371_021_02060_2
crossref_primary_10_1016_j_eswa_2021_115079
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1016_j_asoc_2024_111734
crossref_primary_10_1049_cit2_12345
crossref_primary_10_1016_j_jii_2022_100368
crossref_primary_10_1007_s12652_022_03731_1
crossref_primary_10_1016_j_compgeo_2023_105738
crossref_primary_10_1016_j_swevo_2022_101163
crossref_primary_10_1093_jcde_qwae050
crossref_primary_10_3390_pr10122615
crossref_primary_10_1007_s00366_020_00996_y
crossref_primary_10_1016_j_bspc_2022_104511
crossref_primary_10_1016_j_knosys_2020_106510
crossref_primary_10_1016_j_knosys_2022_108411
crossref_primary_10_1016_j_matcom_2022_02_030
crossref_primary_10_1016_j_eswa_2020_113282
crossref_primary_10_1007_s12065_021_00567_0
crossref_primary_10_1049_rpg2_12451
crossref_primary_10_1093_jcde_qwae057
crossref_primary_10_1109_ACCESS_2020_2970992
crossref_primary_10_1109_ACCESS_2021_3058128
crossref_primary_10_1007_s10489_022_03171_6
crossref_primary_10_1016_j_compbiomed_2021_105181
crossref_primary_10_1093_jcde_qwad073
crossref_primary_10_1016_j_eswa_2020_113974
crossref_primary_10_1371_journal_pone_0294114
crossref_primary_10_3390_electronics11244224
crossref_primary_10_1007_s10489_022_04201_z
crossref_primary_10_1016_j_asoc_2023_110091
crossref_primary_10_1038_s41598_024_63739_9
crossref_primary_10_1016_j_isci_2023_107736
crossref_primary_10_1016_j_asoc_2019_04_004
crossref_primary_10_1016_j_compbiomed_2024_108638
crossref_primary_10_1016_j_micpro_2022_104718
crossref_primary_10_1016_j_future_2020_04_008
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_1016_j_ijleo_2019_06_013
crossref_primary_10_1016_j_eswa_2022_119095
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1016_j_bspc_2023_105147
crossref_primary_10_1016_j_suscom_2024_101035
crossref_primary_10_1007_s00500_023_08578_y
crossref_primary_10_1007_s10489_023_04473_z
crossref_primary_10_1186_s41074_020_00065_9
crossref_primary_10_1016_j_engappai_2021_104608
crossref_primary_10_1587_transinf_2018EDP7401
crossref_primary_10_1016_j_neucom_2023_126467
crossref_primary_10_1016_j_asoc_2024_111946
crossref_primary_10_1016_j_isatra_2021_09_014
crossref_primary_10_1155_2022_6215574
crossref_primary_10_1007_s10462_024_10923_y
crossref_primary_10_1007_s10586_024_04716_9
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_3390_en15062267
crossref_primary_10_1186_s13640_020_0491_y
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_1371_journal_pone_0291626
crossref_primary_10_1016_j_compbiomed_2024_108535
crossref_primary_10_1016_j_compbiomed_2022_105910
crossref_primary_10_1016_j_compbiomed_2023_107838
crossref_primary_10_1016_j_compbiomed_2021_105179
crossref_primary_10_3390_electronics9111786
crossref_primary_10_1007_s44196_022_00114_4
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1155_2021_5526127
crossref_primary_10_1016_j_compbiomed_2023_107392
crossref_primary_10_1109_ACCESS_2020_2978102
Cites_doi 10.1117/1.OE.54.7.073105
10.1109/TEVC.2010.2059031
10.1016/j.asoc.2016.05.007
10.1016/j.cad.2010.12.015
10.1016/j.asoc.2017.02.021
10.1016/j.engappai.2016.06.006
10.1109/TEVC.2007.895272
10.1016/j.imavis.2010.05.006
10.1016/j.neucom.2015.11.072
10.1016/j.asoc.2016.10.038
10.1109/IWCI.2016.7860370
10.1016/j.asoc.2016.11.047
10.1109/ICNN.1995.488968
10.1016/j.asoc.2016.02.041
10.1016/j.asoc.2007.05.007
10.1007/s10898-007-9149-x
10.1016/j.asoc.2014.03.043
10.1016/j.eswa.2016.02.034
10.1016/j.asoc.2012.11.026
10.1016/j.patcog.2016.06.032
10.1016/j.ijleo.2015.05.028
10.1016/j.asoc.2014.11.030
10.1016/j.ejor.2008.03.019
10.1016/j.cviu.2008.08.006
10.1016/j.ins.2015.11.032
10.1016/j.advengsoft.2017.01.004
10.1109/TCYB.2015.2490669
10.1109/TPAMI.2003.1195991
10.1023/A:1008202821328
10.1109/4235.585893
10.1016/j.eswa.2015.07.043
10.1049/iet-cvi.2012.0207
10.1109/TPAMI.2014.2388226
10.1016/j.advengsoft.2016.10.004
10.1145/1177352.1177355
10.1016/j.ins.2016.05.019
10.1109/4235.771163
10.1016/j.ins.2016.08.049
10.1016/j.asoc.2014.02.006
10.1016/j.asoc.2014.11.027
10.1109/TPAMI.2015.2509974
10.1016/j.energy.2017.03.054
10.1016/j.bica.2016.09.006
10.1016/j.renene.2016.04.030
10.1109/TCSVT.2011.2106253
10.1016/j.swevo.2016.01.004
10.1016/j.asoc.2012.05.019
10.1016/j.knosys.2015.12.022
10.1016/j.neucom.2016.06.048
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2017.09.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 1043
ExternalDocumentID 10_1016_j_asoc_2017_09_039
S1568494617305781
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c339t-4a222fece7bc57ec02d26fe9fdf7dbddfbcb5f7269c563590b3dd4381d2f13a83
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:49:59 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid SCA-DE
Meta-heuristic
Object tracking
Optimization
Stability of DE
Population-based algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-4a222fece7bc57ec02d26fe9fdf7dbddfbcb5f7269c563590b3dd4381d2f13a83
PageCount 25
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2017_09_039
crossref_primary_10_1016_j_asoc_2017_09_039
elsevier_sciencedirect_doi_10_1016_j_asoc_2017_09_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Wang, Li, Jiao, Zhang, Stolkin (bib0075) 2016; 372
Kommadath, Dondeti, Kotecha (bib0200) 2017
Li, Wang, Yan, Li (bib0125) 2015; 42
Jamil, Yang (bib0240) 2013; 4
Karaboga, Basturk (bib0025) 2007; 39
Zhu, Zhang (bib0245) 2017; 51
Gao, Li, Sun, Yin, Li, Luo (bib0155) 2015; 126
Gao, Yin, Zou, Li, Liu (bib0170) 2015; 54
Yi, Jiang, Feng, Wang, Liu (bib0280) 2016; 364–365
Gopal, Bansal (bib0210) 2016
Ghorbani, Babaei (bib0060) 2014; 19
Pham (bib0095) 2016; 102
Wu, Lim, Yang (bib0285) 2015; 37
Comaniciu (bib0265) 2003; 25
Eita, Fahmy (bib0065) 2014; 22
Gao, Shen, Yin, Liu, Zou, Li, Fu (bib0160) 2016; 177
Rao, Savsani, Vakharia (bib0050) 2011; 43
Sahu, Pati, Mohanty, Panda (bib0100) 2015; 27
Gao, He, Luo, Jiang, Teng (bib0175) 2013; 7
Fourie, Mills, Green (bib0180) 2010; 28
Das, Mullick, Suganthan (bib0040) 2016; 27
Skoullis, Tassopoulos, Beligiannis (bib0120) 2017; 52
Dwivedi, Ghosh, Londhe (bib0085) 2016; 55
Dorigo, Birattari (bib0035) 2010
Ali, Awad, Suganthan, Duwairi, Reynolds (bib0140) 2016; 334–335
Melanie (bib0010) 1999
Georgive, Jordanov (bib0005) 2009; 196
Mirjalili (bib0195) 2016; 96
Porwik, Doroz, Orczyk (bib0080) 2016; 60
Yilmaz, Javed, Shah (bib0255) 2006; 38
Rajan, Malakar (bib0110) 2016; 43
Nasir, Tokhi (bib0130) 2015; 27
Chen, Zhang, Liu (bib0275) 2016; 214
Kennedy, Eberhart (bib0015) 1995; 4
Lopez-Garcia, Onieva, Osaba, Masegosa, Perallos (bib0135) 2016; 55
Yao, Liu, Lin (bib0235) 1999; 3
Engelbrecht (bib0020) 2005
Wang, Zhang, Zhang (bib0230) 2016; 46
Price, Storn, Lampinen (bib0220) 2005
Thida, Eng, Monekosso, Remagnino (bib0165) 2013; 13
Hare (bib0270) 2016; 38
Bid́egaray-Fesquet (bib0205) 2008
Saremi, Mirjalili, Lewis (bib0070) 2017; 105
Noman, Iba (bib0045) 2008; 12
Fathy (bib0105) 2016; 95
Sokhandan, Monadjemi (bib0260) 2016; 18
Zhou, Yuan, Shi (bib0190) 2009; 113
Khan, Baig (bib0090) 2017; 55
Khan, Gu, Backhouse (bib0185) 2011; 21
Zhong, Li, Zhong (bib0145) 2016; 46
Cannons (bib0250) 2008
Karaboga, Basturk (bib0030) 2008; 8
Wolpert, Macready (bib0115) 1997; 1
Beigvand, Abdi, La Scala (bib0150) 2017; 126
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0055) 2013; 13
Storn, Price (bib0225) 1997; 11
Das, Suganthan (bib0215) 2011; 15
Zhu (10.1016/j.asoc.2017.09.039_bib0245) 2017; 51
Beigvand (10.1016/j.asoc.2017.09.039_bib0150) 2017; 126
Gopal (10.1016/j.asoc.2017.09.039_bib0210) 2016
Storn (10.1016/j.asoc.2017.09.039_bib0225) 1997; 11
Khan (10.1016/j.asoc.2017.09.039_bib0090) 2017; 55
Gao (10.1016/j.asoc.2017.09.039_bib0175) 2013; 7
Porwik (10.1016/j.asoc.2017.09.039_bib0080) 2016; 60
Zhong (10.1016/j.asoc.2017.09.039_bib0145) 2016; 46
Sahu (10.1016/j.asoc.2017.09.039_bib0100) 2015; 27
Cannons (10.1016/j.asoc.2017.09.039_bib0250) 2008
Fourie (10.1016/j.asoc.2017.09.039_bib0180) 2010; 28
Sokhandan (10.1016/j.asoc.2017.09.039_bib0260) 2016; 18
Khan (10.1016/j.asoc.2017.09.039_bib0185) 2011; 21
Zhou (10.1016/j.asoc.2017.09.039_bib0190) 2009; 113
Price (10.1016/j.asoc.2017.09.039_bib0220) 2005
Lopez-Garcia (10.1016/j.asoc.2017.09.039_bib0135) 2016; 55
Kommadath (10.1016/j.asoc.2017.09.039_bib0200) 2017
Das (10.1016/j.asoc.2017.09.039_bib0040) 2016; 27
Mirjalili (10.1016/j.asoc.2017.09.039_bib0195) 2016; 96
Saremi (10.1016/j.asoc.2017.09.039_bib0070) 2017; 105
Kennedy (10.1016/j.asoc.2017.09.039_bib0015) 1995; 4
Thida (10.1016/j.asoc.2017.09.039_bib0165) 2013; 13
Wang (10.1016/j.asoc.2017.09.039_bib0230) 2016; 46
Li (10.1016/j.asoc.2017.09.039_bib0075) 2016; 372
Pham (10.1016/j.asoc.2017.09.039_bib0095) 2016; 102
Noman (10.1016/j.asoc.2017.09.039_bib0045) 2008; 12
Wu (10.1016/j.asoc.2017.09.039_bib0285) 2015; 37
Dorigo (10.1016/j.asoc.2017.09.039_bib0035) 2010
Yao (10.1016/j.asoc.2017.09.039_bib0235) 1999; 3
Eita (10.1016/j.asoc.2017.09.039_bib0065) 2014; 22
Gao (10.1016/j.asoc.2017.09.039_bib0155) 2015; 126
Hare (10.1016/j.asoc.2017.09.039_bib0270) 2016; 38
Melanie (10.1016/j.asoc.2017.09.039_bib0010) 1999
Comaniciu (10.1016/j.asoc.2017.09.039_bib0265) 2003; 25
Sadollah (10.1016/j.asoc.2017.09.039_bib0055) 2013; 13
Rajan (10.1016/j.asoc.2017.09.039_bib0110) 2016; 43
Georgive (10.1016/j.asoc.2017.09.039_bib0005) 2009; 196
Yi (10.1016/j.asoc.2017.09.039_bib0280) 2016; 364–365
Dwivedi (10.1016/j.asoc.2017.09.039_bib0085) 2016; 55
Yilmaz (10.1016/j.asoc.2017.09.039_bib0255) 2006; 38
Li (10.1016/j.asoc.2017.09.039_bib0125) 2015; 42
Rao (10.1016/j.asoc.2017.09.039_bib0050) 2011; 43
Bid́egaray-Fesquet (10.1016/j.asoc.2017.09.039_bib0205) 2008
Wolpert (10.1016/j.asoc.2017.09.039_bib0115) 1997; 1
Nasir (10.1016/j.asoc.2017.09.039_bib0130) 2015; 27
Gao (10.1016/j.asoc.2017.09.039_bib0160) 2016; 177
Chen (10.1016/j.asoc.2017.09.039_bib0275) 2016; 214
Ali (10.1016/j.asoc.2017.09.039_bib0140) 2016; 334–335
Das (10.1016/j.asoc.2017.09.039_bib0215) 2011; 15
Jamil (10.1016/j.asoc.2017.09.039_bib0240) 2013; 4
Karaboga (10.1016/j.asoc.2017.09.039_bib0025) 2007; 39
Engelbrecht (10.1016/j.asoc.2017.09.039_bib0020) 2005
Fathy (10.1016/j.asoc.2017.09.039_bib0105) 2016; 95
Ghorbani (10.1016/j.asoc.2017.09.039_bib0060) 2014; 19
Skoullis (10.1016/j.asoc.2017.09.039_bib0120) 2017; 52
Karaboga (10.1016/j.asoc.2017.09.039_bib0030) 2008; 8
Gao (10.1016/j.asoc.2017.09.039_bib0170) 2015; 54
References_xml – volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: bib0235
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0015
  article-title: Particle swarm optimization
  publication-title: Proc Int. Conf. Neural Netw.
– volume: 60
  start-page: 998
  year: 2016
  end-page: 1014
  ident: bib0080
  article-title: Signatures verification based on PNN classifier optimised by PSO algorithm
  publication-title: Pattern Recogn.
– volume: 334–335
  start-page: 219
  year: 2016
  end-page: 249
  ident: bib0140
  article-title: A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization
  publication-title: Inf. Sci.
– volume: 54
  year: 2015
  ident: bib0170
  article-title: Visual tracking method based on cuckoo search algorithm
  publication-title: Opt. Eng.
– start-page: 31
  year: 2017
  end-page: 34
  ident: bib0200
  article-title: Benchmarking JAYA and sine cosine algorithm on real parameter bound constrained single objective optimization problems (CEC2016)
  publication-title: ISMSI ‘17 Proceedings of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence
– volume: 102
  start-page: 142
  year: 2016
  end-page: 154
  ident: bib0095
  article-title: Truss optimization with frequency constraints using enhanced differential evolution based on adaptive directional mutation and nearest neighbor comparison
  publication-title: Adv. Eng. Softw.
– volume: 51
  start-page: 294
  year: 2017
  end-page: 313
  ident: bib0245
  article-title: Optimal foraging algorithm for global optimization
  publication-title: Appl. Soft Comput.
– year: 2008
  ident: bib0250
  article-title: A Review of Visual Tracking, Tech. Rep. CSE-2008-07
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0070
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
– volume: 38
  start-page: 1
  year: 2006
  end-page: 45
  ident: bib0255
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0050
  article-title: Teaching learning based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
– volume: 364–365
  start-page: 33
  year: 2016
  end-page: 50
  ident: bib0280
  article-title: Online similarity learning for visual tracking
  publication-title: Inf. Sci.
– volume: 18
  start-page: 68
  year: 2016
  end-page: 79
  ident: bib0260
  article-title: A novel biologically inspired computational framework for visual tracking task
  publication-title: Biol. Inspired Cognit. Archit.
– volume: 46
  start-page: 2848
  year: 2016
  end-page: 2861
  ident: bib0230
  article-title: Cooperative differential evolution with multiple populations for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 55
  start-page: 508
  year: 2016
  end-page: 519
  ident: bib0135
  article-title: GACE: A meta-heuristic based in the hybridization of Genetic Algorithms and Cross Entropy methods for continuous optimization
  publication-title: Expert Syst. Appl.
– volume: 196
  start-page: 413
  year: 2009
  end-page: 422
  ident: bib0005
  article-title: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithm
  publication-title: Eur. J. Oper. Res.
– year: 2005
  ident: bib0220
  article-title: Differential Evolution −A Practical Approach to Global Optimization
– year: 2005
  ident: bib0020
  article-title: Fundamentals of Computational Swarm Intelligence
– volume: 177
  start-page: 612
  year: 2016
  end-page: 619
  ident: bib0160
  article-title: A novel visual tracking method using bat algorithm
  publication-title: Neurocomputing
– start-page: 36
  year: 2010
  end-page: 39
  ident: bib0035
  article-title: Ant Colony Optimization, Encyclopedia of Machine Learning
– volume: 28
  start-page: 1702
  year: 2010
  end-page: 1716
  ident: bib0180
  article-title: Harmony filter: a robust visual tracking system using the improved harmony search algorithm
  publication-title: Image Vision Comput.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib0030
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 320
  year: 2016
  end-page: 336
  ident: bib0110
  article-title: Exchange market algorithm based optimum reactive power dispatch
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 74
  year: 2011
  end-page: 87
  ident: bib0185
  article-title: Robust visual object tracking using multi-Mode anisotropic mean shift and particle filters
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2008
  ident: bib0205
  article-title: Von Neumann Stability Analysis of Finite Difference Schemes for Maxwell-Debye and Maxwell-Lorentz Equations, 1077-M. English translation of version 1
– volume: 13
  start-page: 3106
  year: 2013
  end-page: 3117
  ident: bib0165
  article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
  publication-title: Appl. Soft Comput.
– volume: 38
  start-page: 2096
  year: 2016
  end-page: 2109
  ident: bib0270
  article-title: Struck: structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 27
  start-page: 240
  year: 2015
  end-page: 249
  ident: bib0100
  article-title: Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system
  publication-title: Appl. Soft Comput.
– volume: 52
  start-page: 277
  year: 2017
  end-page: 289
  ident: bib0120
  article-title: Solving the high school timetabling problem using a hybrid cat swarm optimization based algorithm
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 564
  year: 2003
  end-page: 577
  ident: bib0265
  article-title: Visvanathan ramesh, and peter meer, kernel-based object tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 1834
  year: 2015
  end-page: 1848
  ident: bib0285
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal.
– volume: 126
  start-page: 1705
  year: 2015
  end-page: 1711
  ident: bib0155
  article-title: Firefly algorithm (FA) based particle filter method for visual tracking
  publication-title: Optik
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0025
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
– volume: 113
  start-page: 345
  year: 2009
  end-page: 352
  ident: bib0190
  article-title: Object tracking using SIFT features and mean shift
  publication-title: Comput. Vision Image Understanding
– volume: 7
  start-page: 227
  year: 2013
  end-page: 237
  ident: bib0175
  article-title: Object tracking using firefly algorithm
  publication-title: IET Comput. Vis.
– volume: 55
  start-page: 58
  year: 2016
  end-page: 69
  ident: bib0085
  article-title: Low power FIR filter design using modified multi-objective artificial bee colony algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 55
  start-page: 462
  year: 2017
  end-page: 479
  ident: bib0090
  article-title: Ant colony optimization based hierarchical multi-label classification algorithm
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0115
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 357
  year: 2015
  end-page: 375
  ident: bib0130
  article-title: Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation
  publication-title: Appl. Soft Comput.
– volume: 126
  start-page: 841
  year: 2017
  end-page: 853
  ident: bib0150
  article-title: Hybrid gravitational search algorithm-Particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem
  publication-title: Energy
– year: 1999
  ident: bib0010
  article-title: An Introduction to Genetic Algorithms
– volume: 95
  start-page: 367
  year: 2016
  end-page: 380
  ident: bib0105
  article-title: A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt
  publication-title: Renew. Energy
– volume: 372
  start-page: 196
  year: 2016
  end-page: 207
  ident: bib0075
  article-title: Single image super-resolution reconstruction based on genetic algorithm and regularization prior model
  publication-title: Inf. Sci.
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0055
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 585
  year: 2014
  end-page: 604
  ident: bib0065
  article-title: Group counseling optimization
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib0215
  article-title: Differential evolution: a survey of the state-of-the-Art
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: bib0040
  article-title: Recent advances in differential evolution–An updated survey
  publication-title: Swarm Evol. Comput.
– volume: 46
  start-page: 469
  year: 2016
  end-page: 486
  ident: bib0145
  article-title: A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0225
  article-title: Differential Evolution−A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 42
  start-page: 8881
  year: 2015
  end-page: 8895
  ident: bib0125
  article-title: PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 107
  year: 2008
  end-page: 125
  ident: bib0045
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Trans. Evol. Comput.
– volume: 214
  start-page: 607
  year: 2016
  end-page: 617
  ident: bib0275
  article-title: Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble
  publication-title: Neurocomputing
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0195
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: bib0240
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: Int. J. Math. Modell. Numer. Optim.
– volume: 19
  start-page: 177
  year: 2014
  end-page: 187
  ident: bib0060
  article-title: Exchange market algorithm
  publication-title: Appl. Soft Comput.
– year: 2016
  ident: bib0210
  article-title: Stability analysis of differential evolution
  publication-title: 2016 International Workshop on Computational Intelligence (IWCI)
– volume: 54
  issue: 7
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0170
  article-title: Visual tracking method based on cuckoo search algorithm
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.7.073105
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2017.09.039_bib0215
  article-title: Differential evolution: a survey of the state-of-the-Art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 46
  start-page: 469
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0145
  article-title: A modified ABC algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.05.007
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.asoc.2017.09.039_bib0050
  article-title: Teaching learning based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.asoc.2017.09.039_bib0240
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: Int. J. Math. Modell. Numer. Optim.
– volume: 55
  start-page: 462
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0090
  article-title: Ant colony optimization based hierarchical multi-label classification algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.021
– volume: 55
  start-page: 58
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0085
  article-title: Low power FIR filter design using modified multi-objective artificial bee colony algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.06.006
– year: 2005
  ident: 10.1016/j.asoc.2017.09.039_bib0020
– volume: 12
  start-page: 107
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2017.09.039_bib0045
  article-title: Accelerating differential evolution using an adaptive local search
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.895272
– volume: 28
  start-page: 1702
  year: 2010
  ident: 10.1016/j.asoc.2017.09.039_bib0180
  article-title: Harmony filter: a robust visual tracking system using the improved harmony search algorithm
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2010.05.006
– volume: 177
  start-page: 612
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0160
  article-title: A novel visual tracking method using bat algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.072
– year: 2008
  ident: 10.1016/j.asoc.2017.09.039_bib0250
– volume: 52
  start-page: 277
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0120
  article-title: Solving the high school timetabling problem using a hybrid cat swarm optimization based algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.10.038
– start-page: 31
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0200
  article-title: Benchmarking JAYA and sine cosine algorithm on real parameter bound constrained single objective optimization problems (CEC2016)
– year: 2008
  ident: 10.1016/j.asoc.2017.09.039_bib0205
– year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0210
  article-title: Stability analysis of differential evolution
  publication-title: 2016 International Workshop on Computational Intelligence (IWCI)
  doi: 10.1109/IWCI.2016.7860370
– volume: 51
  start-page: 294
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0245
  article-title: Optimal foraging algorithm for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.047
– volume: 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2017.09.039_bib0015
  article-title: Particle swarm optimization
  publication-title: Proc Int. Conf. Neural Netw.
  doi: 10.1109/ICNN.1995.488968
– volume: 43
  start-page: 320
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0110
  article-title: Exchange market algorithm based optimum reactive power dispatch
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.041
– year: 1999
  ident: 10.1016/j.asoc.2017.09.039_bib0010
– volume: 8
  start-page: 687
  year: 2008
  ident: 10.1016/j.asoc.2017.09.039_bib0030
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.asoc.2017.09.039_bib0025
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 22
  start-page: 585
  year: 2014
  ident: 10.1016/j.asoc.2017.09.039_bib0065
  article-title: Group counseling optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.03.043
– volume: 55
  start-page: 508
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0135
  article-title: GACE: A meta-heuristic based in the hybridization of Genetic Algorithms and Cross Entropy methods for continuous optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.034
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.asoc.2017.09.039_bib0055
  article-title: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 60
  start-page: 998
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0080
  article-title: Signatures verification based on PNN classifier optimised by PSO algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.06.032
– volume: 126
  start-page: 1705
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0155
  article-title: Firefly algorithm (FA) based particle filter method for visual tracking
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.05.028
– volume: 27
  start-page: 357
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0130
  article-title: Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.030
– volume: 196
  start-page: 413
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2017.09.039_bib0005
  article-title: Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithm
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2008.03.019
– volume: 113
  start-page: 345
  year: 2009
  ident: 10.1016/j.asoc.2017.09.039_bib0190
  article-title: Object tracking using SIFT features and mean shift
  publication-title: Comput. Vision Image Understanding
  doi: 10.1016/j.cviu.2008.08.006
– start-page: 36
  year: 2010
  ident: 10.1016/j.asoc.2017.09.039_bib0035
– volume: 334–335
  start-page: 219
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0140
  article-title: A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.11.032
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0070
  article-title: Grasshopper optimisation algorithm: theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 46
  start-page: 2848
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0230
  article-title: Cooperative differential evolution with multiple populations for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490669
– volume: 25
  start-page: 564
  issue: 5
  year: 2003
  ident: 10.1016/j.asoc.2017.09.039_bib0265
  article-title: Visvanathan ramesh, and peter meer, kernel-based object tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1195991
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.asoc.2017.09.039_bib0225
  article-title: Differential Evolution−A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2017.09.039_bib0115
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 42
  start-page: 8881
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0125
  article-title: PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.043
– volume: 7
  start-page: 227
  issue: 4
  year: 2013
  ident: 10.1016/j.asoc.2017.09.039_bib0175
  article-title: Object tracking using firefly algorithm
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2012.0207
– volume: 37
  start-page: 1834
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0285
  article-title: Object tracking benchmark
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2014.2388226
– volume: 102
  start-page: 142
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0095
  article-title: Truss optimization with frequency constraints using enhanced differential evolution based on adaptive directional mutation and nearest neighbor comparison
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.10.004
– volume: 38
  start-page: 1
  issue: 4
  year: 2006
  ident: 10.1016/j.asoc.2017.09.039_bib0255
  article-title: Object tracking: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1177352.1177355
– volume: 364–365
  start-page: 33
  issue: 2016
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0280
  article-title: Online similarity learning for visual tracking
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.05.019
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.asoc.2017.09.039_bib0235
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 372
  start-page: 196
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0075
  article-title: Single image super-resolution reconstruction based on genetic algorithm and regularization prior model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.049
– year: 2005
  ident: 10.1016/j.asoc.2017.09.039_bib0220
– volume: 19
  start-page: 177
  year: 2014
  ident: 10.1016/j.asoc.2017.09.039_bib0060
  article-title: Exchange market algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.006
– volume: 27
  start-page: 240
  year: 2015
  ident: 10.1016/j.asoc.2017.09.039_bib0100
  article-title: Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.11.027
– volume: 38
  start-page: 2096
  issue: 10
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0270
  article-title: Struck: structured output tracking with kernels
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2509974
– volume: 126
  start-page: 841
  year: 2017
  ident: 10.1016/j.asoc.2017.09.039_bib0150
  article-title: Hybrid gravitational search algorithm-Particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.054
– volume: 18
  start-page: 68
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0260
  article-title: A novel biologically inspired computational framework for visual tracking task
  publication-title: Biol. Inspired Cognit. Archit.
  doi: 10.1016/j.bica.2016.09.006
– volume: 95
  start-page: 367
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0105
  article-title: A reliable methodology based on mine blast optimization algorithm for optimal sizing of hybrid PV-wind-FC system for remote area in Egypt
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.04.030
– volume: 21
  start-page: 74
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2017.09.039_bib0185
  article-title: Robust visual object tracking using multi-Mode anisotropic mean shift and particle filters
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2011.2106253
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0040
  article-title: Recent advances in differential evolution–An updated survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 13
  start-page: 3106
  year: 2013
  ident: 10.1016/j.asoc.2017.09.039_bib0165
  article-title: A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.019
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0195
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 214
  start-page: 607
  year: 2016
  ident: 10.1016/j.asoc.2017.09.039_bib0275
  article-title: Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.048
SSID ssj0016928
Score 2.6182096
Snippet [Display omitted] •A novel Hybrid SCA-DE algorithm is introduced for global optimization and object tracking.•The proposed hybrid algorithm has better...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1019
SubjectTerms Hybrid SCA-DE
Meta-heuristic
Object tracking
Optimization
Population-based algorithm
Stability of DE
Title Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking
URI https://dx.doi.org/10.1016/j.asoc.2017.09.039
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iU2T3aR7LMVSX0XUQm9hX9FK25QSBT34251JNkVBPJjLkjAD4dvZmdlhHoScBn5kVRoxT0gtPcYM9xQLmRdyX8bwRIHBOOTtMBqM2NWYj2ukV9XCYFql0_2lTi-0tfvScmi2FpNJ6wFuHh0mGJhgkNm4KL9mLEYpP_9cpXm0I1HMV0ViD6ld4UyZ4yUBAUzvistep-J34_TN4PS3yIbzFGm3_JltUrPzHbJZTWGg7lDuksngHauuJh9ghChmsVOdFYucPmVw9X-eUQy20moUChzpKbVvTuQoOK207ApCM1AfM1eXSeXc0ExhlIbmS6kxor5HRv2Lx97AcwMUPB2GIveYBOufWm1jpXlstR-YIEqtSE0aG2VMqrTiaRxEQnNwPISvQmOw55cJ0nYoO-E-qc-zuT0g1CiJ9QoAtIkYx05Nge5obgXnxmipGqRdIZdo110ch1xMkyqN7CVBtBNEO_FFAmg3yNmKZ1H21viTmlcbkvyQkASU_x98h__kOyLr8NYpwy3HpJ4vX-0JOCC5ahYS1iRr3d79zR2ul9eD4RcfuN9Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqCXPnio9EF9gBMKm3XsJD70UBXQ8rwAEjfjV9pUywYtoRU99E_1D3Zm4yAqVRwqkUukJI6S8ej77NE3MwDrPM2DrXKRKONMIoSXiRWZSDKZmgKPnHuKQx4d56MzsX8uz-fgd58LQ7LKiP0dps_QOl4ZRGsOrup6cII7j1IogRSMPluUw6isPAi3P3Dfdv1xbxsneYPz3Z3Tz6MkthZIXJapNhEGebEKLhTWySK4lHueV0FVviq89b6yzsqq4LlyEilZpTbznqpheV4NM1Nm-N4n8FQgXFDbhK1fd7qSYa5mDV3p6xL6vJip04nKDJqc9GRFV1xV_ZsN7zHc7kt4Hpem7FP3969gLkwW4UXf9oFFFFiCenRLaV71T2Q9RrJ55prZyYy_NNO6_XrJKLrL-t4riCFjFr5HH2e4SmZdGRLWIF5dxkRQZiaeNZbCQqydGkch_GU4exSzrsD8pJmE18C8NZQggTPrcyGpNBR3pZNBSem9M3YVhr3ltIvlzKmrxlj3urVvmqytydo6VRqtvQqbd2OuumIeDz4t-wnRf7mkRrZ5YNyb_xz3ARZGp0eH-nDv-OAtPMM7ZRfreQfz7fQmvMfVT2vXZt7G4OKx3fsP8nUb6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridizing+sine+cosine+algorithm+with+differential+evolution+for+global+optimization+and+object+tracking&rft.jtitle=Applied+soft+computing&rft.au=Nenavath%2C+Hathiram&rft.au=Jatoth%2C+Ravi+Kumar&rft.date=2018-01-01&rft.issn=1568-4946&rft.volume=62&rft.spage=1019&rft.epage=1043&rft_id=info:doi/10.1016%2Fj.asoc.2017.09.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2017_09_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon