The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis
Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatmen...
Saved in:
Published in | Renewable energy Vol. 219; p. 119412 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatment. This study focuses on investigating the deoxygenation characteristics of biomass during molten salts thermal treatment through a comprehensive analysis involving experimental and density functional theory (DFT) study. Our experimental results revealed that, compared to traditional pyrolysis, molten salt (NaNO₃–NaNO₂) significantly increased oxygenated gas products, favoring deoxygenation during biomass conversion. Formic acid was employed as a simplified oxygen-containing model compound to investigate the decomposition characteristics with and without the presence of molten salts using DFT calculations. DFT studies of formic acid decomposition revealed lower activation energies on NaNO₃ (234.39 kJ/mol) and NaNO₂ (84.11 kJ/mol) surfaces compared to homogeneous reactions (234.63 kJ/mol). This indicates that NaNO₂ has a more pronounced promotional effect, facilitating formic acid decomposition. Furthermore, kinetic calculations show that both homogeneous and heterogeneous reaction rate constants for formic acid decomposition increase with temperature. The reaction rate constants on the surface of NaNO₃ are similar to homogeneous reactions, while it is much higher two on NaNO₂ surfaces. These findings highlight the critical role of NaNO₂ in formic acid decomposition within the NaNO₃–NaNO₂ molten salt system. The experimental and computational results elucidate the deoxygenation mechanism of biomass thermal conversion using molten salts and establish a theoretical foundation for the high-value utilization of pyrolysis products. |
---|---|
AbstractList | Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatment. This study focuses on investigating the deoxygenation characteristics of biomass during molten salts thermal treatment through a comprehensive analysis involving experimental and density functional theory (DFT) study. Our experimental results revealed that, compared to traditional pyrolysis, molten salt (NaNO₃–NaNO₂) significantly increased oxygenated gas products, favoring deoxygenation during biomass conversion. Formic acid was employed as a simplified oxygen-containing model compound to investigate the decomposition characteristics with and without the presence of molten salts using DFT calculations. DFT studies of formic acid decomposition revealed lower activation energies on NaNO₃ (234.39 kJ/mol) and NaNO₂ (84.11 kJ/mol) surfaces compared to homogeneous reactions (234.63 kJ/mol). This indicates that NaNO₂ has a more pronounced promotional effect, facilitating formic acid decomposition. Furthermore, kinetic calculations show that both homogeneous and heterogeneous reaction rate constants for formic acid decomposition increase with temperature. The reaction rate constants on the surface of NaNO₃ are similar to homogeneous reactions, while it is much higher two on NaNO₂ surfaces. These findings highlight the critical role of NaNO₂ in formic acid decomposition within the NaNO₃–NaNO₂ molten salt system. The experimental and computational results elucidate the deoxygenation mechanism of biomass thermal conversion using molten salts and establish a theoretical foundation for the high-value utilization of pyrolysis products. |
ArticleNumber | 119412 |
Author | Yao, Hong Zou, Chan Hu, Hongyun Dong, Lu Wen, Huaizhou Liu, Yuhao Dai, Qiqi Zhang, Haojie Xu, Lejin |
Author_xml | – sequence: 1 givenname: Lu surname: Dong fullname: Dong, Lu – sequence: 2 givenname: Yuhao surname: Liu fullname: Liu, Yuhao – sequence: 3 givenname: Huaizhou surname: Wen fullname: Wen, Huaizhou – sequence: 4 givenname: Chan surname: Zou fullname: Zou, Chan – sequence: 5 givenname: Qiqi surname: Dai fullname: Dai, Qiqi – sequence: 6 givenname: Haojie surname: Zhang fullname: Zhang, Haojie – sequence: 7 givenname: Lejin orcidid: 0000-0002-6488-5763 surname: Xu fullname: Xu, Lejin – sequence: 8 givenname: Hongyun surname: Hu fullname: Hu, Hongyun – sequence: 9 givenname: Hong surname: Yao fullname: Yao, Hong |
BookMark | eNp9kD1PwzAQQD0UibbwDxg8siTYjp2PbqgqHxISS5mtI7lQV4ldbBfaf0_aMDEgDydL7510b0Ym1lkk5IazlDOe321Tj3Z4qWAiSzmvJBcTMmVVzhIuS35JZiFsGeOqLOSU-PUGaYPucPxAC9E4S3usN2BN6Klr6btxPYRA4wZ9Dx2tnf1CH07ct4kb2rsuoqUBuhgWdHXYoTc92jigYJuT5jxGU5__0B2DCVfkooUu4PXvnJO3h9V6-ZS8vD4-L-9fkjrLqpjIqlUIZV4Wlcoq2TKRy7YBqYQoVJk3LBdMMaGKFhg0iIDQNAUDEFxV5eDMye24d-fd5x5D1L0JNXYdWHT7oDOuMl7KKs8HVI5o7V0IHlu9G84Af9Sc6VNWvdVjVn3Kqsesg7b4o9UmniNGD6b7X_4BOgaHKw |
CitedBy_id | crossref_primary_10_1016_j_renene_2025_122581 crossref_primary_10_1016_j_fuel_2025_134737 crossref_primary_10_1016_j_jaap_2024_106761 crossref_primary_10_1021_acs_energyfuels_3c04535 crossref_primary_10_1016_j_chemosphere_2024_141501 crossref_primary_10_1016_j_jclepro_2024_142604 crossref_primary_10_1016_j_fuel_2024_132713 crossref_primary_10_1007_s11356_024_32951_5 crossref_primary_10_1016_j_cej_2024_153792 crossref_primary_10_1007_s11705_025_2531_8 crossref_primary_10_1016_j_cej_2024_152069 crossref_primary_10_3390_molecules29020511 crossref_primary_10_1016_j_cej_2025_159615 crossref_primary_10_1002_cjce_25238 crossref_primary_10_1016_j_jece_2024_114290 crossref_primary_10_1016_j_fuel_2024_132364 crossref_primary_10_1016_j_fuel_2024_133455 crossref_primary_10_1016_j_fuel_2024_131293 crossref_primary_10_1016_j_fuel_2024_132468 crossref_primary_10_1016_j_jece_2024_114648 crossref_primary_10_1021_acs_energyfuels_4c02598 crossref_primary_10_1002_adsu_202400610 crossref_primary_10_1016_j_jwpe_2024_105852 crossref_primary_10_1016_j_wasman_2023_12_008 crossref_primary_10_1016_j_indcrop_2025_120808 crossref_primary_10_1016_j_fuel_2023_130825 crossref_primary_10_1016_j_joei_2023_101449 crossref_primary_10_1016_j_fuel_2024_130965 crossref_primary_10_1016_j_cherd_2024_04_050 crossref_primary_10_1016_j_cej_2024_153628 crossref_primary_10_3390_molecules29133161 crossref_primary_10_1016_j_corsci_2024_111933 crossref_primary_10_1016_j_psep_2024_10_118 crossref_primary_10_1016_j_fuproc_2023_107996 |
Cites_doi | 10.1016/j.fuel.2019.116289 10.1016/j.applthermaleng.2017.07.166 10.1016/j.jcis.2012.11.004 10.1016/j.fuel.2020.118228 10.1016/j.commatsci.2019.01.025 10.1016/j.fuel.2022.124079 10.1016/j.ijhydene.2020.10.222 10.1016/j.renene.2020.02.019 10.1016/j.fuel.2022.125514 10.1016/j.scitotenv.2019.136435 10.1016/j.energy.2019.05.181 10.1016/j.apsusc.2018.05.049 10.1515/reveh-2018-0052 10.1016/j.combustflame.2018.06.029 10.1016/j.biortech.2020.124216 10.1103/PhysRevLett.77.3865 10.1016/j.ijhydene.2020.04.180 10.1016/j.ijhydene.2020.05.198 10.1016/j.apcata.2019.117218 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.59.1758 10.1016/j.energy.2017.11.115 10.1016/j.cej.2019.123648 10.1016/j.renene.2022.06.123 10.1021/ja100925n 10.1016/j.energy.2020.118128 10.1021/jp013876g 10.1016/j.energy.2019.116024 10.1016/j.jpowsour.2015.12.002 10.15376/biores.17.2.Zhou 10.1016/j.energy.2022.124320 10.1016/j.renene.2021.08.096 10.1063/1.1323224 10.1016/j.renene.2022.02.022 10.1016/j.energy.2019.05.055 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2023.119412 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_renene_2023_119412 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEGFY AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSH SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-49f5ea868795394f0264fda45227586d062050257fa0adeeaeadd70aa21598953 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 06:49:34 EDT 2025 Tue Jul 01 03:20:45 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c339t-49f5ea868795394f0264fda45227586d062050257fa0adeeaeadd70aa21598953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6488-5763 |
PQID | 3153184966 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153184966 crossref_primary_10_1016_j_renene_2023_119412 crossref_citationtrail_10_1016_j_renene_2023_119412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-00 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2023 |
References | Sneka-Płateka (10.1016/j.renene.2023.119412_bib15) 2020; 45 Yang (10.1016/j.renene.2023.119412_bib14) 2022; 196 Xie (10.1016/j.renene.2023.119412_bib5) 2019; 179 Henkelman (10.1016/j.renene.2023.119412_bib30) 2000; 113 Luo (10.1016/j.renene.2023.119412_bib29) 2013; 393 Yang (10.1016/j.renene.2023.119412_bib13) 2020; 278 Zou (10.1016/j.renene.2023.119412_bib35) 2020; 392 Jahangir (10.1016/j.renene.2023.119412_bib1) 2022; 189 Jiao (10.1016/j.renene.2023.119412_bib23) 2018; 196 Yang (10.1016/j.renene.2023.119412_bib10) 2022; 254 Fang (10.1016/j.renene.2023.119412_bib22) 2019; 160 Yang (10.1016/j.renene.2023.119412_bib4) 2022; 196 Wu (10.1016/j.renene.2023.119412_bib21) 2022; 321 Li (10.1016/j.renene.2023.119412_bib20) 2018; 452 Kresse (10.1016/j.renene.2023.119412_bib26) 1999; 59 Zeng (10.1016/j.renene.2023.119412_bib9) 2020; 206 Chen (10.1016/j.renene.2023.119412_bib7) 2022; 330 Li (10.1016/j.renene.2023.119412_bib24) 2020; 260 Kresse (10.1016/j.renene.2023.119412_bib27) 1996; 6 Gao (10.1016/j.renene.2023.119412_bib36) 2017; 126 Zhou (10.1016/j.renene.2023.119412_bib2) 2022; 17 Ji (10.1016/j.renene.2023.119412_bib18) 2016; 306 Perdew (10.1016/j.renene.2023.119412_bib28) 1996; 77 Zhang (10.1016/j.renene.2023.119412_bib17) 2019; 586 Yang (10.1016/j.renene.2023.119412_bib25) 2020; 153 Boddien (10.1016/j.renene.2023.119412_bib16) 2010; 132 Abo (10.1016/j.renene.2023.119412_bib3) 2019; 34 Wei (10.1016/j.renene.2023.119412_bib11) 2020; 712 Rezaei (10.1016/j.renene.2023.119412_bib19) 2020; 45 He (10.1016/j.renene.2023.119412_bib6) 2019; 181 Bravo-Perez (10.1016/j.renene.2023.119412_bib31) 2002; 106 Jiao (10.1016/j.renene.2023.119412_bib32) 2017; 141 Prasetyo (10.1016/j.renene.2023.119412_bib33) 2021; 46 Zou (10.1016/j.renene.2023.119412_bib34) 2019; 187 Yang (10.1016/j.renene.2023.119412_bib12) 2021; 180 Sun (10.1016/j.renene.2023.119412_bib8) 2021; 319 |
References_xml | – volume: 260 year: 2020 ident: 10.1016/j.renene.2023.119412_bib24 article-title: Role of SO2 and H2O in the mercury adsorption on ceria surface: a DFT study publication-title: Fuel doi: 10.1016/j.fuel.2019.116289 – volume: 126 start-page: 28 year: 2017 ident: 10.1016/j.renene.2023.119412_bib36 article-title: Theoretical research on heterogeneous reduction of N2O by char publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.166 – volume: 393 start-page: 340 year: 2013 ident: 10.1016/j.renene.2023.119412_bib29 article-title: Adsorption of water on NaNO3(001) surface from first-principles calculations publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.11.004 – volume: 278 year: 2020 ident: 10.1016/j.renene.2023.119412_bib13 article-title: Thermochemical conversion of lignocellulosic bio-waste via fast pyrolysis in molten salts publication-title: Fuel doi: 10.1016/j.fuel.2020.118228 – volume: 160 start-page: 374 year: 2019 ident: 10.1016/j.renene.2023.119412_bib22 article-title: Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.01.025 – volume: 321 year: 2022 ident: 10.1016/j.renene.2023.119412_bib21 article-title: As2O3 capture from incineration flue gas by Fe2O3-modified porous carbon: experimental and DFT insights publication-title: Fuel doi: 10.1016/j.fuel.2022.124079 – volume: 46 start-page: 4222 year: 2021 ident: 10.1016/j.renene.2023.119412_bib33 article-title: Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): a periodic density functional theory (DFT) study of fluorination and adsorption publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.222 – volume: 153 start-page: 832 year: 2020 ident: 10.1016/j.renene.2023.119412_bib25 article-title: Study on the influence of small molecular gases on toluene reforming in molten salt publication-title: Renew. Energy doi: 10.1016/j.renene.2020.02.019 – volume: 330 year: 2022 ident: 10.1016/j.renene.2023.119412_bib7 article-title: Advancing biomass pyrolysis by torrefaction pretreatment: linking the productions of bio-oil and oxygenated chemicals to torrefaction severity publication-title: Fuel doi: 10.1016/j.fuel.2022.125514 – volume: 712 year: 2020 ident: 10.1016/j.renene.2023.119412_bib11 article-title: Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136435 – volume: 181 start-page: 407 year: 2019 ident: 10.1016/j.renene.2023.119412_bib6 article-title: The effects of temperature and molten salt on solar pyrolysis of lignite publication-title: Energy doi: 10.1016/j.energy.2019.05.181 – volume: 452 start-page: 87 year: 2018 ident: 10.1016/j.renene.2023.119412_bib20 article-title: A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface: formic acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.05.049 – volume: 34 start-page: 91 year: 2019 ident: 10.1016/j.renene.2023.119412_bib3 article-title: Microalgae to biofuels production: a review on cultivation, application and renewable energy publication-title: Rev. Environ. Health doi: 10.1515/reveh-2018-0052 – volume: 196 start-page: 377 year: 2018 ident: 10.1016/j.renene.2023.119412_bib23 article-title: Quantum chemical and kinetics calculations for the NO reduction with char(N): influence of the carbon monoxide publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.06.029 – volume: 319 year: 2021 ident: 10.1016/j.renene.2023.119412_bib8 article-title: Gas-pressurized torrefaction of biomass wastes: the optimization of pressurization condition and the pyrolysis of torrefied biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124216 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.renene.2023.119412_bib28 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 45 start-page: 17339 year: 2020 ident: 10.1016/j.renene.2023.119412_bib15 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.04.180 – volume: 45 start-page: 20993 year: 2020 ident: 10.1016/j.renene.2023.119412_bib19 article-title: A DFT study on production of hydrogen from biomass-derived formic acid catalyzed by Pt–TiO2 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.198 – volume: 586 year: 2019 ident: 10.1016/j.renene.2023.119412_bib17 article-title: Hydrogen donation of bio-acids over transition metal facets: a density functional theory study publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2019.117218 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.renene.2023.119412_bib27 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 59 start-page: 1758 year: 1999 ident: 10.1016/j.renene.2023.119412_bib26 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 141 start-page: 1538 year: 2017 ident: 10.1016/j.renene.2023.119412_bib32 article-title: The role of CO played in the nitric oxide heterogeneous reduction: a quantum chemistry study publication-title: Energy doi: 10.1016/j.energy.2017.11.115 – volume: 392 year: 2020 ident: 10.1016/j.renene.2023.119412_bib35 article-title: The effect of H2O on formation mechanism of arsenic oxide during arsenopyrite oxidation: experimental and theoretical analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123648 – volume: 196 start-page: 617 year: 2022 ident: 10.1016/j.renene.2023.119412_bib14 article-title: Comparing the thermal conversion behavior of bio-wastes in three molten nitrates publication-title: Renew. Energy doi: 10.1016/j.renene.2022.06.123 – volume: 132 start-page: 8924 year: 2010 ident: 10.1016/j.renene.2023.119412_bib16 article-title: Iron-Catalyzed hydrogen production from formic acid publication-title: J. Am. Chem. Soc. doi: 10.1021/ja100925n – volume: 206 year: 2020 ident: 10.1016/j.renene.2023.119412_bib9 article-title: Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass publication-title: Energy doi: 10.1016/j.energy.2020.118128 – volume: 196 start-page: 617 year: 2022 ident: 10.1016/j.renene.2023.119412_bib4 article-title: Comparing the thermal conversion behavior of bio-wastes in three molten nitrates publication-title: Renew. Energy doi: 10.1016/j.renene.2022.06.123 – volume: 106 start-page: 4645 year: 2002 ident: 10.1016/j.renene.2023.119412_bib31 article-title: Quantum chemical and conventional transition-state theory calculations of rate constants for the NO3 plus alkane reaction publication-title: J. Phys. Chem. A doi: 10.1021/jp013876g – volume: 187 year: 2019 ident: 10.1016/j.renene.2023.119412_bib34 article-title: The effect of CO on the transformation of arsenic species: a quantum chemistry study publication-title: Energy doi: 10.1016/j.energy.2019.116024 – volume: 306 start-page: 208 year: 2016 ident: 10.1016/j.renene.2023.119412_bib18 article-title: Structure-dependent photocatalytic decomposition of formic acid on the anatase TiO2(101) surface and strategies to increase its reaction rate publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.002 – volume: 17 start-page: 3489 year: 2022 ident: 10.1016/j.renene.2023.119412_bib2 article-title: Sustainable conversion of agricultural biomass into eenewable energy products: a discussion publication-title: Bioresources doi: 10.15376/biores.17.2.Zhou – volume: 254 year: 2022 ident: 10.1016/j.renene.2023.119412_bib10 article-title: Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions publication-title: Energy doi: 10.1016/j.energy.2022.124320 – volume: 180 start-page: 616 year: 2021 ident: 10.1016/j.renene.2023.119412_bib12 article-title: Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts publication-title: Renew. Energy doi: 10.1016/j.renene.2021.08.096 – volume: 113 start-page: 9978 year: 2000 ident: 10.1016/j.renene.2023.119412_bib30 article-title: Improved tangent estimate in the nudged elastic band method minimum energy paths and saddle points publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 189 start-page: 52 year: 2022 ident: 10.1016/j.renene.2023.119412_bib1 article-title: Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems publication-title: Renew. Energy doi: 10.1016/j.renene.2022.02.022 – volume: 179 start-page: 1124 year: 2019 ident: 10.1016/j.renene.2023.119412_bib5 article-title: Solar pyrolysis of cotton stalk in molten salt for bio-fuel production: review publication-title: Energy doi: 10.1016/j.energy.2019.05.055 |
SSID | ssj0015874 |
Score | 2.557792 |
Snippet | Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 119412 |
SubjectTerms | biomass density functional theory formic acid heat treatment pyrolysis renewable energy sources temperature |
Title | The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis |
URI | https://www.proquest.com/docview/3153184966 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF6sXtpDaW1LrbWs0FvJI8lufvVWxPIo1YMoSC9hstlF5ZmIJrR68G939kc2eVra2ksIYbOEzMfsN7vfzBDyUbJYCZFlgYIE9DFjEVQKsiDOQWdSqigVOlDc20_nR_zbcXI8nuCb7JKumomb3-aV_I9V8RnaVWfJPsKyflJ8gPdoX7yihfH6zzauZfvrGkdYQ55LncmrG18gCdSp9ciNNbdE97uwCnOzPWa3X8_bBTLmT1ew6Iwwbnda7d8pK32WI7jqJVM2e4CO8qfJvZImhdCzYqfz_d57vc9pb5x9fwLteBhkPN68h9Obk9YP_dH2TgfQTLckYjaRd7i9xTQMMM6Kpm52cI3WUUZRwa1--oEPt9sJZzNd0rPRlUxjNhuHL5fMvreUeYHhoF07K-0spZ6ltLM8IWsxxhS63cXs1uuBoiS3JbuHbx_yLI0Y8OG3LPOY5WXccJPDF-S5CyroF4uQl2RFNuvk2aTU5CtyiVihS1ihHiu0VdRhhTqs0BErVGOFWqxQg5XPdIoUikihE6TQASmvydHX3cOdeeD6bQSCsaILeKESCXmq-8-zgisMz7mqQdfcx6gyrcM0DhPkyJmCEGopAb1QnYUASBuLHN95Q1abtpFvCWWiqpIIhJA85zIRRZFAWGeSVVwxluYbhA1_rxSuGL3uibIo_2S5DRL4ty5sMZa_jN8eDFOi19RHYdDItr8qGS70Uc4x1n_3yDk3ydMR8u_JanfZyy3kpV31weDpDnZoko0 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+deoxygenation+mechanism+of+biomass+thermal+conversion+with+molten+salts%3A+Experimental+and+theoretical+analysis&rft.jtitle=Renewable+energy&rft.au=Dong%2C+Lu&rft.au=Liu%2C+Yuhao&rft.au=Wen%2C+Huaizhou&rft.au=Zou%2C+Chan&rft.date=2023-12-01&rft.issn=0960-1481&rft.volume=219&rft.spage=119412&rft_id=info:doi/10.1016%2Fj.renene.2023.119412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2023_119412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |