The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis

Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatmen...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 219; p. 119412
Main Authors Dong, Lu, Liu, Yuhao, Wen, Huaizhou, Zou, Chan, Dai, Qiqi, Zhang, Haojie, Xu, Lejin, Hu, Hongyun, Yao, Hong
Format Journal Article
LanguageEnglish
Published 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatment. This study focuses on investigating the deoxygenation characteristics of biomass during molten salts thermal treatment through a comprehensive analysis involving experimental and density functional theory (DFT) study. Our experimental results revealed that, compared to traditional pyrolysis, molten salt (NaNO₃–NaNO₂) significantly increased oxygenated gas products, favoring deoxygenation during biomass conversion. Formic acid was employed as a simplified oxygen-containing model compound to investigate the decomposition characteristics with and without the presence of molten salts using DFT calculations. DFT studies of formic acid decomposition revealed lower activation energies on NaNO₃ (234.39 kJ/mol) and NaNO₂ (84.11 kJ/mol) surfaces compared to homogeneous reactions (234.63 kJ/mol). This indicates that NaNO₂ has a more pronounced promotional effect, facilitating formic acid decomposition. Furthermore, kinetic calculations show that both homogeneous and heterogeneous reaction rate constants for formic acid decomposition increase with temperature. The reaction rate constants on the surface of NaNO₃ are similar to homogeneous reactions, while it is much higher two on NaNO₂ surfaces. These findings highlight the critical role of NaNO₂ in formic acid decomposition within the NaNO₃–NaNO₂ molten salt system. The experimental and computational results elucidate the deoxygenation mechanism of biomass thermal conversion using molten salts and establish a theoretical foundation for the high-value utilization of pyrolysis products.
AbstractList Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional pyrolysis methods. However, there remains a dearth of research on the deoxygenation mechanism of biomass during molten salt thermal treatment. This study focuses on investigating the deoxygenation characteristics of biomass during molten salts thermal treatment through a comprehensive analysis involving experimental and density functional theory (DFT) study. Our experimental results revealed that, compared to traditional pyrolysis, molten salt (NaNO₃–NaNO₂) significantly increased oxygenated gas products, favoring deoxygenation during biomass conversion. Formic acid was employed as a simplified oxygen-containing model compound to investigate the decomposition characteristics with and without the presence of molten salts using DFT calculations. DFT studies of formic acid decomposition revealed lower activation energies on NaNO₃ (234.39 kJ/mol) and NaNO₂ (84.11 kJ/mol) surfaces compared to homogeneous reactions (234.63 kJ/mol). This indicates that NaNO₂ has a more pronounced promotional effect, facilitating formic acid decomposition. Furthermore, kinetic calculations show that both homogeneous and heterogeneous reaction rate constants for formic acid decomposition increase with temperature. The reaction rate constants on the surface of NaNO₃ are similar to homogeneous reactions, while it is much higher two on NaNO₂ surfaces. These findings highlight the critical role of NaNO₂ in formic acid decomposition within the NaNO₃–NaNO₂ molten salt system. The experimental and computational results elucidate the deoxygenation mechanism of biomass thermal conversion using molten salts and establish a theoretical foundation for the high-value utilization of pyrolysis products.
ArticleNumber 119412
Author Yao, Hong
Zou, Chan
Hu, Hongyun
Dong, Lu
Wen, Huaizhou
Liu, Yuhao
Dai, Qiqi
Zhang, Haojie
Xu, Lejin
Author_xml – sequence: 1
  givenname: Lu
  surname: Dong
  fullname: Dong, Lu
– sequence: 2
  givenname: Yuhao
  surname: Liu
  fullname: Liu, Yuhao
– sequence: 3
  givenname: Huaizhou
  surname: Wen
  fullname: Wen, Huaizhou
– sequence: 4
  givenname: Chan
  surname: Zou
  fullname: Zou, Chan
– sequence: 5
  givenname: Qiqi
  surname: Dai
  fullname: Dai, Qiqi
– sequence: 6
  givenname: Haojie
  surname: Zhang
  fullname: Zhang, Haojie
– sequence: 7
  givenname: Lejin
  orcidid: 0000-0002-6488-5763
  surname: Xu
  fullname: Xu, Lejin
– sequence: 8
  givenname: Hongyun
  surname: Hu
  fullname: Hu, Hongyun
– sequence: 9
  givenname: Hong
  surname: Yao
  fullname: Yao, Hong
BookMark eNp9kD1PwzAQQD0UibbwDxg8siTYjp2PbqgqHxISS5mtI7lQV4ldbBfaf0_aMDEgDydL7510b0Ym1lkk5IazlDOe321Tj3Z4qWAiSzmvJBcTMmVVzhIuS35JZiFsGeOqLOSU-PUGaYPucPxAC9E4S3usN2BN6Klr6btxPYRA4wZ9Dx2tnf1CH07ct4kb2rsuoqUBuhgWdHXYoTc92jigYJuT5jxGU5__0B2DCVfkooUu4PXvnJO3h9V6-ZS8vD4-L-9fkjrLqpjIqlUIZV4Wlcoq2TKRy7YBqYQoVJk3LBdMMaGKFhg0iIDQNAUDEFxV5eDMye24d-fd5x5D1L0JNXYdWHT7oDOuMl7KKs8HVI5o7V0IHlu9G84Af9Sc6VNWvdVjVn3Kqsesg7b4o9UmniNGD6b7X_4BOgaHKw
CitedBy_id crossref_primary_10_1016_j_renene_2025_122581
crossref_primary_10_1016_j_fuel_2025_134737
crossref_primary_10_1016_j_jaap_2024_106761
crossref_primary_10_1021_acs_energyfuels_3c04535
crossref_primary_10_1016_j_chemosphere_2024_141501
crossref_primary_10_1016_j_jclepro_2024_142604
crossref_primary_10_1016_j_fuel_2024_132713
crossref_primary_10_1007_s11356_024_32951_5
crossref_primary_10_1016_j_cej_2024_153792
crossref_primary_10_1007_s11705_025_2531_8
crossref_primary_10_1016_j_cej_2024_152069
crossref_primary_10_3390_molecules29020511
crossref_primary_10_1016_j_cej_2025_159615
crossref_primary_10_1002_cjce_25238
crossref_primary_10_1016_j_jece_2024_114290
crossref_primary_10_1016_j_fuel_2024_132364
crossref_primary_10_1016_j_fuel_2024_133455
crossref_primary_10_1016_j_fuel_2024_131293
crossref_primary_10_1016_j_fuel_2024_132468
crossref_primary_10_1016_j_jece_2024_114648
crossref_primary_10_1021_acs_energyfuels_4c02598
crossref_primary_10_1002_adsu_202400610
crossref_primary_10_1016_j_jwpe_2024_105852
crossref_primary_10_1016_j_wasman_2023_12_008
crossref_primary_10_1016_j_indcrop_2025_120808
crossref_primary_10_1016_j_fuel_2023_130825
crossref_primary_10_1016_j_joei_2023_101449
crossref_primary_10_1016_j_fuel_2024_130965
crossref_primary_10_1016_j_cherd_2024_04_050
crossref_primary_10_1016_j_cej_2024_153628
crossref_primary_10_3390_molecules29133161
crossref_primary_10_1016_j_corsci_2024_111933
crossref_primary_10_1016_j_psep_2024_10_118
crossref_primary_10_1016_j_fuproc_2023_107996
Cites_doi 10.1016/j.fuel.2019.116289
10.1016/j.applthermaleng.2017.07.166
10.1016/j.jcis.2012.11.004
10.1016/j.fuel.2020.118228
10.1016/j.commatsci.2019.01.025
10.1016/j.fuel.2022.124079
10.1016/j.ijhydene.2020.10.222
10.1016/j.renene.2020.02.019
10.1016/j.fuel.2022.125514
10.1016/j.scitotenv.2019.136435
10.1016/j.energy.2019.05.181
10.1016/j.apsusc.2018.05.049
10.1515/reveh-2018-0052
10.1016/j.combustflame.2018.06.029
10.1016/j.biortech.2020.124216
10.1103/PhysRevLett.77.3865
10.1016/j.ijhydene.2020.04.180
10.1016/j.ijhydene.2020.05.198
10.1016/j.apcata.2019.117218
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.59.1758
10.1016/j.energy.2017.11.115
10.1016/j.cej.2019.123648
10.1016/j.renene.2022.06.123
10.1021/ja100925n
10.1016/j.energy.2020.118128
10.1021/jp013876g
10.1016/j.energy.2019.116024
10.1016/j.jpowsour.2015.12.002
10.15376/biores.17.2.Zhou
10.1016/j.energy.2022.124320
10.1016/j.renene.2021.08.096
10.1063/1.1323224
10.1016/j.renene.2022.02.022
10.1016/j.energy.2019.05.055
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2023.119412
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2023_119412
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
7S9
L.6
ID FETCH-LOGICAL-c339t-49f5ea868795394f0264fda45227586d062050257fa0adeeaeadd70aa21598953
ISSN 0960-1481
IngestDate Fri Jul 11 06:49:34 EDT 2025
Tue Jul 01 03:20:45 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c339t-49f5ea868795394f0264fda45227586d062050257fa0adeeaeadd70aa21598953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6488-5763
PQID 3153184966
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153184966
crossref_primary_10_1016_j_renene_2023_119412
crossref_citationtrail_10_1016_j_renene_2023_119412
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2023
References Sneka-Płateka (10.1016/j.renene.2023.119412_bib15) 2020; 45
Yang (10.1016/j.renene.2023.119412_bib14) 2022; 196
Xie (10.1016/j.renene.2023.119412_bib5) 2019; 179
Henkelman (10.1016/j.renene.2023.119412_bib30) 2000; 113
Luo (10.1016/j.renene.2023.119412_bib29) 2013; 393
Yang (10.1016/j.renene.2023.119412_bib13) 2020; 278
Zou (10.1016/j.renene.2023.119412_bib35) 2020; 392
Jahangir (10.1016/j.renene.2023.119412_bib1) 2022; 189
Jiao (10.1016/j.renene.2023.119412_bib23) 2018; 196
Yang (10.1016/j.renene.2023.119412_bib10) 2022; 254
Fang (10.1016/j.renene.2023.119412_bib22) 2019; 160
Yang (10.1016/j.renene.2023.119412_bib4) 2022; 196
Wu (10.1016/j.renene.2023.119412_bib21) 2022; 321
Li (10.1016/j.renene.2023.119412_bib20) 2018; 452
Kresse (10.1016/j.renene.2023.119412_bib26) 1999; 59
Zeng (10.1016/j.renene.2023.119412_bib9) 2020; 206
Chen (10.1016/j.renene.2023.119412_bib7) 2022; 330
Li (10.1016/j.renene.2023.119412_bib24) 2020; 260
Kresse (10.1016/j.renene.2023.119412_bib27) 1996; 6
Gao (10.1016/j.renene.2023.119412_bib36) 2017; 126
Zhou (10.1016/j.renene.2023.119412_bib2) 2022; 17
Ji (10.1016/j.renene.2023.119412_bib18) 2016; 306
Perdew (10.1016/j.renene.2023.119412_bib28) 1996; 77
Zhang (10.1016/j.renene.2023.119412_bib17) 2019; 586
Yang (10.1016/j.renene.2023.119412_bib25) 2020; 153
Boddien (10.1016/j.renene.2023.119412_bib16) 2010; 132
Abo (10.1016/j.renene.2023.119412_bib3) 2019; 34
Wei (10.1016/j.renene.2023.119412_bib11) 2020; 712
Rezaei (10.1016/j.renene.2023.119412_bib19) 2020; 45
He (10.1016/j.renene.2023.119412_bib6) 2019; 181
Bravo-Perez (10.1016/j.renene.2023.119412_bib31) 2002; 106
Jiao (10.1016/j.renene.2023.119412_bib32) 2017; 141
Prasetyo (10.1016/j.renene.2023.119412_bib33) 2021; 46
Zou (10.1016/j.renene.2023.119412_bib34) 2019; 187
Yang (10.1016/j.renene.2023.119412_bib12) 2021; 180
Sun (10.1016/j.renene.2023.119412_bib8) 2021; 319
References_xml – volume: 260
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib24
  article-title: Role of SO2 and H2O in the mercury adsorption on ceria surface: a DFT study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116289
– volume: 126
  start-page: 28
  year: 2017
  ident: 10.1016/j.renene.2023.119412_bib36
  article-title: Theoretical research on heterogeneous reduction of N2O by char
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.166
– volume: 393
  start-page: 340
  year: 2013
  ident: 10.1016/j.renene.2023.119412_bib29
  article-title: Adsorption of water on NaNO3(001) surface from first-principles calculations
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.11.004
– volume: 278
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib13
  article-title: Thermochemical conversion of lignocellulosic bio-waste via fast pyrolysis in molten salts
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118228
– volume: 160
  start-page: 374
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib22
  article-title: Experimental and DFT study of the adsorption and activation of NH3 and NO on Mn-based spinels supported on TiO2 catalysts for SCR of NOx
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.01.025
– volume: 321
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib21
  article-title: As2O3 capture from incineration flue gas by Fe2O3-modified porous carbon: experimental and DFT insights
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124079
– volume: 46
  start-page: 4222
  year: 2021
  ident: 10.1016/j.renene.2023.119412_bib33
  article-title: Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): a periodic density functional theory (DFT) study of fluorination and adsorption
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.222
– volume: 153
  start-page: 832
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib25
  article-title: Study on the influence of small molecular gases on toluene reforming in molten salt
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.02.019
– volume: 330
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib7
  article-title: Advancing biomass pyrolysis by torrefaction pretreatment: linking the productions of bio-oil and oxygenated chemicals to torrefaction severity
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125514
– volume: 712
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib11
  article-title: Study on reaction mechanism of superior bamboo biochar catalyst production by molten alkali carbonates pyrolysis and its application for cellulose hydrolysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.136435
– volume: 181
  start-page: 407
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib6
  article-title: The effects of temperature and molten salt on solar pyrolysis of lignite
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.181
– volume: 452
  start-page: 87
  year: 2018
  ident: 10.1016/j.renene.2023.119412_bib20
  article-title: A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface: formic acid
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.05.049
– volume: 34
  start-page: 91
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib3
  article-title: Microalgae to biofuels production: a review on cultivation, application and renewable energy
  publication-title: Rev. Environ. Health
  doi: 10.1515/reveh-2018-0052
– volume: 196
  start-page: 377
  year: 2018
  ident: 10.1016/j.renene.2023.119412_bib23
  article-title: Quantum chemical and kinetics calculations for the NO reduction with char(N): influence of the carbon monoxide
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.06.029
– volume: 319
  year: 2021
  ident: 10.1016/j.renene.2023.119412_bib8
  article-title: Gas-pressurized torrefaction of biomass wastes: the optimization of pressurization condition and the pyrolysis of torrefied biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124216
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.renene.2023.119412_bib28
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 45
  start-page: 17339
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib15
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.04.180
– volume: 45
  start-page: 20993
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib19
  article-title: A DFT study on production of hydrogen from biomass-derived formic acid catalyzed by Pt–TiO2
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.198
– volume: 586
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib17
  article-title: Hydrogen donation of bio-acids over transition metal facets: a density functional theory study
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2019.117218
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.renene.2023.119412_bib27
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.renene.2023.119412_bib26
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 141
  start-page: 1538
  year: 2017
  ident: 10.1016/j.renene.2023.119412_bib32
  article-title: The role of CO played in the nitric oxide heterogeneous reduction: a quantum chemistry study
  publication-title: Energy
  doi: 10.1016/j.energy.2017.11.115
– volume: 392
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib35
  article-title: The effect of H2O on formation mechanism of arsenic oxide during arsenopyrite oxidation: experimental and theoretical analysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123648
– volume: 196
  start-page: 617
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib14
  article-title: Comparing the thermal conversion behavior of bio-wastes in three molten nitrates
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.06.123
– volume: 132
  start-page: 8924
  year: 2010
  ident: 10.1016/j.renene.2023.119412_bib16
  article-title: Iron-Catalyzed hydrogen production from formic acid
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100925n
– volume: 206
  year: 2020
  ident: 10.1016/j.renene.2023.119412_bib9
  article-title: Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118128
– volume: 196
  start-page: 617
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib4
  article-title: Comparing the thermal conversion behavior of bio-wastes in three molten nitrates
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.06.123
– volume: 106
  start-page: 4645
  year: 2002
  ident: 10.1016/j.renene.2023.119412_bib31
  article-title: Quantum chemical and conventional transition-state theory calculations of rate constants for the NO3 plus alkane reaction
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp013876g
– volume: 187
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib34
  article-title: The effect of CO on the transformation of arsenic species: a quantum chemistry study
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116024
– volume: 306
  start-page: 208
  year: 2016
  ident: 10.1016/j.renene.2023.119412_bib18
  article-title: Structure-dependent photocatalytic decomposition of formic acid on the anatase TiO2(101) surface and strategies to increase its reaction rate
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.002
– volume: 17
  start-page: 3489
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib2
  article-title: Sustainable conversion of agricultural biomass into eenewable energy products: a discussion
  publication-title: Bioresources
  doi: 10.15376/biores.17.2.Zhou
– volume: 254
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib10
  article-title: Machine learning prediction of the yield and oxygen content of bio-oil via biomass characteristics and pyrolysis conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124320
– volume: 180
  start-page: 616
  year: 2021
  ident: 10.1016/j.renene.2023.119412_bib12
  article-title: Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.08.096
– volume: 113
  start-page: 9978
  year: 2000
  ident: 10.1016/j.renene.2023.119412_bib30
  article-title: Improved tangent estimate in the nudged elastic band method minimum energy paths and saddle points
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 189
  start-page: 52
  year: 2022
  ident: 10.1016/j.renene.2023.119412_bib1
  article-title: Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.02.022
– volume: 179
  start-page: 1124
  year: 2019
  ident: 10.1016/j.renene.2023.119412_bib5
  article-title: Solar pyrolysis of cotton stalk in molten salt for bio-fuel production: review
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.055
SSID ssj0015874
Score 2.557792
Snippet Utilizing molten salt for biomass pyrolysis has emerged as a pivotal technology for enhancing product value and has become a crucial alternative to traditional...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 119412
SubjectTerms biomass
density functional theory
formic acid
heat treatment
pyrolysis
renewable energy sources
temperature
Title The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis
URI https://www.proquest.com/docview/3153184966
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS91AEF6sXtpDaW1LrbWs0FvJI8lufvVWxPIo1YMoSC9hstlF5ZmIJrR68G939kc2eVra2ksIYbOEzMfsN7vfzBDyUbJYCZFlgYIE9DFjEVQKsiDOQWdSqigVOlDc20_nR_zbcXI8nuCb7JKumomb3-aV_I9V8RnaVWfJPsKyflJ8gPdoX7yihfH6zzauZfvrGkdYQ55LncmrG18gCdSp9ciNNbdE97uwCnOzPWa3X8_bBTLmT1ew6Iwwbnda7d8pK32WI7jqJVM2e4CO8qfJvZImhdCzYqfz_d57vc9pb5x9fwLteBhkPN68h9Obk9YP_dH2TgfQTLckYjaRd7i9xTQMMM6Kpm52cI3WUUZRwa1--oEPt9sJZzNd0rPRlUxjNhuHL5fMvreUeYHhoF07K-0spZ6ltLM8IWsxxhS63cXs1uuBoiS3JbuHbx_yLI0Y8OG3LPOY5WXccJPDF-S5CyroF4uQl2RFNuvk2aTU5CtyiVihS1ihHiu0VdRhhTqs0BErVGOFWqxQg5XPdIoUikihE6TQASmvydHX3cOdeeD6bQSCsaILeKESCXmq-8-zgisMz7mqQdfcx6gyrcM0DhPkyJmCEGopAb1QnYUASBuLHN95Q1abtpFvCWWiqpIIhJA85zIRRZFAWGeSVVwxluYbhA1_rxSuGL3uibIo_2S5DRL4ty5sMZa_jN8eDFOi19RHYdDItr8qGS70Uc4x1n_3yDk3ydMR8u_JanfZyy3kpV31weDpDnZoko0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+deoxygenation+mechanism+of+biomass+thermal+conversion+with+molten+salts%3A+Experimental+and+theoretical+analysis&rft.jtitle=Renewable+energy&rft.au=Dong%2C+Lu&rft.au=Liu%2C+Yuhao&rft.au=Wen%2C+Huaizhou&rft.au=Zou%2C+Chan&rft.date=2023-12-01&rft.issn=0960-1481&rft.volume=219&rft.spage=119412&rft_id=info:doi/10.1016%2Fj.renene.2023.119412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2023_119412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon