Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks

Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 129; pp. 313 - 322
Main Authors Li, Xiang, Zhang, Wei, Ma, Hui, Luo, Zhong, Li, Xu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source and target domains. However, this assumption usually does not hold in real industries, where testing data mostly contain a subspace of the source label space. Therefore, transferring diagnosis knowledge from a comprehensive source domain to a target domain with limited machine conditions is motivated. This challenging partial transfer learning problem is addressed in this study using deep learning-based domain adaptation method. A class weighted adversarial neural network is proposed to encourage positive transfer of the shared classes and ignore the source outliers. Experimental results on two rotating machinery datasets suggest the proposed method is promising for partial transfer learning. •The partial transfer learning problem in machinery fault diagnostics is addressed.•Class weighted adversarial neural network is proposed for feature extraction and condition alignments.•Instead of minimizing marginal distribution gap, the conditional data alignments are focused on.•Practical experiments validate the effectiveness of the proposed method on partial transfer learning tasks.
AbstractList Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source and target domains. However, this assumption usually does not hold in real industries, where testing data mostly contain a subspace of the source label space. Therefore, transferring diagnosis knowledge from a comprehensive source domain to a target domain with limited machine conditions is motivated. This challenging partial transfer learning problem is addressed in this study using deep learning-based domain adaptation method. A class weighted adversarial neural network is proposed to encourage positive transfer of the shared classes and ignore the source outliers. Experimental results on two rotating machinery datasets suggest the proposed method is promising for partial transfer learning. •The partial transfer learning problem in machinery fault diagnostics is addressed.•Class weighted adversarial neural network is proposed for feature extraction and condition alignments.•Instead of minimizing marginal distribution gap, the conditional data alignments are focused on.•Practical experiments validate the effectiveness of the proposed method on partial transfer learning tasks.
Author Luo, Zhong
Li, Xu
Li, Xiang
Ma, Hui
Zhang, Wei
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0003-0569-2176
  surname: Li
  fullname: Li, Xiang
  organization: College of Sciences, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-6478-3110
  surname: Zhang
  fullname: Zhang, Wei
  email: zw_7126257@163.com
  organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 3
  givenname: Hui
  surname: Ma
  fullname: Ma, Hui
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 4
  givenname: Zhong
  surname: Luo
  fullname: Luo, Zhong
  organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China
– sequence: 5
  givenname: Xu
  orcidid: 0000-0002-7992-6732
  surname: Li
  fullname: Li, Xu
  organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
BookMark eNp9kDtPxDAQhC0EEsfjH1CkpElYOyGJGySEeElIUEBtbez14SNng-2A-PfkOGqqlUYzo53vgO364ImxEw4VB96erSpPk6dcCRBQQVsBb3bYgvedLEXXi122gF7WZQs97LODlFYA0PZNvWDhCWN2OBY5ok-WYjESRu_8snC-WKN-dZ7id6FjSKk0YY2zbHEac2EcLn1I2elUTGmT0CPOpi9yy9dMpkDzSTFh3NTP332F-JaO2J7FMdHx3z1kLzfXz1d35cPj7f3V5UOp61rmsjkfEAdNQ0fQtNLajsRgTKttLWUH3GqpwZq6Ec3QW60RO9kJI7AnDjBQfchOt73vMXxMlLJau6RpHNFTmJISDe95DRJgtjZb6-_GSFa9R7fG-K04qA1ftVJbvmrDV0GrZr5z7GIbo3nGp6OoknbkNRkXSWdlgvu_4Afjl4v2
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106486
crossref_primary_10_1109_TIM_2022_3214490
crossref_primary_10_1016_j_knosys_2020_106679
crossref_primary_10_1109_TIE_2021_3076704
crossref_primary_10_1088_1361_6501_ac2b72
crossref_primary_10_1016_j_ymssp_2021_108487
crossref_primary_10_1177_10775463211042976
crossref_primary_10_1109_TICPS_2023_3298879
crossref_primary_10_1016_j_engappai_2022_104906
crossref_primary_10_1016_j_isatra_2022_11_021
crossref_primary_10_1016_j_neunet_2024_106099
crossref_primary_10_1016_j_isatra_2023_11_029
crossref_primary_10_1088_1361_6501_ac8440
crossref_primary_10_1007_s11431_023_2496_6
crossref_primary_10_1088_1361_6501_ac41a5
crossref_primary_10_1016_j_compind_2021_103399
crossref_primary_10_1016_j_aei_2022_101797
crossref_primary_10_1109_TII_2022_3210555
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1109_TIM_2022_3178488
crossref_primary_10_1109_TIM_2021_3129213
crossref_primary_10_1016_j_ymssp_2023_110979
crossref_primary_10_1016_j_asej_2022_101945
crossref_primary_10_1109_TIM_2024_3396831
crossref_primary_10_3390_e23081052
crossref_primary_10_1109_TIM_2022_3166786
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_3390_machines10110972
crossref_primary_10_1109_TIM_2021_3116309
crossref_primary_10_1088_1361_6501_ac7a94
crossref_primary_10_1088_1361_6501_abcad4
crossref_primary_10_1016_j_isatra_2021_11_040
crossref_primary_10_1088_1361_6501_acc04a
crossref_primary_10_1007_s10845_024_02395_2
crossref_primary_10_1016_j_ress_2023_109740
crossref_primary_10_1109_TNNLS_2023_3290974
crossref_primary_10_3390_s23167263
crossref_primary_10_1109_TIM_2022_3196948
crossref_primary_10_1016_j_knosys_2022_110203
crossref_primary_10_1177_14759217211029201
crossref_primary_10_1155_2022_9012709
crossref_primary_10_1177_14759217231206579
crossref_primary_10_1007_s40435_021_00760_0
crossref_primary_10_1109_JSEN_2023_3342891
crossref_primary_10_1016_j_ymssp_2023_110159
crossref_primary_10_1360_SSI_2022_0328
crossref_primary_10_1016_j_eswa_2023_122117
crossref_primary_10_1016_j_isatra_2022_03_014
crossref_primary_10_1016_j_ress_2022_108885
crossref_primary_10_1109_TNNLS_2021_3111621
crossref_primary_10_1007_s10462_022_10230_4
crossref_primary_10_3390_w15020218
crossref_primary_10_1016_j_engappai_2023_106449
crossref_primary_10_1016_j_measurement_2023_113694
crossref_primary_10_1007_s11063_024_11568_2
crossref_primary_10_1007_s40435_020_00669_0
crossref_primary_10_1109_TIM_2021_3052010
crossref_primary_10_1016_j_isatra_2023_06_035
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_1109_TIM_2021_3112800
crossref_primary_10_1109_ACCESS_2022_3213657
crossref_primary_10_1016_j_measurement_2021_110213
crossref_primary_10_3390_s22145322
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1007_s11063_021_10719_z
crossref_primary_10_3390_vibration6010014
crossref_primary_10_1177_01423312231157118
crossref_primary_10_3390_app14114515
crossref_primary_10_1016_j_engappai_2022_104932
crossref_primary_10_1177_09544062241241240
crossref_primary_10_1088_1361_6501_ac15dc
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_3390_math10162921
crossref_primary_10_1016_j_ins_2023_119175
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_3390_biomimetics8040361
crossref_primary_10_1016_j_engappai_2022_105698
crossref_primary_10_1016_j_neunet_2020_12_027
crossref_primary_10_1109_TIM_2023_3330186
crossref_primary_10_1016_j_ast_2021_107311
crossref_primary_10_1109_JSEN_2022_3182727
crossref_primary_10_1177_14759217231199427
crossref_primary_10_1016_j_neunet_2023_02_025
crossref_primary_10_1016_j_engappai_2023_107082
crossref_primary_10_3390_app14072913
crossref_primary_10_1016_j_ress_2022_108857
crossref_primary_10_1016_j_knosys_2023_111255
crossref_primary_10_1016_j_engappai_2023_106670
crossref_primary_10_1016_j_cja_2021_10_006
crossref_primary_10_1109_TIM_2023_3276027
crossref_primary_10_1109_TIM_2023_3330218
crossref_primary_10_1177_14759217231164921
crossref_primary_10_1088_1361_6501_ac6ab3
crossref_primary_10_1109_TIM_2024_3378256
crossref_primary_10_1007_s40435_020_00675_2
crossref_primary_10_1109_TIM_2023_3244237
crossref_primary_10_1016_j_compind_2023_103976
crossref_primary_10_1007_s11042_020_10193_0
crossref_primary_10_1016_j_neunet_2024_106167
crossref_primary_10_1109_JIOT_2023_3267830
crossref_primary_10_1016_j_ress_2022_108684
crossref_primary_10_1016_j_eswa_2023_123124
Cites_doi 10.1109/TIE.2019.2935987
10.1007/978-3-030-01228-1_10
10.1109/TII.2018.2864759
10.1016/j.ymssp.2015.04.021
10.1016/j.measurement.2019.107377
10.1016/j.ymssp.2018.03.025
10.1016/j.ymssp.2019.106518
10.1016/j.ress.2018.11.011
10.1016/j.neunet.2019.11.007
10.1109/TII.2019.2927590
10.1109/CVPR.2019.00283
10.1016/j.sigpro.2018.12.005
10.1109/ACCESS.2017.2728010
10.1016/j.neunet.2019.05.022
10.1109/ACCESS.2019.2936243
10.1109/CVPR.2017.316
10.1016/j.neucom.2018.05.029
10.1109/TIE.2018.2868023
10.1007/s11063-019-10094-w
10.1016/j.isatra.2018.12.025
10.1016/j.neucom.2018.05.021
10.1109/ICCV.2015.463
10.1016/j.sigpro.2016.07.028
10.1109/ICCV.2017.88
10.1088/1361-6501/aaaca6
10.1109/TIE.2018.2877090
10.1016/j.ymssp.2017.09.026
10.1016/j.measurement.2016.04.007
10.1609/aaai.v33i01.33015345
10.1109/ACCESS.2018.2873804
10.1016/j.neucom.2018.07.034
10.1109/TIE.2016.2627020
10.1007/s11071-019-05176-2
10.1016/j.engappai.2018.09.010
10.1109/TNN.2010.2091281
10.1109/CVPR.2018.00288
10.1088/1361-6501/ab3072
10.1016/j.neunet.2018.09.010
10.1016/j.ymssp.2018.12.051
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.neunet.2020.06.014
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 322
ExternalDocumentID 10_1016_j_neunet_2020_06_014
S089360802030229X
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7X8
ID FETCH-LOGICAL-c339t-45baabceb7e0469ff7e2bdd6cf399701fc9c0fd3424b8fccaa7972d2a8e100be3
IEDL.DBID AIKHN
ISSN 0893-6080
IngestDate Fri Oct 25 02:42:44 EDT 2024
Thu Sep 26 17:34:58 EDT 2024
Fri Feb 23 02:46:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Deep learning
Partial transfer learning
Domain adversarial network
Rotating machinery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-45baabceb7e0469ff7e2bdd6cf399701fc9c0fd3424b8fccaa7972d2a8e100be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0569-2176
0000-0001-6478-3110
0000-0002-7992-6732
PQID 2418130900
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2418130900
crossref_primary_10_1016_j_neunet_2020_06_014
elsevier_sciencedirect_doi_10_1016_j_neunet_2020_06_014
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Neural networks
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Li, Li, Ng (b53) 2018
(vol. 28) (pp. 222–230).
Liu, Hu, Wang, Wu, Fan, Hu (b23) 2018; 29
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In
Guo, Lei, Xing, Yan, Li (b8) 2018; 66
Li, Zeng, Liu, Jia, Huang (b14) 2020; 122
(vol. 37) (pp. 97–105).
(pp. 754–763).
(vol. 32) (pp. 647–655).
Liu, Zhou, Xu, Zheng, Peng, Jiang (b25) 2018; 315
(pp. 4068–4076).
Maaten, Hinton (b31) 2008; 9
(pp. 2724–2732).
Smith, Randall (b38) 2015; 64–65
Zhang, Li, Ding (b51) 2019; 95
Cao, Z., Long, M., Wang, J., & Jordan, M. (2018). Partial transfer learning with selective adversarial networks. In
Lu, Liang, Cheng, Meng, Yang, Zhang (b27) 2017; 64
Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across domains and tasks. In
He, Shao, Zhang, Cheng, Yang (b9) 2019; 7
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b7) 2014
Li, Zhang, Ding (b17) 2019; 182
Pan, Tsang, Kwok, Yang (b32) 2011; 22
You, K., Long, M., Cao, Z., Wang, J., & Jordan, M. I. (2019). Universal domain adaptation. In
(vol. 28).
Shao, McAleer, Yan, Baldi (b36) 2018; 15
Wen, Gao, Li (b45) 2017; PP
Zhang, Li, Jia, Ma, Luo, Li (b52) 2020; 152
Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning transferable features with deep adaptation networks. In
Shao, Jiang, Lin, Li (b35) 2018; 102
Zhang, Ding, Li, Ogunbona (b50) 2018
Li, Chen, Shen, Yang, Zhu (b13) 2019; 30
Liang, Deng, Wu, Li, Yang, Wang (b22) 2019
Wang, Zhai, Li, Chen, Xue (b44) 2018; 310
(pp. 2715–2724).
Zhao, Lai (b54) 2019; 109
Shen, Qi, Wang, Cai, Zhu (b37) 2018; 76
Wang, X., Li, L., Ye, W., Long, M., & Wang, J. (2019). Transferable attention for domain adaptation. In
(pp. 153–168).
Sun, Shao, Zhao, Yan, Zhang, Chen (b39) 2016; 89
Wang, X., & Schneider, J. (2014). Flexible transfer learning under support and model shift. In
Yang, Lei, Jia, Xing (b46) 2019; 122
Li, Zhang, Ding (b18) 2019; 66
(vol. 33) (pp. 5345–5352).
Csurka (b3) 2017
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., & Tzeng, E., et al. (2014). DeCAF: A deep convolutional activation feature for generic visual recognitio. In
Kong, Fu, Wang, Ma, Wu, Mao (b12) 2020; 51
Jia, Lei, Lu, Xing (b11) 2018; 110
Luo, Wang, Tang, Wang (b29) 2019; 98
Hinton, Vinyals, Dean (b10) 2015
(pp. 2962–2971).
Busto, P. P., & Gall, J. (2017). Open set domain adaptation. In
Li, Zhang, Ding, Sun (b20) 2019; 157
Qi, Shen, Wang, Shi, Jiang, Zhu (b33) 2017; 5
Ganin, Lempitsky (b5) 2015
Li, Zhang (b15) 2020
Zhao, Lai, Chen (b55) 2019; 118
Liu, Zhao, Li, Ma, Yang, Yan (b24) 2020; 136
Yu, Lin, Ma, Li, Zeng (b49) 2019
(pp. 3320–3328).
Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation. In
Saito, K., Yamamoto, S., Ushiku, Y., & Harada, T. (2018). Open set domain adaptation by backpropagation. In
Li, Zhang, Ding (b16) 2018; 310
Li, Zhang, Xu, Ding (b21) 2019; 67
Lu, Wang, Qin, Ma (b28) 2017; 130
Maas, A. L., Hannun, A.  Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In
(pp. 1898–1906).
Gong, B., Grauman, K., & Sha, F. (2013). Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In
Li, Zhang, Ding, Li (b19) 2019; 16
Shen (10.1016/j.neunet.2020.06.014_b37) 2018; 76
Sun (10.1016/j.neunet.2020.06.014_b39) 2016; 89
Qi (10.1016/j.neunet.2020.06.014_b33) 2017; 5
Li (10.1016/j.neunet.2020.06.014_b19) 2019; 16
Kong (10.1016/j.neunet.2020.06.014_b12) 2020; 51
Li (10.1016/j.neunet.2020.06.014_b13) 2019; 30
Lu (10.1016/j.neunet.2020.06.014_b28) 2017; 130
10.1016/j.neunet.2020.06.014_b26
Zhao (10.1016/j.neunet.2020.06.014_b55) 2019; 118
Lu (10.1016/j.neunet.2020.06.014_b27) 2017; 64
Maaten (10.1016/j.neunet.2020.06.014_b31) 2008; 9
Li (10.1016/j.neunet.2020.06.014_b16) 2018; 310
Zhang (10.1016/j.neunet.2020.06.014_b53) 2018
Li (10.1016/j.neunet.2020.06.014_b21) 2019; 67
Liu (10.1016/j.neunet.2020.06.014_b23) 2018; 29
Csurka (10.1016/j.neunet.2020.06.014_b3) 2017
Guo (10.1016/j.neunet.2020.06.014_b8) 2018; 66
10.1016/j.neunet.2020.06.014_b6
Li (10.1016/j.neunet.2020.06.014_b18) 2019; 66
Wang (10.1016/j.neunet.2020.06.014_b44) 2018; 310
10.1016/j.neunet.2020.06.014_b2
10.1016/j.neunet.2020.06.014_b1
10.1016/j.neunet.2020.06.014_b4
Liu (10.1016/j.neunet.2020.06.014_b24) 2020; 136
Li (10.1016/j.neunet.2020.06.014_b20) 2019; 157
10.1016/j.neunet.2020.06.014_b34
Yang (10.1016/j.neunet.2020.06.014_b46) 2019; 122
Zhang (10.1016/j.neunet.2020.06.014_b52) 2020; 152
Li (10.1016/j.neunet.2020.06.014_b14) 2020; 122
Luo (10.1016/j.neunet.2020.06.014_b29) 2019; 98
Goodfellow (10.1016/j.neunet.2020.06.014_b7) 2014
Shao (10.1016/j.neunet.2020.06.014_b35) 2018; 102
Shao (10.1016/j.neunet.2020.06.014_b36) 2018; 15
Liang (10.1016/j.neunet.2020.06.014_b22) 2019
Liu (10.1016/j.neunet.2020.06.014_b25) 2018; 315
Zhang (10.1016/j.neunet.2020.06.014_b51) 2019; 95
Zhang (10.1016/j.neunet.2020.06.014_b50) 2018
Wen (10.1016/j.neunet.2020.06.014_b45) 2017; PP
10.1016/j.neunet.2020.06.014_b30
10.1016/j.neunet.2020.06.014_b43
Hinton (10.1016/j.neunet.2020.06.014_b10) 2015
10.1016/j.neunet.2020.06.014_b48
10.1016/j.neunet.2020.06.014_b47
Yu (10.1016/j.neunet.2020.06.014_b49) 2019
Ganin (10.1016/j.neunet.2020.06.014_b5) 2015
Smith (10.1016/j.neunet.2020.06.014_b38) 2015; 64–65
He (10.1016/j.neunet.2020.06.014_b9) 2019; 7
Jia (10.1016/j.neunet.2020.06.014_b11) 2018; 110
Pan (10.1016/j.neunet.2020.06.014_b32) 2011; 22
Li (10.1016/j.neunet.2020.06.014_b17) 2019; 182
Zhao (10.1016/j.neunet.2020.06.014_b54) 2019; 109
10.1016/j.neunet.2020.06.014_b40
Li (10.1016/j.neunet.2020.06.014_b15) 2020
10.1016/j.neunet.2020.06.014_b42
10.1016/j.neunet.2020.06.014_b41
References_xml – volume: 67
  start-page: 6785
  year: 2019
  end-page: 6794
  ident: b21
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Ding
– volume: 118
  start-page: 43
  year: 2019
  end-page: 53
  ident: b55
  article-title: Global-and-local-structure-based neural network for fault detection
  publication-title: Neural Networks
  contributor:
    fullname: Chen
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: b31
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Hinton
– volume: 66
  start-page: 5525
  year: 2019
  end-page: 5534
  ident: b18
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Ding
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: b32
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Transactions on Neural Networks
  contributor:
    fullname: Yang
– volume: 98
  start-page: 113
  year: 2019
  end-page: 128
  ident: b29
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dynamics
  contributor:
    fullname: Wang
– year: 2014
  ident: b7
  article-title: Generative adversarial nets
  contributor:
    fullname: Ozair
– volume: 15
  start-page: 2446
  year: 2018
  end-page: 2455
  ident: b36
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Transactions on Industrial Informatics
  contributor:
    fullname: Baldi
– volume: 66
  start-page: 7316
  year: 2018
  end-page: 7325
  ident: b8
  article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Li
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: b20
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
  contributor:
    fullname: Sun
– volume: 29
  year: 2018
  ident: b23
  article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis
  publication-title: Measurement Science & Technology
  contributor:
    fullname: Hu
– volume: 5
  start-page: 15066
  year: 2017
  end-page: 15079
  ident: b33
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  contributor:
    fullname: Zhu
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b28
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
  contributor:
    fullname: Ma
– volume: 64
  start-page: 2296
  year: 2017
  end-page: 2305
  ident: b27
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Zhang
– year: 2015
  ident: b10
  article-title: Distilling the knowledge in a neural network
  contributor:
    fullname: Dean
– year: 2018
  ident: b50
  article-title: Importance weighted adversarial nets for partial domain adaptation
  contributor:
    fullname: Ogunbona
– volume: 310
  start-page: 115
  year: 2018
  end-page: 124
  ident: b44
  article-title: Transfer learning with partial related “instance-feature” knowledge
  publication-title: Neurocomputing
  contributor:
    fullname: Xue
– volume: 310
  start-page: 77
  year: 2018
  end-page: 95
  ident: b16
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
  contributor:
    fullname: Ding
– volume: 182
  start-page: 208
  year: 2019
  end-page: 218
  ident: b17
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliability Engineering & System Safety
  contributor:
    fullname: Ding
– start-page: 1
  year: 2020
  ident: b15
  article-title: Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Zhang
– volume: 315
  start-page: 412
  year: 2018
  end-page: 424
  ident: b25
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  contributor:
    fullname: Jiang
– volume: 152
  year: 2020
  ident: b52
  article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
  publication-title: Measurement
  contributor:
    fullname: Li
– volume: 109
  start-page: 6
  year: 2019
  end-page: 18
  ident: b54
  article-title: Neighborhood preserving neural network for fault detection
  publication-title: Neural Networks
  contributor:
    fullname: Lai
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: b37
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Engineering Applications of Artificial Intelligence
  contributor:
    fullname: Zhu
– volume: 122
  start-page: 395
  year: 2020
  end-page: 406
  ident: b14
  article-title: Simultaneously learning affinity matrix and data representations for machine fault diagnosis
  publication-title: Neural Networks
  contributor:
    fullname: Huang
– start-page: 1
  year: 2018
  ident: b53
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
  contributor:
    fullname: Ng
– volume: 51
  start-page: 383
  year: 2020
  end-page: 406
  ident: b12
  article-title: A high generalizable feature extraction method using ensemble learning and deep auto-encoders for operational reliability assessment of bearings
  publication-title: Neural Processing Letters
  contributor:
    fullname: Mao
– start-page: 1
  year: 2019
  ident: b22
  article-title: Intelligent fault diagnosis via semi-supervised generative adversarial nets and wavelet transform
  publication-title: IEEE Transactions on Instrumentation and Measurement
  contributor:
    fullname: Wang
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: b46
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Xing
– volume: 95
  start-page: 295
  year: 2019
  end-page: 305
  ident: b51
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Transactions
  contributor:
    fullname: Ding
– volume: 16
  start-page: 1688
  year: 2019
  end-page: 1697
  ident: b19
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Transactions on Industrial Informatics
  contributor:
    fullname: Li
– volume: 136
  year: 2020
  ident: b24
  article-title: Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Yan
– volume: 102
  start-page: 278
  year: 2018
  end-page: 297
  ident: b35
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Li
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: b38
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Randall
– year: 2015
  ident: b5
  article-title: Unsupervised domain adaptation by backpropagation
  contributor:
    fullname: Lempitsky
– volume: 7
  start-page: 115368
  year: 2019
  end-page: 115377
  ident: b9
  article-title: Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples
  publication-title: IEEE Access
  contributor:
    fullname: Yang
– start-page: 1
  year: 2019
  ident: b49
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Transactions on Instrumentation and Measurement
  contributor:
    fullname: Zeng
– year: 2017
  ident: b3
  article-title: Domain adaptation for visual applications: A comprehensive survey
  contributor:
    fullname: Csurka
– volume: 30
  year: 2019
  ident: b13
  article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
  publication-title: Measurement Science & Technology
  contributor:
    fullname: Zhu
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b39
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  contributor:
    fullname: Chen
– volume: PP
  start-page: 1
  year: 2017
  end-page: 9
  ident: b45
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  contributor:
    fullname: Li
– volume: 110
  start-page: 349
  year: 2018
  end-page: 367
  ident: b11
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Xing
– start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2020.06.014_b15
  article-title: Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics
  publication-title: IEEE Transactions on Industrial Electronics
  contributor:
    fullname: Li
– volume: 67
  start-page: 6785
  issue: 8
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b21
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2019.2935987
  contributor:
    fullname: Li
– ident: 10.1016/j.neunet.2020.06.014_b43
– ident: 10.1016/j.neunet.2020.06.014_b34
  doi: 10.1007/978-3-030-01228-1_10
– volume: 15
  start-page: 2446
  issue: 4
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b36
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2864759
  contributor:
    fullname: Shao
– ident: 10.1016/j.neunet.2020.06.014_b47
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.neunet.2020.06.014_b38
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.04.021
  contributor:
    fullname: Smith
– year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b50
  contributor:
    fullname: Zhang
– volume: 152
  year: 2020
  ident: 10.1016/j.neunet.2020.06.014_b52
  article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107377
  contributor:
    fullname: Zhang
– volume: 110
  start-page: 349
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b11
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.03.025
  contributor:
    fullname: Jia
– volume: 136
  year: 2020
  ident: 10.1016/j.neunet.2020.06.014_b24
  article-title: Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.106518
  contributor:
    fullname: Liu
– volume: 182
  start-page: 208
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b17
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.11.011
  contributor:
    fullname: Li
– volume: 122
  start-page: 395
  year: 2020
  ident: 10.1016/j.neunet.2020.06.014_b14
  article-title: Simultaneously learning affinity matrix and data representations for machine fault diagnosis
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.11.007
  contributor:
    fullname: Li
– volume: 16
  start-page: 1688
  issue: 3
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b19
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2019.2927590
  contributor:
    fullname: Li
– ident: 10.1016/j.neunet.2020.06.014_b48
  doi: 10.1109/CVPR.2019.00283
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b20
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2018.12.005
  contributor:
    fullname: Li
– volume: 5
  start-page: 15066
  year: 2017
  ident: 10.1016/j.neunet.2020.06.014_b33
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
  contributor:
    fullname: Qi
– volume: 118
  start-page: 43
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b55
  article-title: Global-and-local-structure-based neural network for fault detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.05.022
  contributor:
    fullname: Zhao
– volume: 7
  start-page: 115368
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b9
  article-title: Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936243
  contributor:
    fullname: He
– ident: 10.1016/j.neunet.2020.06.014_b41
  doi: 10.1109/CVPR.2017.316
– year: 2014
  ident: 10.1016/j.neunet.2020.06.014_b7
  contributor:
    fullname: Goodfellow
– volume: 310
  start-page: 115
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b44
  article-title: Transfer learning with partial related “instance-feature” knowledge
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.029
  contributor:
    fullname: Wang
– volume: 66
  start-page: 5525
  issue: 7
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b18
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2018.2868023
  contributor:
    fullname: Li
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b49
  article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery
  publication-title: IEEE Transactions on Instrumentation and Measurement
  contributor:
    fullname: Yu
– volume: 51
  start-page: 383
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2020.06.014_b12
  article-title: A high generalizable feature extraction method using ensemble learning and deep auto-encoders for operational reliability assessment of bearings
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-019-10094-w
  contributor:
    fullname: Kong
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.neunet.2020.06.014_b31
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research (JMLR)
  contributor:
    fullname: Maaten
– volume: 95
  start-page: 295
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b51
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2018.12.025
  contributor:
    fullname: Zhang
– ident: 10.1016/j.neunet.2020.06.014_b4
– volume: 310
  start-page: 77
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b16
  article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.021
  contributor:
    fullname: Li
– ident: 10.1016/j.neunet.2020.06.014_b40
  doi: 10.1109/ICCV.2015.463
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.neunet.2020.06.014_b28
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2016.07.028
  contributor:
    fullname: Lu
– ident: 10.1016/j.neunet.2020.06.014_b30
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.neunet.2020.06.014_b45
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  contributor:
    fullname: Wen
– ident: 10.1016/j.neunet.2020.06.014_b1
  doi: 10.1109/ICCV.2017.88
– volume: 29
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b23
  article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis
  publication-title: Measurement Science & Technology
  doi: 10.1088/1361-6501/aaaca6
  contributor:
    fullname: Liu
– year: 2015
  ident: 10.1016/j.neunet.2020.06.014_b5
  contributor:
    fullname: Ganin
– volume: 66
  start-page: 7316
  issue: 9
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b8
  article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2018.2877090
  contributor:
    fullname: Guo
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b35
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.09.026
  contributor:
    fullname: Shao
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.neunet.2020.06.014_b39
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
  contributor:
    fullname: Sun
– ident: 10.1016/j.neunet.2020.06.014_b42
  doi: 10.1609/aaai.v33i01.33015345
– start-page: 1
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b53
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873804
  contributor:
    fullname: Zhang
– volume: 315
  start-page: 412
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b25
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
  contributor:
    fullname: Liu
– year: 2017
  ident: 10.1016/j.neunet.2020.06.014_b3
  contributor:
    fullname: Csurka
– ident: 10.1016/j.neunet.2020.06.014_b6
– volume: 64
  start-page: 2296
  issue: 3
  year: 2017
  ident: 10.1016/j.neunet.2020.06.014_b27
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2627020
  contributor:
    fullname: Lu
– volume: 98
  start-page: 113
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b29
  article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-019-05176-2
  contributor:
    fullname: Luo
– volume: 76
  start-page: 170
  year: 2018
  ident: 10.1016/j.neunet.2020.06.014_b37
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.09.010
  contributor:
    fullname: Shen
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 10.1016/j.neunet.2020.06.014_b32
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2091281
  contributor:
    fullname: Pan
– ident: 10.1016/j.neunet.2020.06.014_b2
  doi: 10.1109/CVPR.2018.00288
– volume: 30
  issue: 11
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b13
  article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
  publication-title: Measurement Science & Technology
  doi: 10.1088/1361-6501/ab3072
  contributor:
    fullname: Li
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b22
  article-title: Intelligent fault diagnosis via semi-supervised generative adversarial nets and wavelet transform
  publication-title: IEEE Transactions on Instrumentation and Measurement
  contributor:
    fullname: Liang
– volume: 109
  start-page: 6
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b54
  article-title: Neighborhood preserving neural network for fault detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.09.010
  contributor:
    fullname: Zhao
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.neunet.2020.06.014_b46
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.12.051
  contributor:
    fullname: Yang
– year: 2015
  ident: 10.1016/j.neunet.2020.06.014_b10
  contributor:
    fullname: Hinton
– ident: 10.1016/j.neunet.2020.06.014_b26
SSID ssj0006843
Score 2.6441162
Snippet Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 313
SubjectTerms Deep learning
Domain adversarial network
Fault diagnosis
Partial transfer learning
Rotating machinery
Title Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks
URI https://dx.doi.org/10.1016/j.neunet.2020.06.014
https://search.proquest.com/docview/2418130900
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vXjxLb6J4DVumj7SHkWUVVEEFfYWkiaRFbcrbhfx4m93kraCgggeO03aMDOZmSRfZgCOhM_4aMLWm2I0cSgLnSpD0fVFmjtepiHP9vVNNnhILofpcA5Ou7swHlbZ2v7Gpgdr3VL6LTf7L6NR_46hq838VVHUU86L4TwsoDvieQ8WTi6uBjdfBjnLG_Actqe-Q3eDLsC8KjurrAdVchYSeUbJbx7qh60ODuh8BZbayJGcNINbhTlbrcFyV5WBtJN0HSa3fvzYsg4xKb5qK0M8klFFxgE8aV_fSfg7NZOxQrJTs-eamAZ35zM3Ew-IfySlD67pW9g_tYYoX755qrzSkqoBkE834OH87P50QNuyCrSM46KmSaqV0qXVwvrFsXPCcm1MVjoMVgSLXFmUzJk44YnOHUpYiUJww1VuI8a0jTehV00quwUkwtWIyVWeqlIkNtZ55DRXKOEMicaIbaAdK-VLkz1DdrCyJ9mwXnrWS4-ui5JtEB2_5TctkGjg_-h52IlH4gTxpx6qspPZVKJO5OioC8Z2_v31XVj0Tw22bA969evM7mMwUusDmD_-iA5alfsEJDDjFA
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3wbwWtoNvvI7rEUS30VwQq9hWSTSMVui90i_nsn2V1BQQSveewuM5OZL9kvMwhdcpfxUfujN0lJZEEXKpaaQOgLFLMsj32e7fthMniKbsbxuIV6zV0YR6usfX_l0723rls6tTQ788mk80gh1CbuqijYKWPZeAWtAhrIYHWudq9vB8Mvh5ykFXkOxhM3oblB52lehVkWxpEqGfWJPIPotwj1w1f7ANTfQhs1csTd6uO2UcsUO2izqcqA60W6i2YP7vthZOkxKXTVlSGe8aTAU0-eNG8f2L-d6NlUQrOVy9cS64p35zI3Y0eIf8a5A9fk3Z-fGo2lK9-8kM5ocVERyBd76Kl_NeoNSF1WgeRhmJUkipWUKjeKG7c5tpYbprROcgtghdPA5llOrQ4jFqnUgoYlzzjTTKYmoFSZcB-1i1lhDhAOYDeiU5nGMueRCVUaWMUkaDiBRq35ISKNKMW8yp4hGlrZi6hEL5zohWPXBdEh4o28xTcrEODg_5h50ahHwAJxfz1kYWbLhQCIkkKgzig9-vfTz9HaYHR_J-6uh7fHaN31VDyzE9Qu35bmFIBJqc5qw_sEpArlCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+transfer+learning+in+machinery+cross-domain+fault+diagnostics+using+class-weighted+adversarial+networks&rft.jtitle=Neural+networks&rft.au=Li%2C+Xiang&rft.au=Zhang%2C+Wei&rft.au=Ma%2C+Hui&rft.au=Luo%2C+Zhong&rft.date=2020-09-01&rft.issn=0893-6080&rft.volume=129&rft.spage=313&rft.epage=322&rft_id=info:doi/10.1016%2Fj.neunet.2020.06.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2020_06_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon