Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks
Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source...
Saved in:
Published in | Neural networks Vol. 129; pp. 313 - 322 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source and target domains. However, this assumption usually does not hold in real industries, where testing data mostly contain a subspace of the source label space. Therefore, transferring diagnosis knowledge from a comprehensive source domain to a target domain with limited machine conditions is motivated. This challenging partial transfer learning problem is addressed in this study using deep learning-based domain adaptation method. A class weighted adversarial neural network is proposed to encourage positive transfer of the shared classes and ignore the source outliers. Experimental results on two rotating machinery datasets suggest the proposed method is promising for partial transfer learning.
•The partial transfer learning problem in machinery fault diagnostics is addressed.•Class weighted adversarial neural network is proposed for feature extraction and condition alignments.•Instead of minimizing marginal distribution gap, the conditional data alignments are focused on.•Practical experiments validate the effectiveness of the proposed method on partial transfer learning tasks. |
---|---|
AbstractList | Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial scenarios. The existing methods generally assume identical label spaces, and propose minimizing marginal distribution discrepancy between source and target domains. However, this assumption usually does not hold in real industries, where testing data mostly contain a subspace of the source label space. Therefore, transferring diagnosis knowledge from a comprehensive source domain to a target domain with limited machine conditions is motivated. This challenging partial transfer learning problem is addressed in this study using deep learning-based domain adaptation method. A class weighted adversarial neural network is proposed to encourage positive transfer of the shared classes and ignore the source outliers. Experimental results on two rotating machinery datasets suggest the proposed method is promising for partial transfer learning.
•The partial transfer learning problem in machinery fault diagnostics is addressed.•Class weighted adversarial neural network is proposed for feature extraction and condition alignments.•Instead of minimizing marginal distribution gap, the conditional data alignments are focused on.•Practical experiments validate the effectiveness of the proposed method on partial transfer learning tasks. |
Author | Luo, Zhong Li, Xu Li, Xiang Ma, Hui Zhang, Wei |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0003-0569-2176 surname: Li fullname: Li, Xiang organization: College of Sciences, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Wei orcidid: 0000-0001-6478-3110 surname: Zhang fullname: Zhang, Wei email: zw_7126257@163.com organization: School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China – sequence: 3 givenname: Hui surname: Ma fullname: Ma, Hui organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Zhong surname: Luo fullname: Luo, Zhong organization: Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang 110819, China – sequence: 5 givenname: Xu orcidid: 0000-0002-7992-6732 surname: Li fullname: Li, Xu organization: State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
BookMark | eNp9kDtPxDAQhC0EEsfjH1CkpElYOyGJGySEeElIUEBtbez14SNng-2A-PfkOGqqlUYzo53vgO364ImxEw4VB96erSpPk6dcCRBQQVsBb3bYgvedLEXXi122gF7WZQs97LODlFYA0PZNvWDhCWN2OBY5ok-WYjESRu_8snC-WKN-dZ7id6FjSKk0YY2zbHEac2EcLn1I2elUTGmT0CPOpi9yy9dMpkDzSTFh3NTP332F-JaO2J7FMdHx3z1kLzfXz1d35cPj7f3V5UOp61rmsjkfEAdNQ0fQtNLajsRgTKttLWUH3GqpwZq6Ec3QW60RO9kJI7AnDjBQfchOt73vMXxMlLJau6RpHNFTmJISDe95DRJgtjZb6-_GSFa9R7fG-K04qA1ftVJbvmrDV0GrZr5z7GIbo3nGp6OoknbkNRkXSWdlgvu_4Afjl4v2 |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106486 crossref_primary_10_1109_TIM_2022_3214490 crossref_primary_10_1016_j_knosys_2020_106679 crossref_primary_10_1109_TIE_2021_3076704 crossref_primary_10_1088_1361_6501_ac2b72 crossref_primary_10_1016_j_ymssp_2021_108487 crossref_primary_10_1177_10775463211042976 crossref_primary_10_1109_TICPS_2023_3298879 crossref_primary_10_1016_j_engappai_2022_104906 crossref_primary_10_1016_j_isatra_2022_11_021 crossref_primary_10_1016_j_neunet_2024_106099 crossref_primary_10_1016_j_isatra_2023_11_029 crossref_primary_10_1088_1361_6501_ac8440 crossref_primary_10_1007_s11431_023_2496_6 crossref_primary_10_1088_1361_6501_ac41a5 crossref_primary_10_1016_j_compind_2021_103399 crossref_primary_10_1016_j_aei_2022_101797 crossref_primary_10_1109_TII_2022_3210555 crossref_primary_10_1109_ACCESS_2022_3233220 crossref_primary_10_1109_TIM_2022_3178488 crossref_primary_10_1109_TIM_2021_3129213 crossref_primary_10_1016_j_ymssp_2023_110979 crossref_primary_10_1016_j_asej_2022_101945 crossref_primary_10_1109_TIM_2024_3396831 crossref_primary_10_3390_e23081052 crossref_primary_10_1109_TIM_2022_3166786 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_3390_machines10110972 crossref_primary_10_1109_TIM_2021_3116309 crossref_primary_10_1088_1361_6501_ac7a94 crossref_primary_10_1088_1361_6501_abcad4 crossref_primary_10_1016_j_isatra_2021_11_040 crossref_primary_10_1088_1361_6501_acc04a crossref_primary_10_1007_s10845_024_02395_2 crossref_primary_10_1016_j_ress_2023_109740 crossref_primary_10_1109_TNNLS_2023_3290974 crossref_primary_10_3390_s23167263 crossref_primary_10_1109_TIM_2022_3196948 crossref_primary_10_1016_j_knosys_2022_110203 crossref_primary_10_1177_14759217211029201 crossref_primary_10_1155_2022_9012709 crossref_primary_10_1177_14759217231206579 crossref_primary_10_1007_s40435_021_00760_0 crossref_primary_10_1109_JSEN_2023_3342891 crossref_primary_10_1016_j_ymssp_2023_110159 crossref_primary_10_1360_SSI_2022_0328 crossref_primary_10_1016_j_eswa_2023_122117 crossref_primary_10_1016_j_isatra_2022_03_014 crossref_primary_10_1016_j_ress_2022_108885 crossref_primary_10_1109_TNNLS_2021_3111621 crossref_primary_10_1007_s10462_022_10230_4 crossref_primary_10_3390_w15020218 crossref_primary_10_1016_j_engappai_2023_106449 crossref_primary_10_1016_j_measurement_2023_113694 crossref_primary_10_1007_s11063_024_11568_2 crossref_primary_10_1007_s40435_020_00669_0 crossref_primary_10_1109_TIM_2021_3052010 crossref_primary_10_1016_j_isatra_2023_06_035 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_1109_TIM_2021_3112800 crossref_primary_10_1109_ACCESS_2022_3213657 crossref_primary_10_1016_j_measurement_2021_110213 crossref_primary_10_3390_s22145322 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1007_s11063_021_10719_z crossref_primary_10_3390_vibration6010014 crossref_primary_10_1177_01423312231157118 crossref_primary_10_3390_app14114515 crossref_primary_10_1016_j_engappai_2022_104932 crossref_primary_10_1177_09544062241241240 crossref_primary_10_1088_1361_6501_ac15dc crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_3390_math10162921 crossref_primary_10_1016_j_ins_2023_119175 crossref_primary_10_1109_JAS_2022_106004 crossref_primary_10_3390_biomimetics8040361 crossref_primary_10_1016_j_engappai_2022_105698 crossref_primary_10_1016_j_neunet_2020_12_027 crossref_primary_10_1109_TIM_2023_3330186 crossref_primary_10_1016_j_ast_2021_107311 crossref_primary_10_1109_JSEN_2022_3182727 crossref_primary_10_1177_14759217231199427 crossref_primary_10_1016_j_neunet_2023_02_025 crossref_primary_10_1016_j_engappai_2023_107082 crossref_primary_10_3390_app14072913 crossref_primary_10_1016_j_ress_2022_108857 crossref_primary_10_1016_j_knosys_2023_111255 crossref_primary_10_1016_j_engappai_2023_106670 crossref_primary_10_1016_j_cja_2021_10_006 crossref_primary_10_1109_TIM_2023_3276027 crossref_primary_10_1109_TIM_2023_3330218 crossref_primary_10_1177_14759217231164921 crossref_primary_10_1088_1361_6501_ac6ab3 crossref_primary_10_1109_TIM_2024_3378256 crossref_primary_10_1007_s40435_020_00675_2 crossref_primary_10_1109_TIM_2023_3244237 crossref_primary_10_1016_j_compind_2023_103976 crossref_primary_10_1007_s11042_020_10193_0 crossref_primary_10_1016_j_neunet_2024_106167 crossref_primary_10_1109_JIOT_2023_3267830 crossref_primary_10_1016_j_ress_2022_108684 crossref_primary_10_1016_j_eswa_2023_123124 |
Cites_doi | 10.1109/TIE.2019.2935987 10.1007/978-3-030-01228-1_10 10.1109/TII.2018.2864759 10.1016/j.ymssp.2015.04.021 10.1016/j.measurement.2019.107377 10.1016/j.ymssp.2018.03.025 10.1016/j.ymssp.2019.106518 10.1016/j.ress.2018.11.011 10.1016/j.neunet.2019.11.007 10.1109/TII.2019.2927590 10.1109/CVPR.2019.00283 10.1016/j.sigpro.2018.12.005 10.1109/ACCESS.2017.2728010 10.1016/j.neunet.2019.05.022 10.1109/ACCESS.2019.2936243 10.1109/CVPR.2017.316 10.1016/j.neucom.2018.05.029 10.1109/TIE.2018.2868023 10.1007/s11063-019-10094-w 10.1016/j.isatra.2018.12.025 10.1016/j.neucom.2018.05.021 10.1109/ICCV.2015.463 10.1016/j.sigpro.2016.07.028 10.1109/ICCV.2017.88 10.1088/1361-6501/aaaca6 10.1109/TIE.2018.2877090 10.1016/j.ymssp.2017.09.026 10.1016/j.measurement.2016.04.007 10.1609/aaai.v33i01.33015345 10.1109/ACCESS.2018.2873804 10.1016/j.neucom.2018.07.034 10.1109/TIE.2016.2627020 10.1007/s11071-019-05176-2 10.1016/j.engappai.2018.09.010 10.1109/TNN.2010.2091281 10.1109/CVPR.2018.00288 10.1088/1361-6501/ab3072 10.1016/j.neunet.2018.09.010 10.1016/j.ymssp.2018.12.051 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.neunet.2020.06.014 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 322 |
ExternalDocumentID | 10_1016_j_neunet_2020_06_014 S089360802030229X |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7X8 |
ID | FETCH-LOGICAL-c339t-45baabceb7e0469ff7e2bdd6cf399701fc9c0fd3424b8fccaa7972d2a8e100be3 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 |
IngestDate | Fri Oct 25 02:42:44 EDT 2024 Thu Sep 26 17:34:58 EDT 2024 Fri Feb 23 02:46:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Deep learning Partial transfer learning Domain adversarial network Rotating machinery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-45baabceb7e0469ff7e2bdd6cf399701fc9c0fd3424b8fccaa7972d2a8e100be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0569-2176 0000-0001-6478-3110 0000-0002-7992-6732 |
PQID | 2418130900 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2418130900 crossref_primary_10_1016_j_neunet_2020_06_014 elsevier_sciencedirect_doi_10_1016_j_neunet_2020_06_014 |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Neural networks |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Li, Li, Ng (b53) 2018 (vol. 28) (pp. 222–230). Liu, Hu, Wang, Wu, Fan, Hu (b23) 2018; 29 Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In Guo, Lei, Xing, Yan, Li (b8) 2018; 66 Li, Zeng, Liu, Jia, Huang (b14) 2020; 122 (vol. 37) (pp. 97–105). (pp. 754–763). (vol. 32) (pp. 647–655). Liu, Zhou, Xu, Zheng, Peng, Jiang (b25) 2018; 315 (pp. 4068–4076). Maaten, Hinton (b31) 2008; 9 (pp. 2724–2732). Smith, Randall (b38) 2015; 64–65 Zhang, Li, Ding (b51) 2019; 95 Cao, Z., Long, M., Wang, J., & Jordan, M. (2018). Partial transfer learning with selective adversarial networks. In Lu, Liang, Cheng, Meng, Yang, Zhang (b27) 2017; 64 Tzeng, E., Hoffman, J., Darrell, T., & Saenko, K. (2015). Simultaneous deep transfer across domains and tasks. In He, Shao, Zhang, Cheng, Yang (b9) 2019; 7 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b7) 2014 Li, Zhang, Ding (b17) 2019; 182 Pan, Tsang, Kwok, Yang (b32) 2011; 22 You, K., Long, M., Cao, Z., Wang, J., & Jordan, M. I. (2019). Universal domain adaptation. In (vol. 28). Shao, McAleer, Yan, Baldi (b36) 2018; 15 Wen, Gao, Li (b45) 2017; PP Zhang, Li, Jia, Ma, Luo, Li (b52) 2020; 152 Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning transferable features with deep adaptation networks. In Shao, Jiang, Lin, Li (b35) 2018; 102 Zhang, Ding, Li, Ogunbona (b50) 2018 Li, Chen, Shen, Yang, Zhu (b13) 2019; 30 Liang, Deng, Wu, Li, Yang, Wang (b22) 2019 Wang, Zhai, Li, Chen, Xue (b44) 2018; 310 (pp. 2715–2724). Zhao, Lai (b54) 2019; 109 Shen, Qi, Wang, Cai, Zhu (b37) 2018; 76 Wang, X., Li, L., Ye, W., Long, M., & Wang, J. (2019). Transferable attention for domain adaptation. In (pp. 153–168). Sun, Shao, Zhao, Yan, Zhang, Chen (b39) 2016; 89 Wang, X., & Schneider, J. (2014). Flexible transfer learning under support and model shift. In Yang, Lei, Jia, Xing (b46) 2019; 122 Li, Zhang, Ding (b18) 2019; 66 (vol. 33) (pp. 5345–5352). Csurka (b3) 2017 Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., & Tzeng, E., et al. (2014). DeCAF: A deep convolutional activation feature for generic visual recognitio. In Kong, Fu, Wang, Ma, Wu, Mao (b12) 2020; 51 Jia, Lei, Lu, Xing (b11) 2018; 110 Luo, Wang, Tang, Wang (b29) 2019; 98 Hinton, Vinyals, Dean (b10) 2015 (pp. 2962–2971). Busto, P. P., & Gall, J. (2017). Open set domain adaptation. In Li, Zhang, Ding, Sun (b20) 2019; 157 Qi, Shen, Wang, Shi, Jiang, Zhu (b33) 2017; 5 Ganin, Lempitsky (b5) 2015 Li, Zhang (b15) 2020 Zhao, Lai, Chen (b55) 2019; 118 Liu, Zhao, Li, Ma, Yang, Yan (b24) 2020; 136 Yu, Lin, Ma, Li, Zeng (b49) 2019 (pp. 3320–3328). Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation. In Saito, K., Yamamoto, S., Ushiku, Y., & Harada, T. (2018). Open set domain adaptation by backpropagation. In Li, Zhang, Ding (b16) 2018; 310 Li, Zhang, Xu, Ding (b21) 2019; 67 Lu, Wang, Qin, Ma (b28) 2017; 130 Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In (pp. 1898–1906). Gong, B., Grauman, K., & Sha, F. (2013). Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In Li, Zhang, Ding, Li (b19) 2019; 16 Shen (10.1016/j.neunet.2020.06.014_b37) 2018; 76 Sun (10.1016/j.neunet.2020.06.014_b39) 2016; 89 Qi (10.1016/j.neunet.2020.06.014_b33) 2017; 5 Li (10.1016/j.neunet.2020.06.014_b19) 2019; 16 Kong (10.1016/j.neunet.2020.06.014_b12) 2020; 51 Li (10.1016/j.neunet.2020.06.014_b13) 2019; 30 Lu (10.1016/j.neunet.2020.06.014_b28) 2017; 130 10.1016/j.neunet.2020.06.014_b26 Zhao (10.1016/j.neunet.2020.06.014_b55) 2019; 118 Lu (10.1016/j.neunet.2020.06.014_b27) 2017; 64 Maaten (10.1016/j.neunet.2020.06.014_b31) 2008; 9 Li (10.1016/j.neunet.2020.06.014_b16) 2018; 310 Zhang (10.1016/j.neunet.2020.06.014_b53) 2018 Li (10.1016/j.neunet.2020.06.014_b21) 2019; 67 Liu (10.1016/j.neunet.2020.06.014_b23) 2018; 29 Csurka (10.1016/j.neunet.2020.06.014_b3) 2017 Guo (10.1016/j.neunet.2020.06.014_b8) 2018; 66 10.1016/j.neunet.2020.06.014_b6 Li (10.1016/j.neunet.2020.06.014_b18) 2019; 66 Wang (10.1016/j.neunet.2020.06.014_b44) 2018; 310 10.1016/j.neunet.2020.06.014_b2 10.1016/j.neunet.2020.06.014_b1 10.1016/j.neunet.2020.06.014_b4 Liu (10.1016/j.neunet.2020.06.014_b24) 2020; 136 Li (10.1016/j.neunet.2020.06.014_b20) 2019; 157 10.1016/j.neunet.2020.06.014_b34 Yang (10.1016/j.neunet.2020.06.014_b46) 2019; 122 Zhang (10.1016/j.neunet.2020.06.014_b52) 2020; 152 Li (10.1016/j.neunet.2020.06.014_b14) 2020; 122 Luo (10.1016/j.neunet.2020.06.014_b29) 2019; 98 Goodfellow (10.1016/j.neunet.2020.06.014_b7) 2014 Shao (10.1016/j.neunet.2020.06.014_b35) 2018; 102 Shao (10.1016/j.neunet.2020.06.014_b36) 2018; 15 Liang (10.1016/j.neunet.2020.06.014_b22) 2019 Liu (10.1016/j.neunet.2020.06.014_b25) 2018; 315 Zhang (10.1016/j.neunet.2020.06.014_b51) 2019; 95 Zhang (10.1016/j.neunet.2020.06.014_b50) 2018 Wen (10.1016/j.neunet.2020.06.014_b45) 2017; PP 10.1016/j.neunet.2020.06.014_b30 10.1016/j.neunet.2020.06.014_b43 Hinton (10.1016/j.neunet.2020.06.014_b10) 2015 10.1016/j.neunet.2020.06.014_b48 10.1016/j.neunet.2020.06.014_b47 Yu (10.1016/j.neunet.2020.06.014_b49) 2019 Ganin (10.1016/j.neunet.2020.06.014_b5) 2015 Smith (10.1016/j.neunet.2020.06.014_b38) 2015; 64–65 He (10.1016/j.neunet.2020.06.014_b9) 2019; 7 Jia (10.1016/j.neunet.2020.06.014_b11) 2018; 110 Pan (10.1016/j.neunet.2020.06.014_b32) 2011; 22 Li (10.1016/j.neunet.2020.06.014_b17) 2019; 182 Zhao (10.1016/j.neunet.2020.06.014_b54) 2019; 109 10.1016/j.neunet.2020.06.014_b40 Li (10.1016/j.neunet.2020.06.014_b15) 2020 10.1016/j.neunet.2020.06.014_b42 10.1016/j.neunet.2020.06.014_b41 |
References_xml | – volume: 67 start-page: 6785 year: 2019 end-page: 6794 ident: b21 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Ding – volume: 118 start-page: 43 year: 2019 end-page: 53 ident: b55 article-title: Global-and-local-structure-based neural network for fault detection publication-title: Neural Networks contributor: fullname: Chen – volume: 9 start-page: 2579 year: 2008 end-page: 2625 ident: b31 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Hinton – volume: 66 start-page: 5525 year: 2019 end-page: 5534 ident: b18 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Ding – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b32 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks contributor: fullname: Yang – volume: 98 start-page: 113 year: 2019 end-page: 128 ident: b29 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dynamics contributor: fullname: Wang – year: 2014 ident: b7 article-title: Generative adversarial nets contributor: fullname: Ozair – volume: 15 start-page: 2446 year: 2018 end-page: 2455 ident: b36 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics contributor: fullname: Baldi – volume: 66 start-page: 7316 year: 2018 end-page: 7325 ident: b8 article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Li – volume: 157 start-page: 180 year: 2019 end-page: 197 ident: b20 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing contributor: fullname: Sun – volume: 29 year: 2018 ident: b23 article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis publication-title: Measurement Science & Technology contributor: fullname: Hu – volume: 5 start-page: 15066 year: 2017 end-page: 15079 ident: b33 article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery publication-title: IEEE Access contributor: fullname: Zhu – volume: 130 start-page: 377 year: 2017 end-page: 388 ident: b28 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing contributor: fullname: Ma – volume: 64 start-page: 2296 year: 2017 end-page: 2305 ident: b27 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Zhang – year: 2015 ident: b10 article-title: Distilling the knowledge in a neural network contributor: fullname: Dean – year: 2018 ident: b50 article-title: Importance weighted adversarial nets for partial domain adaptation contributor: fullname: Ogunbona – volume: 310 start-page: 115 year: 2018 end-page: 124 ident: b44 article-title: Transfer learning with partial related “instance-feature” knowledge publication-title: Neurocomputing contributor: fullname: Xue – volume: 310 start-page: 77 year: 2018 end-page: 95 ident: b16 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing contributor: fullname: Ding – volume: 182 start-page: 208 year: 2019 end-page: 218 ident: b17 article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction publication-title: Reliability Engineering & System Safety contributor: fullname: Ding – start-page: 1 year: 2020 ident: b15 article-title: Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Zhang – volume: 315 start-page: 412 year: 2018 end-page: 424 ident: b25 article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks publication-title: Neurocomputing contributor: fullname: Jiang – volume: 152 year: 2020 ident: b52 article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks publication-title: Measurement contributor: fullname: Li – volume: 109 start-page: 6 year: 2019 end-page: 18 ident: b54 article-title: Neighborhood preserving neural network for fault detection publication-title: Neural Networks contributor: fullname: Lai – volume: 76 start-page: 170 year: 2018 end-page: 184 ident: b37 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Engineering Applications of Artificial Intelligence contributor: fullname: Zhu – volume: 122 start-page: 395 year: 2020 end-page: 406 ident: b14 article-title: Simultaneously learning affinity matrix and data representations for machine fault diagnosis publication-title: Neural Networks contributor: fullname: Huang – start-page: 1 year: 2018 ident: b53 article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks publication-title: IEEE Access contributor: fullname: Ng – volume: 51 start-page: 383 year: 2020 end-page: 406 ident: b12 article-title: A high generalizable feature extraction method using ensemble learning and deep auto-encoders for operational reliability assessment of bearings publication-title: Neural Processing Letters contributor: fullname: Mao – start-page: 1 year: 2019 ident: b22 article-title: Intelligent fault diagnosis via semi-supervised generative adversarial nets and wavelet transform publication-title: IEEE Transactions on Instrumentation and Measurement contributor: fullname: Wang – volume: 122 start-page: 692 year: 2019 end-page: 706 ident: b46 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mechanical Systems and Signal Processing contributor: fullname: Xing – volume: 95 start-page: 295 year: 2019 end-page: 305 ident: b51 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Transactions contributor: fullname: Ding – volume: 16 start-page: 1688 year: 2019 end-page: 1697 ident: b19 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics contributor: fullname: Li – volume: 136 year: 2020 ident: b24 article-title: Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact publication-title: Mechanical Systems and Signal Processing contributor: fullname: Yan – volume: 102 start-page: 278 year: 2018 end-page: 297 ident: b35 article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders publication-title: Mechanical Systems and Signal Processing contributor: fullname: Li – volume: 64–65 start-page: 100 year: 2015 end-page: 131 ident: b38 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mechanical Systems and Signal Processing contributor: fullname: Randall – year: 2015 ident: b5 article-title: Unsupervised domain adaptation by backpropagation contributor: fullname: Lempitsky – volume: 7 start-page: 115368 year: 2019 end-page: 115377 ident: b9 article-title: Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples publication-title: IEEE Access contributor: fullname: Yang – start-page: 1 year: 2019 ident: b49 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Transactions on Instrumentation and Measurement contributor: fullname: Zeng – year: 2017 ident: b3 article-title: Domain adaptation for visual applications: A comprehensive survey contributor: fullname: Csurka – volume: 30 year: 2019 ident: b13 article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data publication-title: Measurement Science & Technology contributor: fullname: Zhu – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: b39 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement contributor: fullname: Chen – volume: PP start-page: 1 year: 2017 end-page: 9 ident: b45 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems contributor: fullname: Li – volume: 110 start-page: 349 year: 2018 end-page: 367 ident: b11 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mechanical Systems and Signal Processing contributor: fullname: Xing – start-page: 1 year: 2020 ident: 10.1016/j.neunet.2020.06.014_b15 article-title: Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics publication-title: IEEE Transactions on Industrial Electronics contributor: fullname: Li – volume: 67 start-page: 6785 issue: 8 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b21 article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2019.2935987 contributor: fullname: Li – ident: 10.1016/j.neunet.2020.06.014_b43 – ident: 10.1016/j.neunet.2020.06.014_b34 doi: 10.1007/978-3-030-01228-1_10 – volume: 15 start-page: 2446 issue: 4 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b36 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2864759 contributor: fullname: Shao – ident: 10.1016/j.neunet.2020.06.014_b47 – volume: 64–65 start-page: 100 year: 2015 ident: 10.1016/j.neunet.2020.06.014_b38 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.04.021 contributor: fullname: Smith – year: 2018 ident: 10.1016/j.neunet.2020.06.014_b50 contributor: fullname: Zhang – volume: 152 year: 2020 ident: 10.1016/j.neunet.2020.06.014_b52 article-title: Machinery fault diagnosis with imbalanced data using deep generative adversarial networks publication-title: Measurement doi: 10.1016/j.measurement.2019.107377 contributor: fullname: Zhang – volume: 110 start-page: 349 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b11 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.03.025 contributor: fullname: Jia – volume: 136 year: 2020 ident: 10.1016/j.neunet.2020.06.014_b24 article-title: Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.106518 contributor: fullname: Liu – volume: 182 start-page: 208 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b17 article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.11.011 contributor: fullname: Li – volume: 122 start-page: 395 year: 2020 ident: 10.1016/j.neunet.2020.06.014_b14 article-title: Simultaneously learning affinity matrix and data representations for machine fault diagnosis publication-title: Neural Networks doi: 10.1016/j.neunet.2019.11.007 contributor: fullname: Li – volume: 16 start-page: 1688 issue: 3 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b19 article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2927590 contributor: fullname: Li – ident: 10.1016/j.neunet.2020.06.014_b48 doi: 10.1109/CVPR.2019.00283 – volume: 157 start-page: 180 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b20 article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis publication-title: Signal Processing doi: 10.1016/j.sigpro.2018.12.005 contributor: fullname: Li – volume: 5 start-page: 15066 year: 2017 ident: 10.1016/j.neunet.2020.06.014_b33 article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728010 contributor: fullname: Qi – volume: 118 start-page: 43 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b55 article-title: Global-and-local-structure-based neural network for fault detection publication-title: Neural Networks doi: 10.1016/j.neunet.2019.05.022 contributor: fullname: Zhao – volume: 7 start-page: 115368 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b9 article-title: Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936243 contributor: fullname: He – ident: 10.1016/j.neunet.2020.06.014_b41 doi: 10.1109/CVPR.2017.316 – year: 2014 ident: 10.1016/j.neunet.2020.06.014_b7 contributor: fullname: Goodfellow – volume: 310 start-page: 115 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b44 article-title: Transfer learning with partial related “instance-feature” knowledge publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.029 contributor: fullname: Wang – volume: 66 start-page: 5525 issue: 7 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b18 article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2868023 contributor: fullname: Li – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b49 article-title: A combined polynomial chirplet transform and synchroextracting technique for analyzing nonstationary signals of rotating machinery publication-title: IEEE Transactions on Instrumentation and Measurement contributor: fullname: Yu – volume: 51 start-page: 383 issue: 1 year: 2020 ident: 10.1016/j.neunet.2020.06.014_b12 article-title: A high generalizable feature extraction method using ensemble learning and deep auto-encoders for operational reliability assessment of bearings publication-title: Neural Processing Letters doi: 10.1007/s11063-019-10094-w contributor: fullname: Kong – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.neunet.2020.06.014_b31 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research (JMLR) contributor: fullname: Maaten – volume: 95 start-page: 295 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b51 article-title: Deep residual learning-based fault diagnosis method for rotating machinery publication-title: ISA Transactions doi: 10.1016/j.isatra.2018.12.025 contributor: fullname: Zhang – ident: 10.1016/j.neunet.2020.06.014_b4 – volume: 310 start-page: 77 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b16 article-title: A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.021 contributor: fullname: Li – ident: 10.1016/j.neunet.2020.06.014_b40 doi: 10.1109/ICCV.2015.463 – volume: 130 start-page: 377 year: 2017 ident: 10.1016/j.neunet.2020.06.014_b28 article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification publication-title: Signal Processing doi: 10.1016/j.sigpro.2016.07.028 contributor: fullname: Lu – ident: 10.1016/j.neunet.2020.06.014_b30 – volume: PP start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.neunet.2020.06.014_b45 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems contributor: fullname: Wen – ident: 10.1016/j.neunet.2020.06.014_b1 doi: 10.1109/ICCV.2017.88 – volume: 29 issue: 5 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b23 article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis publication-title: Measurement Science & Technology doi: 10.1088/1361-6501/aaaca6 contributor: fullname: Liu – year: 2015 ident: 10.1016/j.neunet.2020.06.014_b5 contributor: fullname: Ganin – volume: 66 start-page: 7316 issue: 9 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b8 article-title: Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2018.2877090 contributor: fullname: Guo – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b35 article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.09.026 contributor: fullname: Shao – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.neunet.2020.06.014_b39 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 contributor: fullname: Sun – ident: 10.1016/j.neunet.2020.06.014_b42 doi: 10.1609/aaai.v33i01.33015345 – start-page: 1 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b53 article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873804 contributor: fullname: Zhang – volume: 315 start-page: 412 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b25 article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.034 contributor: fullname: Liu – year: 2017 ident: 10.1016/j.neunet.2020.06.014_b3 contributor: fullname: Csurka – ident: 10.1016/j.neunet.2020.06.014_b6 – volume: 64 start-page: 2296 issue: 3 year: 2017 ident: 10.1016/j.neunet.2020.06.014_b27 article-title: Deep model based domain adaptation for fault diagnosis publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2627020 contributor: fullname: Lu – volume: 98 start-page: 113 issue: 1 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b29 article-title: Research on vibration performance of the nonlinear combined support-flexible rotor system publication-title: Nonlinear Dynamics doi: 10.1007/s11071-019-05176-2 contributor: fullname: Luo – volume: 76 start-page: 170 year: 2018 ident: 10.1016/j.neunet.2020.06.014_b37 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.09.010 contributor: fullname: Shen – volume: 22 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.neunet.2020.06.014_b32 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2091281 contributor: fullname: Pan – ident: 10.1016/j.neunet.2020.06.014_b2 doi: 10.1109/CVPR.2018.00288 – volume: 30 issue: 11 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b13 article-title: Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data publication-title: Measurement Science & Technology doi: 10.1088/1361-6501/ab3072 contributor: fullname: Li – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b22 article-title: Intelligent fault diagnosis via semi-supervised generative adversarial nets and wavelet transform publication-title: IEEE Transactions on Instrumentation and Measurement contributor: fullname: Liang – volume: 109 start-page: 6 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b54 article-title: Neighborhood preserving neural network for fault detection publication-title: Neural Networks doi: 10.1016/j.neunet.2018.09.010 contributor: fullname: Zhao – volume: 122 start-page: 692 year: 2019 ident: 10.1016/j.neunet.2020.06.014_b46 article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.12.051 contributor: fullname: Yang – year: 2015 ident: 10.1016/j.neunet.2020.06.014_b10 contributor: fullname: Hinton – ident: 10.1016/j.neunet.2020.06.014_b26 |
SSID | ssj0006843 |
Score | 2.6441162 |
Snippet | Recently, transfer learning has been receiving growing interests in machinery fault diagnosis due to its strong generalization across different industrial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 313 |
SubjectTerms | Deep learning Domain adversarial network Fault diagnosis Partial transfer learning Rotating machinery |
Title | Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks |
URI | https://dx.doi.org/10.1016/j.neunet.2020.06.014 https://search.proquest.com/docview/2418130900 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vXjxLb6J4DVumj7SHkWUVVEEFfYWkiaRFbcrbhfx4m93kraCgggeO03aMDOZmSRfZgCOhM_4aMLWm2I0cSgLnSpD0fVFmjtepiHP9vVNNnhILofpcA5Ou7swHlbZ2v7Gpgdr3VL6LTf7L6NR_46hq838VVHUU86L4TwsoDvieQ8WTi6uBjdfBjnLG_Actqe-Q3eDLsC8KjurrAdVchYSeUbJbx7qh60ODuh8BZbayJGcNINbhTlbrcFyV5WBtJN0HSa3fvzYsg4xKb5qK0M8klFFxgE8aV_fSfg7NZOxQrJTs-eamAZ35zM3Ew-IfySlD67pW9g_tYYoX755qrzSkqoBkE834OH87P50QNuyCrSM46KmSaqV0qXVwvrFsXPCcm1MVjoMVgSLXFmUzJk44YnOHUpYiUJww1VuI8a0jTehV00quwUkwtWIyVWeqlIkNtZ55DRXKOEMicaIbaAdK-VLkz1DdrCyJ9mwXnrWS4-ui5JtEB2_5TctkGjg_-h52IlH4gTxpx6qspPZVKJO5OioC8Z2_v31XVj0Tw22bA969evM7mMwUusDmD_-iA5alfsEJDDjFA |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3wbwWtoNvvI7rEUS30VwQq9hWSTSMVui90i_nsn2V1BQQSveewuM5OZL9kvMwhdcpfxUfujN0lJZEEXKpaaQOgLFLMsj32e7fthMniKbsbxuIV6zV0YR6usfX_l0723rls6tTQ788mk80gh1CbuqijYKWPZeAWtAhrIYHWudq9vB8Mvh5ykFXkOxhM3oblB52lehVkWxpEqGfWJPIPotwj1w1f7ANTfQhs1csTd6uO2UcsUO2izqcqA60W6i2YP7vthZOkxKXTVlSGe8aTAU0-eNG8f2L-d6NlUQrOVy9cS64p35zI3Y0eIf8a5A9fk3Z-fGo2lK9-8kM5ocVERyBd76Kl_NeoNSF1WgeRhmJUkipWUKjeKG7c5tpYbprROcgtghdPA5llOrQ4jFqnUgoYlzzjTTKYmoFSZcB-1i1lhDhAOYDeiU5nGMueRCVUaWMUkaDiBRq35ISKNKMW8yp4hGlrZi6hEL5zohWPXBdEh4o28xTcrEODg_5h50ahHwAJxfz1kYWbLhQCIkkKgzig9-vfTz9HaYHR_J-6uh7fHaN31VDyzE9Qu35bmFIBJqc5qw_sEpArlCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+transfer+learning+in+machinery+cross-domain+fault+diagnostics+using+class-weighted+adversarial+networks&rft.jtitle=Neural+networks&rft.au=Li%2C+Xiang&rft.au=Zhang%2C+Wei&rft.au=Ma%2C+Hui&rft.au=Luo%2C+Zhong&rft.date=2020-09-01&rft.issn=0893-6080&rft.volume=129&rft.spage=313&rft.epage=322&rft_id=info:doi/10.1016%2Fj.neunet.2020.06.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2020_06_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |