Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer

U-grooved metal-semiconductor-metal photodetectors (UMSM-PD's) having various trench depths of interdigitated electrodes and an intrinsic hydrogenated amorphous silicon (i-a-Si:H) to c-Si heterojunction have been fabricated successfully on a p-type [100] Si wafer. The U-grooved structures on c-...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 45; no. 9; pp. 2018 - 2023
Main Authors Laih, Li-Hong, Chang, Tien-Chang, Chen, Yen-Ann, Tsay, Wen-Chin, Hong, Jyh-Wong
Format Journal Article
LanguageEnglish
Published IEEE 01.09.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:U-grooved metal-semiconductor-metal photodetectors (UMSM-PD's) having various trench depths of interdigitated electrodes and an intrinsic hydrogenated amorphous silicon (i-a-Si:H) to c-Si heterojunction have been fabricated successfully on a p-type [100] Si wafer. The U-grooved structures on c-Si were achieved with a simple orientation-dependent etching (ODE) process. Some important characteristics of the obtained UMSM-PDs are presented and discussed. An UMSM-PD with a 70 nm i-a-Si:H overlayer, 1.45 /spl mu/m-deep recessed electrodes, and 3 /spl mu/m finger width and spacing, had a full width at half maximum (FWHM) of 50.6 ps and a full-time of 132 ps for its temporal response under a bias of 15 V. The significant improvements of transient response for UMSM-PD, as compared to the conventional one, were attributed to the trench electrodes resulted in a stronger lateral electric field in the light absorption region of photodetector. At a bias of 20 V, this UMSM-PD had a responsivity of 0.25 A/W as measured with an 0.83-/spl mu/m incident semiconductor laser, a high photo/dark current ratio about 2000, and an internal quantum efficiency of 36%. This high photo/dark current ratio would be due to the additional i-a-Si:H overlayer on Si wafer. These mentioned performances were much better than those of the conventional Si-based planar MSM-PD.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/16.711369