Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition

This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. Th...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 7; pp. 16691 - 16707
Main Authors Raja, V., Sekar, E., Priya, S. Shanmuga, Unyong, B.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.
AbstractList This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.
Author Priya, S. Shanmuga
Unyong, B.
Raja, V.
Sekar, E.
Author_xml – sequence: 1
  givenname: V.
  surname: Raja
  fullname: Raja, V.
  organization: Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India
– sequence: 2
  givenname: E.
  surname: Sekar
  fullname: Sekar, E.
  organization: Department of Mathematics, Amrita School of Physical Science, Amrita Vishwa Vidyapeetham, Coimbatore 641112, Tamilnadu, India
– sequence: 3
  givenname: S. Shanmuga
  surname: Priya
  fullname: Priya, S. Shanmuga
  organization: Department of Mathematics, Cauvery College for women, Tiruchirappalli, Tamilnadu, India
– sequence: 4
  givenname: B.
  surname: Unyong
  fullname: Unyong, B.
  organization: Department of Mathematics, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
BookMark eNptkdtKAzEQhoNU8NQ7HyAPYGtO3WQvRTwUBG_0OuQwaSPbTc1mlb6DD-1uVRDxJplJ_u9nmP8ETdrUAkLnlMx5zcXlxpT1nBHG1YIfoGMmJJ9VtVKTX_URmnbdCyGEUSaYFMfo4zaWAh5voFsPR1knj0PKuIvtqm9MbnZ4C7n02cL40eeyxil7yNjHECBDW6JpMLz2psTU4hSwS-0buH03avpurMpuC_g9DnRsC6zywNjUt97k3Qj4OOrP0GEwTQfT7_sUPd_ePF3fzx4e75bXVw8zx3ldZtzVTFpY-CBlsDZYJRWpKHPWeiqNMIYzKwgRrrKKAB12YoVQUi4Yqypm-Clafvn6ZF70NsfNMIZOJur9Q8orbXKJrgFtiLWWUsWpqARdKBuct4pV4EINoZaDF_vycjl1XYagXSz7XZRsYqMp0WM8eoxHf8czQBd_oJ8h_pV_AvalmGY
CitedBy_id crossref_primary_10_1016_j_aej_2024_02_046
Cites_doi 10.3390/fractalfract7010043
10.1016/j.cam.2020.113205
10.1016/j.cam.2021.113894
10.1007/s10444-021-09847-w
10.1155/2014/890695
10.1016/j.na.2010.04.055
10.1515/auom-2016-0014
10.1016/j.aej.2022.08.033
10.1142/S0219876218400078
10.1016/j.cam.2022.114498
10.1016/j.amc.2022.127343
10.12988/AMS.2014.312676
10.1186/s13662-017-1453-2
10.1007/s12190-019-01287-6
10.1007/s10915-017-0501-0
10.1016/S0096-3003(01)00040-6
10.1155/2013/684962
10.1155/2020/9268181
10.1002/num.22965
10.1016/j.ajmsc.2018.10.002
10.1155/2014/901094
10.1201/9781482285727
10.4134/CKMS.c180224
10.1142/8410
10.1016/j.aml.2022.108503
10.1016/j.asej.2016.04.018
10.1080/00036810500287255
10.1016/j.jnnms.2016.03.002
10.1007/s12190-022-01757-4
10.1186/s13662-018-1620-0
10.1007/s12190-019-01239-0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023853
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 16707
ExternalDocumentID oai_doaj_org_article_a0bbb11831464158bfcdb826ecf9ef97
10_3934_math_2023853
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c339t-3c927be5df77fbbfb8780612cbbd17a4aa32b4004c6b80e1023b44877522662a3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:15:41 EDT 2025
Thu Apr 24 23:14:57 EDT 2025
Tue Jul 01 03:57:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-3c927be5df77fbbfb8780612cbbd17a4aa32b4004c6b80e1023b44877522662a3
OpenAccessLink https://doaj.org/article/a0bbb11831464158bfcdb826ecf9ef97
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a0bbb11831464158bfcdb826ecf9ef97
crossref_citationtrail_10_3934_math_2023853
crossref_primary_10_3934_math_2023853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023853-29
key-10.3934/math.2023853-26
key-10.3934/math.2023853-25
key-10.3934/math.2023853-28
key-10.3934/math.2023853-27
key-10.3934/math.2023853-22
key-10.3934/math.2023853-21
key-10.3934/math.2023853-24
key-10.3934/math.2023853-23
key-10.3934/math.2023853-3
key-10.3934/math.2023853-4
key-10.3934/math.2023853-1
key-10.3934/math.2023853-20
key-10.3934/math.2023853-2
key-10.3934/math.2023853-19
key-10.3934/math.2023853-18
key-10.3934/math.2023853-15
key-10.3934/math.2023853-14
key-10.3934/math.2023853-17
key-10.3934/math.2023853-16
key-10.3934/math.2023853-11
key-10.3934/math.2023853-10
key-10.3934/math.2023853-32
key-10.3934/math.2023853-13
key-10.3934/math.2023853-12
key-10.3934/math.2023853-31
key-10.3934/math.2023853-30
key-10.3934/math.2023853-7
key-10.3934/math.2023853-8
key-10.3934/math.2023853-5
key-10.3934/math.2023853-6
key-10.3934/math.2023853-9
References_xml – ident: key-10.3934/math.2023853-25
  doi: 10.3390/fractalfract7010043
– ident: key-10.3934/math.2023853-23
– ident: key-10.3934/math.2023853-2
  doi: 10.1016/j.cam.2020.113205
– ident: key-10.3934/math.2023853-15
  doi: 10.1016/j.cam.2021.113894
– ident: key-10.3934/math.2023853-1
  doi: 10.1007/s10444-021-09847-w
– ident: key-10.3934/math.2023853-8
  doi: 10.1155/2014/890695
– ident: key-10.3934/math.2023853-12
  doi: 10.1016/j.na.2010.04.055
– ident: key-10.3934/math.2023853-7
  doi: 10.1515/auom-2016-0014
– ident: key-10.3934/math.2023853-13
  doi: 10.1016/j.aej.2022.08.033
– ident: key-10.3934/math.2023853-18
  doi: 10.1142/S0219876218400078
– ident: key-10.3934/math.2023853-24
  doi: 10.1016/j.cam.2022.114498
– ident: key-10.3934/math.2023853-31
  doi: 10.1016/j.amc.2022.127343
– ident: key-10.3934/math.2023853-20
  doi: 10.12988/AMS.2014.312676
– ident: key-10.3934/math.2023853-32
  doi: 10.1186/s13662-017-1453-2
– ident: key-10.3934/math.2023853-11
  doi: 10.1007/s12190-019-01287-6
– ident: key-10.3934/math.2023853-10
  doi: 10.1007/s10915-017-0501-0
– ident: key-10.3934/math.2023853-27
  doi: 10.1016/S0096-3003(01)00040-6
– ident: key-10.3934/math.2023853-28
  doi: 10.1155/2013/684962
– ident: key-10.3934/math.2023853-3
  doi: 10.1155/2020/9268181
– ident: key-10.3934/math.2023853-29
  doi: 10.1002/num.22965
– ident: key-10.3934/math.2023853-21
  doi: 10.1016/j.ajmsc.2018.10.002
– ident: key-10.3934/math.2023853-16
  doi: 10.1155/2014/901094
– ident: key-10.3934/math.2023853-6
  doi: 10.1201/9781482285727
– ident: key-10.3934/math.2023853-22
  doi: 10.4134/CKMS.c180224
– ident: key-10.3934/math.2023853-19
  doi: 10.1142/8410
– ident: key-10.3934/math.2023853-30
  doi: 10.1016/j.aml.2022.108503
– ident: key-10.3934/math.2023853-9
  doi: 10.1016/j.asej.2016.04.018
– ident: key-10.3934/math.2023853-4
  doi: 10.1080/00036810500287255
– ident: key-10.3934/math.2023853-17
  doi: 10.1016/j.jnnms.2016.03.002
– ident: key-10.3934/math.2023853-5
  doi: 10.1007/s12190-022-01757-4
– ident: key-10.3934/math.2023853-14
  doi: 10.1186/s13662-018-1620-0
– ident: key-10.3934/math.2023853-26
  doi: 10.1007/s12190-019-01239-0
SSID ssj0002124274
Score 2.22087
Snippet This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 16691
SubjectTerms finite difference scheme
fourth order differential equation
non-local boundary condition
shishkin mesh
singular perturbation problems
Title Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition
URI https://doaj.org/article/a0bbb11831464158bfcdb826ecf9ef97
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveYAJRW1iJ05GQFQVUpmo1C3yObaKFNqSpkP_Az-aOyetyoBYWJNLZPnOvu_O5-8YuzU9MC4VLhBG2ADjLxVA6lxQhKFG9F-kMqa7w8PXZDCSL-N4vNXqi2rCGnrgZuK6ugcAiIIFLml0Nik4UwBiYmtcZl3m75Gjz9sKpmgPxg1ZYrzVVLqLTMgu4j86e0APFYsfPmiLqt_7lP4hO2jBIH9oBnHEduz0mO0PN0yqixP21X-vERTyD7uY8KbdM0ecySnEpwrScsXntkK_AZZeLKt6wj2dJl-3PsElXHL72VB685njvtDcX2fwMkvKl3FKxXJKyvKWQKLk4DsuVSv6oPCVXads1H9-exoEbQeFwAiR1aiALFJg48Ip5QAcpColTGMAilBpqbWIgFaxSSDtWaJxAIzXlCJUlkRanLHd6Wxqzxm3WmQ2klbGYSFTgUpRRiWx9gx8AooOu1_PaW5aenHqclHmGGaQBnLSQN5qoMPuNtLzhlbjF7lHUs9Ghsiw_QM0kbw1kfwvE7n4j59csj0aU5N9uWK7dbW014hHarjxpvcNrPnkKw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitted+mesh+method+for+singularly+perturbed+fourth+order+differential+equation+of+convection+diffusion+type+with+integral+boundary+condition&rft.jtitle=AIMS+mathematics&rft.au=Raja%2C+V.&rft.au=Sekar%2C+E.&rft.au=Priya%2C+S.+Shanmuga&rft.au=Unyong%2C+B.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=7&rft.spage=16691&rft.epage=16707&rft_id=info:doi/10.3934%2Fmath.2023853&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon