Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition
This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. Th...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 7; pp. 16691 - 16707 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments. |
---|---|
AbstractList | This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments. |
Author | Priya, S. Shanmuga Unyong, B. Raja, V. Sekar, E. |
Author_xml | – sequence: 1 givenname: V. surname: Raja fullname: Raja, V. organization: Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India – sequence: 2 givenname: E. surname: Sekar fullname: Sekar, E. organization: Department of Mathematics, Amrita School of Physical Science, Amrita Vishwa Vidyapeetham, Coimbatore 641112, Tamilnadu, India – sequence: 3 givenname: S. Shanmuga surname: Priya fullname: Priya, S. Shanmuga organization: Department of Mathematics, Cauvery College for women, Tiruchirappalli, Tamilnadu, India – sequence: 4 givenname: B. surname: Unyong fullname: Unyong, B. organization: Department of Mathematics, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand |
BookMark | eNptkdtKAzEQhoNU8NQ7HyAPYGtO3WQvRTwUBG_0OuQwaSPbTc1mlb6DD-1uVRDxJplJ_u9nmP8ETdrUAkLnlMx5zcXlxpT1nBHG1YIfoGMmJJ9VtVKTX_URmnbdCyGEUSaYFMfo4zaWAh5voFsPR1knj0PKuIvtqm9MbnZ4C7n02cL40eeyxil7yNjHECBDW6JpMLz2psTU4hSwS-0buH03avpurMpuC_g9DnRsC6zywNjUt97k3Qj4OOrP0GEwTQfT7_sUPd_ePF3fzx4e75bXVw8zx3ldZtzVTFpY-CBlsDZYJRWpKHPWeiqNMIYzKwgRrrKKAB12YoVQUi4Yqypm-Clafvn6ZF70NsfNMIZOJur9Q8orbXKJrgFtiLWWUsWpqARdKBuct4pV4EINoZaDF_vycjl1XYagXSz7XZRsYqMp0WM8eoxHf8czQBd_oJ8h_pV_AvalmGY |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_02_046 |
Cites_doi | 10.3390/fractalfract7010043 10.1016/j.cam.2020.113205 10.1016/j.cam.2021.113894 10.1007/s10444-021-09847-w 10.1155/2014/890695 10.1016/j.na.2010.04.055 10.1515/auom-2016-0014 10.1016/j.aej.2022.08.033 10.1142/S0219876218400078 10.1016/j.cam.2022.114498 10.1016/j.amc.2022.127343 10.12988/AMS.2014.312676 10.1186/s13662-017-1453-2 10.1007/s12190-019-01287-6 10.1007/s10915-017-0501-0 10.1016/S0096-3003(01)00040-6 10.1155/2013/684962 10.1155/2020/9268181 10.1002/num.22965 10.1016/j.ajmsc.2018.10.002 10.1155/2014/901094 10.1201/9781482285727 10.4134/CKMS.c180224 10.1142/8410 10.1016/j.aml.2022.108503 10.1016/j.asej.2016.04.018 10.1080/00036810500287255 10.1016/j.jnnms.2016.03.002 10.1007/s12190-022-01757-4 10.1186/s13662-018-1620-0 10.1007/s12190-019-01239-0 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023853 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 16707 |
ExternalDocumentID | oai_doaj_org_article_a0bbb11831464158bfcdb826ecf9ef97 10_3934_math_2023853 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c339t-3c927be5df77fbbfb8780612cbbd17a4aa32b4004c6b80e1023b44877522662a3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:15:41 EDT 2025 Thu Apr 24 23:14:57 EDT 2025 Tue Jul 01 03:57:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-3c927be5df77fbbfb8780612cbbd17a4aa32b4004c6b80e1023b44877522662a3 |
OpenAccessLink | https://doaj.org/article/a0bbb11831464158bfcdb826ecf9ef97 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a0bbb11831464158bfcdb826ecf9ef97 crossref_citationtrail_10_3934_math_2023853 crossref_primary_10_3934_math_2023853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023853-29 key-10.3934/math.2023853-26 key-10.3934/math.2023853-25 key-10.3934/math.2023853-28 key-10.3934/math.2023853-27 key-10.3934/math.2023853-22 key-10.3934/math.2023853-21 key-10.3934/math.2023853-24 key-10.3934/math.2023853-23 key-10.3934/math.2023853-3 key-10.3934/math.2023853-4 key-10.3934/math.2023853-1 key-10.3934/math.2023853-20 key-10.3934/math.2023853-2 key-10.3934/math.2023853-19 key-10.3934/math.2023853-18 key-10.3934/math.2023853-15 key-10.3934/math.2023853-14 key-10.3934/math.2023853-17 key-10.3934/math.2023853-16 key-10.3934/math.2023853-11 key-10.3934/math.2023853-10 key-10.3934/math.2023853-32 key-10.3934/math.2023853-13 key-10.3934/math.2023853-12 key-10.3934/math.2023853-31 key-10.3934/math.2023853-30 key-10.3934/math.2023853-7 key-10.3934/math.2023853-8 key-10.3934/math.2023853-5 key-10.3934/math.2023853-6 key-10.3934/math.2023853-9 |
References_xml | – ident: key-10.3934/math.2023853-25 doi: 10.3390/fractalfract7010043 – ident: key-10.3934/math.2023853-23 – ident: key-10.3934/math.2023853-2 doi: 10.1016/j.cam.2020.113205 – ident: key-10.3934/math.2023853-15 doi: 10.1016/j.cam.2021.113894 – ident: key-10.3934/math.2023853-1 doi: 10.1007/s10444-021-09847-w – ident: key-10.3934/math.2023853-8 doi: 10.1155/2014/890695 – ident: key-10.3934/math.2023853-12 doi: 10.1016/j.na.2010.04.055 – ident: key-10.3934/math.2023853-7 doi: 10.1515/auom-2016-0014 – ident: key-10.3934/math.2023853-13 doi: 10.1016/j.aej.2022.08.033 – ident: key-10.3934/math.2023853-18 doi: 10.1142/S0219876218400078 – ident: key-10.3934/math.2023853-24 doi: 10.1016/j.cam.2022.114498 – ident: key-10.3934/math.2023853-31 doi: 10.1016/j.amc.2022.127343 – ident: key-10.3934/math.2023853-20 doi: 10.12988/AMS.2014.312676 – ident: key-10.3934/math.2023853-32 doi: 10.1186/s13662-017-1453-2 – ident: key-10.3934/math.2023853-11 doi: 10.1007/s12190-019-01287-6 – ident: key-10.3934/math.2023853-10 doi: 10.1007/s10915-017-0501-0 – ident: key-10.3934/math.2023853-27 doi: 10.1016/S0096-3003(01)00040-6 – ident: key-10.3934/math.2023853-28 doi: 10.1155/2013/684962 – ident: key-10.3934/math.2023853-3 doi: 10.1155/2020/9268181 – ident: key-10.3934/math.2023853-29 doi: 10.1002/num.22965 – ident: key-10.3934/math.2023853-21 doi: 10.1016/j.ajmsc.2018.10.002 – ident: key-10.3934/math.2023853-16 doi: 10.1155/2014/901094 – ident: key-10.3934/math.2023853-6 doi: 10.1201/9781482285727 – ident: key-10.3934/math.2023853-22 doi: 10.4134/CKMS.c180224 – ident: key-10.3934/math.2023853-19 doi: 10.1142/8410 – ident: key-10.3934/math.2023853-30 doi: 10.1016/j.aml.2022.108503 – ident: key-10.3934/math.2023853-9 doi: 10.1016/j.asej.2016.04.018 – ident: key-10.3934/math.2023853-4 doi: 10.1080/00036810500287255 – ident: key-10.3934/math.2023853-17 doi: 10.1016/j.jnnms.2016.03.002 – ident: key-10.3934/math.2023853-5 doi: 10.1007/s12190-022-01757-4 – ident: key-10.3934/math.2023853-14 doi: 10.1186/s13662-018-1620-0 – ident: key-10.3934/math.2023853-26 doi: 10.1007/s12190-019-01239-0 |
SSID | ssj0002124274 |
Score | 2.22087 |
Snippet | This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 16691 |
SubjectTerms | finite difference scheme fourth order differential equation non-local boundary condition shishkin mesh singular perturbation problems |
Title | Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition |
URI | https://doaj.org/article/a0bbb11831464158bfcdb826ecf9ef97 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygveYAJRW1iJ05GQFQVUpmo1C3yObaKFNqSpkP_Az-aOyetyoBYWJNLZPnOvu_O5-8YuzU9MC4VLhBG2ADjLxVA6lxQhKFG9F-kMqa7w8PXZDCSL-N4vNXqi2rCGnrgZuK6ugcAiIIFLml0Nik4UwBiYmtcZl3m75Gjz9sKpmgPxg1ZYrzVVLqLTMgu4j86e0APFYsfPmiLqt_7lP4hO2jBIH9oBnHEduz0mO0PN0yqixP21X-vERTyD7uY8KbdM0ecySnEpwrScsXntkK_AZZeLKt6wj2dJl-3PsElXHL72VB685njvtDcX2fwMkvKl3FKxXJKyvKWQKLk4DsuVSv6oPCVXads1H9-exoEbQeFwAiR1aiALFJg48Ip5QAcpColTGMAilBpqbWIgFaxSSDtWaJxAIzXlCJUlkRanLHd6Wxqzxm3WmQ2klbGYSFTgUpRRiWx9gx8AooOu1_PaW5aenHqclHmGGaQBnLSQN5qoMPuNtLzhlbjF7lHUs9Ghsiw_QM0kbw1kfwvE7n4j59csj0aU5N9uWK7dbW014hHarjxpvcNrPnkKw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitted+mesh+method+for+singularly+perturbed+fourth+order+differential+equation+of+convection+diffusion+type+with+integral+boundary+condition&rft.jtitle=AIMS+mathematics&rft.au=Raja%2C+V.&rft.au=Sekar%2C+E.&rft.au=Priya%2C+S.+Shanmuga&rft.au=Unyong%2C+B.&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=7&rft.spage=16691&rft.epage=16707&rft_id=info:doi/10.3934%2Fmath.2023853&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |