Improving plant available water holding capacity of soil by solid and chemically modified biochars
We investigated the possible effects of solid biochar and chemically modified biochars (biochar-based nanocomposites of magnesium and manganese, modified biochars with H2O2, KOH and H3PO4) on changing water retention in a silty loam texture soil. All biochar treatments were applied at a rate of 25 g...
Saved in:
Published in | Rhizosphere Vol. 21; p. 100469 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigated the possible effects of solid biochar and chemically modified biochars (biochar-based nanocomposites of magnesium and manganese, modified biochars with H2O2, KOH and H3PO4) on changing water retention in a silty loam texture soil. All biochar treatments were applied at a rate of 25 g biochar kg−1 soil. Results showed that application of solid biochar and especially chemically modified biochars decreased soil bulk density and saturated hydraulic conductivity, but noticeably improved water holding capacity and plant available water holding capacity in soil. The highest improvements in soil water holding capacity and plant available water holding capacity were achieved under biochar-based nanocomposites of magnesium and manganese and H3PO4 modified biochar treatments. In general, soil treatment with chemically modified biochars caused a better effect than solid biochar in increasing water availability within soil by decreasing saturated hydraulic conductivity.
•Biochar and especially chemically modified biochars reduced soil bulk density.•Saturated hydraulic conductivity of soil was reduced by biochar treatments.•Water retention in soil was increased by biochar and modified biochars.•Modified biochars were more effective in increasing soil water retention.•Water availability for plants was improved by modified biochars. |
---|---|
AbstractList | We investigated the possible effects of solid biochar and chemically modified biochars (biochar-based nanocomposites of magnesium and manganese, modified biochars with H2O2, KOH and H3PO4) on changing water retention in a silty loam texture soil. All biochar treatments were applied at a rate of 25 g biochar kg−1 soil. Results showed that application of solid biochar and especially chemically modified biochars decreased soil bulk density and saturated hydraulic conductivity, but noticeably improved water holding capacity and plant available water holding capacity in soil. The highest improvements in soil water holding capacity and plant available water holding capacity were achieved under biochar-based nanocomposites of magnesium and manganese and H3PO4 modified biochar treatments. In general, soil treatment with chemically modified biochars caused a better effect than solid biochar in increasing water availability within soil by decreasing saturated hydraulic conductivity. We investigated the possible effects of solid biochar and chemically modified biochars (biochar-based nanocomposites of magnesium and manganese, modified biochars with H2O2, KOH and H3PO4) on changing water retention in a silty loam texture soil. All biochar treatments were applied at a rate of 25 g biochar kg−1 soil. Results showed that application of solid biochar and especially chemically modified biochars decreased soil bulk density and saturated hydraulic conductivity, but noticeably improved water holding capacity and plant available water holding capacity in soil. The highest improvements in soil water holding capacity and plant available water holding capacity were achieved under biochar-based nanocomposites of magnesium and manganese and H3PO4 modified biochar treatments. In general, soil treatment with chemically modified biochars caused a better effect than solid biochar in increasing water availability within soil by decreasing saturated hydraulic conductivity. •Biochar and especially chemically modified biochars reduced soil bulk density.•Saturated hydraulic conductivity of soil was reduced by biochar treatments.•Water retention in soil was increased by biochar and modified biochars.•Modified biochars were more effective in increasing soil water retention.•Water availability for plants was improved by modified biochars. |
ArticleNumber | 100469 |
Author | Farhangi-Abriz, Salar Ghassemi-Golezani, Kazem |
Author_xml | – sequence: 1 givenname: Kazem orcidid: 0000-0001-9560-1869 surname: Ghassemi-Golezani fullname: Ghassemi-Golezani, Kazem email: golezani@gmail.com – sequence: 2 givenname: Salar surname: Farhangi-Abriz fullname: Farhangi-Abriz, Salar email: farhanghi@hotmail.com |
BookMark | eNqFkE9v1DAQxS1UJNql34CDj73sYseOk-VQCVUtVKrEBc6W_4zJrJw4tdNF--3xKhwqDnCa0cx7T3q_K3IxpQkI-cDZjjOuPh52ecAyD7uGNbyemFT7N-SykW2zbfi-v3i1vyPXpRwYY7xTolXiktjHcc7piNNPOkczLdQcDUZjI9BfZoFMhxT9-evMbBwuJ5oCLQkjtac6I3pqJk_dACM6E-OJjsljQPDUYnKDyeU9eRtMLHD9Z27Ij4f773dft0_fvjzefX7aOiH2y1a4Rtggggp7KY3wKnS25Y2yrQjOdk62rAfXKid72RkplLJBGgbgue17FcSG3Ky5tdDzC5RFj1gcxFoL0kvRjRJKCiY6WaWfVqnLqZQMQddqZsE0LbnW15zpM1t90CtbfWarV7bVLP8yzxlHk0__s92uNqgMjghZF4cwOfCYwS3aJ_x3wG8fG5jd |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111524 crossref_primary_10_1016_j_scitotenv_2024_170350 crossref_primary_10_1016_j_jenvman_2022_116620 crossref_primary_10_3390_agronomy12102321 crossref_primary_10_3390_su16177343 crossref_primary_10_1016_j_scitotenv_2022_160990 crossref_primary_10_1016_j_pedsph_2024_06_001 crossref_primary_10_3389_fpls_2022_1048101 crossref_primary_10_1007_s13399_022_02873_8 crossref_primary_10_1016_j_biteb_2025_102090 crossref_primary_10_1016_j_wen_2024_11_001 crossref_primary_10_1016_j_scitotenv_2023_166950 crossref_primary_10_1080_15567036_2022_2116505 crossref_primary_10_1080_01904167_2024_2408419 crossref_primary_10_1016_j_indcrop_2023_116287 crossref_primary_10_1093_femsec_fiac131 crossref_primary_10_1016_j_chemosphere_2022_137025 crossref_primary_10_1016_j_ijhydene_2023_01_206 crossref_primary_10_1016_j_indcrop_2024_119830 crossref_primary_10_1016_j_chemosphere_2022_137365 crossref_primary_10_3389_fenvs_2022_1044921 crossref_primary_10_1016_j_agee_2023_108750 crossref_primary_10_1016_j_biteb_2023_101436 crossref_primary_10_1016_j_jenvman_2023_119305 crossref_primary_10_1016_j_plaphy_2024_109197 crossref_primary_10_1007_s10064_023_03456_1 crossref_primary_10_1007_s11104_023_06358_z crossref_primary_10_1016_j_scitotenv_2022_155183 crossref_primary_10_7717_peerj_17883 crossref_primary_10_1007_s13399_022_02530_0 crossref_primary_10_3390_agronomy14091887 crossref_primary_10_1007_s10668_023_04321_7 crossref_primary_10_1016_j_fcr_2024_109518 crossref_primary_10_3389_fenvs_2022_1053760 crossref_primary_10_1016_j_scitotenv_2023_166344 crossref_primary_10_3389_fpls_2022_1064409 crossref_primary_10_1007_s11270_024_07317_9 crossref_primary_10_1016_j_chemosphere_2023_138127 crossref_primary_10_1016_j_plaphy_2023_107757 |
Cites_doi | 10.1016/j.rhisph.2021.100416 10.1016/j.rhisph.2020.100289 10.3390/pr7120891 10.1016/j.biortech.2019.121840 10.1016/j.chemosphere.2016.01.043 10.1016/j.jaap.2015.05.006 10.1016/j.soilbio.2011.04.022 10.1016/j.geoderma.2019.114055 10.1016/j.rhisph.2018.06.010 10.1016/j.chemosphere.2015.06.069 10.1016/j.ecoenv.2021.111904 10.1016/j.geoderma.2015.02.014 10.1016/j.geoderma.2019.03.044 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rhisph.2021.100469 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 10_1016_j_rhisph_2021_100469 S2452219821001658 |
GroupedDBID | --M 0R~ AABVA AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-3c23bf3f6f944a3d6f7b5126b53fcb7c4508ec56c4847a4366bf4a0eed1b886f3 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Fri Jul 11 11:27:55 EDT 2025 Tue Jul 01 03:12:57 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Fri Feb 23 02:40:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bulk density Modified biochars Rhizosphere Hydraulic conductivity Soil water availability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-3c23bf3f6f944a3d6f7b5126b53fcb7c4508ec56c4847a4366bf4a0eed1b886f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9560-1869 |
PQID | 2636430374 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636430374 crossref_citationtrail_10_1016_j_rhisph_2021_100469 crossref_primary_10_1016_j_rhisph_2021_100469 elsevier_sciencedirect_doi_10_1016_j_rhisph_2021_100469 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Rhizosphere |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Li, Fan (bib8) 2019; 7 Sg, Jjo, Adeleke, St (bib13) 2021; 17 Jones (bib4) 2001 Ahmadi, Razavi, Maharjan, Kuzyakov, Kostka, Carminati, Zarebanadkouki (bib1) 2018; 7 Farhangi-Abriz, Ghassemi-Golezani (bib2) 2021; 211 Lim, Spokas, Feyereisen, Novak (bib7) 2016; 142 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bib5) 2011; 43 Wang, Dong, Li, Tian, Chen, Ning, Wang, Tang, Zeng (bib15) 2019; 291 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib11) 2016; 148 Ojeda, Mattana, Àvila, Alcañiz, Volkmann, Bachmann (bib10) 2015; 249 Verheijen, Zhuravel, Silva, Amaro, Ben-Hur, Keizer (bib14) 2019; 347 Ghassemi-Golezani, Farhangi-Abriz (bib3) 2021; 19 Li, Wu, Feng, Zhao, Huang, Zhuang (bib6) 2010; 47 Mollinedo, Schumacher, Chintala (bib9) 2015; 114 Razzaghi, Obour, Arthur (bib12) 2020; 361 Liu (10.1016/j.rhisph.2021.100469_bib8) 2019; 7 Ojeda (10.1016/j.rhisph.2021.100469_bib10) 2015; 249 Lehmann (10.1016/j.rhisph.2021.100469_bib5) 2011; 43 Razzaghi (10.1016/j.rhisph.2021.100469_bib12) 2020; 361 Ahmadi (10.1016/j.rhisph.2021.100469_bib1) 2018; 7 Lim (10.1016/j.rhisph.2021.100469_bib7) 2016; 142 Sg (10.1016/j.rhisph.2021.100469_bib13) 2021; 17 Mollinedo (10.1016/j.rhisph.2021.100469_bib9) 2015; 114 Jones (10.1016/j.rhisph.2021.100469_bib4) 2001 Ghassemi-Golezani (10.1016/j.rhisph.2021.100469_bib3) 2021; 19 Verheijen (10.1016/j.rhisph.2021.100469_bib14) 2019; 347 Farhangi-Abriz (10.1016/j.rhisph.2021.100469_bib2) 2021; 211 Wang (10.1016/j.rhisph.2021.100469_bib15) 2019; 291 Li (10.1016/j.rhisph.2021.100469_bib6) 2010; 47 Rajapaksha (10.1016/j.rhisph.2021.100469_bib11) 2016; 148 |
References_xml | – volume: 347 start-page: 194 year: 2019 end-page: 202 ident: bib14 article-title: The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment publication-title: Geoderma – volume: 19 start-page: 100416 year: 2021 ident: bib3 article-title: Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower ( publication-title: Rhizosphere – volume: 7 start-page: 891 year: 2019 ident: bib8 article-title: Preparation of KOH and H publication-title: Processes – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bib11 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 361 start-page: 114055 year: 2020 ident: bib12 article-title: Does biochar improve soil water retention? A systematic review and meta-analysis publication-title: Geoderma – volume: 291 start-page: 121840 year: 2019 ident: bib15 article-title: Influence of feedstocks and modification methods on biochar's capacity to activate hydrogen peroxide for tetracycline removal publication-title: Bioresour. Technol. – volume: 142 start-page: 136 year: 2016 end-page: 144 ident: bib7 article-title: Predicting the impact of biochar additions on soil hydraulic properties publication-title: Chemosphere – volume: 47 start-page: 611 year: 2010 end-page: 620 ident: bib6 article-title: Simulated experiment on effects of soil bulk density on soil water holding capacity publication-title: Acta Pedol. Sin. – volume: 7 start-page: 35 year: 2018 end-page: 42 ident: bib1 article-title: Effects of rhizosphere wettability on microbial biomass, enzyme activities and localization publication-title: Rhizosphere – volume: 17 start-page: 100289 year: 2021 ident: bib13 article-title: The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea ( publication-title: Rhizosphere – volume: 249 start-page: 1 year: 2015 end-page: 11 ident: bib10 article-title: Are soil–water functions affected by biochar application? publication-title: Geoderma – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bib5 article-title: Biochar effects on soil biota–a review publication-title: Soil Biol. Biochem. – volume: 114 start-page: 100 year: 2015 end-page: 108 ident: bib9 article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics publication-title: J. Anal. Appl. Pyrolysis – year: 2001 ident: bib4 article-title: Laboratory Guide for Conducting Soil Tests and Plant Analysis – volume: 211 start-page: 111904 year: 2021 ident: bib2 article-title: Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese publication-title: Ecotoxicol. Environ. Saf. – volume: 19 start-page: 100416 year: 2021 ident: 10.1016/j.rhisph.2021.100469_bib3 article-title: Biochar-based metal oxide nanocomposites of magnesium and manganese improved root development and productivity of safflower (Carthamus tinctorius L.) under salt stress publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100416 – volume: 47 start-page: 611 year: 2010 ident: 10.1016/j.rhisph.2021.100469_bib6 article-title: Simulated experiment on effects of soil bulk density on soil water holding capacity publication-title: Acta Pedol. Sin. – volume: 17 start-page: 100289 year: 2021 ident: 10.1016/j.rhisph.2021.100469_bib13 article-title: The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100289 – volume: 7 start-page: 891 year: 2019 ident: 10.1016/j.rhisph.2021.100469_bib8 article-title: Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution publication-title: Processes doi: 10.3390/pr7120891 – volume: 291 start-page: 121840 year: 2019 ident: 10.1016/j.rhisph.2021.100469_bib15 article-title: Influence of feedstocks and modification methods on biochar's capacity to activate hydrogen peroxide for tetracycline removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121840 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.rhisph.2021.100469_bib11 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – year: 2001 ident: 10.1016/j.rhisph.2021.100469_bib4 – volume: 114 start-page: 100 year: 2015 ident: 10.1016/j.rhisph.2021.100469_bib9 article-title: Influence of feedstocks and pyrolysis on biochar's capacity to modify soil water retention characteristics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.05.006 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.rhisph.2021.100469_bib5 article-title: Biochar effects on soil biota–a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 361 start-page: 114055 year: 2020 ident: 10.1016/j.rhisph.2021.100469_bib12 article-title: Does biochar improve soil water retention? A systematic review and meta-analysis publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114055 – volume: 7 start-page: 35 year: 2018 ident: 10.1016/j.rhisph.2021.100469_bib1 article-title: Effects of rhizosphere wettability on microbial biomass, enzyme activities and localization publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.010 – volume: 142 start-page: 136 year: 2016 ident: 10.1016/j.rhisph.2021.100469_bib7 article-title: Predicting the impact of biochar additions on soil hydraulic properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.069 – volume: 211 start-page: 111904 year: 2021 ident: 10.1016/j.rhisph.2021.100469_bib2 article-title: Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.111904 – volume: 249 start-page: 1 year: 2015 ident: 10.1016/j.rhisph.2021.100469_bib10 article-title: Are soil–water functions affected by biochar application? publication-title: Geoderma doi: 10.1016/j.geoderma.2015.02.014 – volume: 347 start-page: 194 year: 2019 ident: 10.1016/j.rhisph.2021.100469_bib14 article-title: The influence of biochar particle size and concentration on bulk density and maximum water holding capacity of sandy vs sandy loam soil in a column experiment publication-title: Geoderma doi: 10.1016/j.geoderma.2019.03.044 |
SSID | ssj0001763563 |
Score | 2.390981 |
Snippet | We investigated the possible effects of solid biochar and chemically modified biochars (biochar-based nanocomposites of magnesium and manganese, modified... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100469 |
SubjectTerms | biochar Bulk density Hydraulic conductivity magnesium manganese Modified biochars nanocomposites plant available water Rhizosphere saturated hydraulic conductivity silt loam soils soil density soil treatment Soil water availability texture |
Title | Improving plant available water holding capacity of soil by solid and chemically modified biochars |
URI | https://dx.doi.org/10.1016/j.rhisph.2021.100469 https://www.proquest.com/docview/2636430374 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA26XryIouL6RQSvZbdNmrZHEWVV3IsK3kKSNlipbdnuKv57Z9p0RREWPBVKppSXZN4j8xFCzllktBWx7wF7WI9HceipJMRk_2yccZUkvD0auJ-KyRO_fQ6f18hlXwuDaZXO93c-vfXW7s3IoTmq83z0gDFD2G9xgG2EgEjXyUYA7DoekI2Lm7vJ9PuopW3ChrFmNPHQpi-iazO9Zi95U2NgIvAxaYBj8vPfJPXLXbccdL1Ntpx4pBfd_-2QtazcJXp5LkDrAnCi6l3lBVZE0Q8QkjPqAkzUAC8aEN20srSp8oLqT3gWeUpVmVLjOgcUn_StSnML0pTqvMKqrGaPPF1fPV5OPHdzgmcYS-YeMwHTlllhE84VS4WNNDC70CGzRkeGgyzLTCgMB3JSnAmhLVdj4Etfx7GwbJ8MyqrMDghVsYhTwMlkIgXpZAHvKLB-EOlUweBoSFgPlTSurTjeblHIPn_sVXYASwRYdgAPibe0qru2GivGR_0syB_LQ4LnX2F51k-ahJ2D4RBVZtWikYFgIMew_87hv79-RDYDrIdok9KOyWA-W2QnoFLm-tStwi_FreX- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BatwwEBVpcmgvpaEtTdskKrRHs1lJlu1DD6Fp2M0me2kCuamSLFEH1zbr3S77Xf3BzNhySkshEMjJYCwhZjTzxpo3I0I-8sQaL9NxBOjhI5GkcaSzGMn-7sgJnWWiOxq4mMvJlTi7jq-3yO-hFgZplcH39z6989bhzShIc9QUxegb5gzB3lKGbYQASAOzcuY2a_hvaz9PT0DJnxg7_Xr5ZRKFqwUiy3m2jLhl3Hjupc-E0DyXPjEAfdLE3FuTWAFxi7OxtAK8txZcSuOFPgJAGZs0lZ7DvE_IDnbDArPaOZ7OJvM_Rztd0zfMbeMSI1zjULTXMcsWP4q2wUQIGyNJQSDZ-v-g-A88dJh3-oI8D8EqPe7lsUu2XPWSmLtzCNqUoBeqf-mixAosuobAdUFDQotawGELQT6tPW3roqRmA8-yyKmucmpDp4JyQ3_WeeEhFKamqLEKrH1Frh5FnK_JdlVX7g2hOpVpDnKyTuYQqnnQb8L8mCUm1_Bxskf4ICplQxtzvE2jVANf7Ub1AlYoYNULeI9Ed6Oavo3HPd8ngxbUX9tRAdLcM_LDoDQFlorpF125etUqJjmEf9jv5-2DZz8kTyeXF-fqfDqfvSPPGNZidIS492R7uVi5fYiQluYg7EhKvj-2EdwCpb0jrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+plant+available+water+holding+capacity+of+soil+by+solid+and+chemically+modified+biochars&rft.jtitle=Rhizosphere&rft.au=Ghassemi-Golezani%2C+Kazem&rft.au=Farhangi-Abriz%2C+Salar&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=21&rft_id=info:doi/10.1016%2Fj.rhisph.2021.100469&rft.externalDocID=S2452219821001658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |