Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting
[Display omitted] •g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges. Semiconductor-based solar-driven phot...
Saved in:
Published in | Applied surface science Vol. 456; pp. 369 - 378 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
31.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges.
Semiconductor-based solar-driven photocatalytic water splitting has been considered as one of the most promising solutions to solve the problem of fossil-based energy crisis, while the development of advanced photocatalytic materials for high-performance oxygen evolution from water splitting is the biggest challenge we are facing. We report the fabrication of novel g-C3N4/Ag3PO4/Ag2MoO4 ternary composite materials and the exploration of heterostructure materials for water oxidation under LED illumination. The hybridization of three semiconductors has been confirmed by microscopic study, chemical and structural analyses. Enhanced oxygen-producing activity over the obtained ternary composite photocatalysts was observed. The reasons responsible for the enhanced oxygen-evolving performance can be ascribed to the improved light absorption toward visible light, faster charge separation and charge transportation, as well as more powerful water oxidation capability originating from the in-situ construction of dual Z-scheme-type channels under visible light irradiation. The key role of in-situ formed metallic Ag as the electron mediator is suggested based on the theoretical and experimental results. The successful synthesis of fascinating ternary water oxidation photocatalysts provides new insights into the development of novel all-solid-state Z-scheme photocatalytic systems for energy and environmental applications. |
---|---|
AbstractList | [Display omitted]
•g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges.
Semiconductor-based solar-driven photocatalytic water splitting has been considered as one of the most promising solutions to solve the problem of fossil-based energy crisis, while the development of advanced photocatalytic materials for high-performance oxygen evolution from water splitting is the biggest challenge we are facing. We report the fabrication of novel g-C3N4/Ag3PO4/Ag2MoO4 ternary composite materials and the exploration of heterostructure materials for water oxidation under LED illumination. The hybridization of three semiconductors has been confirmed by microscopic study, chemical and structural analyses. Enhanced oxygen-producing activity over the obtained ternary composite photocatalysts was observed. The reasons responsible for the enhanced oxygen-evolving performance can be ascribed to the improved light absorption toward visible light, faster charge separation and charge transportation, as well as more powerful water oxidation capability originating from the in-situ construction of dual Z-scheme-type channels under visible light irradiation. The key role of in-situ formed metallic Ag as the electron mediator is suggested based on the theoretical and experimental results. The successful synthesis of fascinating ternary water oxidation photocatalysts provides new insights into the development of novel all-solid-state Z-scheme photocatalytic systems for energy and environmental applications. |
Author | Tang, Hua Shen, Jun Liu, Wei Yang, Xiaofei Liu, Qinqin |
Author_xml | – sequence: 1 givenname: Wei surname: Liu fullname: Liu, Wei organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 2 givenname: Jun surname: Shen fullname: Shen, Jun organization: School of Pharmacy, Suzhou Vocational Health College, Suzhou 212013, PR China – sequence: 3 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei email: xiaofei_yang1980@163.com organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 4 givenname: Qinqin surname: Liu fullname: Liu, Qinqin organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China – sequence: 5 givenname: Hua surname: Tang fullname: Tang, Hua email: huatang79@163.com organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China |
BookMark | eNqFkMtOwzAQRS0EEm3hD1j4B5LacZ4skKrylAplARs2luOMU1dJHNluoX9PorJiAavRaOZczZwpOu1MBwhdURJSQtP5NhS92zkZRoTmIUlDmqQnaELzjAVJksenaDKsFUHMWHSOps5tCaHRMJ0gd7sTDf4InNxAC7gOluwlni9q9roeS_Rs1jH2YDthD1iatjdOe8D9xngjhRfNwXmsjMXONMJi83WoocOwN83Oa9NhZU2LP8WQgF3faO91V1-gMyUaB5c_dYbe7-_elo_Bav3wtFysAslY4QOWlwRYGYlUVQykjJNiaEBViciEkkCysiqBqYIIVeQqTyqaizKL40QUVcYkm6HrY660xjkLikvtxXiWt0I3nBI-6uNbftTHR32cpHzQN8DxL7i3uh0s_IfdHDEYHttrsNxJDZ2ESluQnldG_x3wDTrzkW8 |
CitedBy_id | crossref_primary_10_1016_j_mseb_2023_116413 crossref_primary_10_1039_C9RA08292A crossref_primary_10_1016_j_apsusc_2020_145499 crossref_primary_10_30799_jespr_241_24100101 crossref_primary_10_1002_cssc_202000177 crossref_primary_10_1016_j_solmat_2020_110624 crossref_primary_10_1016_j_chemosphere_2022_136912 crossref_primary_10_3390_nano10050929 crossref_primary_10_1016_j_ceramint_2021_05_054 crossref_primary_10_1007_s11356_021_17286_9 crossref_primary_10_1016_j_apsusc_2019_143860 crossref_primary_10_1016_j_apsusc_2019_144042 crossref_primary_10_1016_j_apcatb_2019_118395 crossref_primary_10_1016_j_materresbull_2023_112423 crossref_primary_10_1021_acsomega_9b01146 crossref_primary_10_1016_j_solidstatesciences_2019_106102 crossref_primary_10_1016_j_apcatb_2018_11_056 crossref_primary_10_1016_j_matlet_2021_129388 crossref_primary_10_1016_j_apsusc_2018_08_189 crossref_primary_10_1016_j_apsusc_2019_143991 crossref_primary_10_1016_j_inoche_2024_112227 crossref_primary_10_1016_j_molliq_2019_111114 crossref_primary_10_1038_s41598_019_45672_4 crossref_primary_10_1039_D4RA01593B crossref_primary_10_1016_j_jallcom_2021_162920 crossref_primary_10_1016_j_jiec_2019_07_014 crossref_primary_10_1002_cctc_202100135 crossref_primary_10_1016_j_jes_2022_01_010 crossref_primary_10_1016_j_cjsc_2024_100214 crossref_primary_10_1016_j_apsusc_2018_10_090 crossref_primary_10_1016_j_ijhydene_2020_09_028 crossref_primary_10_1016_j_jallcom_2020_153975 crossref_primary_10_1080_08927014_2019_1653453 crossref_primary_10_1007_s10853_019_04252_7 crossref_primary_10_1016_j_jhazmat_2020_123790 crossref_primary_10_1039_D0NH00046A crossref_primary_10_1016_j_ceramint_2020_10_210 crossref_primary_10_1016_j_jphotochem_2019_01_015 crossref_primary_10_1016_j_materresbull_2023_112448 crossref_primary_10_1016_j_mtsust_2023_100514 crossref_primary_10_1016_j_jcis_2020_07_001 crossref_primary_10_1016_j_jmrt_2020_10_093 crossref_primary_10_1007_s11144_024_02568_3 crossref_primary_10_1021_acsami_9b04302 crossref_primary_10_1002_admi_202101680 crossref_primary_10_1039_D0CP05673A crossref_primary_10_1016_j_apsusc_2019_05_360 crossref_primary_10_3390_ijerph192315551 crossref_primary_10_1016_j_apcatb_2019_01_088 crossref_primary_10_1016_j_molliq_2019_02_068 crossref_primary_10_1021_acs_langmuir_1c01901 crossref_primary_10_1016_j_jallcom_2019_152883 crossref_primary_10_1016_j_jmst_2020_03_033 crossref_primary_10_1016_j_jphotochem_2022_113800 crossref_primary_10_1016_j_surfin_2024_104898 crossref_primary_10_1007_s11144_021_01934_9 crossref_primary_10_1016_j_ceramint_2022_04_176 crossref_primary_10_1021_acssuschemeng_9b00252 crossref_primary_10_1039_D1SE00290B crossref_primary_10_1016_j_apsusc_2022_155819 crossref_primary_10_5004_dwt_2020_26062 crossref_primary_10_1007_s12274_021_4045_0 crossref_primary_10_1016_j_apsusc_2019_143820 crossref_primary_10_1016_j_colsurfa_2020_124457 crossref_primary_10_1016_j_jphotochem_2019_111960 crossref_primary_10_1016_j_cej_2023_146786 crossref_primary_10_1016_S1872_2067_18_63166_3 crossref_primary_10_1016_j_optmat_2020_110076 crossref_primary_10_1016_j_seppur_2021_120194 crossref_primary_10_1016_j_jphotochem_2024_115537 crossref_primary_10_1016_j_materresbull_2020_111078 crossref_primary_10_1016_j_jpcs_2021_110283 crossref_primary_10_2139_ssrn_4125526 crossref_primary_10_1039_C9NR00887J crossref_primary_10_1016_j_chemosphere_2020_126453 crossref_primary_10_1007_s10904_020_01626_2 crossref_primary_10_1016_j_jcis_2025_01_195 crossref_primary_10_1016_j_inoche_2023_111830 crossref_primary_10_1088_1361_6528_ac15c8 crossref_primary_10_1007_s12598_019_01259_6 crossref_primary_10_1016_j_chemosphere_2023_139019 crossref_primary_10_1016_j_ijhydene_2019_07_070 crossref_primary_10_1016_j_apsusc_2020_147234 crossref_primary_10_1016_j_colsurfa_2019_124041 crossref_primary_10_1039_D0NJ04322B crossref_primary_10_1039_D0NA00613K crossref_primary_10_1007_s11356_023_31096_1 crossref_primary_10_3390_pr9111959 crossref_primary_10_1016_j_ccr_2022_214596 crossref_primary_10_1016_j_jiec_2022_10_001 crossref_primary_10_1016_j_colsurfa_2024_134765 crossref_primary_10_1021_acsomega_9b00806 crossref_primary_10_1021_acsami_0c05961 crossref_primary_10_1016_j_seppur_2023_123922 crossref_primary_10_1016_j_jhazmat_2019_121417 crossref_primary_10_1016_j_ijhydene_2020_03_034 crossref_primary_10_1016_j_seppur_2021_118414 crossref_primary_10_1080_00958972_2020_1850706 crossref_primary_10_1039_D0NJ04290K crossref_primary_10_1021_acsomega_1c00872 crossref_primary_10_1016_j_colsurfa_2020_124583 crossref_primary_10_1016_j_envpol_2022_119131 crossref_primary_10_1016_j_ijhydene_2025_03_049 crossref_primary_10_1016_j_apsusc_2021_150955 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1016_j_jallcom_2019_151918 crossref_primary_10_1016_j_mtadv_2019_100025 crossref_primary_10_1016_j_apsusc_2019_07_121 crossref_primary_10_1016_j_apsusc_2020_148137 crossref_primary_10_1016_j_matlet_2022_132544 crossref_primary_10_1016_j_ceramint_2019_10_081 crossref_primary_10_3389_fchem_2024_1359895 crossref_primary_10_1016_j_cej_2019_121967 crossref_primary_10_1016_j_cej_2024_150983 crossref_primary_10_1016_j_jcis_2021_10_178 crossref_primary_10_1016_j_apsusc_2018_12_301 crossref_primary_10_1016_j_jece_2024_112962 crossref_primary_10_1016_j_catcom_2022_106556 crossref_primary_10_1016_j_apsusc_2020_148487 crossref_primary_10_1016_j_jiec_2021_11_008 crossref_primary_10_1039_D0NJ01060J crossref_primary_10_1016_j_xcrp_2021_100355 crossref_primary_10_1016_j_cej_2019_06_029 crossref_primary_10_1016_j_ceramint_2020_08_058 crossref_primary_10_1016_j_ceramint_2019_08_239 crossref_primary_10_1021_acsanm_9b00428 crossref_primary_10_1016_j_ijhydene_2024_06_386 crossref_primary_10_1016_j_jmrt_2020_02_034 crossref_primary_10_1039_D0NJ05681B crossref_primary_10_1016_j_inoche_2021_109134 crossref_primary_10_1016_j_physrep_2022_07_003 crossref_primary_10_1016_j_ceramint_2020_10_076 crossref_primary_10_1016_j_ceramint_2021_07_281 crossref_primary_10_1016_j_cplett_2020_137467 crossref_primary_10_1016_j_inoche_2023_110734 crossref_primary_10_1002_aenm_202003303 crossref_primary_10_1016_j_mtsust_2024_101069 crossref_primary_10_1016_j_ceramint_2019_08_123 crossref_primary_10_1016_j_cej_2021_130076 crossref_primary_10_1016_j_inoche_2020_107904 crossref_primary_10_1016_S1872_2067_19_63430_3 crossref_primary_10_1016_S1872_2067_19_63513_8 crossref_primary_10_1016_j_inoche_2023_111375 crossref_primary_10_1016_j_cej_2023_146281 crossref_primary_10_1016_j_jphotochem_2022_114102 crossref_primary_10_1016_j_apt_2022_103708 crossref_primary_10_1021_acs_est_9b01453 crossref_primary_10_1016_j_apsusc_2018_09_216 crossref_primary_10_1016_j_seppur_2020_117691 crossref_primary_10_1016_j_solidstatesciences_2019_105967 crossref_primary_10_1016_j_ijhydene_2018_09_079 crossref_primary_10_1016_j_molliq_2019_111826 crossref_primary_10_1088_1361_6528_ab3f15 crossref_primary_10_1016_j_jece_2021_105963 crossref_primary_10_1016_j_jphotochem_2019_04_007 crossref_primary_10_1016_j_seppur_2022_120984 crossref_primary_10_1016_j_electacta_2019_135194 crossref_primary_10_1016_j_jmrt_2021_01_110 crossref_primary_10_1021_acs_iecr_9b02766 crossref_primary_10_1038_s41598_018_34287_w crossref_primary_10_1016_j_ceramint_2019_08_226 crossref_primary_10_1021_acs_analchem_1c00929 crossref_primary_10_1016_j_ceramint_2019_06_167 crossref_primary_10_1016_j_apsusc_2020_148842 crossref_primary_10_1021_acsomega_9b02042 crossref_primary_10_1016_j_apcatb_2020_118918 crossref_primary_10_1016_j_apmt_2023_101742 crossref_primary_10_1007_s11581_023_05346_8 crossref_primary_10_1016_j_apcatb_2019_118281 crossref_primary_10_1016_j_apsusc_2019_144613 crossref_primary_10_1016_j_seppur_2019_05_080 crossref_primary_10_1039_C8RA09815H crossref_primary_10_1016_j_apsusc_2019_143647 crossref_primary_10_3390_molecules25061411 crossref_primary_10_1016_j_inoche_2023_110815 crossref_primary_10_1088_1361_6463_ac6e9e crossref_primary_10_3139_146_111944 crossref_primary_10_1007_s10311_022_01466_1 crossref_primary_10_1016_j_apsusc_2018_12_285 crossref_primary_10_1016_j_cej_2019_02_083 crossref_primary_10_1007_s10562_020_03349_y crossref_primary_10_1016_j_jiec_2021_04_007 crossref_primary_10_1007_s10904_021_02047_5 crossref_primary_10_1016_j_ijhydene_2019_11_178 crossref_primary_10_1016_S1872_2067_19_63330_9 crossref_primary_10_1016_j_matchemphys_2020_124136 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_1088_2515_7655_abc1cf crossref_primary_10_1016_j_ceramint_2019_08_203 crossref_primary_10_1016_S1872_2067_20_63595_1 crossref_primary_10_1016_j_apsadv_2022_100337 crossref_primary_10_1016_j_cej_2019_123767 crossref_primary_10_1021_acs_chemrev_1c00686 crossref_primary_10_1016_j_apsusc_2019_143771 crossref_primary_10_1016_j_jclepro_2022_132481 crossref_primary_10_1039_C9RA07175J crossref_primary_10_1016_j_jiec_2019_12_003 |
Cites_doi | 10.1039/C6TA08310B 10.1016/j.apcatb.2017.08.018 10.1016/j.jallcom.2017.07.330 10.1016/j.apcatb.2017.11.045 10.1002/adfm.201505626 10.1016/j.apsusc.2016.09.075 10.1021/cs3008126 10.1021/acscatal.7b03266 10.1016/j.apsusc.2017.01.285 10.1016/j.apsusc.2017.08.042 10.1002/smll.201602870 10.1016/j.apcatb.2018.03.036 10.1016/j.apsusc.2017.12.054 10.1039/C7CP01043E 10.1016/j.apcatb.2017.03.048 10.1016/j.apsusc.2017.08.050 10.1016/j.apcatb.2015.03.045 10.1016/j.apsusc.2017.07.186 10.1016/j.apcatb.2016.07.056 10.1016/j.apsusc.2017.07.185 10.1016/j.apcatb.2017.07.076 10.1039/C4EE03234A 10.1002/adma.201601694 10.1016/j.apsusc.2016.07.055 10.1016/j.nanoen.2017.11.059 10.1002/cssc.201403168 10.1039/C4RA01559B 10.1002/solr.201800006 10.1016/S1872-2067(17)62942-5 10.1039/C7DT00773F 10.1088/1361-6528/aa651a 10.1016/j.apsusc.2017.06.165 10.1016/S1872-2067(17)62911-5 10.1039/C6CP00580B 10.1016/j.apcatb.2018.03.014 10.1039/C7CS00136C 10.1002/anie.201602796 10.1016/j.jcat.2017.06.006 10.1016/j.cej.2017.02.129 10.1016/j.apsusc.2017.03.025 10.1021/acssuschemeng.7b00242 10.1039/C5TA05503B 10.1016/S1872-2067(17)62962-0 10.1021/acscatal.7b00937 10.1016/j.apsusc.2015.08.066 10.1016/j.apsusc.2017.07.082 10.1016/j.catcom.2017.12.001 10.1021/acsami.7b14275 10.1016/j.ceramint.2016.08.179 10.1016/j.apsusc.2016.07.104 10.1016/j.apcatb.2014.06.015 10.1016/j.ceramint.2017.05.178 10.1016/j.apsusc.2017.07.290 10.1002/adma.201400288 10.1016/j.matlet.2016.01.058 10.1021/acsami.5b02649 10.1016/j.apsusc.2015.08.250 10.1016/j.apsusc.2017.02.025 10.1016/j.jallcom.2016.12.231 10.1016/j.apsusc.2016.06.145 10.1016/S1872-2067(16)62570-6 10.1016/j.apsusc.2013.01.173 10.1007/s12274-017-1747-4 10.1002/aenm.201701503 10.1039/c3cy20878h 10.1038/nmat2780 10.1016/j.apcatb.2013.12.053 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2018.06.156 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 378 |
ExternalDocumentID | 10_1016_j_apsusc_2018_06_156 S0169433218317240 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c339t-38b0e3b2a6fd3ecc459b2aefd5a7afce07bdbe3f90af98f85d18ab7445a9d73c3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:09:12 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 Fri Feb 23 02:25:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4 Oxygen evolution Water splitting Z-scheme Ag3PO4 Composite photocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-38b0e3b2a6fd3ecc459b2aefd5a7afce07bdbe3f90af98f85d18ab7445a9d73c3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2018_06_156 crossref_primary_10_1016_j_apsusc_2018_06_156 elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_06_156 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-31 |
PublicationDateYYYYMMDD | 2018-10-31 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Cheng, Wang, Jiang, Yu (b0230) 2018; 231 Wang, Li, Liu, Cheng, Ho, Yu (b0090) 2015; 176 Yang, Tang, Xu, Antonietti, Shalom (b0210) 2015; 8 Cui, Tian, Xian, Tang, Yang (b0145) 2018; 430 Wu, Li, Liu, Zhang (b0030) 2017; 405 Zhu, Xia, Li, Ho, Yu (b0045) 2017; 391 Li, Hao, Zhu (b0280) 2016; 168 Chen, Luo, Mo, Yu, Cheng (b0010) 2018; 430 Huang, Lin, Zhu, Weng, Wang, Fu, Long (b0110) 2016; 55 Ao, Wang, Wang, Hou, Qian (b0150) 2013; 271 Cui, Ding, Wang, Shi, Huang, Zuo, Kang (b0185) 2017; 391 Wang, Li, Liu, Chen, Wu, Guo, Na (b0165) 2017; 43 Kuang, Zheng, Liu, Lei, Wu, Li, Ma (b0050) 2016; 12 Ao, Bao, Wang, Wang (b0175) 2017; 698 Zhou, Du, Wang, Yin, Tu, Chen, Borgna, Xu (b0065) 2017; 7 Hu, Chen, Fu, Ba, Sun, Zhang, Zou (b0130) 2018; 436 Yi, Ye, Kikugawa, Kako, Ouyang, Stuart-Williams, Yang, Cao, Luo, Li, Liu, Withers (b0120) 2010; 9 Liu, Shen, Jiang, Zhao, Zhou, Zhao, Xu (b0270) 2017; 7 Wu, Chen, Wang, Yu (b0095) 2018; 427 Qi, Cheng, Yu, Ho (b0100) 2017; 38 Gong, Quan, Yu, Chen (b0215) 2017; 219 Niu, Qiao, Li, Huang, Zhai (b0290) 2018; 44 Fu, Yu, Jiang, Cheng (b0015) 2018; 8 Liu, Xu, Si, Wang, Ran, He, Weng (b0260) 2018; 106 Yu, Chen, Shang, Chen, Gu, Peng (b0040) 2017; 219 Tian, Xian, Cui, Tang, Yang (b0275) 2018; 430 Teng, Tan, Li, Tang (b0170) 2017; 409 Li, Zhang, Li, Yang (b0055) 2017; 391 Akple, Low, Wageh, Al-Ghamdi, Yu, Zhang (b0020) 2015; 358 Huang, Xu, Zhou, Xie, Ma, Liu, Jing, Xu, Li (b0160) 2018; 225 Yang, Qin, Jiang, Li, Li, Tang (b0140) 2014; 4 Yu, Cao, Chen, Wang, Yu, Lei (b0135) 2014; 160 Li, Pan, Qu, Wang (b0265) 2018; 11 Shi, Guo, Yuan (b0240) 2017; 209 Di, Zhu, Cheng, Yu, Xu (b0200) 2017; 352 Wei, Kuang, Cheng, Chen, Long, Zhang, Liu (b0035) 2017; 5 Song, Wang, Zhang, Chen, Li (b0195) 2017; 425 Xu, Zhu, Jiang, Cheng, Yu (b0005) 2018; 2 Lee, Mills, O'Rourke (b0085) 2017; 46 Dong, Wu, Thirugnanam, Li (b0285) 2018; 430 Yang, Chen, Xu, Tang, Chen, Jiang (b0315) 2015; 7 Xin, Jin, Jia, Xia, Deng, Zhu, Chen, Chen (b0125) 2017; 405 Fu, Li, Liu, Yang, Tang (b0220) 2017; 38 Li, Wu, Yin, Katsumata, Wang (b0115) 2017; 392 Wang, Hu, Dai, Zhang, Liang (b0245) 2017; 38 Cheng, Shi, Hu, Guo (b0255) 2017; 28 Yu, Wang, Cheng, Lin, Huang (b0300) 2013; 3 Jin, Liang, Song, Xu, Li, Yao (b0320) 2017; 726 Low, Yu, Jaroniec, Wageh, Al-Ghamdi (b0080) 2017; 29 Chen, Hu, Meng, Fu (b0335) 2014; 150 Yu, Xu, Peng (b0225) 2015; 3 Zhuang, Zhang, Chu, Long, An, Zhang, Lin, Zhang, Wang (b0105) 2016; 18 Cui, Li, Qiu, Hu, Li, Li, Gao, Tang (b0325) 2017; 200 Jo, Selvam (b0310) 2017; 317 Tang, Chang, Jiang, Tang, Liang (b0250) 2016; 42 Wang, Xu, Xia, Wang, Yu, Yu (b0155) 2017; 19 Kuang, Su, Li, Luo, Xing, Liu (b0060) 2015; 358 Fu, Liang, Guo, Tang, Liu (b0180) 2018; 430 Chen, Ma, Liu, Li, Su, Davey, Qiao (b0070) 2016; 26 Tang, Fu, Chang, Xie, Tang (b0235) 2017; 38 Yang, Cui, Li, Qin, Zhang, Tang (b0330) 2013; 3 Wang, Zhang, Li, Li, Wu (b0205) 2017; 9 Wei, Huang, Gu, Wang, Zeng, Chen, Liu (b0025) 2018; 231 Xia, Zhu, Yu, Cao, Jaroniec (b0295) 2017; 5 Wang, Cheng, Yu, Yu (b0305) 2017; 46 Zhou, Yu, Jaroniec (b0190) 2014; 26 Zhou, Wang, Goh, Hong, Han, Mao, Xu (b0075) 2015; 8 Song (10.1016/j.apsusc.2018.06.156_b0195) 2017; 425 Qi (10.1016/j.apsusc.2018.06.156_b0100) 2017; 38 Yu (10.1016/j.apsusc.2018.06.156_b0300) 2013; 3 Yu (10.1016/j.apsusc.2018.06.156_b0225) 2015; 3 Xu (10.1016/j.apsusc.2018.06.156_b0230) 2018; 231 Yi (10.1016/j.apsusc.2018.06.156_b0120) 2010; 9 Yang (10.1016/j.apsusc.2018.06.156_b0330) 2013; 3 Huang (10.1016/j.apsusc.2018.06.156_b0160) 2018; 225 Xia (10.1016/j.apsusc.2018.06.156_b0295) 2017; 5 Dong (10.1016/j.apsusc.2018.06.156_b0285) 2018; 430 Zhou (10.1016/j.apsusc.2018.06.156_b0065) 2017; 7 Fu (10.1016/j.apsusc.2018.06.156_b0015) 2018; 8 Zhu (10.1016/j.apsusc.2018.06.156_b0045) 2017; 391 Chen (10.1016/j.apsusc.2018.06.156_b0070) 2016; 26 Li (10.1016/j.apsusc.2018.06.156_b0280) 2016; 168 Cui (10.1016/j.apsusc.2018.06.156_b0145) 2018; 430 Liu (10.1016/j.apsusc.2018.06.156_b0260) 2018; 106 Wang (10.1016/j.apsusc.2018.06.156_b0245) 2017; 38 Wang (10.1016/j.apsusc.2018.06.156_b0205) 2017; 9 Tang (10.1016/j.apsusc.2018.06.156_b0250) 2016; 42 Wei (10.1016/j.apsusc.2018.06.156_b0025) 2018; 231 Jo (10.1016/j.apsusc.2018.06.156_b0310) 2017; 317 Xu (10.1016/j.apsusc.2018.06.156_b0005) 2018; 2 Zhuang (10.1016/j.apsusc.2018.06.156_b0105) 2016; 18 Teng (10.1016/j.apsusc.2018.06.156_b0170) 2017; 409 Xin (10.1016/j.apsusc.2018.06.156_b0125) 2017; 405 Yu (10.1016/j.apsusc.2018.06.156_b0135) 2014; 160 Yang (10.1016/j.apsusc.2018.06.156_b0140) 2014; 4 Yang (10.1016/j.apsusc.2018.06.156_b0210) 2015; 8 Hu (10.1016/j.apsusc.2018.06.156_b0130) 2018; 436 Jin (10.1016/j.apsusc.2018.06.156_b0320) 2017; 726 Fu (10.1016/j.apsusc.2018.06.156_b0180) 2018; 430 Tian (10.1016/j.apsusc.2018.06.156_b0275) 2018; 430 Shi (10.1016/j.apsusc.2018.06.156_b0240) 2017; 209 Chen (10.1016/j.apsusc.2018.06.156_b0010) 2018; 430 Cheng (10.1016/j.apsusc.2018.06.156_b0255) 2017; 28 Huang (10.1016/j.apsusc.2018.06.156_b0110) 2016; 55 Di (10.1016/j.apsusc.2018.06.156_b0200) 2017; 352 Akple (10.1016/j.apsusc.2018.06.156_b0020) 2015; 358 Kuang (10.1016/j.apsusc.2018.06.156_b0060) 2015; 358 Zhou (10.1016/j.apsusc.2018.06.156_b0075) 2015; 8 Lee (10.1016/j.apsusc.2018.06.156_b0085) 2017; 46 Li (10.1016/j.apsusc.2018.06.156_b0055) 2017; 391 Chen (10.1016/j.apsusc.2018.06.156_b0335) 2014; 150 Gong (10.1016/j.apsusc.2018.06.156_b0215) 2017; 219 Wang (10.1016/j.apsusc.2018.06.156_b0305) 2017; 46 Liu (10.1016/j.apsusc.2018.06.156_b0270) 2017; 7 Yang (10.1016/j.apsusc.2018.06.156_b0315) 2015; 7 Wu (10.1016/j.apsusc.2018.06.156_b0030) 2017; 405 Wu (10.1016/j.apsusc.2018.06.156_b0095) 2018; 427 Yu (10.1016/j.apsusc.2018.06.156_b0040) 2017; 219 Ao (10.1016/j.apsusc.2018.06.156_b0150) 2013; 271 Wang (10.1016/j.apsusc.2018.06.156_b0155) 2017; 19 Tang (10.1016/j.apsusc.2018.06.156_b0235) 2017; 38 Wang (10.1016/j.apsusc.2018.06.156_b0165) 2017; 43 Zhou (10.1016/j.apsusc.2018.06.156_b0190) 2014; 26 Kuang (10.1016/j.apsusc.2018.06.156_b0050) 2016; 12 Cui (10.1016/j.apsusc.2018.06.156_b0185) 2017; 391 Li (10.1016/j.apsusc.2018.06.156_b0115) 2017; 392 Cui (10.1016/j.apsusc.2018.06.156_b0325) 2017; 200 Fu (10.1016/j.apsusc.2018.06.156_b0220) 2017; 38 Wang (10.1016/j.apsusc.2018.06.156_b0090) 2015; 176 Low (10.1016/j.apsusc.2018.06.156_b0080) 2017; 29 Ao (10.1016/j.apsusc.2018.06.156_b0175) 2017; 698 Li (10.1016/j.apsusc.2018.06.156_b0265) 2018; 11 Wei (10.1016/j.apsusc.2018.06.156_b0035) 2017; 5 Niu (10.1016/j.apsusc.2018.06.156_b0290) 2018; 44 |
References_xml | – volume: 425 start-page: 788 year: 2017 end-page: 795 ident: b0195 article-title: Enhanced performance of direct Z-scheme CuS-WO publication-title: Appl. Surf. Sci. – volume: 427 start-page: 645 year: 2018 end-page: 653 ident: b0095 article-title: In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C publication-title: Appl. Surf. Sci. – volume: 9 start-page: 43704 year: 2017 end-page: 43715 ident: b0205 article-title: OD/2D Z-Scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C publication-title: ACS Appl. Mater. Interf. – volume: 8 start-page: 1350 year: 2015 end-page: 1358 ident: b0210 article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution publication-title: ChemSusChem – volume: 8 start-page: 526 year: 2015 end-page: 534 ident: b0075 article-title: Bio-inspired organic cobalt(II) phosphonates toward water oxidation publication-title: Energy Environ. Sci. – volume: 5 start-page: 3230 year: 2017 end-page: 3238 ident: b0295 article-title: Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO publication-title: J. Mater. Chem. A. – volume: 209 start-page: 720 year: 2017 end-page: 728 ident: b0240 article-title: In situ synthesis of Z-scheme Ag publication-title: Appl. Catal. B: Environ. – volume: 391 start-page: 184 year: 2017 end-page: 193 ident: b0055 article-title: Enhanced visible light activity on direct contact Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 231 start-page: 101 year: 2018 end-page: 107 ident: b0025 article-title: Dual-cocatalysts decorated ramous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B: Environ. – volume: 46 start-page: 4877 year: 2017 end-page: 4894 ident: b0085 article-title: Action spectra in semiconductor photocatalysis publication-title: Chem. Soc. Rev. – volume: 38 start-page: 337 year: 2017 end-page: 347 ident: b0235 article-title: Construction of Ag publication-title: Chin. J. Catal. – volume: 3 start-page: 363 year: 2013 end-page: 369 ident: b0330 article-title: Fabrication of Ag publication-title: ACS Catal. – volume: 430 start-page: 448 year: 2018 end-page: 456 ident: b0010 article-title: In situ photodeposition of amorphous CoSx on the TiO publication-title: Appl. Surf. Sci. – volume: 168 start-page: 180 year: 2016 end-page: 183 ident: b0280 article-title: Construction of g-C publication-title: Mater. Lett. – volume: 405 start-page: 60 year: 2017 end-page: 70 ident: b0030 article-title: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 4 start-page: 18627 year: 2014 end-page: 18636 ident: b0140 article-title: Bifunctional TiO publication-title: RSC Adv. – volume: 225 start-page: 40 year: 2018 end-page: 50 ident: b0160 article-title: Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag publication-title: Appl. Catal. B: Environ. – volume: 43 start-page: 11588 year: 2017 end-page: 11595 ident: b0165 article-title: In-situ deposition of Ag publication-title: Ceram. Int. – volume: 106 start-page: 55 year: 2018 end-page: 59 ident: b0260 article-title: Noble metal-free NiS/P-S codoped g-C publication-title: Catal. Commun. – volume: 200 start-page: 666 year: 2017 end-page: 672 ident: b0325 article-title: Fast assembly of Ag publication-title: Appl. Catal. B: Environ. – volume: 29 start-page: 1601694 year: 2017 ident: b0080 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. – volume: 726 start-page: 221 year: 2017 end-page: 229 ident: b0320 article-title: Hydrothermal synthesis of g-C publication-title: J. Alloy Compd. – volume: 11 start-page: 1322 year: 2018 end-page: 1330 ident: b0265 article-title: One-dimension carbon self-doping g-C publication-title: Nano. Res. – volume: 358 start-page: 196 year: 2015 end-page: 203 ident: b0020 article-title: Enhanced visible light photocatalytic H publication-title: Appl. Surf. Sci. – volume: 26 start-page: 4920 year: 2014 end-page: 4935 ident: b0190 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. – volume: 271 start-page: 265 year: 2013 end-page: 270 ident: b0150 article-title: Preparation of graphene oxide-Ag publication-title: Appl. Surf. Sci. – volume: 436 start-page: 319 year: 2018 end-page: 326 ident: b0130 article-title: Hydrothermal synthesis of BiVO publication-title: Appl. Surf. Sci. – volume: 409 start-page: 250 year: 2017 end-page: 260 ident: b0170 article-title: Novel Ag publication-title: Appl. Surf. Sci. – volume: 231 start-page: 368 year: 2018 end-page: 380 ident: b0230 article-title: Ag publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 19936 year: 2015 end-page: 19947 ident: b0225 article-title: Enhanced photocatalytic activity of g-C publication-title: J. Mater. Chem. A. – volume: 44 start-page: 73 year: 2018 end-page: 81 ident: b0290 article-title: Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution publication-title: Nano Energy – volume: 19 start-page: 10309 year: 2017 end-page: 10316 ident: b0155 article-title: Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag publication-title: Phys. Chem. Chem. Phys. – volume: 430 start-page: 234 year: 2018 end-page: 242 ident: b0180 article-title: MoS publication-title: Appl. Surf. Sci. – volume: 150 start-page: 564 year: 2014 end-page: 573 ident: b0335 article-title: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C publication-title: Appl. Catal. B: Environ. – volume: 28 start-page: 164002 year: 2017 ident: b0255 article-title: WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation publication-title: Nanotechnology – volume: 7 start-page: 15285 year: 2015 end-page: 15293 ident: b0315 article-title: Tuning the morphology of g-C publication-title: ACS Appl. Mater. Interf. – volume: 391 start-page: 175 year: 2017 end-page: 183 ident: b0045 article-title: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 430 start-page: 301 year: 2018 end-page: 308 ident: b0275 article-title: Fabrication of modified g-C publication-title: Appl. Surf. Sci. – volume: 698 start-page: 410 year: 2017 end-page: 419 ident: b0175 article-title: A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates publication-title: J. Alloy Compd. – volume: 219 start-page: 439 year: 2017 end-page: 449 ident: b0215 article-title: Synthesis of Z-scheme Ag publication-title: Appl. Catal. B: Environ. – volume: 2 start-page: 1800006 year: 2018 ident: b0005 article-title: Constructing 2D/2D Fe publication-title: Solar RRL – volume: 430 start-page: 293 year: 2018 end-page: 300 ident: b0285 article-title: Double Z-scheme ZnO/ZnS/g-C publication-title: Appl. Surf. Sci. – volume: 38 start-page: 2021 year: 2017 end-page: 2029 ident: b0245 article-title: Construction of Z-scheme Ag publication-title: Chin. J. Catal. – volume: 358 start-page: 296 year: 2015 end-page: 303 ident: b0060 article-title: g-C publication-title: Appl. Surf. Sci. – volume: 160 start-page: 658 year: 2014 end-page: 665 ident: b0135 article-title: Enhanced photocatalytic performance of Ag publication-title: Appl. Catal. B: Environ. – volume: 12 start-page: 6735 year: 2016 end-page: 6744 ident: b0050 article-title: Embedding Au quantum dots in ramous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution publication-title: Small – volume: 317 start-page: 913 year: 2017 end-page: 924 ident: b0310 article-title: Z-scheme CdS/g-C publication-title: Chem. Eng. J. – volume: 3 start-page: 1782 year: 2013 end-page: 1789 ident: b0300 article-title: Noble metal-free Ni(OH) publication-title: Catal. Sci. Technol. – volume: 5 start-page: 4249 year: 2017 end-page: 4257 ident: b0035 article-title: Highly efficient and stable gold NPs decorated ZnO/CdS nanotube arrays photoanode for enhanced photoelectrochemical water splitting publication-title: ACS Sustain. Chem. Eng. – volume: 26 start-page: 3314 year: 2016 end-page: 3323 ident: b0070 article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting publication-title: Adv. Funct. Mater. – volume: 176 start-page: 44 year: 2015 end-page: 52 ident: b0090 article-title: Sulfur-doped g-C publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 8228 year: 2017 end-page: 8234 ident: b0270 article-title: g-C publication-title: ACS Catal. – volume: 392 start-page: 531 year: 2017 end-page: 539 ident: b0115 article-title: Effect of rutile TiO publication-title: Appl. Surf. Sci. – volume: 46 start-page: 6417 year: 2017 end-page: 6424 ident: b0305 article-title: A facile hydrothermal synthesis of carbon dots modified g-C publication-title: Dalton Trans. – volume: 38 start-page: 1936 year: 2017 end-page: 1955 ident: b0100 article-title: A review on TiO publication-title: Chin. J. Catal. – volume: 391 start-page: 202 year: 2017 end-page: 210 ident: b0185 article-title: Facile preparation of Z-scheme WO publication-title: Appl. Surf. Sci. – volume: 7 start-page: 6000 year: 2017 end-page: 6007 ident: b0065 article-title: Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction publication-title: ACS Catal. – volume: 405 start-page: 359 year: 2017 end-page: 371 ident: b0125 article-title: Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO publication-title: Appl. Surf. Sci. – volume: 55 start-page: 8314 year: 2016 end-page: 8318 ident: b0110 article-title: A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO publication-title: Angew. Chem. Int. Ed. – volume: 38 start-page: 2160 year: 2017 end-page: 2170 ident: b0220 article-title: Construction of carbon nitride and MoS publication-title: Chin. J. Catal. – volume: 430 start-page: 108 year: 2018 end-page: 115 ident: b0145 article-title: Solar photocatalytic water oxidation over Ag publication-title: Appl. Surf. Sci. – volume: 42 start-page: 18443 year: 2016 end-page: 18452 ident: b0250 article-title: Novel spindle-shaped nanoporous TiO publication-title: Ceram. Int. – volume: 18 start-page: 9636 year: 2016 end-page: 9644 ident: b0105 article-title: Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO publication-title: Phys. Chem. Chem. Phys. – volume: 352 start-page: 532 year: 2017 end-page: 541 ident: b0200 article-title: A direct Z-scheme g-C publication-title: J. Catal. – volume: 8 start-page: 1701503 year: 2018 ident: b0015 article-title: g-C publication-title: Adv. Energy. Mater. – volume: 219 start-page: 693 year: 2017 end-page: 704 ident: b0040 article-title: Direct Z-scheme g-C publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 559 year: 2010 end-page: 564 ident: b0120 article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation publication-title: Nat. Mater. – volume: 5 start-page: 3230 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0295 article-title: Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA08310B – volume: 219 start-page: 693 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0040 article-title: Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.018 – volume: 726 start-page: 221 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0320 article-title: Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2017.07.330 – volume: 225 start-page: 40 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0160 article-title: Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.045 – volume: 26 start-page: 3314 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0070 article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505626 – volume: 392 start-page: 531 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0115 article-title: Effect of rutile TiO2 on the photocatalytic performance of g-C3N4/brookite-TiO2-xNy photocatalyst for NO decomposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.075 – volume: 3 start-page: 363 year: 2013 ident: 10.1016/j.apsusc.2018.06.156_b0330 article-title: Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance publication-title: ACS Catal. doi: 10.1021/cs3008126 – volume: 7 start-page: 8228 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0270 article-title: g-C3N4 hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H2 evolution publication-title: ACS Catal. doi: 10.1021/acscatal.7b03266 – volume: 405 start-page: 60 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0030 article-title: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.01.285 – volume: 430 start-page: 234 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0180 article-title: MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.042 – volume: 12 start-page: 6735 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0050 article-title: Embedding Au quantum dots in ramous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution publication-title: Small doi: 10.1002/smll.201602870 – volume: 231 start-page: 368 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0230 article-title: Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.03.036 – volume: 436 start-page: 319 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0130 article-title: Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.12.054 – volume: 19 start-page: 10309 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0155 article-title: Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag3PO4 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01043E – volume: 209 start-page: 720 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0240 article-title: In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.03.048 – volume: 427 start-page: 645 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0095 article-title: In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2 evolution performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.050 – volume: 176 start-page: 44 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0090 article-title: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2 reduction performance publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.03.045 – volume: 430 start-page: 293 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0285 article-title: Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.186 – volume: 200 start-page: 666 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0325 article-title: Fast assembly of Ag3PO4 nanoparticles within three-dimensional graphene aerogels for efficient photocatalytic oxygen evolution from water splitting under visible light publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.07.056 – volume: 430 start-page: 301 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0275 article-title: Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.185 – volume: 219 start-page: 439 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0215 article-title: Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.07.076 – volume: 8 start-page: 526 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0075 article-title: Bio-inspired organic cobalt(II) phosphonates toward water oxidation publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03234A – volume: 29 start-page: 1601694 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0080 article-title: Heterojunction photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 391 start-page: 202 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0185 article-title: Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.055 – volume: 44 start-page: 73 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0290 article-title: Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.059 – volume: 8 start-page: 1350 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0210 article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution publication-title: ChemSusChem doi: 10.1002/cssc.201403168 – volume: 4 start-page: 18627 year: 2014 ident: 10.1016/j.apsusc.2018.06.156_b0140 article-title: Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria publication-title: RSC Adv. doi: 10.1039/C4RA01559B – volume: 2 start-page: 1800006 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0005 article-title: Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance publication-title: Solar RRL doi: 10.1002/solr.201800006 – volume: 38 start-page: 2021 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0245 article-title: Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62942-5 – volume: 46 start-page: 6417 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0305 article-title: A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2 evolution performance publication-title: Dalton Trans. doi: 10.1039/C7DT00773F – volume: 28 start-page: 164002 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0255 article-title: WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation publication-title: Nanotechnology doi: 10.1088/1361-6528/aa651a – volume: 430 start-page: 448 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0010 article-title: In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.165 – volume: 38 start-page: 2160 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0220 article-title: Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62911-5 – volume: 18 start-page: 9636 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0105 article-title: Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP00580B – volume: 231 start-page: 101 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0025 article-title: Dual-cocatalysts decorated ramous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.03.014 – volume: 46 start-page: 4877 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0085 article-title: Action spectra in semiconductor photocatalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00136C – volume: 55 start-page: 8314 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0110 article-title: A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO2 for efficient CO2 photoreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602796 – volume: 352 start-page: 532 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0200 article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance publication-title: J. Catal. doi: 10.1016/j.jcat.2017.06.006 – volume: 317 start-page: 913 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0310 article-title: Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.129 – volume: 409 start-page: 250 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0170 article-title: Novel Ag3PO4/MoO3 p-n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.03.025 – volume: 5 start-page: 4249 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0035 article-title: Highly efficient and stable gold NPs decorated ZnO/CdS nanotube arrays photoanode for enhanced photoelectrochemical water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00242 – volume: 3 start-page: 19936 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0225 article-title: Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA05503B – volume: 38 start-page: 1936 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0100 article-title: A review on TiO2-based Z-scheme photocatalysts publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62962-0 – volume: 7 start-page: 6000 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0065 article-title: Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b00937 – volume: 358 start-page: 296 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0060 article-title: g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.066 – volume: 425 start-page: 788 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0195 article-title: Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.082 – volume: 106 start-page: 55 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0260 article-title: Noble metal-free NiS/P-S codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.12.001 – volume: 9 start-page: 43704 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0205 article-title: OD/2D Z-Scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.7b14275 – volume: 42 start-page: 18443 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0250 article-title: Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.08.179 – volume: 391 start-page: 175 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0045 article-title: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.104 – volume: 160 start-page: 658 year: 2014 ident: 10.1016/j.apsusc.2018.06.156_b0135 article-title: Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.06.015 – volume: 43 start-page: 11588 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0165 article-title: In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.178 – volume: 430 start-page: 108 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0145 article-title: Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.290 – volume: 26 start-page: 4920 year: 2014 ident: 10.1016/j.apsusc.2018.06.156_b0190 article-title: All-solid-state Z-scheme photocatalytic systems publication-title: Adv. Mater. doi: 10.1002/adma.201400288 – volume: 168 start-page: 180 year: 2016 ident: 10.1016/j.apsusc.2018.06.156_b0280 article-title: Construction of g-C3N4-WO3-Bi2WO6 double Z-scheme system with enhanced photoelectrochemical performance publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.058 – volume: 7 start-page: 15285 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0315 article-title: Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.5b02649 – volume: 358 start-page: 196 year: 2015 ident: 10.1016/j.apsusc.2018.06.156_b0020 article-title: Enhanced visible light photocatalytic H2 production of g-C3N4/WS2 composite heterostructures publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.250 – volume: 405 start-page: 359 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0125 article-title: Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.025 – volume: 698 start-page: 410 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0175 article-title: A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2016.12.231 – volume: 391 start-page: 184 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0055 article-title: Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.145 – volume: 38 start-page: 337 year: 2017 ident: 10.1016/j.apsusc.2018.06.156_b0235 article-title: Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62570-6 – volume: 271 start-page: 265 year: 2013 ident: 10.1016/j.apsusc.2018.06.156_b0150 article-title: Preparation of graphene oxide-Ag3PO4 composite photocatalyst with high visible light photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.01.173 – volume: 11 start-page: 1322 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0265 article-title: One-dimension carbon self-doping g-C3N4 nanotubes: synthesis and application in dye-sensitized solar cells publication-title: Nano. Res. doi: 10.1007/s12274-017-1747-4 – volume: 8 start-page: 1701503 year: 2018 ident: 10.1016/j.apsusc.2018.06.156_b0015 article-title: g-C3N4-based heterostructured photocatalysts publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201701503 – volume: 3 start-page: 1782 year: 2013 ident: 10.1016/j.apsusc.2018.06.156_b0300 article-title: Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2 production activity publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20878h – volume: 9 start-page: 559 year: 2010 ident: 10.1016/j.apsusc.2018.06.156_b0120 article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation publication-title: Nat. Mater. doi: 10.1038/nmat2780 – volume: 150 start-page: 564 year: 2014 ident: 10.1016/j.apsusc.2018.06.156_b0335 article-title: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.12.053 |
SSID | ssj0012873 |
Score | 2.6224103 |
Snippet | [Display omitted]
•g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 369 |
SubjectTerms | Ag3PO4 Composite photocatalyst g-C3N4 Oxygen evolution Water splitting Z-scheme |
Title | Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting |
URI | https://dx.doi.org/10.1016/j.apsusc.2018.06.156 |
Volume | 456 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn1gfZQ9e1ybZzWOPpVqqYhVUEC9hN9nVijalTdVe_O3O5CEVRMFT2GQWwuxk5pvNzLeEHBoXQLC0LuOJp5gQFj4p40qmAWobbsEhBtgofNEPerfi7M6_WyCduhcGyyor31_69MJbV3dalTZbo8GgdY08Isi-BUYJUVhg3i5EiFZ-9PFV5gHut_zLDMLYHeTV7XNFjZeCTHSCRIZuweLp4jHWP4WnuZDTXSOrFVak7fJ11smCGW6QlTkGwU0yOZ6CxD2DHNW8GPrAOrwvWu0HfnWJF-8iuxS02PMbzyiWj2ONlqGjxyzPip2b2SSngFvpBFNcmr3PwKCoea0MkmL3CX0DPAoSAFeLIuktcts9uen0WHWOAks4lznjkXYM154KbMphyYQvYWBs6qtQ2cQ4oU41LIx0lJWRjfzUjZQOhfCVTEOe8G2yOMyGZodQG8GzNDSpr7XwbSK5UJ4bWMEdK6WfNgiv1RcnFck4nnXxHNfVZE9xqfQYlR47QQxKbxD2NWtUkmz8IR_WKxN_M5YY4sCvM3f_PXOPLOOoDFv7ZDEfT80B4JFcNwuDa5Kl9ul5r_8JjSTigQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB6xHKAHVJaKHR_o0bwkdhYfekBQ9Ci8R6WChLi4dmKzqLw8kVB4F_4Uf5BxFkQlVCQkTlFiO7LHk1mcb2YANo2PRrCwPmVpoCjnFj8p4wuq0dQ2zKJAjFygcK8fdU_4j9PwdAwe21gYB6tsZH8t0ytp3TzpNNTsDC8vO79cHhGXfQuZErUw9xpk5YEZ3aHfVnzb38VN_hoEe9-Pd7q0KS1AU8ZESVmiPcN0oCKbMVwFDwXeGJuFKlY2NV6sM41zFZ6yIrFJmPmJ0jHnoRJZzFKG7x2HSY7iwpVN2Hp4xpWgvK9_a-PsXDhS0MbrVaAyha5v4TIn-lXaUN_VzX5NH77QcXufYaYxTsl2vf5ZGDODOfj0ImXhPBS7t9jjjKJTbK4NOac7rM872-fs55G7BL38iJPqkPFmRBxe3YHCDBle5GVeHRWNipKgoUwK51OT_H6EHEzM3-YLIC7chdyhAYw90D6uUNkLcPIh1P0CE4N8YBaB2ATbsthkodY8tKlgXAV-ZDnzrBBhtgSsJZ9Mm6zmrrjGH9nC165kTXTpiC69SCLRl4A-jxrWWT3e6B-3OyP_4U6Jiue_I5ffPXIDprrHvUN5uN8_WIFp11LrzFWYKG9uzRoaQ6Ver5iPwO-P5vYnVmMhZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Z-scheme+g-C3N4%2FAg3PO4%2FAg2MoO4+ternary+composite+photocatalyst+for+solar+oxygen+evolution+from+water+splitting&rft.jtitle=Applied+surface+science&rft.au=Liu%2C+Wei&rft.au=Shen%2C+Jun&rft.au=Yang%2C+Xiaofei&rft.au=Liu%2C+Qinqin&rft.date=2018-10-31&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=456&rft.spage=369&rft.epage=378&rft_id=info:doi/10.1016%2Fj.apsusc.2018.06.156&rft.externalDocID=S0169433218317240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |