Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting

[Display omitted] •g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges. Semiconductor-based solar-driven phot...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 456; pp. 369 - 378
Main Authors Liu, Wei, Shen, Jun, Yang, Xiaofei, Liu, Qinqin, Tang, Hua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges. Semiconductor-based solar-driven photocatalytic water splitting has been considered as one of the most promising solutions to solve the problem of fossil-based energy crisis, while the development of advanced photocatalytic materials for high-performance oxygen evolution from water splitting is the biggest challenge we are facing. We report the fabrication of novel g-C3N4/Ag3PO4/Ag2MoO4 ternary composite materials and the exploration of heterostructure materials for water oxidation under LED illumination. The hybridization of three semiconductors has been confirmed by microscopic study, chemical and structural analyses. Enhanced oxygen-producing activity over the obtained ternary composite photocatalysts was observed. The reasons responsible for the enhanced oxygen-evolving performance can be ascribed to the improved light absorption toward visible light, faster charge separation and charge transportation, as well as more powerful water oxidation capability originating from the in-situ construction of dual Z-scheme-type channels under visible light irradiation. The key role of in-situ formed metallic Ag as the electron mediator is suggested based on the theoretical and experimental results. The successful synthesis of fascinating ternary water oxidation photocatalysts provides new insights into the development of novel all-solid-state Z-scheme photocatalytic systems for energy and environmental applications.
AbstractList [Display omitted] •g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from water splitting.•The formation of dual Z-scheme system promotes the separation of photo-generated charges. Semiconductor-based solar-driven photocatalytic water splitting has been considered as one of the most promising solutions to solve the problem of fossil-based energy crisis, while the development of advanced photocatalytic materials for high-performance oxygen evolution from water splitting is the biggest challenge we are facing. We report the fabrication of novel g-C3N4/Ag3PO4/Ag2MoO4 ternary composite materials and the exploration of heterostructure materials for water oxidation under LED illumination. The hybridization of three semiconductors has been confirmed by microscopic study, chemical and structural analyses. Enhanced oxygen-producing activity over the obtained ternary composite photocatalysts was observed. The reasons responsible for the enhanced oxygen-evolving performance can be ascribed to the improved light absorption toward visible light, faster charge separation and charge transportation, as well as more powerful water oxidation capability originating from the in-situ construction of dual Z-scheme-type channels under visible light irradiation. The key role of in-situ formed metallic Ag as the electron mediator is suggested based on the theoretical and experimental results. The successful synthesis of fascinating ternary water oxidation photocatalysts provides new insights into the development of novel all-solid-state Z-scheme photocatalytic systems for energy and environmental applications.
Author Tang, Hua
Shen, Jun
Liu, Wei
Yang, Xiaofei
Liu, Qinqin
Author_xml – sequence: 1
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 2
  givenname: Jun
  surname: Shen
  fullname: Shen, Jun
  organization: School of Pharmacy, Suzhou Vocational Health College, Suzhou 212013, PR China
– sequence: 3
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei_yang1980@163.com
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 4
  givenname: Qinqin
  surname: Liu
  fullname: Liu, Qinqin
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
– sequence: 5
  givenname: Hua
  surname: Tang
  fullname: Tang, Hua
  email: huatang79@163.com
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
BookMark eNqFkMtOwzAQRS0EEm3hD1j4B5LacZ4skKrylAplARs2luOMU1dJHNluoX9PorJiAavRaOZczZwpOu1MBwhdURJSQtP5NhS92zkZRoTmIUlDmqQnaELzjAVJksenaDKsFUHMWHSOps5tCaHRMJ0gd7sTDf4InNxAC7gOluwlni9q9roeS_Rs1jH2YDthD1iatjdOe8D9xngjhRfNwXmsjMXONMJi83WoocOwN83Oa9NhZU2LP8WQgF3faO91V1-gMyUaB5c_dYbe7-_elo_Bav3wtFysAslY4QOWlwRYGYlUVQykjJNiaEBViciEkkCysiqBqYIIVeQqTyqaizKL40QUVcYkm6HrY660xjkLikvtxXiWt0I3nBI-6uNbftTHR32cpHzQN8DxL7i3uh0s_IfdHDEYHttrsNxJDZ2ESluQnldG_x3wDTrzkW8
CitedBy_id crossref_primary_10_1016_j_mseb_2023_116413
crossref_primary_10_1039_C9RA08292A
crossref_primary_10_1016_j_apsusc_2020_145499
crossref_primary_10_30799_jespr_241_24100101
crossref_primary_10_1002_cssc_202000177
crossref_primary_10_1016_j_solmat_2020_110624
crossref_primary_10_1016_j_chemosphere_2022_136912
crossref_primary_10_3390_nano10050929
crossref_primary_10_1016_j_ceramint_2021_05_054
crossref_primary_10_1007_s11356_021_17286_9
crossref_primary_10_1016_j_apsusc_2019_143860
crossref_primary_10_1016_j_apsusc_2019_144042
crossref_primary_10_1016_j_apcatb_2019_118395
crossref_primary_10_1016_j_materresbull_2023_112423
crossref_primary_10_1021_acsomega_9b01146
crossref_primary_10_1016_j_solidstatesciences_2019_106102
crossref_primary_10_1016_j_apcatb_2018_11_056
crossref_primary_10_1016_j_matlet_2021_129388
crossref_primary_10_1016_j_apsusc_2018_08_189
crossref_primary_10_1016_j_apsusc_2019_143991
crossref_primary_10_1016_j_inoche_2024_112227
crossref_primary_10_1016_j_molliq_2019_111114
crossref_primary_10_1038_s41598_019_45672_4
crossref_primary_10_1039_D4RA01593B
crossref_primary_10_1016_j_jallcom_2021_162920
crossref_primary_10_1016_j_jiec_2019_07_014
crossref_primary_10_1002_cctc_202100135
crossref_primary_10_1016_j_jes_2022_01_010
crossref_primary_10_1016_j_cjsc_2024_100214
crossref_primary_10_1016_j_apsusc_2018_10_090
crossref_primary_10_1016_j_ijhydene_2020_09_028
crossref_primary_10_1016_j_jallcom_2020_153975
crossref_primary_10_1080_08927014_2019_1653453
crossref_primary_10_1007_s10853_019_04252_7
crossref_primary_10_1016_j_jhazmat_2020_123790
crossref_primary_10_1039_D0NH00046A
crossref_primary_10_1016_j_ceramint_2020_10_210
crossref_primary_10_1016_j_jphotochem_2019_01_015
crossref_primary_10_1016_j_materresbull_2023_112448
crossref_primary_10_1016_j_mtsust_2023_100514
crossref_primary_10_1016_j_jcis_2020_07_001
crossref_primary_10_1016_j_jmrt_2020_10_093
crossref_primary_10_1007_s11144_024_02568_3
crossref_primary_10_1021_acsami_9b04302
crossref_primary_10_1002_admi_202101680
crossref_primary_10_1039_D0CP05673A
crossref_primary_10_1016_j_apsusc_2019_05_360
crossref_primary_10_3390_ijerph192315551
crossref_primary_10_1016_j_apcatb_2019_01_088
crossref_primary_10_1016_j_molliq_2019_02_068
crossref_primary_10_1021_acs_langmuir_1c01901
crossref_primary_10_1016_j_jallcom_2019_152883
crossref_primary_10_1016_j_jmst_2020_03_033
crossref_primary_10_1016_j_jphotochem_2022_113800
crossref_primary_10_1016_j_surfin_2024_104898
crossref_primary_10_1007_s11144_021_01934_9
crossref_primary_10_1016_j_ceramint_2022_04_176
crossref_primary_10_1021_acssuschemeng_9b00252
crossref_primary_10_1039_D1SE00290B
crossref_primary_10_1016_j_apsusc_2022_155819
crossref_primary_10_5004_dwt_2020_26062
crossref_primary_10_1007_s12274_021_4045_0
crossref_primary_10_1016_j_apsusc_2019_143820
crossref_primary_10_1016_j_colsurfa_2020_124457
crossref_primary_10_1016_j_jphotochem_2019_111960
crossref_primary_10_1016_j_cej_2023_146786
crossref_primary_10_1016_S1872_2067_18_63166_3
crossref_primary_10_1016_j_optmat_2020_110076
crossref_primary_10_1016_j_seppur_2021_120194
crossref_primary_10_1016_j_jphotochem_2024_115537
crossref_primary_10_1016_j_materresbull_2020_111078
crossref_primary_10_1016_j_jpcs_2021_110283
crossref_primary_10_2139_ssrn_4125526
crossref_primary_10_1039_C9NR00887J
crossref_primary_10_1016_j_chemosphere_2020_126453
crossref_primary_10_1007_s10904_020_01626_2
crossref_primary_10_1016_j_jcis_2025_01_195
crossref_primary_10_1016_j_inoche_2023_111830
crossref_primary_10_1088_1361_6528_ac15c8
crossref_primary_10_1007_s12598_019_01259_6
crossref_primary_10_1016_j_chemosphere_2023_139019
crossref_primary_10_1016_j_ijhydene_2019_07_070
crossref_primary_10_1016_j_apsusc_2020_147234
crossref_primary_10_1016_j_colsurfa_2019_124041
crossref_primary_10_1039_D0NJ04322B
crossref_primary_10_1039_D0NA00613K
crossref_primary_10_1007_s11356_023_31096_1
crossref_primary_10_3390_pr9111959
crossref_primary_10_1016_j_ccr_2022_214596
crossref_primary_10_1016_j_jiec_2022_10_001
crossref_primary_10_1016_j_colsurfa_2024_134765
crossref_primary_10_1021_acsomega_9b00806
crossref_primary_10_1021_acsami_0c05961
crossref_primary_10_1016_j_seppur_2023_123922
crossref_primary_10_1016_j_jhazmat_2019_121417
crossref_primary_10_1016_j_ijhydene_2020_03_034
crossref_primary_10_1016_j_seppur_2021_118414
crossref_primary_10_1080_00958972_2020_1850706
crossref_primary_10_1039_D0NJ04290K
crossref_primary_10_1021_acsomega_1c00872
crossref_primary_10_1016_j_colsurfa_2020_124583
crossref_primary_10_1016_j_envpol_2022_119131
crossref_primary_10_1016_j_ijhydene_2025_03_049
crossref_primary_10_1016_j_apsusc_2021_150955
crossref_primary_10_1080_01614940_2023_2250652
crossref_primary_10_1016_j_jallcom_2019_151918
crossref_primary_10_1016_j_mtadv_2019_100025
crossref_primary_10_1016_j_apsusc_2019_07_121
crossref_primary_10_1016_j_apsusc_2020_148137
crossref_primary_10_1016_j_matlet_2022_132544
crossref_primary_10_1016_j_ceramint_2019_10_081
crossref_primary_10_3389_fchem_2024_1359895
crossref_primary_10_1016_j_cej_2019_121967
crossref_primary_10_1016_j_cej_2024_150983
crossref_primary_10_1016_j_jcis_2021_10_178
crossref_primary_10_1016_j_apsusc_2018_12_301
crossref_primary_10_1016_j_jece_2024_112962
crossref_primary_10_1016_j_catcom_2022_106556
crossref_primary_10_1016_j_apsusc_2020_148487
crossref_primary_10_1016_j_jiec_2021_11_008
crossref_primary_10_1039_D0NJ01060J
crossref_primary_10_1016_j_xcrp_2021_100355
crossref_primary_10_1016_j_cej_2019_06_029
crossref_primary_10_1016_j_ceramint_2020_08_058
crossref_primary_10_1016_j_ceramint_2019_08_239
crossref_primary_10_1021_acsanm_9b00428
crossref_primary_10_1016_j_ijhydene_2024_06_386
crossref_primary_10_1016_j_jmrt_2020_02_034
crossref_primary_10_1039_D0NJ05681B
crossref_primary_10_1016_j_inoche_2021_109134
crossref_primary_10_1016_j_physrep_2022_07_003
crossref_primary_10_1016_j_ceramint_2020_10_076
crossref_primary_10_1016_j_ceramint_2021_07_281
crossref_primary_10_1016_j_cplett_2020_137467
crossref_primary_10_1016_j_inoche_2023_110734
crossref_primary_10_1002_aenm_202003303
crossref_primary_10_1016_j_mtsust_2024_101069
crossref_primary_10_1016_j_ceramint_2019_08_123
crossref_primary_10_1016_j_cej_2021_130076
crossref_primary_10_1016_j_inoche_2020_107904
crossref_primary_10_1016_S1872_2067_19_63430_3
crossref_primary_10_1016_S1872_2067_19_63513_8
crossref_primary_10_1016_j_inoche_2023_111375
crossref_primary_10_1016_j_cej_2023_146281
crossref_primary_10_1016_j_jphotochem_2022_114102
crossref_primary_10_1016_j_apt_2022_103708
crossref_primary_10_1021_acs_est_9b01453
crossref_primary_10_1016_j_apsusc_2018_09_216
crossref_primary_10_1016_j_seppur_2020_117691
crossref_primary_10_1016_j_solidstatesciences_2019_105967
crossref_primary_10_1016_j_ijhydene_2018_09_079
crossref_primary_10_1016_j_molliq_2019_111826
crossref_primary_10_1088_1361_6528_ab3f15
crossref_primary_10_1016_j_jece_2021_105963
crossref_primary_10_1016_j_jphotochem_2019_04_007
crossref_primary_10_1016_j_seppur_2022_120984
crossref_primary_10_1016_j_electacta_2019_135194
crossref_primary_10_1016_j_jmrt_2021_01_110
crossref_primary_10_1021_acs_iecr_9b02766
crossref_primary_10_1038_s41598_018_34287_w
crossref_primary_10_1016_j_ceramint_2019_08_226
crossref_primary_10_1021_acs_analchem_1c00929
crossref_primary_10_1016_j_ceramint_2019_06_167
crossref_primary_10_1016_j_apsusc_2020_148842
crossref_primary_10_1021_acsomega_9b02042
crossref_primary_10_1016_j_apcatb_2020_118918
crossref_primary_10_1016_j_apmt_2023_101742
crossref_primary_10_1007_s11581_023_05346_8
crossref_primary_10_1016_j_apcatb_2019_118281
crossref_primary_10_1016_j_apsusc_2019_144613
crossref_primary_10_1016_j_seppur_2019_05_080
crossref_primary_10_1039_C8RA09815H
crossref_primary_10_1016_j_apsusc_2019_143647
crossref_primary_10_3390_molecules25061411
crossref_primary_10_1016_j_inoche_2023_110815
crossref_primary_10_1088_1361_6463_ac6e9e
crossref_primary_10_3139_146_111944
crossref_primary_10_1007_s10311_022_01466_1
crossref_primary_10_1016_j_apsusc_2018_12_285
crossref_primary_10_1016_j_cej_2019_02_083
crossref_primary_10_1007_s10562_020_03349_y
crossref_primary_10_1016_j_jiec_2021_04_007
crossref_primary_10_1007_s10904_021_02047_5
crossref_primary_10_1016_j_ijhydene_2019_11_178
crossref_primary_10_1016_S1872_2067_19_63330_9
crossref_primary_10_1016_j_matchemphys_2020_124136
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_1088_2515_7655_abc1cf
crossref_primary_10_1016_j_ceramint_2019_08_203
crossref_primary_10_1016_S1872_2067_20_63595_1
crossref_primary_10_1016_j_apsadv_2022_100337
crossref_primary_10_1016_j_cej_2019_123767
crossref_primary_10_1021_acs_chemrev_1c00686
crossref_primary_10_1016_j_apsusc_2019_143771
crossref_primary_10_1016_j_jclepro_2022_132481
crossref_primary_10_1039_C9RA07175J
crossref_primary_10_1016_j_jiec_2019_12_003
Cites_doi 10.1039/C6TA08310B
10.1016/j.apcatb.2017.08.018
10.1016/j.jallcom.2017.07.330
10.1016/j.apcatb.2017.11.045
10.1002/adfm.201505626
10.1016/j.apsusc.2016.09.075
10.1021/cs3008126
10.1021/acscatal.7b03266
10.1016/j.apsusc.2017.01.285
10.1016/j.apsusc.2017.08.042
10.1002/smll.201602870
10.1016/j.apcatb.2018.03.036
10.1016/j.apsusc.2017.12.054
10.1039/C7CP01043E
10.1016/j.apcatb.2017.03.048
10.1016/j.apsusc.2017.08.050
10.1016/j.apcatb.2015.03.045
10.1016/j.apsusc.2017.07.186
10.1016/j.apcatb.2016.07.056
10.1016/j.apsusc.2017.07.185
10.1016/j.apcatb.2017.07.076
10.1039/C4EE03234A
10.1002/adma.201601694
10.1016/j.apsusc.2016.07.055
10.1016/j.nanoen.2017.11.059
10.1002/cssc.201403168
10.1039/C4RA01559B
10.1002/solr.201800006
10.1016/S1872-2067(17)62942-5
10.1039/C7DT00773F
10.1088/1361-6528/aa651a
10.1016/j.apsusc.2017.06.165
10.1016/S1872-2067(17)62911-5
10.1039/C6CP00580B
10.1016/j.apcatb.2018.03.014
10.1039/C7CS00136C
10.1002/anie.201602796
10.1016/j.jcat.2017.06.006
10.1016/j.cej.2017.02.129
10.1016/j.apsusc.2017.03.025
10.1021/acssuschemeng.7b00242
10.1039/C5TA05503B
10.1016/S1872-2067(17)62962-0
10.1021/acscatal.7b00937
10.1016/j.apsusc.2015.08.066
10.1016/j.apsusc.2017.07.082
10.1016/j.catcom.2017.12.001
10.1021/acsami.7b14275
10.1016/j.ceramint.2016.08.179
10.1016/j.apsusc.2016.07.104
10.1016/j.apcatb.2014.06.015
10.1016/j.ceramint.2017.05.178
10.1016/j.apsusc.2017.07.290
10.1002/adma.201400288
10.1016/j.matlet.2016.01.058
10.1021/acsami.5b02649
10.1016/j.apsusc.2015.08.250
10.1016/j.apsusc.2017.02.025
10.1016/j.jallcom.2016.12.231
10.1016/j.apsusc.2016.06.145
10.1016/S1872-2067(16)62570-6
10.1016/j.apsusc.2013.01.173
10.1007/s12274-017-1747-4
10.1002/aenm.201701503
10.1039/c3cy20878h
10.1038/nmat2780
10.1016/j.apcatb.2013.12.053
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2018.06.156
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 378
ExternalDocumentID 10_1016_j_apsusc_2018_06_156
S0169433218317240
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
ID FETCH-LOGICAL-c339t-38b0e3b2a6fd3ecc459b2aefd5a7afce07bdbe3f90af98f85d18ab7445a9d73c3
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Tue Jul 01 02:09:12 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
Fri Feb 23 02:25:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords g-C3N4
Oxygen evolution
Water splitting
Z-scheme
Ag3PO4
Composite photocatalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-38b0e3b2a6fd3ecc459b2aefd5a7afce07bdbe3f90af98f85d18ab7445a9d73c3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_apsusc_2018_06_156
crossref_primary_10_1016_j_apsusc_2018_06_156
elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_06_156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-31
PublicationDateYYYYMMDD 2018-10-31
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-31
  day: 31
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Cheng, Wang, Jiang, Yu (b0230) 2018; 231
Wang, Li, Liu, Cheng, Ho, Yu (b0090) 2015; 176
Yang, Tang, Xu, Antonietti, Shalom (b0210) 2015; 8
Cui, Tian, Xian, Tang, Yang (b0145) 2018; 430
Wu, Li, Liu, Zhang (b0030) 2017; 405
Zhu, Xia, Li, Ho, Yu (b0045) 2017; 391
Li, Hao, Zhu (b0280) 2016; 168
Chen, Luo, Mo, Yu, Cheng (b0010) 2018; 430
Huang, Lin, Zhu, Weng, Wang, Fu, Long (b0110) 2016; 55
Ao, Wang, Wang, Hou, Qian (b0150) 2013; 271
Cui, Ding, Wang, Shi, Huang, Zuo, Kang (b0185) 2017; 391
Wang, Li, Liu, Chen, Wu, Guo, Na (b0165) 2017; 43
Kuang, Zheng, Liu, Lei, Wu, Li, Ma (b0050) 2016; 12
Ao, Bao, Wang, Wang (b0175) 2017; 698
Zhou, Du, Wang, Yin, Tu, Chen, Borgna, Xu (b0065) 2017; 7
Hu, Chen, Fu, Ba, Sun, Zhang, Zou (b0130) 2018; 436
Yi, Ye, Kikugawa, Kako, Ouyang, Stuart-Williams, Yang, Cao, Luo, Li, Liu, Withers (b0120) 2010; 9
Liu, Shen, Jiang, Zhao, Zhou, Zhao, Xu (b0270) 2017; 7
Wu, Chen, Wang, Yu (b0095) 2018; 427
Qi, Cheng, Yu, Ho (b0100) 2017; 38
Gong, Quan, Yu, Chen (b0215) 2017; 219
Niu, Qiao, Li, Huang, Zhai (b0290) 2018; 44
Fu, Yu, Jiang, Cheng (b0015) 2018; 8
Liu, Xu, Si, Wang, Ran, He, Weng (b0260) 2018; 106
Yu, Chen, Shang, Chen, Gu, Peng (b0040) 2017; 219
Tian, Xian, Cui, Tang, Yang (b0275) 2018; 430
Teng, Tan, Li, Tang (b0170) 2017; 409
Li, Zhang, Li, Yang (b0055) 2017; 391
Akple, Low, Wageh, Al-Ghamdi, Yu, Zhang (b0020) 2015; 358
Huang, Xu, Zhou, Xie, Ma, Liu, Jing, Xu, Li (b0160) 2018; 225
Yang, Qin, Jiang, Li, Li, Tang (b0140) 2014; 4
Yu, Cao, Chen, Wang, Yu, Lei (b0135) 2014; 160
Li, Pan, Qu, Wang (b0265) 2018; 11
Shi, Guo, Yuan (b0240) 2017; 209
Di, Zhu, Cheng, Yu, Xu (b0200) 2017; 352
Wei, Kuang, Cheng, Chen, Long, Zhang, Liu (b0035) 2017; 5
Song, Wang, Zhang, Chen, Li (b0195) 2017; 425
Xu, Zhu, Jiang, Cheng, Yu (b0005) 2018; 2
Lee, Mills, O'Rourke (b0085) 2017; 46
Dong, Wu, Thirugnanam, Li (b0285) 2018; 430
Yang, Chen, Xu, Tang, Chen, Jiang (b0315) 2015; 7
Xin, Jin, Jia, Xia, Deng, Zhu, Chen, Chen (b0125) 2017; 405
Fu, Li, Liu, Yang, Tang (b0220) 2017; 38
Li, Wu, Yin, Katsumata, Wang (b0115) 2017; 392
Wang, Hu, Dai, Zhang, Liang (b0245) 2017; 38
Cheng, Shi, Hu, Guo (b0255) 2017; 28
Yu, Wang, Cheng, Lin, Huang (b0300) 2013; 3
Jin, Liang, Song, Xu, Li, Yao (b0320) 2017; 726
Low, Yu, Jaroniec, Wageh, Al-Ghamdi (b0080) 2017; 29
Chen, Hu, Meng, Fu (b0335) 2014; 150
Yu, Xu, Peng (b0225) 2015; 3
Zhuang, Zhang, Chu, Long, An, Zhang, Lin, Zhang, Wang (b0105) 2016; 18
Cui, Li, Qiu, Hu, Li, Li, Gao, Tang (b0325) 2017; 200
Jo, Selvam (b0310) 2017; 317
Tang, Chang, Jiang, Tang, Liang (b0250) 2016; 42
Wang, Xu, Xia, Wang, Yu, Yu (b0155) 2017; 19
Kuang, Su, Li, Luo, Xing, Liu (b0060) 2015; 358
Fu, Liang, Guo, Tang, Liu (b0180) 2018; 430
Chen, Ma, Liu, Li, Su, Davey, Qiao (b0070) 2016; 26
Tang, Fu, Chang, Xie, Tang (b0235) 2017; 38
Yang, Cui, Li, Qin, Zhang, Tang (b0330) 2013; 3
Wang, Zhang, Li, Li, Wu (b0205) 2017; 9
Wei, Huang, Gu, Wang, Zeng, Chen, Liu (b0025) 2018; 231
Xia, Zhu, Yu, Cao, Jaroniec (b0295) 2017; 5
Wang, Cheng, Yu, Yu (b0305) 2017; 46
Zhou, Yu, Jaroniec (b0190) 2014; 26
Zhou, Wang, Goh, Hong, Han, Mao, Xu (b0075) 2015; 8
Song (10.1016/j.apsusc.2018.06.156_b0195) 2017; 425
Qi (10.1016/j.apsusc.2018.06.156_b0100) 2017; 38
Yu (10.1016/j.apsusc.2018.06.156_b0300) 2013; 3
Yu (10.1016/j.apsusc.2018.06.156_b0225) 2015; 3
Xu (10.1016/j.apsusc.2018.06.156_b0230) 2018; 231
Yi (10.1016/j.apsusc.2018.06.156_b0120) 2010; 9
Yang (10.1016/j.apsusc.2018.06.156_b0330) 2013; 3
Huang (10.1016/j.apsusc.2018.06.156_b0160) 2018; 225
Xia (10.1016/j.apsusc.2018.06.156_b0295) 2017; 5
Dong (10.1016/j.apsusc.2018.06.156_b0285) 2018; 430
Zhou (10.1016/j.apsusc.2018.06.156_b0065) 2017; 7
Fu (10.1016/j.apsusc.2018.06.156_b0015) 2018; 8
Zhu (10.1016/j.apsusc.2018.06.156_b0045) 2017; 391
Chen (10.1016/j.apsusc.2018.06.156_b0070) 2016; 26
Li (10.1016/j.apsusc.2018.06.156_b0280) 2016; 168
Cui (10.1016/j.apsusc.2018.06.156_b0145) 2018; 430
Liu (10.1016/j.apsusc.2018.06.156_b0260) 2018; 106
Wang (10.1016/j.apsusc.2018.06.156_b0245) 2017; 38
Wang (10.1016/j.apsusc.2018.06.156_b0205) 2017; 9
Tang (10.1016/j.apsusc.2018.06.156_b0250) 2016; 42
Wei (10.1016/j.apsusc.2018.06.156_b0025) 2018; 231
Jo (10.1016/j.apsusc.2018.06.156_b0310) 2017; 317
Xu (10.1016/j.apsusc.2018.06.156_b0005) 2018; 2
Zhuang (10.1016/j.apsusc.2018.06.156_b0105) 2016; 18
Teng (10.1016/j.apsusc.2018.06.156_b0170) 2017; 409
Xin (10.1016/j.apsusc.2018.06.156_b0125) 2017; 405
Yu (10.1016/j.apsusc.2018.06.156_b0135) 2014; 160
Yang (10.1016/j.apsusc.2018.06.156_b0140) 2014; 4
Yang (10.1016/j.apsusc.2018.06.156_b0210) 2015; 8
Hu (10.1016/j.apsusc.2018.06.156_b0130) 2018; 436
Jin (10.1016/j.apsusc.2018.06.156_b0320) 2017; 726
Fu (10.1016/j.apsusc.2018.06.156_b0180) 2018; 430
Tian (10.1016/j.apsusc.2018.06.156_b0275) 2018; 430
Shi (10.1016/j.apsusc.2018.06.156_b0240) 2017; 209
Chen (10.1016/j.apsusc.2018.06.156_b0010) 2018; 430
Cheng (10.1016/j.apsusc.2018.06.156_b0255) 2017; 28
Huang (10.1016/j.apsusc.2018.06.156_b0110) 2016; 55
Di (10.1016/j.apsusc.2018.06.156_b0200) 2017; 352
Akple (10.1016/j.apsusc.2018.06.156_b0020) 2015; 358
Kuang (10.1016/j.apsusc.2018.06.156_b0060) 2015; 358
Zhou (10.1016/j.apsusc.2018.06.156_b0075) 2015; 8
Lee (10.1016/j.apsusc.2018.06.156_b0085) 2017; 46
Li (10.1016/j.apsusc.2018.06.156_b0055) 2017; 391
Chen (10.1016/j.apsusc.2018.06.156_b0335) 2014; 150
Gong (10.1016/j.apsusc.2018.06.156_b0215) 2017; 219
Wang (10.1016/j.apsusc.2018.06.156_b0305) 2017; 46
Liu (10.1016/j.apsusc.2018.06.156_b0270) 2017; 7
Yang (10.1016/j.apsusc.2018.06.156_b0315) 2015; 7
Wu (10.1016/j.apsusc.2018.06.156_b0030) 2017; 405
Wu (10.1016/j.apsusc.2018.06.156_b0095) 2018; 427
Yu (10.1016/j.apsusc.2018.06.156_b0040) 2017; 219
Ao (10.1016/j.apsusc.2018.06.156_b0150) 2013; 271
Wang (10.1016/j.apsusc.2018.06.156_b0155) 2017; 19
Tang (10.1016/j.apsusc.2018.06.156_b0235) 2017; 38
Wang (10.1016/j.apsusc.2018.06.156_b0165) 2017; 43
Zhou (10.1016/j.apsusc.2018.06.156_b0190) 2014; 26
Kuang (10.1016/j.apsusc.2018.06.156_b0050) 2016; 12
Cui (10.1016/j.apsusc.2018.06.156_b0185) 2017; 391
Li (10.1016/j.apsusc.2018.06.156_b0115) 2017; 392
Cui (10.1016/j.apsusc.2018.06.156_b0325) 2017; 200
Fu (10.1016/j.apsusc.2018.06.156_b0220) 2017; 38
Wang (10.1016/j.apsusc.2018.06.156_b0090) 2015; 176
Low (10.1016/j.apsusc.2018.06.156_b0080) 2017; 29
Ao (10.1016/j.apsusc.2018.06.156_b0175) 2017; 698
Li (10.1016/j.apsusc.2018.06.156_b0265) 2018; 11
Wei (10.1016/j.apsusc.2018.06.156_b0035) 2017; 5
Niu (10.1016/j.apsusc.2018.06.156_b0290) 2018; 44
References_xml – volume: 425
  start-page: 788
  year: 2017
  end-page: 795
  ident: b0195
  article-title: Enhanced performance of direct Z-scheme CuS-WO
  publication-title: Appl. Surf. Sci.
– volume: 427
  start-page: 645
  year: 2018
  end-page: 653
  ident: b0095
  article-title: In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 43704
  year: 2017
  end-page: 43715
  ident: b0205
  article-title: OD/2D Z-Scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C
  publication-title: ACS Appl. Mater. Interf.
– volume: 8
  start-page: 1350
  year: 2015
  end-page: 1358
  ident: b0210
  article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution
  publication-title: ChemSusChem
– volume: 8
  start-page: 526
  year: 2015
  end-page: 534
  ident: b0075
  article-title: Bio-inspired organic cobalt(II) phosphonates toward water oxidation
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 3230
  year: 2017
  end-page: 3238
  ident: b0295
  article-title: Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO
  publication-title: J. Mater. Chem. A.
– volume: 209
  start-page: 720
  year: 2017
  end-page: 728
  ident: b0240
  article-title: In situ synthesis of Z-scheme Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 391
  start-page: 184
  year: 2017
  end-page: 193
  ident: b0055
  article-title: Enhanced visible light activity on direct contact Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 231
  start-page: 101
  year: 2018
  end-page: 107
  ident: b0025
  article-title: Dual-cocatalysts decorated ramous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B: Environ.
– volume: 46
  start-page: 4877
  year: 2017
  end-page: 4894
  ident: b0085
  article-title: Action spectra in semiconductor photocatalysis
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 337
  year: 2017
  end-page: 347
  ident: b0235
  article-title: Construction of Ag
  publication-title: Chin. J. Catal.
– volume: 3
  start-page: 363
  year: 2013
  end-page: 369
  ident: b0330
  article-title: Fabrication of Ag
  publication-title: ACS Catal.
– volume: 430
  start-page: 448
  year: 2018
  end-page: 456
  ident: b0010
  article-title: In situ photodeposition of amorphous CoSx on the TiO
  publication-title: Appl. Surf. Sci.
– volume: 168
  start-page: 180
  year: 2016
  end-page: 183
  ident: b0280
  article-title: Construction of g-C
  publication-title: Mater. Lett.
– volume: 405
  start-page: 60
  year: 2017
  end-page: 70
  ident: b0030
  article-title: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 18627
  year: 2014
  end-page: 18636
  ident: b0140
  article-title: Bifunctional TiO
  publication-title: RSC Adv.
– volume: 225
  start-page: 40
  year: 2018
  end-page: 50
  ident: b0160
  article-title: Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 43
  start-page: 11588
  year: 2017
  end-page: 11595
  ident: b0165
  article-title: In-situ deposition of Ag
  publication-title: Ceram. Int.
– volume: 106
  start-page: 55
  year: 2018
  end-page: 59
  ident: b0260
  article-title: Noble metal-free NiS/P-S codoped g-C
  publication-title: Catal. Commun.
– volume: 200
  start-page: 666
  year: 2017
  end-page: 672
  ident: b0325
  article-title: Fast assembly of Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 29
  start-page: 1601694
  year: 2017
  ident: b0080
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
– volume: 726
  start-page: 221
  year: 2017
  end-page: 229
  ident: b0320
  article-title: Hydrothermal synthesis of g-C
  publication-title: J. Alloy Compd.
– volume: 11
  start-page: 1322
  year: 2018
  end-page: 1330
  ident: b0265
  article-title: One-dimension carbon self-doping g-C
  publication-title: Nano. Res.
– volume: 358
  start-page: 196
  year: 2015
  end-page: 203
  ident: b0020
  article-title: Enhanced visible light photocatalytic H
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 4920
  year: 2014
  end-page: 4935
  ident: b0190
  article-title: All-solid-state Z-scheme photocatalytic systems
  publication-title: Adv. Mater.
– volume: 271
  start-page: 265
  year: 2013
  end-page: 270
  ident: b0150
  article-title: Preparation of graphene oxide-Ag
  publication-title: Appl. Surf. Sci.
– volume: 436
  start-page: 319
  year: 2018
  end-page: 326
  ident: b0130
  article-title: Hydrothermal synthesis of BiVO
  publication-title: Appl. Surf. Sci.
– volume: 409
  start-page: 250
  year: 2017
  end-page: 260
  ident: b0170
  article-title: Novel Ag
  publication-title: Appl. Surf. Sci.
– volume: 231
  start-page: 368
  year: 2018
  end-page: 380
  ident: b0230
  article-title: Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 19936
  year: 2015
  end-page: 19947
  ident: b0225
  article-title: Enhanced photocatalytic activity of g-C
  publication-title: J. Mater. Chem. A.
– volume: 44
  start-page: 73
  year: 2018
  end-page: 81
  ident: b0290
  article-title: Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution
  publication-title: Nano Energy
– volume: 19
  start-page: 10309
  year: 2017
  end-page: 10316
  ident: b0155
  article-title: Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag
  publication-title: Phys. Chem. Chem. Phys.
– volume: 430
  start-page: 234
  year: 2018
  end-page: 242
  ident: b0180
  article-title: MoS
  publication-title: Appl. Surf. Sci.
– volume: 150
  start-page: 564
  year: 2014
  end-page: 573
  ident: b0335
  article-title: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 28
  start-page: 164002
  year: 2017
  ident: b0255
  article-title: WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation
  publication-title: Nanotechnology
– volume: 7
  start-page: 15285
  year: 2015
  end-page: 15293
  ident: b0315
  article-title: Tuning the morphology of g-C
  publication-title: ACS Appl. Mater. Interf.
– volume: 391
  start-page: 175
  year: 2017
  end-page: 183
  ident: b0045
  article-title: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 430
  start-page: 301
  year: 2018
  end-page: 308
  ident: b0275
  article-title: Fabrication of modified g-C
  publication-title: Appl. Surf. Sci.
– volume: 698
  start-page: 410
  year: 2017
  end-page: 419
  ident: b0175
  article-title: A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates
  publication-title: J. Alloy Compd.
– volume: 219
  start-page: 439
  year: 2017
  end-page: 449
  ident: b0215
  article-title: Synthesis of Z-scheme Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 2
  start-page: 1800006
  year: 2018
  ident: b0005
  article-title: Constructing 2D/2D Fe
  publication-title: Solar RRL
– volume: 430
  start-page: 293
  year: 2018
  end-page: 300
  ident: b0285
  article-title: Double Z-scheme ZnO/ZnS/g-C
  publication-title: Appl. Surf. Sci.
– volume: 38
  start-page: 2021
  year: 2017
  end-page: 2029
  ident: b0245
  article-title: Construction of Z-scheme Ag
  publication-title: Chin. J. Catal.
– volume: 358
  start-page: 296
  year: 2015
  end-page: 303
  ident: b0060
  article-title: g-C
  publication-title: Appl. Surf. Sci.
– volume: 160
  start-page: 658
  year: 2014
  end-page: 665
  ident: b0135
  article-title: Enhanced photocatalytic performance of Ag
  publication-title: Appl. Catal. B: Environ.
– volume: 12
  start-page: 6735
  year: 2016
  end-page: 6744
  ident: b0050
  article-title: Embedding Au quantum dots in ramous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution
  publication-title: Small
– volume: 317
  start-page: 913
  year: 2017
  end-page: 924
  ident: b0310
  article-title: Z-scheme CdS/g-C
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 1782
  year: 2013
  end-page: 1789
  ident: b0300
  article-title: Noble metal-free Ni(OH)
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 4249
  year: 2017
  end-page: 4257
  ident: b0035
  article-title: Highly efficient and stable gold NPs decorated ZnO/CdS nanotube arrays photoanode for enhanced photoelectrochemical water splitting
  publication-title: ACS Sustain. Chem. Eng.
– volume: 26
  start-page: 3314
  year: 2016
  end-page: 3323
  ident: b0070
  article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting
  publication-title: Adv. Funct. Mater.
– volume: 176
  start-page: 44
  year: 2015
  end-page: 52
  ident: b0090
  article-title: Sulfur-doped g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 8228
  year: 2017
  end-page: 8234
  ident: b0270
  article-title: g-C
  publication-title: ACS Catal.
– volume: 392
  start-page: 531
  year: 2017
  end-page: 539
  ident: b0115
  article-title: Effect of rutile TiO
  publication-title: Appl. Surf. Sci.
– volume: 46
  start-page: 6417
  year: 2017
  end-page: 6424
  ident: b0305
  article-title: A facile hydrothermal synthesis of carbon dots modified g-C
  publication-title: Dalton Trans.
– volume: 38
  start-page: 1936
  year: 2017
  end-page: 1955
  ident: b0100
  article-title: A review on TiO
  publication-title: Chin. J. Catal.
– volume: 391
  start-page: 202
  year: 2017
  end-page: 210
  ident: b0185
  article-title: Facile preparation of Z-scheme WO
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 6000
  year: 2017
  end-page: 6007
  ident: b0065
  article-title: Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 405
  start-page: 359
  year: 2017
  end-page: 371
  ident: b0125
  article-title: Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO
  publication-title: Appl. Surf. Sci.
– volume: 55
  start-page: 8314
  year: 2016
  end-page: 8318
  ident: b0110
  article-title: A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO
  publication-title: Angew. Chem. Int. Ed.
– volume: 38
  start-page: 2160
  year: 2017
  end-page: 2170
  ident: b0220
  article-title: Construction of carbon nitride and MoS
  publication-title: Chin. J. Catal.
– volume: 430
  start-page: 108
  year: 2018
  end-page: 115
  ident: b0145
  article-title: Solar photocatalytic water oxidation over Ag
  publication-title: Appl. Surf. Sci.
– volume: 42
  start-page: 18443
  year: 2016
  end-page: 18452
  ident: b0250
  article-title: Novel spindle-shaped nanoporous TiO
  publication-title: Ceram. Int.
– volume: 18
  start-page: 9636
  year: 2016
  end-page: 9644
  ident: b0105
  article-title: Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO
  publication-title: Phys. Chem. Chem. Phys.
– volume: 352
  start-page: 532
  year: 2017
  end-page: 541
  ident: b0200
  article-title: A direct Z-scheme g-C
  publication-title: J. Catal.
– volume: 8
  start-page: 1701503
  year: 2018
  ident: b0015
  article-title: g-C
  publication-title: Adv. Energy. Mater.
– volume: 219
  start-page: 693
  year: 2017
  end-page: 704
  ident: b0040
  article-title: Direct Z-scheme g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 559
  year: 2010
  end-page: 564
  ident: b0120
  article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation
  publication-title: Nat. Mater.
– volume: 5
  start-page: 3230
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0295
  article-title: Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA08310B
– volume: 219
  start-page: 693
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0040
  article-title: Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.08.018
– volume: 726
  start-page: 221
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0320
  article-title: Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2017.07.330
– volume: 225
  start-page: 40
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0160
  article-title: Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.11.045
– volume: 26
  start-page: 3314
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0070
  article-title: Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505626
– volume: 392
  start-page: 531
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0115
  article-title: Effect of rutile TiO2 on the photocatalytic performance of g-C3N4/brookite-TiO2-xNy photocatalyst for NO decomposition
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.09.075
– volume: 3
  start-page: 363
  year: 2013
  ident: 10.1016/j.apsusc.2018.06.156_b0330
  article-title: Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance
  publication-title: ACS Catal.
  doi: 10.1021/cs3008126
– volume: 7
  start-page: 8228
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0270
  article-title: g-C3N4 hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H2 evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03266
– volume: 405
  start-page: 60
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0030
  article-title: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.01.285
– volume: 430
  start-page: 234
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0180
  article-title: MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.042
– volume: 12
  start-page: 6735
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0050
  article-title: Embedding Au quantum dots in ramous cadmium sulfide nanospheres for enhanced photocatalytic hydrogen evolution
  publication-title: Small
  doi: 10.1002/smll.201602870
– volume: 231
  start-page: 368
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0230
  article-title: Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.03.036
– volume: 436
  start-page: 319
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0130
  article-title: Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.12.054
– volume: 19
  start-page: 10309
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0155
  article-title: Synergistic effect of CoPi-hole and Cu(II)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag3PO4
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01043E
– volume: 209
  start-page: 720
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0240
  article-title: In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.03.048
– volume: 427
  start-page: 645
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0095
  article-title: In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2 evolution performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.050
– volume: 176
  start-page: 44
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0090
  article-title: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2 reduction performance
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.03.045
– volume: 430
  start-page: 293
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0285
  article-title: Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.186
– volume: 200
  start-page: 666
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0325
  article-title: Fast assembly of Ag3PO4 nanoparticles within three-dimensional graphene aerogels for efficient photocatalytic oxygen evolution from water splitting under visible light
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.07.056
– volume: 430
  start-page: 301
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0275
  article-title: Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.185
– volume: 219
  start-page: 439
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0215
  article-title: Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.07.076
– volume: 8
  start-page: 526
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0075
  article-title: Bio-inspired organic cobalt(II) phosphonates toward water oxidation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03234A
– volume: 29
  start-page: 1601694
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0080
  article-title: Heterojunction photocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601694
– volume: 391
  start-page: 202
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0185
  article-title: Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.055
– volume: 44
  start-page: 73
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0290
  article-title: Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.059
– volume: 8
  start-page: 1350
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0210
  article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403168
– volume: 4
  start-page: 18627
  year: 2014
  ident: 10.1016/j.apsusc.2018.06.156_b0140
  article-title: Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria
  publication-title: RSC Adv.
  doi: 10.1039/C4RA01559B
– volume: 2
  start-page: 1800006
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0005
  article-title: Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance
  publication-title: Solar RRL
  doi: 10.1002/solr.201800006
– volume: 38
  start-page: 2021
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0245
  article-title: Construction of Z-scheme Ag3PO4/Bi2WO6 composite with excellent visible-light photodegradation activity for removal of organic contaminants
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62942-5
– volume: 46
  start-page: 6417
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0305
  article-title: A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2 evolution performance
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT00773F
– volume: 28
  start-page: 164002
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0255
  article-title: WO3/g-C3N4 composites: one-pot preparation and enhanced photocatalytic H2 production under visible-light irradiation
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa651a
– volume: 430
  start-page: 448
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0010
  article-title: In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.165
– volume: 38
  start-page: 2160
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0220
  article-title: Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62911-5
– volume: 18
  start-page: 9636
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0105
  article-title: Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP00580B
– volume: 231
  start-page: 101
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0025
  article-title: Dual-cocatalysts decorated ramous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.03.014
– volume: 46
  start-page: 4877
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0085
  article-title: Action spectra in semiconductor photocatalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00136C
– volume: 55
  start-page: 8314
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0110
  article-title: A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO2 for efficient CO2 photoreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602796
– volume: 352
  start-page: 532
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0200
  article-title: A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.06.006
– volume: 317
  start-page: 913
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0310
  article-title: Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.129
– volume: 409
  start-page: 250
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0170
  article-title: Novel Ag3PO4/MoO3 p-n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.03.025
– volume: 5
  start-page: 4249
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0035
  article-title: Highly efficient and stable gold NPs decorated ZnO/CdS nanotube arrays photoanode for enhanced photoelectrochemical water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00242
– volume: 3
  start-page: 19936
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0225
  article-title: Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA05503B
– volume: 38
  start-page: 1936
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0100
  article-title: A review on TiO2-based Z-scheme photocatalysts
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62962-0
– volume: 7
  start-page: 6000
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0065
  article-title: Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00937
– volume: 358
  start-page: 296
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0060
  article-title: g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.066
– volume: 425
  start-page: 788
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0195
  article-title: Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.082
– volume: 106
  start-page: 55
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0260
  article-title: Noble metal-free NiS/P-S codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.12.001
– volume: 9
  start-page: 43704
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0205
  article-title: OD/2D Z-Scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.7b14275
– volume: 42
  start-page: 18443
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0250
  article-title: Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.08.179
– volume: 391
  start-page: 175
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0045
  article-title: Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.104
– volume: 160
  start-page: 658
  year: 2014
  ident: 10.1016/j.apsusc.2018.06.156_b0135
  article-title: Enhanced photocatalytic performance of Ag3PO4 by simutaneous loading of Ag nanoparticles and Fe(III) cocatalyst
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.06.015
– volume: 43
  start-page: 11588
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0165
  article-title: In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.178
– volume: 430
  start-page: 108
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0145
  article-title: Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.290
– volume: 26
  start-page: 4920
  year: 2014
  ident: 10.1016/j.apsusc.2018.06.156_b0190
  article-title: All-solid-state Z-scheme photocatalytic systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400288
– volume: 168
  start-page: 180
  year: 2016
  ident: 10.1016/j.apsusc.2018.06.156_b0280
  article-title: Construction of g-C3N4-WO3-Bi2WO6 double Z-scheme system with enhanced photoelectrochemical performance
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.058
– volume: 7
  start-page: 15285
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0315
  article-title: Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.5b02649
– volume: 358
  start-page: 196
  year: 2015
  ident: 10.1016/j.apsusc.2018.06.156_b0020
  article-title: Enhanced visible light photocatalytic H2 production of g-C3N4/WS2 composite heterostructures
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.250
– volume: 405
  start-page: 359
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0125
  article-title: Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.02.025
– volume: 698
  start-page: 410
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0175
  article-title: A novel heterostructured plasmonic photocatalyst with high photocatalytic activity: Ag@AgCl nanoparticles modified titanium phosphate nanoplates
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2016.12.231
– volume: 391
  start-page: 184
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0055
  article-title: Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.145
– volume: 38
  start-page: 337
  year: 2017
  ident: 10.1016/j.apsusc.2018.06.156_b0235
  article-title: Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62570-6
– volume: 271
  start-page: 265
  year: 2013
  ident: 10.1016/j.apsusc.2018.06.156_b0150
  article-title: Preparation of graphene oxide-Ag3PO4 composite photocatalyst with high visible light photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.01.173
– volume: 11
  start-page: 1322
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0265
  article-title: One-dimension carbon self-doping g-C3N4 nanotubes: synthesis and application in dye-sensitized solar cells
  publication-title: Nano. Res.
  doi: 10.1007/s12274-017-1747-4
– volume: 8
  start-page: 1701503
  year: 2018
  ident: 10.1016/j.apsusc.2018.06.156_b0015
  article-title: g-C3N4-based heterostructured photocatalysts
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201701503
– volume: 3
  start-page: 1782
  year: 2013
  ident: 10.1016/j.apsusc.2018.06.156_b0300
  article-title: Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2 production activity
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy20878h
– volume: 9
  start-page: 559
  year: 2010
  ident: 10.1016/j.apsusc.2018.06.156_b0120
  article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2780
– volume: 150
  start-page: 564
  year: 2014
  ident: 10.1016/j.apsusc.2018.06.156_b0335
  article-title: Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2013.12.053
SSID ssj0012873
Score 2.6224103
Snippet [Display omitted] •g-C3N4/Ag2MoO4/Ag3PO4 heterojunction photocatalyst was prepared.•The heterojunction showed enhanced photocatalytic oxygen evolution from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms Ag3PO4
Composite photocatalyst
g-C3N4
Oxygen evolution
Water splitting
Z-scheme
Title Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting
URI https://dx.doi.org/10.1016/j.apsusc.2018.06.156
Volume 456
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn1gfZQ9e1ybZzWOPpVqqYhVUEC9hN9nVijalTdVe_O3O5CEVRMFT2GQWwuxk5pvNzLeEHBoXQLC0LuOJp5gQFj4p40qmAWobbsEhBtgofNEPerfi7M6_WyCduhcGyyor31_69MJbV3dalTZbo8GgdY08Isi-BUYJUVhg3i5EiFZ-9PFV5gHut_zLDMLYHeTV7XNFjZeCTHSCRIZuweLp4jHWP4WnuZDTXSOrFVak7fJ11smCGW6QlTkGwU0yOZ6CxD2DHNW8GPrAOrwvWu0HfnWJF-8iuxS02PMbzyiWj2ONlqGjxyzPip2b2SSngFvpBFNcmr3PwKCoea0MkmL3CX0DPAoSAFeLIuktcts9uen0WHWOAks4lznjkXYM154KbMphyYQvYWBs6qtQ2cQ4oU41LIx0lJWRjfzUjZQOhfCVTEOe8G2yOMyGZodQG8GzNDSpr7XwbSK5UJ4bWMEdK6WfNgiv1RcnFck4nnXxHNfVZE9xqfQYlR47QQxKbxD2NWtUkmz8IR_WKxN_M5YY4sCvM3f_PXOPLOOoDFv7ZDEfT80B4JFcNwuDa5Kl9ul5r_8JjSTigQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT90wEB6xHKAHVJaKHR_o0bwkdhYfekBQ9Ci8R6WChLi4dmKzqLw8kVB4F_4Uf5BxFkQlVCQkTlFiO7LHk1mcb2YANo2PRrCwPmVpoCjnFj8p4wuq0dQ2zKJAjFygcK8fdU_4j9PwdAwe21gYB6tsZH8t0ytp3TzpNNTsDC8vO79cHhGXfQuZErUw9xpk5YEZ3aHfVnzb38VN_hoEe9-Pd7q0KS1AU8ZESVmiPcN0oCKbMVwFDwXeGJuFKlY2NV6sM41zFZ6yIrFJmPmJ0jHnoRJZzFKG7x2HSY7iwpVN2Hp4xpWgvK9_a-PsXDhS0MbrVaAyha5v4TIn-lXaUN_VzX5NH77QcXufYaYxTsl2vf5ZGDODOfj0ImXhPBS7t9jjjKJTbK4NOac7rM872-fs55G7BL38iJPqkPFmRBxe3YHCDBle5GVeHRWNipKgoUwK51OT_H6EHEzM3-YLIC7chdyhAYw90D6uUNkLcPIh1P0CE4N8YBaB2ATbsthkodY8tKlgXAV-ZDnzrBBhtgSsJZ9Mm6zmrrjGH9nC165kTXTpiC69SCLRl4A-jxrWWT3e6B-3OyP_4U6Jiue_I5ffPXIDprrHvUN5uN8_WIFp11LrzFWYKG9uzRoaQ6Ver5iPwO-P5vYnVmMhZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Z-scheme+g-C3N4%2FAg3PO4%2FAg2MoO4+ternary+composite+photocatalyst+for+solar+oxygen+evolution+from+water+splitting&rft.jtitle=Applied+surface+science&rft.au=Liu%2C+Wei&rft.au=Shen%2C+Jun&rft.au=Yang%2C+Xiaofei&rft.au=Liu%2C+Qinqin&rft.date=2018-10-31&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=456&rft.spage=369&rft.epage=378&rft_id=info:doi/10.1016%2Fj.apsusc.2018.06.156&rft.externalDocID=S0169433218317240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon