Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel
A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance...
Saved in:
Published in | Renewable energy Vol. 125; pp. 936 - 946 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn.
•A numerical model of water-cooled PV/T system with cooling channel above PV panel.•The heat transfer characteristics of cooling channel and parametric analysis.•The energy and exergy efficiencies of system and the optimal parameters.•The performance comparison between the present system and traditional system. |
---|---|
AbstractList | A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn. A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn. •A numerical model of water-cooled PV/T system with cooling channel above PV panel.•The heat transfer characteristics of cooling channel and parametric analysis.•The energy and exergy efficiencies of system and the optimal parameters.•The performance comparison between the present system and traditional system. |
Author | Xiao, Lan Chen, Chen Wu, Shuang-Ying |
Author_xml | – sequence: 1 givenname: Shuang-Ying surname: Wu fullname: Wu, Shuang-Ying email: shuangyingwu@cqu.edu.cn organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen organization: College of Power Engineering, Chongqing University, Chongqing, 400044, China – sequence: 3 givenname: Lan surname: Xiao fullname: Xiao, Lan organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China |
BookMark | eNqFkD1vFDEQhi0UJC6Bf0DhkmY3_tgvUyChiBCkSFAEWmvWHhOf9uzD9l2Sf4-Xo0oBmmI01vO-sp5zchZiQELectZyxofLbZsw1GkF41PLZMuEfEE2fBpVw4ZJnJENUwNreDfxV-Q85y1jvJ_GbkMebxAKLQlCdpiouYcEpmDyuXiTKQRL95hcTDsIBikeYTlA8THQ6OgDVLIxMS5o6bcfl3c0P-WCO_rgyz1d3334uXaGgAuFOR6xYnQP9XxNXjpYMr75uy_I9-tPd1c3ze3Xz1-uPt42RkpVGjl2wnGlwPHOCuiUtSMo7O3ATJ3JOMsmJ1zfgxsBBjlXyPXzMMzMzijkBXl36t2n-OuAueidzwaXpX4iHrIWYhqUHHu1ot0JNSnmnNDpffI7SE-aM72K1lt9Eq1X0ZpJXUXX2PtnMePLH0dVq1_-F_5wCmN1cPSYdDYeq2rrE5qibfT_LvgNXn6g9w |
CitedBy_id | crossref_primary_10_1016_j_est_2021_102792 crossref_primary_10_3390_nano12101664 crossref_primary_10_1016_j_rineng_2021_100240 crossref_primary_10_1016_j_jobe_2024_110893 crossref_primary_10_1016_j_desal_2022_116040 crossref_primary_10_1016_j_rser_2022_112740 crossref_primary_10_4028_p_B5wj0o crossref_primary_10_1016_j_renene_2024_121059 crossref_primary_10_1016_j_renene_2020_07_146 crossref_primary_10_1016_j_matpr_2020_09_739 crossref_primary_10_1016_j_renene_2020_12_015 crossref_primary_10_1051_epjpv_2024037 crossref_primary_10_1016_j_enconman_2020_113289 crossref_primary_10_1016_j_scitotenv_2020_141753 crossref_primary_10_1016_j_icheatmasstransfer_2020_104705 crossref_primary_10_1016_j_solener_2020_05_062 crossref_primary_10_1051_e3sconf_202338701012 crossref_primary_10_3390_en15051836 crossref_primary_10_1016_j_tsep_2022_101353 crossref_primary_10_1002_ep_14131 crossref_primary_10_1016_j_csite_2022_102133 crossref_primary_10_1016_j_csite_2022_102650 crossref_primary_10_1080_15567036_2023_2209533 crossref_primary_10_1155_2019_9579357 crossref_primary_10_2139_ssrn_4129893 crossref_primary_10_1080_14786451_2021_1950721 crossref_primary_10_1016_j_enconman_2019_04_082 crossref_primary_10_1016_j_csite_2024_104420 crossref_primary_10_1016_j_egyr_2023_01_064 crossref_primary_10_14710_ijred_2023_47686 crossref_primary_10_1088_1757_899X_960_3_032096 crossref_primary_10_3390_su141912298 crossref_primary_10_1016_j_renene_2020_11_135 crossref_primary_10_1016_j_energy_2020_116950 crossref_primary_10_1016_j_solener_2020_12_036 crossref_primary_10_1007_s11630_020_1350_y crossref_primary_10_1016_j_enconman_2021_114912 crossref_primary_10_1051_e3sconf_202132300001 crossref_primary_10_1016_j_csite_2023_102748 crossref_primary_10_1016_j_ecmx_2023_100466 crossref_primary_10_1016_j_energy_2022_124654 crossref_primary_10_3390_en16104102 crossref_primary_10_1016_j_renene_2023_03_008 crossref_primary_10_2139_ssrn_4010587 crossref_primary_10_1016_j_solmat_2021_111060 crossref_primary_10_1063_5_0030541 crossref_primary_10_3389_fenrg_2019_00097 crossref_primary_10_1016_j_renene_2023_02_105 crossref_primary_10_1007_s11630_025_2082_9 crossref_primary_10_1016_j_applthermaleng_2020_116035 crossref_primary_10_1016_j_energy_2020_119159 crossref_primary_10_1016_j_enconman_2024_118712 crossref_primary_10_1016_j_applthermaleng_2022_119184 crossref_primary_10_1080_15567036_2020_1814904 crossref_primary_10_1016_j_jobe_2024_110956 crossref_primary_10_1016_j_seta_2022_102426 crossref_primary_10_1016_j_seta_2021_101844 crossref_primary_10_1115_1_4053951 crossref_primary_10_1016_j_renene_2024_120977 crossref_primary_10_1080_15567036_2025_2476119 crossref_primary_10_1016_j_energy_2023_128746 crossref_primary_10_1007_s42452_021_04169_4 crossref_primary_10_1016_j_est_2022_105805 crossref_primary_10_1016_j_solener_2021_10_086 crossref_primary_10_1155_2019_8090817 crossref_primary_10_1007_s11356_022_18719_9 crossref_primary_10_1016_j_jclepro_2023_136953 crossref_primary_10_1016_j_renene_2023_04_073 crossref_primary_10_3390_en15186764 crossref_primary_10_1007_s11356_023_27615_9 crossref_primary_10_1016_j_ijft_2025_101165 crossref_primary_10_1016_j_applthermaleng_2023_120424 crossref_primary_10_1016_j_applthermaleng_2023_121358 crossref_primary_10_1016_j_renene_2020_09_140 crossref_primary_10_1016_j_tsep_2023_101909 crossref_primary_10_1016_j_enbenv_2023_11_002 crossref_primary_10_1016_j_enbenv_2024_02_008 crossref_primary_10_1016_j_solener_2023_112025 crossref_primary_10_1002_htj_22725 crossref_primary_10_1016_j_enbenv_2023_11_007 crossref_primary_10_1177_09576509231197881 crossref_primary_10_1016_j_solener_2024_112445 crossref_primary_10_1016_j_solener_2019_07_024 crossref_primary_10_1016_j_renene_2022_04_126 crossref_primary_10_1016_j_solener_2020_01_015 crossref_primary_10_1016_j_solener_2021_09_077 crossref_primary_10_1016_j_est_2021_103814 crossref_primary_10_1016_j_renene_2023_119862 crossref_primary_10_1016_j_rser_2019_109318 crossref_primary_10_1016_j_solener_2019_10_031 |
Cites_doi | 10.1016/S0038-092X(97)00119-9 10.1016/S0038-092X(03)00121-X 10.1016/j.renene.2005.12.002 10.1016/j.renene.2017.04.051 10.1115/1.4030727 10.1016/S0196-8904(99)00136-3 10.1080/15435075.2013.840833 10.1016/j.solener.2014.01.014 10.1016/j.apenergy.2011.01.017 10.1016/j.energy.2004.04.061 10.1016/j.solener.2016.03.024 10.1016/j.renene.2015.08.061 10.1016/j.renene.2015.07.014 10.1016/j.solener.2005.07.006 10.1063/1.4753849 10.1016/j.enconman.2013.11.017 10.1016/j.solener.2015.04.038 10.1016/j.renene.2014.12.012 10.1115/1.2188534 10.1016/j.applthermaleng.2016.09.126 10.1016/j.renene.2017.10.004 10.1016/j.apenergy.2009.04.004 10.1016/j.energy.2008.03.005 10.1115/1.4003145 10.1016/j.solener.2014.11.008 10.1016/j.ijheatmasstransfer.2015.07.134 10.1016/j.renene.2015.12.064 10.1016/j.energy.2013.07.050 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2018.03.023 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 946 |
ExternalDocumentID | 10_1016_j_renene_2018_03_023 S0960148118303288 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-3742f199af14d2a49dd7a9e5d60c0c08cfd08f2f55af7aa63b2a4f5b66b0dbe23 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 08:33:19 EDT 2025 Tue Jul 01 03:20:45 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Fri Feb 23 02:45:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water-cooled photovoltaic/thermal system Cooling channel above PV panel Energy and exergy efficiencies Heat transfer Numerical study |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-3742f199af14d2a49dd7a9e5d60c0c08cfd08f2f55af7aa63b2a4f5b66b0dbe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2286937592 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2286937592 crossref_primary_10_1016_j_renene_2018_03_023 crossref_citationtrail_10_1016_j_renene_2018_03_023 elsevier_sciencedirect_doi_10_1016_j_renene_2018_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yazdanpanahi, Sarhaddi, Mahdavi-Adeli (bib21) 2015; 118 Rejeb, Dhaou, Jemni (bib4) 2015; 77 Tiwari, Sodha (bib7) 2006; 80 Tiwari, Dubey, Sandhu, Sodha, Anwar (bib28) 2009; 86 Jing, Hu, Liu, Wei, Guo (bib23) 2015; 112 Hegazy (bib14) 2000; 41 Jaus, Gueymard (bib26) 2012; 1477 Michael, Selvarasan, Goic (bib9) 2016; 90 Tiwari, Sodha (bib22) 2006; 31 Bahaidarah, Subhan, Gandhidasan, Rehman (bib8) 2013; 59 Teo, Lee, Hawlader (bib18) 2012; 90 Hung, Huang, Lee, Lin, Pei, Li (bib17) 2017; 111 Erdil, Ilkan, Egelioglu (bib11) 2008; 33 Tamayo-Vera, Laukkanen, Siren (bib19) 2014; 102 Nasrin, Hasanuzzaman, Rahim (bib25) 2018; 116 Charron, Athienitis (bib15) 2006; 128 Fudholi, Sopian, Yazdi, Ruslan, Ibrahim, Kazem (bib27) 2014; 78 Luminosu, Fara (bib20) 2005; 30 Sharples, Charlesworth (bib24) 1998; 62 Wu, Guo, Xiao (bib1) 2015; 12 Candanedo, Athienitis, Park (bib16) 2011; 133 Zondag, de Vries, van Helden, van Zolingen, van Steenhoven (bib10) 2003; 74 Reddy, Ebadian, Lin (bib3) 2015; 91 Jarimi, Abu Bakar, Othman, Hj Din (bib5) 2016; 85 Rosa-Clot, Rosa-Clot, Tina, Ventura (bib13) 2016; 133 Othman, Hamid, Tabook, Sopian, Roslan, Ibarahim (bib6) 2016; 86 Colangelo, Romano, Tina (bib12) 2015; 137 Bianchini, Guzzini, Pellegrini, Saccani (bib2) 2017; 111 Bahaidarah (10.1016/j.renene.2018.03.023_bib8) 2013; 59 Hung (10.1016/j.renene.2018.03.023_bib17) 2017; 111 Teo (10.1016/j.renene.2018.03.023_bib18) 2012; 90 Wu (10.1016/j.renene.2018.03.023_bib1) 2015; 12 Tiwari (10.1016/j.renene.2018.03.023_bib7) 2006; 80 Michael (10.1016/j.renene.2018.03.023_bib9) 2016; 90 Yazdanpanahi (10.1016/j.renene.2018.03.023_bib21) 2015; 118 Nasrin (10.1016/j.renene.2018.03.023_bib25) 2018; 116 Bianchini (10.1016/j.renene.2018.03.023_bib2) 2017; 111 Reddy (10.1016/j.renene.2018.03.023_bib3) 2015; 91 Othman (10.1016/j.renene.2018.03.023_bib6) 2016; 86 Fudholi (10.1016/j.renene.2018.03.023_bib27) 2014; 78 Sharples (10.1016/j.renene.2018.03.023_bib24) 1998; 62 Jing (10.1016/j.renene.2018.03.023_bib23) 2015; 112 Jaus (10.1016/j.renene.2018.03.023_bib26) 2012; 1477 Jarimi (10.1016/j.renene.2018.03.023_bib5) 2016; 85 Tiwari (10.1016/j.renene.2018.03.023_bib22) 2006; 31 Colangelo (10.1016/j.renene.2018.03.023_bib12) 2015; 137 Rosa-Clot (10.1016/j.renene.2018.03.023_bib13) 2016; 133 Tamayo-Vera (10.1016/j.renene.2018.03.023_bib19) 2014; 102 Rejeb (10.1016/j.renene.2018.03.023_bib4) 2015; 77 Zondag (10.1016/j.renene.2018.03.023_bib10) 2003; 74 Hegazy (10.1016/j.renene.2018.03.023_bib14) 2000; 41 Erdil (10.1016/j.renene.2018.03.023_bib11) 2008; 33 Charron (10.1016/j.renene.2018.03.023_bib15) 2006; 128 Candanedo (10.1016/j.renene.2018.03.023_bib16) 2011; 133 Luminosu (10.1016/j.renene.2018.03.023_bib20) 2005; 30 Tiwari (10.1016/j.renene.2018.03.023_bib28) 2009; 86 |
References_xml | – volume: 112 start-page: 30 year: 2015 end-page: 40 ident: bib23 article-title: Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system publication-title: Sol. Energy – volume: 86 start-page: 2592 year: 2009 end-page: 2597 ident: bib28 article-title: Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes publication-title: Appl. Energy – volume: 90 start-page: 95 year: 2016 end-page: 104 ident: bib9 article-title: Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications publication-title: Renew. Energy – volume: 137 start-page: 1 year: 2015 end-page: 12 ident: bib12 article-title: Performance evaluation of a new type of combined photovoltaic-thermal solar collector publication-title: J. Sol. Energy Eng. – volume: 62 start-page: 69 year: 1998 end-page: 77 ident: bib24 article-title: Full-scale measurements of wind induced convective heat transfer from a roof-mounted flat plate solar collector publication-title: Sol. Energy – volume: 111 start-page: 1025 year: 2017 end-page: 1038 ident: bib17 article-title: Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector publication-title: Appl. Therm. Eng. – volume: 1477 start-page: 122 year: 2012 end-page: 126 ident: bib26 article-title: Generalized spectral performance evaluation of multi-junction solar cells using a multicore parallelized version of SMARTS publication-title: AIP Conf. Proc. – volume: 74 start-page: 253 year: 2003 end-page: 269 ident: bib10 article-title: The yield of different combined PV-thermal collector designs publication-title: Sol. Energy – volume: 133 start-page: 305 year: 2016 end-page: 314 ident: bib13 article-title: Experimental photovoltaic-thermal power plants based on TESPI panel publication-title: Sol. Energy – volume: 30 start-page: 731 year: 2005 end-page: 747 ident: bib20 article-title: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation publication-title: Energy – volume: 90 start-page: 309 year: 2012 end-page: 315 ident: bib18 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy – volume: 86 start-page: 716 year: 2016 end-page: 722 ident: bib6 article-title: Performance analysis of PV/T combi with water and air heating system: an experimental study publication-title: Renew. Energy – volume: 41 start-page: 861 year: 2000 end-page: 881 ident: bib14 article-title: Comparative study of the performance of four photovoltaic/thermal solar air collectors publication-title: Energy Convers. Manag. – volume: 102 start-page: 223 year: 2014 end-page: 233 ident: bib19 article-title: Performance evaluation and multi-objective optimization of hybrid photovoltaic-thermal collectors publication-title: Sol. Energy – volume: 12 start-page: 379 year: 2015 end-page: 397 ident: bib1 article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy – volume: 59 start-page: 445 year: 2013 end-page: 453 ident: bib8 article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions publication-title: Energy – volume: 77 start-page: 43 year: 2015 end-page: 50 ident: bib4 article-title: A numerical investigation of a photovoltaic thermal (PV/T) collector publication-title: Renew. Energy – volume: 111 start-page: 543 year: 2017 end-page: 555 ident: bib2 article-title: Photovoltaic/thermal (PV/T) solar system: experimental measurements, performance analysis and economic assessment publication-title: Renew. Energy – volume: 91 start-page: 861 year: 2015 end-page: 871 ident: bib3 article-title: A review of PV-T systems: thermal management and efficiency with single phase cooling publication-title: Int. J. Heat Mass Tran. – volume: 128 start-page: 160 year: 2006 end-page: 167 ident: bib15 article-title: A two dimensional model of a double facade with integrated photovoltaic panels publication-title: J. Sol. Energy Eng. – volume: 78 start-page: 641 year: 2014 end-page: 651 ident: bib27 article-title: Performance analysis of photovoltaic thermal (PVT) water collectors publication-title: Energy Convers. Manag. – volume: 80 start-page: 751 year: 2006 end-page: 759 ident: bib7 article-title: Performance evaluation of a solar PV/T system: an experimental validation publication-title: Sol. Energy – volume: 33 start-page: 1241 year: 2008 end-page: 1245 ident: bib11 article-title: An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system publication-title: Energy – volume: 118 start-page: 197 year: 2015 end-page: 208 ident: bib21 article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses publication-title: Sol. Energy – volume: 85 start-page: 1052 year: 2016 end-page: 1067 ident: bib5 article-title: Bi-fluid photovoltaic/thermal (PV/T) solar collector: experimental validation of a 2-D theoretical model publication-title: Renew. Energy – volume: 116 start-page: 552 year: 2018 end-page: 569 ident: bib25 article-title: Effect of high irradiation and cooling on power, energy and performance of a PVT system publication-title: Renew. Energy – volume: 31 start-page: 2460 year: 2006 end-page: 2474 ident: bib22 article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study publication-title: Renew. Energy – volume: 133 start-page: 1 year: 2011 end-page: 14 ident: bib16 article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system publication-title: J. Sol. Energy Eng. – volume: 62 start-page: 69 year: 1998 ident: 10.1016/j.renene.2018.03.023_bib24 article-title: Full-scale measurements of wind induced convective heat transfer from a roof-mounted flat plate solar collector publication-title: Sol. Energy doi: 10.1016/S0038-092X(97)00119-9 – volume: 74 start-page: 253 year: 2003 ident: 10.1016/j.renene.2018.03.023_bib10 article-title: The yield of different combined PV-thermal collector designs publication-title: Sol. Energy doi: 10.1016/S0038-092X(03)00121-X – volume: 31 start-page: 2460 year: 2006 ident: 10.1016/j.renene.2018.03.023_bib22 article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study publication-title: Renew. Energy doi: 10.1016/j.renene.2005.12.002 – volume: 111 start-page: 543 year: 2017 ident: 10.1016/j.renene.2018.03.023_bib2 article-title: Photovoltaic/thermal (PV/T) solar system: experimental measurements, performance analysis and economic assessment publication-title: Renew. Energy doi: 10.1016/j.renene.2017.04.051 – volume: 137 start-page: 1 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib12 article-title: Performance evaluation of a new type of combined photovoltaic-thermal solar collector publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4030727 – volume: 41 start-page: 861 year: 2000 ident: 10.1016/j.renene.2018.03.023_bib14 article-title: Comparative study of the performance of four photovoltaic/thermal solar air collectors publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(99)00136-3 – volume: 12 start-page: 379 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib1 article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system publication-title: Int. J. Green Energy doi: 10.1080/15435075.2013.840833 – volume: 102 start-page: 223 year: 2014 ident: 10.1016/j.renene.2018.03.023_bib19 article-title: Performance evaluation and multi-objective optimization of hybrid photovoltaic-thermal collectors publication-title: Sol. Energy doi: 10.1016/j.solener.2014.01.014 – volume: 90 start-page: 309 year: 2012 ident: 10.1016/j.renene.2018.03.023_bib18 article-title: An active cooling system for photovoltaic modules publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.01.017 – volume: 30 start-page: 731 year: 2005 ident: 10.1016/j.renene.2018.03.023_bib20 article-title: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation publication-title: Energy doi: 10.1016/j.energy.2004.04.061 – volume: 133 start-page: 305 year: 2016 ident: 10.1016/j.renene.2018.03.023_bib13 article-title: Experimental photovoltaic-thermal power plants based on TESPI panel publication-title: Sol. Energy doi: 10.1016/j.solener.2016.03.024 – volume: 86 start-page: 716 year: 2016 ident: 10.1016/j.renene.2018.03.023_bib6 article-title: Performance analysis of PV/T combi with water and air heating system: an experimental study publication-title: Renew. Energy doi: 10.1016/j.renene.2015.08.061 – volume: 85 start-page: 1052 year: 2016 ident: 10.1016/j.renene.2018.03.023_bib5 article-title: Bi-fluid photovoltaic/thermal (PV/T) solar collector: experimental validation of a 2-D theoretical model publication-title: Renew. Energy doi: 10.1016/j.renene.2015.07.014 – volume: 80 start-page: 751 year: 2006 ident: 10.1016/j.renene.2018.03.023_bib7 article-title: Performance evaluation of a solar PV/T system: an experimental validation publication-title: Sol. Energy doi: 10.1016/j.solener.2005.07.006 – volume: 1477 start-page: 122 year: 2012 ident: 10.1016/j.renene.2018.03.023_bib26 article-title: Generalized spectral performance evaluation of multi-junction solar cells using a multicore parallelized version of SMARTS publication-title: AIP Conf. Proc. doi: 10.1063/1.4753849 – volume: 78 start-page: 641 year: 2014 ident: 10.1016/j.renene.2018.03.023_bib27 article-title: Performance analysis of photovoltaic thermal (PVT) water collectors publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.017 – volume: 118 start-page: 197 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib21 article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses publication-title: Sol. Energy doi: 10.1016/j.solener.2015.04.038 – volume: 77 start-page: 43 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib4 article-title: A numerical investigation of a photovoltaic thermal (PV/T) collector publication-title: Renew. Energy doi: 10.1016/j.renene.2014.12.012 – volume: 128 start-page: 160 year: 2006 ident: 10.1016/j.renene.2018.03.023_bib15 article-title: A two dimensional model of a double facade with integrated photovoltaic panels publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2188534 – volume: 111 start-page: 1025 year: 2017 ident: 10.1016/j.renene.2018.03.023_bib17 article-title: Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.126 – volume: 116 start-page: 552 year: 2018 ident: 10.1016/j.renene.2018.03.023_bib25 article-title: Effect of high irradiation and cooling on power, energy and performance of a PVT system publication-title: Renew. Energy doi: 10.1016/j.renene.2017.10.004 – volume: 86 start-page: 2592 year: 2009 ident: 10.1016/j.renene.2018.03.023_bib28 article-title: Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.04.004 – volume: 33 start-page: 1241 year: 2008 ident: 10.1016/j.renene.2018.03.023_bib11 article-title: An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system publication-title: Energy doi: 10.1016/j.energy.2008.03.005 – volume: 133 start-page: 1 year: 2011 ident: 10.1016/j.renene.2018.03.023_bib16 article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4003145 – volume: 112 start-page: 30 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib23 article-title: Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system publication-title: Sol. Energy doi: 10.1016/j.solener.2014.11.008 – volume: 91 start-page: 861 year: 2015 ident: 10.1016/j.renene.2018.03.023_bib3 article-title: A review of PV-T systems: thermal management and efficiency with single phase cooling publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.07.134 – volume: 90 start-page: 95 year: 2016 ident: 10.1016/j.renene.2018.03.023_bib9 article-title: Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications publication-title: Renew. Energy doi: 10.1016/j.renene.2015.12.064 – volume: 59 start-page: 445 year: 2013 ident: 10.1016/j.renene.2018.03.023_bib8 article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions publication-title: Energy doi: 10.1016/j.energy.2013.07.050 |
SSID | ssj0015874 |
Score | 2.532868 |
Snippet | A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 936 |
SubjectTerms | ambient temperature convection cooling Cooling channel above PV panel Energy and exergy efficiencies exergy Heat transfer mass flow mathematical models Numerical study renewable energy sources solar collectors solar radiation water temperature Water-cooled photovoltaic/thermal system |
Title | Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel |
URI | https://dx.doi.org/10.1016/j.renene.2018.03.023 https://www.proquest.com/docview/2286937592 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5KfWkfRK3FVi0r9HU92Ut2N4-lWI6KRWgrfVv2CpVDcjg9rT75253JpbWCFCRPCbObsDP55iOZ-ZaQQ8ipOvqSGdepZipazjw3nEVrg5DJ6miwOfnLqZ5fqE-X9eUGOZ56YbCscsT-AdN7tB6vzMbVnC2vrmZnSL6BzANDligKhw2_ShmM8ve_7so8eG0HJWYwZmg9tc_1NV6oGtmiWCa3vdSpkP9KT38BdZ99Tp6RpyNtpEfDkz0nG7l9Qbb_EBPcIT_nAKt03RPRvKLxoRIz9W2iy_suAXov8027Qn8A5Vyx2HWLnOjXb7NzOkg8U_xOS_E63APnxLIYCoFzm8GMApTkxUtycfLh_HjOxn0VWJSyWQOmKFF40_jCVRJeNSkZ3-Q66SrCYWNJlS2i1LUvxnstAxiVOmgdqhSykLtks-3a_IpQZVLk1oRK2qBE0A2PKuZijag0cFG7R-S0nC6OouO498XCTdVl393gBIdOcJV04IQ9wu5GLQfRjUfszeQp9yB4HOSFR0a-mxzr4L3CnyWwcN3NtRPCaqBudSP2_3v212QLz4aStDdkc726yW-Bw6zDQR-kB-TJ0cfP89PfIUfzSQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoTyPB0Wz8iOMcOCCg2tKHkNii3oyfUqtVstpuKVz4U_xBZvJoKRKqhFTl5owda8ae-ZLMfCbkJcRUHVxOjOtYMhUMZ45XnAVjvJDR6FBhcfLunp7uq48H5cEa-TXWwmBa5eD7e5_eeeuhZTJoc7I4PJx8RvANYB4QskRSODNkVm6nH6fw3nb8Zus9GPmVEJsfZu-mbDhagAUp6xVsKyUyr2uXuYrCqTrGytWpjLoIcJmQY2GyyGXpcuWclh6Ecum19kX0CdkOwO9fU-Au8NiE1z_P8kp4aXrqZ5gdw-mN9XpdUhnSVDbIzslNx60q5L_i4V-RoQt3m7fJrQGn0re9Ku6QtdTcJTf_YC-8R75PwY_TVYd805KGi9TP1DWRLs7LEug5rzhtMz0FjLtkoW3nKdJPXyYz2nNKU_wwTLEdnoFjYh4OhZX6LYEYBd-V5vfJ_pVo-wFZb9omPSRUVTFwU_lCGq-E1zUPKqRsKlFoAL9mg8hRnTYMLOd42MbcjulsR7Y3gkUj2EJaMMIGYWe9Fj3LxyXy1Wgpe2G1WghEl_R8MRrWwkbGvzOguPbk2AphNGDFshaP_nv05-T6dLa7Y3e29rYfkxt4p8-He0LWV8uT9BQA1Mo_6xYsJV-veof8BsENMJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+characteristics+and+performance+evaluation+of+water-cooled+PV%2FT+system+with+cooling+channel+above+PV+panel&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Chen%2C+Chen&rft.au=Xiao%2C+Lan&rft.date=2018-09-01&rft.issn=0960-1481&rft.volume=125+p.936-946&rft.spage=936&rft.epage=946&rft_id=info:doi/10.1016%2Fj.renene.2018.03.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |