Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel

A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 125; pp. 936 - 946
Main Authors Wu, Shuang-Ying, Chen, Chen, Xiao, Lan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn. •A numerical model of water-cooled PV/T system with cooling channel above PV panel.•The heat transfer characteristics of cooling channel and parametric analysis.•The energy and exergy efficiencies of system and the optimal parameters.•The performance comparison between the present system and traditional system.
AbstractList A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn.
A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate, cooling channel height, inlet water temperature and solar radiation intensity on heat transfer characteristics of cooling channel and performance of system. The Nusselt numbers of bottom and top surfaces of cooling channel were calculated, and the energy and exergy efficiencies of PV/T system were obtained. Results show that the Nusselt numbers of bottom and top surfaces perform opposite trend along the flow direction, and the convection heat transfer of bottom surface is better than that of top surface for almost all of cases. There is opposite direction of heat transfer within a certain distance from the entrance when inlet temperature of cooling medium is less than ambient temperature. As for system performance, both thermal efficiency and thermal exergy efficiency have greater variation amplitude when compared with electric efficiency and electric exergy efficiency respectively. The overall exergy efficiency of system achieves maximum at the mass flow rate of 0.003 kg/s and cooling channel height of 5 mm. Besides, the performance between the present system and traditional system was compared and some different conclusions have been drawn. •A numerical model of water-cooled PV/T system with cooling channel above PV panel.•The heat transfer characteristics of cooling channel and parametric analysis.•The energy and exergy efficiencies of system and the optimal parameters.•The performance comparison between the present system and traditional system.
Author Xiao, Lan
Chen, Chen
Wu, Shuang-Ying
Author_xml – sequence: 1
  givenname: Shuang-Ying
  surname: Wu
  fullname: Wu, Shuang-Ying
  email: shuangyingwu@cqu.edu.cn
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: College of Power Engineering, Chongqing University, Chongqing, 400044, China
– sequence: 3
  givenname: Lan
  surname: Xiao
  fullname: Xiao, Lan
  organization: Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, China
BookMark eNqFkD1vFDEQhi0UJC6Bf0DhkmY3_tgvUyChiBCkSFAEWmvWHhOf9uzD9l2Sf4-Xo0oBmmI01vO-sp5zchZiQELectZyxofLbZsw1GkF41PLZMuEfEE2fBpVw4ZJnJENUwNreDfxV-Q85y1jvJ_GbkMebxAKLQlCdpiouYcEpmDyuXiTKQRL95hcTDsIBikeYTlA8THQ6OgDVLIxMS5o6bcfl3c0P-WCO_rgyz1d3334uXaGgAuFOR6xYnQP9XxNXjpYMr75uy_I9-tPd1c3ze3Xz1-uPt42RkpVGjl2wnGlwPHOCuiUtSMo7O3ATJ3JOMsmJ1zfgxsBBjlXyPXzMMzMzijkBXl36t2n-OuAueidzwaXpX4iHrIWYhqUHHu1ot0JNSnmnNDpffI7SE-aM72K1lt9Eq1X0ZpJXUXX2PtnMePLH0dVq1_-F_5wCmN1cPSYdDYeq2rrE5qibfT_LvgNXn6g9w
CitedBy_id crossref_primary_10_1016_j_est_2021_102792
crossref_primary_10_3390_nano12101664
crossref_primary_10_1016_j_rineng_2021_100240
crossref_primary_10_1016_j_jobe_2024_110893
crossref_primary_10_1016_j_desal_2022_116040
crossref_primary_10_1016_j_rser_2022_112740
crossref_primary_10_4028_p_B5wj0o
crossref_primary_10_1016_j_renene_2024_121059
crossref_primary_10_1016_j_renene_2020_07_146
crossref_primary_10_1016_j_matpr_2020_09_739
crossref_primary_10_1016_j_renene_2020_12_015
crossref_primary_10_1051_epjpv_2024037
crossref_primary_10_1016_j_enconman_2020_113289
crossref_primary_10_1016_j_scitotenv_2020_141753
crossref_primary_10_1016_j_icheatmasstransfer_2020_104705
crossref_primary_10_1016_j_solener_2020_05_062
crossref_primary_10_1051_e3sconf_202338701012
crossref_primary_10_3390_en15051836
crossref_primary_10_1016_j_tsep_2022_101353
crossref_primary_10_1002_ep_14131
crossref_primary_10_1016_j_csite_2022_102133
crossref_primary_10_1016_j_csite_2022_102650
crossref_primary_10_1080_15567036_2023_2209533
crossref_primary_10_1155_2019_9579357
crossref_primary_10_2139_ssrn_4129893
crossref_primary_10_1080_14786451_2021_1950721
crossref_primary_10_1016_j_enconman_2019_04_082
crossref_primary_10_1016_j_csite_2024_104420
crossref_primary_10_1016_j_egyr_2023_01_064
crossref_primary_10_14710_ijred_2023_47686
crossref_primary_10_1088_1757_899X_960_3_032096
crossref_primary_10_3390_su141912298
crossref_primary_10_1016_j_renene_2020_11_135
crossref_primary_10_1016_j_energy_2020_116950
crossref_primary_10_1016_j_solener_2020_12_036
crossref_primary_10_1007_s11630_020_1350_y
crossref_primary_10_1016_j_enconman_2021_114912
crossref_primary_10_1051_e3sconf_202132300001
crossref_primary_10_1016_j_csite_2023_102748
crossref_primary_10_1016_j_ecmx_2023_100466
crossref_primary_10_1016_j_energy_2022_124654
crossref_primary_10_3390_en16104102
crossref_primary_10_1016_j_renene_2023_03_008
crossref_primary_10_2139_ssrn_4010587
crossref_primary_10_1016_j_solmat_2021_111060
crossref_primary_10_1063_5_0030541
crossref_primary_10_3389_fenrg_2019_00097
crossref_primary_10_1016_j_renene_2023_02_105
crossref_primary_10_1007_s11630_025_2082_9
crossref_primary_10_1016_j_applthermaleng_2020_116035
crossref_primary_10_1016_j_energy_2020_119159
crossref_primary_10_1016_j_enconman_2024_118712
crossref_primary_10_1016_j_applthermaleng_2022_119184
crossref_primary_10_1080_15567036_2020_1814904
crossref_primary_10_1016_j_jobe_2024_110956
crossref_primary_10_1016_j_seta_2022_102426
crossref_primary_10_1016_j_seta_2021_101844
crossref_primary_10_1115_1_4053951
crossref_primary_10_1016_j_renene_2024_120977
crossref_primary_10_1080_15567036_2025_2476119
crossref_primary_10_1016_j_energy_2023_128746
crossref_primary_10_1007_s42452_021_04169_4
crossref_primary_10_1016_j_est_2022_105805
crossref_primary_10_1016_j_solener_2021_10_086
crossref_primary_10_1155_2019_8090817
crossref_primary_10_1007_s11356_022_18719_9
crossref_primary_10_1016_j_jclepro_2023_136953
crossref_primary_10_1016_j_renene_2023_04_073
crossref_primary_10_3390_en15186764
crossref_primary_10_1007_s11356_023_27615_9
crossref_primary_10_1016_j_ijft_2025_101165
crossref_primary_10_1016_j_applthermaleng_2023_120424
crossref_primary_10_1016_j_applthermaleng_2023_121358
crossref_primary_10_1016_j_renene_2020_09_140
crossref_primary_10_1016_j_tsep_2023_101909
crossref_primary_10_1016_j_enbenv_2023_11_002
crossref_primary_10_1016_j_enbenv_2024_02_008
crossref_primary_10_1016_j_solener_2023_112025
crossref_primary_10_1002_htj_22725
crossref_primary_10_1016_j_enbenv_2023_11_007
crossref_primary_10_1177_09576509231197881
crossref_primary_10_1016_j_solener_2024_112445
crossref_primary_10_1016_j_solener_2019_07_024
crossref_primary_10_1016_j_renene_2022_04_126
crossref_primary_10_1016_j_solener_2020_01_015
crossref_primary_10_1016_j_solener_2021_09_077
crossref_primary_10_1016_j_est_2021_103814
crossref_primary_10_1016_j_renene_2023_119862
crossref_primary_10_1016_j_rser_2019_109318
crossref_primary_10_1016_j_solener_2019_10_031
Cites_doi 10.1016/S0038-092X(97)00119-9
10.1016/S0038-092X(03)00121-X
10.1016/j.renene.2005.12.002
10.1016/j.renene.2017.04.051
10.1115/1.4030727
10.1016/S0196-8904(99)00136-3
10.1080/15435075.2013.840833
10.1016/j.solener.2014.01.014
10.1016/j.apenergy.2011.01.017
10.1016/j.energy.2004.04.061
10.1016/j.solener.2016.03.024
10.1016/j.renene.2015.08.061
10.1016/j.renene.2015.07.014
10.1016/j.solener.2005.07.006
10.1063/1.4753849
10.1016/j.enconman.2013.11.017
10.1016/j.solener.2015.04.038
10.1016/j.renene.2014.12.012
10.1115/1.2188534
10.1016/j.applthermaleng.2016.09.126
10.1016/j.renene.2017.10.004
10.1016/j.apenergy.2009.04.004
10.1016/j.energy.2008.03.005
10.1115/1.4003145
10.1016/j.solener.2014.11.008
10.1016/j.ijheatmasstransfer.2015.07.134
10.1016/j.renene.2015.12.064
10.1016/j.energy.2013.07.050
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2018.03.023
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 946
ExternalDocumentID 10_1016_j_renene_2018_03_023
S0960148118303288
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-3742f199af14d2a49dd7a9e5d60c0c08cfd08f2f55af7aa63b2a4f5b66b0dbe23
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Fri Jul 11 08:33:19 EDT 2025
Tue Jul 01 03:20:45 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 23 02:45:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water-cooled photovoltaic/thermal system
Cooling channel above PV panel
Energy and exergy efficiencies
Heat transfer
Numerical study
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-3742f199af14d2a49dd7a9e5d60c0c08cfd08f2f55af7aa63b2a4f5b66b0dbe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2286937592
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2286937592
crossref_primary_10_1016_j_renene_2018_03_023
crossref_citationtrail_10_1016_j_renene_2018_03_023
elsevier_sciencedirect_doi_10_1016_j_renene_2018_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yazdanpanahi, Sarhaddi, Mahdavi-Adeli (bib21) 2015; 118
Rejeb, Dhaou, Jemni (bib4) 2015; 77
Tiwari, Sodha (bib7) 2006; 80
Tiwari, Dubey, Sandhu, Sodha, Anwar (bib28) 2009; 86
Jing, Hu, Liu, Wei, Guo (bib23) 2015; 112
Hegazy (bib14) 2000; 41
Jaus, Gueymard (bib26) 2012; 1477
Michael, Selvarasan, Goic (bib9) 2016; 90
Tiwari, Sodha (bib22) 2006; 31
Bahaidarah, Subhan, Gandhidasan, Rehman (bib8) 2013; 59
Teo, Lee, Hawlader (bib18) 2012; 90
Hung, Huang, Lee, Lin, Pei, Li (bib17) 2017; 111
Erdil, Ilkan, Egelioglu (bib11) 2008; 33
Tamayo-Vera, Laukkanen, Siren (bib19) 2014; 102
Nasrin, Hasanuzzaman, Rahim (bib25) 2018; 116
Charron, Athienitis (bib15) 2006; 128
Fudholi, Sopian, Yazdi, Ruslan, Ibrahim, Kazem (bib27) 2014; 78
Luminosu, Fara (bib20) 2005; 30
Sharples, Charlesworth (bib24) 1998; 62
Wu, Guo, Xiao (bib1) 2015; 12
Candanedo, Athienitis, Park (bib16) 2011; 133
Zondag, de Vries, van Helden, van Zolingen, van Steenhoven (bib10) 2003; 74
Reddy, Ebadian, Lin (bib3) 2015; 91
Jarimi, Abu Bakar, Othman, Hj Din (bib5) 2016; 85
Rosa-Clot, Rosa-Clot, Tina, Ventura (bib13) 2016; 133
Othman, Hamid, Tabook, Sopian, Roslan, Ibarahim (bib6) 2016; 86
Colangelo, Romano, Tina (bib12) 2015; 137
Bianchini, Guzzini, Pellegrini, Saccani (bib2) 2017; 111
Bahaidarah (10.1016/j.renene.2018.03.023_bib8) 2013; 59
Hung (10.1016/j.renene.2018.03.023_bib17) 2017; 111
Teo (10.1016/j.renene.2018.03.023_bib18) 2012; 90
Wu (10.1016/j.renene.2018.03.023_bib1) 2015; 12
Tiwari (10.1016/j.renene.2018.03.023_bib7) 2006; 80
Michael (10.1016/j.renene.2018.03.023_bib9) 2016; 90
Yazdanpanahi (10.1016/j.renene.2018.03.023_bib21) 2015; 118
Nasrin (10.1016/j.renene.2018.03.023_bib25) 2018; 116
Bianchini (10.1016/j.renene.2018.03.023_bib2) 2017; 111
Reddy (10.1016/j.renene.2018.03.023_bib3) 2015; 91
Othman (10.1016/j.renene.2018.03.023_bib6) 2016; 86
Fudholi (10.1016/j.renene.2018.03.023_bib27) 2014; 78
Sharples (10.1016/j.renene.2018.03.023_bib24) 1998; 62
Jing (10.1016/j.renene.2018.03.023_bib23) 2015; 112
Jaus (10.1016/j.renene.2018.03.023_bib26) 2012; 1477
Jarimi (10.1016/j.renene.2018.03.023_bib5) 2016; 85
Tiwari (10.1016/j.renene.2018.03.023_bib22) 2006; 31
Colangelo (10.1016/j.renene.2018.03.023_bib12) 2015; 137
Rosa-Clot (10.1016/j.renene.2018.03.023_bib13) 2016; 133
Tamayo-Vera (10.1016/j.renene.2018.03.023_bib19) 2014; 102
Rejeb (10.1016/j.renene.2018.03.023_bib4) 2015; 77
Zondag (10.1016/j.renene.2018.03.023_bib10) 2003; 74
Hegazy (10.1016/j.renene.2018.03.023_bib14) 2000; 41
Erdil (10.1016/j.renene.2018.03.023_bib11) 2008; 33
Charron (10.1016/j.renene.2018.03.023_bib15) 2006; 128
Candanedo (10.1016/j.renene.2018.03.023_bib16) 2011; 133
Luminosu (10.1016/j.renene.2018.03.023_bib20) 2005; 30
Tiwari (10.1016/j.renene.2018.03.023_bib28) 2009; 86
References_xml – volume: 112
  start-page: 30
  year: 2015
  end-page: 40
  ident: bib23
  article-title: Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system
  publication-title: Sol. Energy
– volume: 86
  start-page: 2592
  year: 2009
  end-page: 2597
  ident: bib28
  article-title: Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes
  publication-title: Appl. Energy
– volume: 90
  start-page: 95
  year: 2016
  end-page: 104
  ident: bib9
  article-title: Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications
  publication-title: Renew. Energy
– volume: 137
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib12
  article-title: Performance evaluation of a new type of combined photovoltaic-thermal solar collector
  publication-title: J. Sol. Energy Eng.
– volume: 62
  start-page: 69
  year: 1998
  end-page: 77
  ident: bib24
  article-title: Full-scale measurements of wind induced convective heat transfer from a roof-mounted flat plate solar collector
  publication-title: Sol. Energy
– volume: 111
  start-page: 1025
  year: 2017
  end-page: 1038
  ident: bib17
  article-title: Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector
  publication-title: Appl. Therm. Eng.
– volume: 1477
  start-page: 122
  year: 2012
  end-page: 126
  ident: bib26
  article-title: Generalized spectral performance evaluation of multi-junction solar cells using a multicore parallelized version of SMARTS
  publication-title: AIP Conf. Proc.
– volume: 74
  start-page: 253
  year: 2003
  end-page: 269
  ident: bib10
  article-title: The yield of different combined PV-thermal collector designs
  publication-title: Sol. Energy
– volume: 133
  start-page: 305
  year: 2016
  end-page: 314
  ident: bib13
  article-title: Experimental photovoltaic-thermal power plants based on TESPI panel
  publication-title: Sol. Energy
– volume: 30
  start-page: 731
  year: 2005
  end-page: 747
  ident: bib20
  article-title: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation
  publication-title: Energy
– volume: 90
  start-page: 309
  year: 2012
  end-page: 315
  ident: bib18
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl. Energy
– volume: 86
  start-page: 716
  year: 2016
  end-page: 722
  ident: bib6
  article-title: Performance analysis of PV/T combi with water and air heating system: an experimental study
  publication-title: Renew. Energy
– volume: 41
  start-page: 861
  year: 2000
  end-page: 881
  ident: bib14
  article-title: Comparative study of the performance of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers. Manag.
– volume: 102
  start-page: 223
  year: 2014
  end-page: 233
  ident: bib19
  article-title: Performance evaluation and multi-objective optimization of hybrid photovoltaic-thermal collectors
  publication-title: Sol. Energy
– volume: 12
  start-page: 379
  year: 2015
  end-page: 397
  ident: bib1
  article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
– volume: 59
  start-page: 445
  year: 2013
  end-page: 453
  ident: bib8
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
– volume: 77
  start-page: 43
  year: 2015
  end-page: 50
  ident: bib4
  article-title: A numerical investigation of a photovoltaic thermal (PV/T) collector
  publication-title: Renew. Energy
– volume: 111
  start-page: 543
  year: 2017
  end-page: 555
  ident: bib2
  article-title: Photovoltaic/thermal (PV/T) solar system: experimental measurements, performance analysis and economic assessment
  publication-title: Renew. Energy
– volume: 91
  start-page: 861
  year: 2015
  end-page: 871
  ident: bib3
  article-title: A review of PV-T systems: thermal management and efficiency with single phase cooling
  publication-title: Int. J. Heat Mass Tran.
– volume: 128
  start-page: 160
  year: 2006
  end-page: 167
  ident: bib15
  article-title: A two dimensional model of a double facade with integrated photovoltaic panels
  publication-title: J. Sol. Energy Eng.
– volume: 78
  start-page: 641
  year: 2014
  end-page: 651
  ident: bib27
  article-title: Performance analysis of photovoltaic thermal (PVT) water collectors
  publication-title: Energy Convers. Manag.
– volume: 80
  start-page: 751
  year: 2006
  end-page: 759
  ident: bib7
  article-title: Performance evaluation of a solar PV/T system: an experimental validation
  publication-title: Sol. Energy
– volume: 33
  start-page: 1241
  year: 2008
  end-page: 1245
  ident: bib11
  article-title: An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system
  publication-title: Energy
– volume: 118
  start-page: 197
  year: 2015
  end-page: 208
  ident: bib21
  article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses
  publication-title: Sol. Energy
– volume: 85
  start-page: 1052
  year: 2016
  end-page: 1067
  ident: bib5
  article-title: Bi-fluid photovoltaic/thermal (PV/T) solar collector: experimental validation of a 2-D theoretical model
  publication-title: Renew. Energy
– volume: 116
  start-page: 552
  year: 2018
  end-page: 569
  ident: bib25
  article-title: Effect of high irradiation and cooling on power, energy and performance of a PVT system
  publication-title: Renew. Energy
– volume: 31
  start-page: 2460
  year: 2006
  end-page: 2474
  ident: bib22
  article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study
  publication-title: Renew. Energy
– volume: 133
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib16
  article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system
  publication-title: J. Sol. Energy Eng.
– volume: 62
  start-page: 69
  year: 1998
  ident: 10.1016/j.renene.2018.03.023_bib24
  article-title: Full-scale measurements of wind induced convective heat transfer from a roof-mounted flat plate solar collector
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(97)00119-9
– volume: 74
  start-page: 253
  year: 2003
  ident: 10.1016/j.renene.2018.03.023_bib10
  article-title: The yield of different combined PV-thermal collector designs
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(03)00121-X
– volume: 31
  start-page: 2460
  year: 2006
  ident: 10.1016/j.renene.2018.03.023_bib22
  article-title: Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.12.002
– volume: 111
  start-page: 543
  year: 2017
  ident: 10.1016/j.renene.2018.03.023_bib2
  article-title: Photovoltaic/thermal (PV/T) solar system: experimental measurements, performance analysis and economic assessment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.04.051
– volume: 137
  start-page: 1
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib12
  article-title: Performance evaluation of a new type of combined photovoltaic-thermal solar collector
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.4030727
– volume: 41
  start-page: 861
  year: 2000
  ident: 10.1016/j.renene.2018.03.023_bib14
  article-title: Comparative study of the performance of four photovoltaic/thermal solar air collectors
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(99)00136-3
– volume: 12
  start-page: 379
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib1
  article-title: A review on the methodology for calculating heat and exergy losses of a conventional solar PV/T system
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2013.840833
– volume: 102
  start-page: 223
  year: 2014
  ident: 10.1016/j.renene.2018.03.023_bib19
  article-title: Performance evaluation and multi-objective optimization of hybrid photovoltaic-thermal collectors
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.01.014
– volume: 90
  start-page: 309
  year: 2012
  ident: 10.1016/j.renene.2018.03.023_bib18
  article-title: An active cooling system for photovoltaic modules
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.01.017
– volume: 30
  start-page: 731
  year: 2005
  ident: 10.1016/j.renene.2018.03.023_bib20
  article-title: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation
  publication-title: Energy
  doi: 10.1016/j.energy.2004.04.061
– volume: 133
  start-page: 305
  year: 2016
  ident: 10.1016/j.renene.2018.03.023_bib13
  article-title: Experimental photovoltaic-thermal power plants based on TESPI panel
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.03.024
– volume: 86
  start-page: 716
  year: 2016
  ident: 10.1016/j.renene.2018.03.023_bib6
  article-title: Performance analysis of PV/T combi with water and air heating system: an experimental study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.08.061
– volume: 85
  start-page: 1052
  year: 2016
  ident: 10.1016/j.renene.2018.03.023_bib5
  article-title: Bi-fluid photovoltaic/thermal (PV/T) solar collector: experimental validation of a 2-D theoretical model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.014
– volume: 80
  start-page: 751
  year: 2006
  ident: 10.1016/j.renene.2018.03.023_bib7
  article-title: Performance evaluation of a solar PV/T system: an experimental validation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2005.07.006
– volume: 1477
  start-page: 122
  year: 2012
  ident: 10.1016/j.renene.2018.03.023_bib26
  article-title: Generalized spectral performance evaluation of multi-junction solar cells using a multicore parallelized version of SMARTS
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4753849
– volume: 78
  start-page: 641
  year: 2014
  ident: 10.1016/j.renene.2018.03.023_bib27
  article-title: Performance analysis of photovoltaic thermal (PVT) water collectors
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.017
– volume: 118
  start-page: 197
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib21
  article-title: Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.04.038
– volume: 77
  start-page: 43
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib4
  article-title: A numerical investigation of a photovoltaic thermal (PV/T) collector
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.12.012
– volume: 128
  start-page: 160
  year: 2006
  ident: 10.1016/j.renene.2018.03.023_bib15
  article-title: A two dimensional model of a double facade with integrated photovoltaic panels
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2188534
– volume: 111
  start-page: 1025
  year: 2017
  ident: 10.1016/j.renene.2018.03.023_bib17
  article-title: Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.09.126
– volume: 116
  start-page: 552
  year: 2018
  ident: 10.1016/j.renene.2018.03.023_bib25
  article-title: Effect of high irradiation and cooling on power, energy and performance of a PVT system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.004
– volume: 86
  start-page: 2592
  year: 2009
  ident: 10.1016/j.renene.2018.03.023_bib28
  article-title: Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.04.004
– volume: 33
  start-page: 1241
  year: 2008
  ident: 10.1016/j.renene.2018.03.023_bib11
  article-title: An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system
  publication-title: Energy
  doi: 10.1016/j.energy.2008.03.005
– volume: 133
  start-page: 1
  year: 2011
  ident: 10.1016/j.renene.2018.03.023_bib16
  article-title: Convective heat transfer coefficients in a building-integrated photovoltaic/thermal system
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.4003145
– volume: 112
  start-page: 30
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib23
  article-title: Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.11.008
– volume: 91
  start-page: 861
  year: 2015
  ident: 10.1016/j.renene.2018.03.023_bib3
  article-title: A review of PV-T systems: thermal management and efficiency with single phase cooling
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.07.134
– volume: 90
  start-page: 95
  year: 2016
  ident: 10.1016/j.renene.2018.03.023_bib9
  article-title: Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.12.064
– volume: 59
  start-page: 445
  year: 2013
  ident: 10.1016/j.renene.2018.03.023_bib8
  article-title: Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.050
SSID ssj0015874
Score 2.532868
Snippet A three-dimensional numerical model of water-cooled PV/T system with cooling channel above PV panel was built to analyze the influences of mass flow rate,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 936
SubjectTerms ambient temperature
convection
cooling
Cooling channel above PV panel
Energy and exergy efficiencies
exergy
Heat transfer
mass flow
mathematical models
Numerical study
renewable energy sources
solar collectors
solar radiation
water temperature
Water-cooled photovoltaic/thermal system
Title Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel
URI https://dx.doi.org/10.1016/j.renene.2018.03.023
https://www.proquest.com/docview/2286937592
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5KfWkfRK3FVi0r9HU92Ut2N4-lWI6KRWgrfVv2CpVDcjg9rT75253JpbWCFCRPCbObsDP55iOZ-ZaQQ8ipOvqSGdepZipazjw3nEVrg5DJ6miwOfnLqZ5fqE-X9eUGOZ56YbCscsT-AdN7tB6vzMbVnC2vrmZnSL6BzANDligKhw2_ShmM8ve_7so8eG0HJWYwZmg9tc_1NV6oGtmiWCa3vdSpkP9KT38BdZ99Tp6RpyNtpEfDkz0nG7l9Qbb_EBPcIT_nAKt03RPRvKLxoRIz9W2iy_suAXov8027Qn8A5Vyx2HWLnOjXb7NzOkg8U_xOS_E63APnxLIYCoFzm8GMApTkxUtycfLh_HjOxn0VWJSyWQOmKFF40_jCVRJeNSkZ3-Q66SrCYWNJlS2i1LUvxnstAxiVOmgdqhSykLtks-3a_IpQZVLk1oRK2qBE0A2PKuZijag0cFG7R-S0nC6OouO498XCTdVl393gBIdOcJV04IQ9wu5GLQfRjUfszeQp9yB4HOSFR0a-mxzr4L3CnyWwcN3NtRPCaqBudSP2_3v212QLz4aStDdkc726yW-Bw6zDQR-kB-TJ0cfP89PfIUfzSQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcoTyPB0Wz8iOMcOCCg2tKHkNii3oyfUqtVstpuKVz4U_xBZvJoKRKqhFTl5owda8ae-ZLMfCbkJcRUHVxOjOtYMhUMZ45XnAVjvJDR6FBhcfLunp7uq48H5cEa-TXWwmBa5eD7e5_eeeuhZTJoc7I4PJx8RvANYB4QskRSODNkVm6nH6fw3nb8Zus9GPmVEJsfZu-mbDhagAUp6xVsKyUyr2uXuYrCqTrGytWpjLoIcJmQY2GyyGXpcuWclh6Ecum19kX0CdkOwO9fU-Au8NiE1z_P8kp4aXrqZ5gdw-mN9XpdUhnSVDbIzslNx60q5L_i4V-RoQt3m7fJrQGn0re9Ku6QtdTcJTf_YC-8R75PwY_TVYd805KGi9TP1DWRLs7LEug5rzhtMz0FjLtkoW3nKdJPXyYz2nNKU_wwTLEdnoFjYh4OhZX6LYEYBd-V5vfJ_pVo-wFZb9omPSRUVTFwU_lCGq-E1zUPKqRsKlFoAL9mg8hRnTYMLOd42MbcjulsR7Y3gkUj2EJaMMIGYWe9Fj3LxyXy1Wgpe2G1WghEl_R8MRrWwkbGvzOguPbk2AphNGDFshaP_nv05-T6dLa7Y3e29rYfkxt4p8-He0LWV8uT9BQA1Mo_6xYsJV-veof8BsENMJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+characteristics+and+performance+evaluation+of+water-cooled+PV%2FT+system+with+cooling+channel+above+PV+panel&rft.jtitle=Renewable+energy&rft.au=Wu%2C+Shuang-Ying&rft.au=Chen%2C+Chen&rft.au=Xiao%2C+Lan&rft.date=2018-09-01&rft.issn=0960-1481&rft.volume=125+p.936-946&rft.spage=936&rft.epage=946&rft_id=info:doi/10.1016%2Fj.renene.2018.03.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon