Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow
An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is u...
Saved in:
Published in | Powder technology Vol. 322; pp. 428 - 438 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅2), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅2), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅2), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nux) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective.
[Display omitted]
•TiO2‐Cu/H2O hybrid nanofluid is incorporated.•Analysis of thermal conductivity of hybrid nanofluid is highlighted.•Different shape factors for nanoparticles are addressed.•Nonlinear differential equations are solved numerically. |
---|---|
AbstractList | An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅₂), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅₂), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅₂), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nuₓ) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective. An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅2), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅2), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅2), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nux) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective. [Display omitted] •TiO2‐Cu/H2O hybrid nanofluid is incorporated.•Analysis of thermal conductivity of hybrid nanofluid is highlighted.•Different shape factors for nanoparticles are addressed.•Nonlinear differential equations are solved numerically. |
Author | Hosseinzadeh, Kh Ganji, D.D. Yassari, M. Sadeghi, H. Ghadikolaei, S.S. |
Author_xml | – sequence: 1 givenname: S.S. surname: Ghadikolaei fullname: Ghadikolaei, S.S. organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran – sequence: 2 givenname: M. surname: Yassari fullname: Yassari, M. organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran – sequence: 3 givenname: H. surname: Sadeghi fullname: Sadeghi, H. organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran – sequence: 4 givenname: Kh surname: Hosseinzadeh fullname: Hosseinzadeh, Kh organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran – sequence: 5 givenname: D.D. surname: Ganji fullname: Ganji, D.D. email: mirgang@nit.ac.ir organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran |
BookMark | eNqFUb1uFDEYtFCQuBy8AYVLmt3459i1KZDQEbhIidIEic7yej_nfNqzje1LdB0vQMUb8iT4WCqKIFn6XMzM983MOTrzwQNCrylpKaHdxa6N4bGAaRmhfUtkS0j3DC2o6HnDmfh6hhaEcNa8lZS8QOc570hFcEoW6MeVf4Bc3L0uLnhcX9lC2oe4PWZn9IRjChFScZBxsPjOBfbr-8_14WLDbvH2OCQ3Yq99sNOh_krSPseQCh4hgh_Bl5Nk3uoI2GpTQsLO45vNR5yLvvfz0hhcxdkpPL5Ez62eMrz6O5foy6fLu_Wmub79fLX-cN0YzmVpeL-iohsEFWPPOmOtpqTTWmpuGQEysGFFWNcL1g2WDWSgvR6EkCAFo5TxFV-iN7NudfftUP2rvcsGpkl7CIesKqyTVNaIKvTdDDUp5JzAKuPKn7urWTcpStSpA7VTcwfq1IEiUp0SXqLVP-SY3F6n4_9o72ca1AweHCSVjQNvYHQJTFFjcE8L_AZhJ6id |
CitedBy_id | crossref_primary_10_1139_cjp_2017_0801 crossref_primary_10_1080_10407782_2024_2343591 crossref_primary_10_1080_17455030_2021_2020375 crossref_primary_10_1080_10420150_2024_2436484 crossref_primary_10_1139_cjp_2018_0526 crossref_primary_10_1080_10407782_2023_2212130 crossref_primary_10_1016_j_icheatmasstransfer_2022_106225 crossref_primary_10_1038_s41598_022_07251_y crossref_primary_10_1108_WJE_06_2018_0204 crossref_primary_10_1016_j_ijft_2024_100631 crossref_primary_10_1016_j_molliq_2024_125546 crossref_primary_10_1140_epjs_s11734_023_00947_w crossref_primary_10_1007_s13369_023_08058_3 crossref_primary_10_1088_1402_4896_abf615 crossref_primary_10_1002_er_6095 crossref_primary_10_1615_NanoSciTechnolIntJ_2023045603 crossref_primary_10_1002_zamm_202300063 crossref_primary_10_1088_1742_6596_1366_1_012022 crossref_primary_10_1108_HFF_05_2020_0298 crossref_primary_10_1007_s12043_020_02029_1 crossref_primary_10_3389_fchem_2024_1397066 crossref_primary_10_1016_j_icheatmasstransfer_2022_106230 crossref_primary_10_1002_apj_2985 crossref_primary_10_1155_2022_4417418 crossref_primary_10_1016_j_chaos_2021_111010 crossref_primary_10_1016_j_cjph_2022_10_009 crossref_primary_10_1007_s40995_018_0601_1 crossref_primary_10_1038_s41598_023_48676_3 crossref_primary_10_3390_fluids6060202 crossref_primary_10_1142_S0129183124400047 crossref_primary_10_1142_S0217984924501082 crossref_primary_10_1002_cite_202400100 crossref_primary_10_1016_j_est_2024_111243 crossref_primary_10_1016_j_jtice_2021_03_043 crossref_primary_10_1016_j_applthermaleng_2024_124892 crossref_primary_10_3390_nano12152552 crossref_primary_10_1007_s00231_025_03542_y crossref_primary_10_1007_s00542_018_3908_0 crossref_primary_10_1016_j_icheatmasstransfer_2022_106325 crossref_primary_10_1016_j_applthermaleng_2019_02_111 crossref_primary_10_1016_j_eswa_2025_126517 crossref_primary_10_1080_17455030_2021_1968537 crossref_primary_10_1063_5_0249122 crossref_primary_10_1016_j_molliq_2018_07_105 crossref_primary_10_1007_s00521_022_07323_0 crossref_primary_10_1007_s13369_024_08909_7 crossref_primary_10_1515_ijcre_2021_0117 crossref_primary_10_1080_10407782_2024_2341270 crossref_primary_10_3390_math8101730 crossref_primary_10_1007_s40096_021_00377_6 crossref_primary_10_1016_j_energy_2022_124515 crossref_primary_10_1177_09544089221115496 crossref_primary_10_3390_sym12091493 crossref_primary_10_3390_nano12071049 crossref_primary_10_1177_09544062211010833 crossref_primary_10_1016_j_csite_2023_103308 crossref_primary_10_1080_10407782_2024_2321523 crossref_primary_10_1016_j_applthermaleng_2024_123465 crossref_primary_10_1108_WJE_05_2024_0318 crossref_primary_10_1016_j_aej_2021_06_085 crossref_primary_10_1063_1_5080671 crossref_primary_10_1007_s10483_020_2652_8 crossref_primary_10_1155_2024_9528362 crossref_primary_10_1080_17455030_2022_2084574 crossref_primary_10_1021_acs_est_0c07217 crossref_primary_10_1007_s10973_018_7974_4 crossref_primary_10_1007_s12648_022_02300_8 crossref_primary_10_1108_HFF_06_2019_0500 crossref_primary_10_1007_s12217_019_09757_z crossref_primary_10_1002_er_7140 crossref_primary_10_1016_j_est_2023_108087 crossref_primary_10_1007_s10973_020_10210_2 crossref_primary_10_3390_cryst10020142 crossref_primary_10_1016_j_powtec_2018_09_023 crossref_primary_10_1108_HFF_01_2019_0057 crossref_primary_10_1115_1_4049454 crossref_primary_10_1166_jon_2020_1739 crossref_primary_10_3390_ijms22179201 crossref_primary_10_1016_j_powtec_2019_12_036 crossref_primary_10_1038_s41598_023_32360_7 crossref_primary_10_1016_j_molliq_2018_09_084 crossref_primary_10_1016_j_csite_2023_103883 crossref_primary_10_1016_j_icheatmasstransfer_2022_106244 crossref_primary_10_1038_s41598_021_99045_x crossref_primary_10_1016_j_finmec_2023_100190 crossref_primary_10_1140_epjp_s13360_020_00809_7 crossref_primary_10_3390_math10071164 crossref_primary_10_1108_MMMS_05_2024_0128 crossref_primary_10_1016_j_padiff_2025_101100 crossref_primary_10_1142_S0217979225500018 crossref_primary_10_1016_j_cep_2020_107886 crossref_primary_10_1080_01430750_2022_2056916 crossref_primary_10_1080_16583655_2023_2254465 crossref_primary_10_1088_1402_4896_ab3bff crossref_primary_10_1038_s41598_022_10398_3 crossref_primary_10_1108_HFF_12_2018_0748 crossref_primary_10_1016_j_icheatmasstransfer_2022_106179 crossref_primary_10_1007_s10973_023_12609_z crossref_primary_10_1016_j_rineng_2022_100601 crossref_primary_10_1002_htj_21760 crossref_primary_10_1016_j_asej_2022_101934 crossref_primary_10_1016_j_kijoms_2017_12_001 crossref_primary_10_1063_5_0036232 crossref_primary_10_1007_s12043_024_02756_9 crossref_primary_10_1016_j_aej_2020_04_037 crossref_primary_10_1080_10407782_2023_2209926 crossref_primary_10_1038_s41598_023_34259_9 crossref_primary_10_3390_magnetochemistry8120188 crossref_primary_10_4028_p_xbZ0F1 crossref_primary_10_1080_01430750_2020_1861094 crossref_primary_10_1177_09544089211033161 crossref_primary_10_1002_zamm_202200170 crossref_primary_10_1016_j_ijhydene_2018_05_021 crossref_primary_10_1007_s13369_019_03773_2 crossref_primary_10_1002_htj_22502 crossref_primary_10_1080_01430750_2020_1749125 crossref_primary_10_1108_WJE_04_2018_0144 crossref_primary_10_3390_nano13060984 crossref_primary_10_1007_s00521_019_04221_w crossref_primary_10_1007_s10973_022_11418_0 crossref_primary_10_1080_10407790_2024_2312954 crossref_primary_10_1007_s40096_021_00421_5 crossref_primary_10_1080_10407790_2024_2361127 crossref_primary_10_1115_1_4041497 crossref_primary_10_1016_j_csite_2017_11_004 crossref_primary_10_1108_HFF_12_2021_0767 crossref_primary_10_1177_0954406220957710 crossref_primary_10_1016_j_asej_2022_101713 crossref_primary_10_1016_j_csite_2022_101828 crossref_primary_10_1155_2022_9469164 crossref_primary_10_1080_10407782_2023_2279257 crossref_primary_10_1166_jon_2024_2181 crossref_primary_10_3390_w12061723 crossref_primary_10_1038_s41598_021_86868_x crossref_primary_10_1088_1402_4896_ab31d3 crossref_primary_10_1142_S0217979223502375 crossref_primary_10_1016_j_ijheatfluidflow_2024_109508 crossref_primary_10_1016_j_asej_2021_101667 crossref_primary_10_1080_23311916_2024_2364052 crossref_primary_10_1016_j_ijthermalsci_2022_107525 crossref_primary_10_3390_sym13081466 crossref_primary_10_1016_j_tsep_2019_04_006 crossref_primary_10_1108_HFF_03_2021_0155 crossref_primary_10_1177_23977914241304066 crossref_primary_10_1007_s13369_020_05195_x crossref_primary_10_1007_s00396_023_05138_6 crossref_primary_10_1016_j_jppr_2022_01_001 crossref_primary_10_1080_15376494_2018_1525780 crossref_primary_10_1108_HFF_05_2019_0441 crossref_primary_10_1080_02286203_2024_2395900 crossref_primary_10_1002_zamm_202300303 crossref_primary_10_1016_j_aej_2024_10_075 crossref_primary_10_1007_s10765_018_2422_z crossref_primary_10_3390_math9080878 crossref_primary_10_1002_htj_21605 crossref_primary_10_1038_s41598_022_12671_x crossref_primary_10_3390_fluids6040138 crossref_primary_10_1016_j_csite_2024_105609 crossref_primary_10_3390_nano12224102 crossref_primary_10_1002_zamm_202400388 crossref_primary_10_3390_app122211715 crossref_primary_10_1016_j_rineng_2024_102895 crossref_primary_10_1088_1402_4896_ad6bcd crossref_primary_10_1080_10407790_2024_2364786 crossref_primary_10_1002_mma_6671 crossref_primary_10_1140_epjp_i2018_12180_1 crossref_primary_10_1016_j_amc_2021_126900 crossref_primary_10_1108_WJE_07_2020_0261 crossref_primary_10_1002_mma_7756 crossref_primary_10_1016_j_rinp_2023_106906 crossref_primary_10_1007_s13369_020_04580_w crossref_primary_10_1515_nleng_2022_0019 crossref_primary_10_1080_02286203_2024_2349506 crossref_primary_10_1108_HFF_05_2022_0301 crossref_primary_10_1007_s13369_020_04967_9 crossref_primary_10_1002_htj_21705 crossref_primary_10_1016_j_thradv_2024_100006 crossref_primary_10_1016_j_cjph_2021_03_016 crossref_primary_10_1016_j_cjph_2021_03_017 crossref_primary_10_47836_mjms_16_2_06 crossref_primary_10_1007_s10973_020_09710_y crossref_primary_10_3390_math9182242 crossref_primary_10_1016_j_padiff_2021_100240 crossref_primary_10_1080_10407790_2024_2386584 crossref_primary_10_1016_j_swevo_2024_101775 crossref_primary_10_1038_s41598_019_52720_6 crossref_primary_10_1038_s41598_020_63708_y crossref_primary_10_1016_j_powtec_2018_07_045 crossref_primary_10_1177_09544089241272769 crossref_primary_10_1007_s00542_018_4076_y crossref_primary_10_1016_j_physleta_2018_01_024 crossref_primary_10_1155_ijde_4138176 crossref_primary_10_1002_htj_21837 crossref_primary_10_1016_j_jrras_2024_101115 crossref_primary_10_1080_10407782_2023_2240502 crossref_primary_10_1016_j_cjph_2022_05_013 crossref_primary_10_1108_HFF_04_2020_0200 crossref_primary_10_1088_1402_4896_abc03c crossref_primary_10_1016_j_ijheatfluidflow_2024_109542 crossref_primary_10_1016_j_kijoms_2018_04_001 crossref_primary_10_1007_s12648_024_03263_8 crossref_primary_10_1142_S021797922250028X crossref_primary_10_1016_j_aej_2020_05_008 crossref_primary_10_1007_s00542_019_04332_3 crossref_primary_10_3390_pr9111932 crossref_primary_10_1007_s10973_023_12858_y crossref_primary_10_1108_HFF_10_2021_0696 crossref_primary_10_1108_HFF_10_2019_0732 crossref_primary_10_4028_p_wwb62a crossref_primary_10_1080_15567036_2023_2194855 crossref_primary_10_1007_s12572_024_00369_4 crossref_primary_10_1016_j_cjph_2024_11_024 crossref_primary_10_1134_S1810232821040147 crossref_primary_10_1080_01430750_2022_2111356 crossref_primary_10_3390_nano12132273 crossref_primary_10_1016_j_nanoso_2018_07_009 crossref_primary_10_1080_02286203_2023_2246243 crossref_primary_10_1002_zamm_202400114 crossref_primary_10_1063_5_0168503 crossref_primary_10_1108_MMMS_08_2019_0152 crossref_primary_10_1080_17455030_2022_2123571 crossref_primary_10_1177_16878132221127829 crossref_primary_10_1080_10407790_2023_2252589 crossref_primary_10_1007_s10973_024_13346_7 crossref_primary_10_1155_2022_6271265 crossref_primary_10_1002_htj_21341 crossref_primary_10_1038_s41598_020_65278_5 crossref_primary_10_1108_HFF_10_2019_0756 crossref_primary_10_1016_j_molliq_2018_04_141 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_101 crossref_primary_10_1002_zamm_202400248 crossref_primary_10_1007_s10973_017_6903_2 crossref_primary_10_1007_s10483_021_2801_6 crossref_primary_10_1016_j_solener_2022_09_026 crossref_primary_10_1016_j_molliq_2018_11_109 crossref_primary_10_1155_2022_6423730 crossref_primary_10_1002_mma_7142 crossref_primary_10_1515_nleng_2017_0163 crossref_primary_10_1016_j_rineng_2024_103055 crossref_primary_10_1016_j_solener_2022_09_017 crossref_primary_10_1007_s42452_022_05260_0 crossref_primary_10_1007_s12648_020_01745_z crossref_primary_10_1140_epjp_s13360_021_01829_7 crossref_primary_10_1016_j_cjph_2022_07_003 crossref_primary_10_1016_j_powtec_2018_03_010 crossref_primary_10_1080_17455030_2022_2131012 crossref_primary_10_1088_1402_4896_ab0fd5 crossref_primary_10_1016_j_powtec_2020_03_030 crossref_primary_10_1007_s10973_020_09809_2 crossref_primary_10_1016_j_csite_2020_100835 crossref_primary_10_1063_1_5143937 crossref_primary_10_1063_5_0074894 crossref_primary_10_1002_zamm_202300936 crossref_primary_10_1140_epjp_s13360_022_02361_y crossref_primary_10_3390_math10152605 crossref_primary_10_1002_htj_21339 crossref_primary_10_1016_j_molliq_2018_04_094 crossref_primary_10_1007_s10973_020_09347_x crossref_primary_10_1016_j_csite_2018_04_008 crossref_primary_10_1016_j_csite_2018_04_009 crossref_primary_10_1038_s41598_021_91152_z crossref_primary_10_1016_j_csite_2023_102902 crossref_primary_10_1016_j_molliq_2018_02_106 crossref_primary_10_1016_j_jrras_2025_101362 crossref_primary_10_1139_cjp_2017_0282 crossref_primary_10_1108_HFF_07_2020_0470 crossref_primary_10_1016_j_cjph_2018_06_013 crossref_primary_10_3390_math9212681 crossref_primary_10_1080_01430750_2022_2101523 crossref_primary_10_18186_thermal_672785 crossref_primary_10_1002_zamm_202300928 crossref_primary_10_1007_s10483_020_2638_6 crossref_primary_10_1016_j_cjph_2021_12_011 crossref_primary_10_1080_17455030_2022_2077472 crossref_primary_10_1515_nleng_2017_0135 crossref_primary_10_1016_j_jics_2022_100608 crossref_primary_10_3389_fphy_2024_1372675 crossref_primary_10_1016_j_rinp_2020_103224 crossref_primary_10_1088_1402_4896_abc5ef crossref_primary_10_1108_HFF_10_2024_0735 crossref_primary_10_1016_j_cjph_2024_01_009 crossref_primary_10_1108_HFF_10_2019_0799 crossref_primary_10_1080_10407782_2024_2337764 crossref_primary_10_1088_0253_6102_70_2_239 crossref_primary_10_1016_j_ijhydene_2020_11_097 crossref_primary_10_1016_j_solener_2021_03_071 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125534 crossref_primary_10_1142_S0217984924502919 crossref_primary_10_1007_s10948_018_4819_0 crossref_primary_10_1007_s10973_023_12395_8 crossref_primary_10_1016_j_ijft_2024_101025 crossref_primary_10_1007_s13204_020_01360_8 crossref_primary_10_1016_j_taml_2018_03_005 crossref_primary_10_1016_j_rinp_2020_103351 crossref_primary_10_1016_j_csite_2020_100723 crossref_primary_10_1016_j_csite_2022_101972 crossref_primary_10_1016_j_matcom_2020_04_004 crossref_primary_10_1080_10407782_2023_2296134 crossref_primary_10_1016_j_molliq_2022_119134 crossref_primary_10_1088_1402_4896_ad8d40 crossref_primary_10_1515_ntrev_2022_0070 crossref_primary_10_1016_j_powtec_2018_09_005 crossref_primary_10_1016_j_aej_2023_05_005 crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_104 crossref_primary_10_1016_j_csite_2021_101681 crossref_primary_10_1007_s12217_023_10065_w crossref_primary_10_1016_j_ijhydene_2019_04_171 crossref_primary_10_1088_1402_4896_ad6c94 crossref_primary_10_1016_j_cjph_2022_01_012 crossref_primary_10_1016_j_csite_2022_102361 crossref_primary_10_1080_17455030_2022_2123967 crossref_primary_10_1016_j_molliq_2018_10_049 crossref_primary_10_1115_1_4049431 crossref_primary_10_1155_2021_5471813 crossref_primary_10_1177_09544089231200381 crossref_primary_10_1515_nleng_2021_0047 crossref_primary_10_1016_j_molliq_2020_113492 crossref_primary_10_1080_10407782_2023_2296129 crossref_primary_10_1038_s41598_023_44275_4 crossref_primary_10_1007_s13204_018_0820_y crossref_primary_10_1155_2021_6229706 crossref_primary_10_1186_s40712_018_0089_7 crossref_primary_10_1142_S0129183122500553 crossref_primary_10_1016_j_tsep_2017_12_010 crossref_primary_10_1002_htj_22031 crossref_primary_10_1007_s10765_023_03240_z crossref_primary_10_1080_17455030_2022_2038811 crossref_primary_10_1016_j_applthermaleng_2018_11_115 crossref_primary_10_1007_s13204_020_01597_3 crossref_primary_10_1063_1_5127327 crossref_primary_10_3390_sym15020265 crossref_primary_10_1007_s13369_024_09108_0 crossref_primary_10_1016_j_euromechflu_2023_06_001 crossref_primary_10_2139_ssrn_4113806 crossref_primary_10_1108_HFF_06_2018_0302 crossref_primary_10_1016_j_arabjc_2023_104628 crossref_primary_10_1007_s10973_023_12678_0 crossref_primary_10_1139_cjp_2018_0173 crossref_primary_10_1016_j_aej_2020_01_028 crossref_primary_10_1177_09544062231213203 crossref_primary_10_1080_01430750_2019_1681294 crossref_primary_10_1080_02286203_2024_2338034 crossref_primary_10_1142_S0217979224501881 crossref_primary_10_1016_j_aej_2025_01_031 crossref_primary_10_1080_01430750_2022_2095530 crossref_primary_10_1080_01430750_2024_2321210 crossref_primary_10_1007_s13204_020_01464_1 crossref_primary_10_1080_01430750_2021_1934539 crossref_primary_10_1038_s41598_025_85242_5 crossref_primary_10_1007_s10973_020_09256_z crossref_primary_10_1088_1402_4896_abd1b0 crossref_primary_10_1108_HFF_04_2019_0277 crossref_primary_10_1016_j_molliq_2020_114430 crossref_primary_10_1016_j_icheatmasstransfer_2022_106303 crossref_primary_10_1080_16583655_2018_1451063 crossref_primary_10_1016_j_powtec_2020_11_043 crossref_primary_10_3390_app14198905 crossref_primary_10_1142_S0217979224501650 crossref_primary_10_1016_j_jtice_2019_01_028 crossref_primary_10_1080_10407782_2023_2175750 crossref_primary_10_1108_HFF_02_2020_0096 crossref_primary_10_3390_sym14102136 crossref_primary_10_1080_10407782_2023_2251095 crossref_primary_10_1016_j_cmpb_2019_105093 crossref_primary_10_1080_10407782_2022_2147111 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023047771 crossref_primary_10_3389_fmats_2024_1391377 crossref_primary_10_1016_j_aej_2021_10_051 crossref_primary_10_1002_htj_22235 crossref_primary_10_1016_j_aej_2021_04_057 crossref_primary_10_1080_10407782_2024_2316222 crossref_primary_10_1080_01430750_2020_1768895 crossref_primary_10_3390_computation11070128 crossref_primary_10_3390_ma15217507 crossref_primary_10_1016_j_heliyon_2024_e31914 crossref_primary_10_46604_ijeti_2021_7681 crossref_primary_10_1007_s10973_023_12622_2 crossref_primary_10_1080_01430750_2021_2000491 crossref_primary_10_1007_s13369_023_08463_8 crossref_primary_10_1016_j_cjph_2019_11_008 crossref_primary_10_1080_17455030_2022_2026527 crossref_primary_10_1080_10407782_2023_2195689 crossref_primary_10_1080_02286203_2024_2338046 crossref_primary_10_1016_j_molliq_2024_125370 crossref_primary_10_1002_htj_21394 crossref_primary_10_1016_j_aej_2023_06_014 crossref_primary_10_1007_s12648_021_02212_z crossref_primary_10_1007_s10973_019_08304_7 |
Cites_doi | 10.1016/j.jmmm.2016.05.026 10.1016/j.powtec.2016.12.024 10.1016/j.molliq.2016.12.101 10.1016/j.expthermflusci.2011.11.007 10.1016/j.molliq.2017.03.017 10.1016/j.compfluid.2014.05.009 10.1016/j.petrol.2014.12.006 10.1016/j.ijheatmasstransfer.2017.03.123 10.1016/j.ijhydene.2016.09.121 10.1016/j.powtec.2012.11.030 10.1016/j.ijheatmasstransfer.2016.07.064 10.1016/j.molliq.2015.11.015 10.1016/j.molliq.2017.02.022 10.1109/TCPMT.2012.2211018 10.1016/j.apt.2016.02.033 10.1016/j.molliq.2017.02.020 10.1016/j.molliq.2017.02.015 10.1108/02644401311314330 10.1016/j.powtec.2013.12.042 10.1016/j.cma.2014.09.038 10.1016/j.ijheatmasstransfer.2016.11.044 10.1016/j.cplett.2016.11.013 10.1080/08916150600619281 10.1063/1.1408272 10.1016/j.jmmm.2014.03.014 10.1016/j.ijheatmasstransfer.2016.09.012 10.1063/1.1341218 10.1016/j.physa.2014.09.053 10.1016/j.molliq.2017.03.104 10.1166/jon.2015.1165 10.1016/j.colsurfa.2017.01.066 10.1007/s00231-010-0693-4 10.1115/1.2825978 10.1016/j.molliq.2016.10.037 10.1016/j.ijheatmasstransfer.2016.07.070 10.1016/j.applthermaleng.2017.02.045 10.1166/jnn.2014.8467 10.1016/j.energy.2014.07.089 10.1038/150405d0 10.1016/j.cplett.2016.12.045 10.1016/j.molliq.2016.04.125 10.1007/BF01811556 10.1007/s40430-014-0228-x |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.powtec.2017.09.006 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-328X |
EndPage | 438 |
ExternalDocumentID | 10_1016_j_powtec_2017_09_006 S003259101730726X |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSM SSZ T5K T9H WUQ XPP ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-374186b818d726cffa106aa9a3f20e0b2b40267826bf2b0b17ab889e982112343 |
IEDL.DBID | .~1 |
ISSN | 0032-5910 |
IngestDate | Thu Aug 07 13:52:25 EDT 2025 Tue Jul 01 01:21:41 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Fri Feb 23 02:45:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stagnation point flow Runge-Kutta-Fehlberg method Lorentz force Skin friction coefficient(Cf) Nusselt number (Nu) Hybrid nanofluid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-374186b818d726cffa106aa9a3f20e0b2b40267826bf2b0b17ab889e982112343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2116919631 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2116919631 crossref_citationtrail_10_1016_j_powtec_2017_09_006 crossref_primary_10_1016_j_powtec_2017_09_006 elsevier_sciencedirect_doi_10_1016_j_powtec_2017_09_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationTitle | Powder technology |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sheikholeslami, Ganji (bb0040) 2015; 283 Sheikholeslami, Ganji (bb0065) 2017; 229 Suresh, Venkitaraj, Hameed, Sarangan (bb0085) 2014; 14 Sheikholeslami, Ganji (bb0195) 2014; 75 Sheikholeslami, Ziabakhsh, Ganji (bb0135) 2017; 520 Lee, Choi, Li, Eastman (bb0015) 1999; 121 Sheikholeslami, Ganji (bb0055) 2013; 235 Sheikholeslami, Ashorynejad, Barari, Soleimani (bb0150) 2013; 30 Choi, Eastman (bb0005) 1995 Ali, Nazar, Arifin, Pop (bb0205) 2011; 47 Hiemenz (bb0220) 1911; 326 Kang, Kim, Oh (bb0010) 2006; 19 Ahmad, Mustafa (bb0045) 2016; 220 Malik, Nayak (bb0145) 2017; 111 Sheikholeslami, Ganji (bb0050) 2017; 667 Sheikholeslami, Ganji (bb0160) 2017; 42 Shao, Mo, Chen, Yin, Yang, Jia, Cheng (bb0120) 2017; 117 Pal, Mandal (bb0225) 2015; 126 Sheikholeslami, Ganji (bb0185) 2016; 224 Kumari, Takhar, Nath (bb0200) 1990; 25 Sheikholeslami (bb0175) 2017; 231 Nasrin, Alim (bb0095) 2014; 7 Kumar, Singh (bb0210) 2013; 222 Sheikholeslami, Ganji (bb0170) 2017; 669 Sheikholeslami, Ganji (bb0030) 2015; 37 Mehrali, Sadeghinezhad, Akhiani, Latibari, Metselaar, Kherbeet, Mehrali (bb0125) 2017; 308 Sheikholeslami, Ganji, Rashidi (bb0075) 2016; 416 Kandasamy, Mohammad, Zailani, Jaafar (bb0165) 2017; 233 Eastman, Choi, Li, Yu, Thompson (bb0025) 2001; 78 Malvandi, Ganji (bb0035) 2014; 362 Sheikholeslami, Ganji (bb0060) 2014; 253 Raza, Rohni, Omar (bb0140) 2016; 103 Wei, Zou, Yuan, Li (bb0100) 2017; 107 Ahammed, Asirvatham, Wongwises (bb0105) 2016; 103 Adriana (bb0115) 2017; 104 Suresh, Venkitaraj, Selvakumar, Chandrasekar (bb0080) 2012; 38 Davies (bb0245) 1962; 273 Sheikholeslami, Ganji (bb0250) 2017 Mansor, Zaimi (bb0235) 2014 Alfvén (bb0130) 1942; 150 Selvakumar, Suresh (bb0090) 2012; 2 Choi, Zhang, Yu, Lockwood, Grulke (bb0020) 2001; 79 Sheikholeslami, Ganji (bb0190) 2015; 417 Mabood, Shateyi, Rashidi, Momoniat, Freidoonimehr (bb0255) 2016; 27 Thiagarajan, Selvaraj (bb0240) 2015; 4 Rehman, Khan, Sadiq, Malook (bb0155) 2017; 231 Sheikholeslami, Soleimani, Ganji (bb0070) 2016; 213 Rostamian, Biglari, Saedodin, Esfe (bb0110) 2017; 231 Sheikholeslami (bb0180) 2017; 234 Mabood, Khan (bb0230) 2014; 100 Gireesha, Mahanthesh, Shivakumara, Eshwarappa (bb0215) 2016; 19 Davies (10.1016/j.powtec.2017.09.006_bb0245) 1962; 273 Thiagarajan (10.1016/j.powtec.2017.09.006_bb0240) 2015; 4 Eastman (10.1016/j.powtec.2017.09.006_bb0025) 2001; 78 Selvakumar (10.1016/j.powtec.2017.09.006_bb0090) 2012; 2 Kumar (10.1016/j.powtec.2017.09.006_bb0210) 2013; 222 Lee (10.1016/j.powtec.2017.09.006_bb0015) 1999; 121 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0150) 2013; 30 Raza (10.1016/j.powtec.2017.09.006_bb0140) 2016; 103 Wei (10.1016/j.powtec.2017.09.006_bb0100) 2017; 107 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0190) 2015; 417 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0030) 2015; 37 Ahmad (10.1016/j.powtec.2017.09.006_bb0045) 2016; 220 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0075) 2016; 416 Rehman (10.1016/j.powtec.2017.09.006_bb0155) 2017; 231 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0180) 2017; 234 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0170) 2017; 669 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0160) 2017; 42 Pal (10.1016/j.powtec.2017.09.006_bb0225) 2015; 126 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0055) 2013; 235 Kandasamy (10.1016/j.powtec.2017.09.006_bb0165) 2017; 233 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0065) 2017; 229 Ahammed (10.1016/j.powtec.2017.09.006_bb0105) 2016; 103 Kang (10.1016/j.powtec.2017.09.006_bb0010) 2006; 19 Choi (10.1016/j.powtec.2017.09.006_bb0005) 1995 Mehrali (10.1016/j.powtec.2017.09.006_bb0125) 2017; 308 Rostamian (10.1016/j.powtec.2017.09.006_bb0110) 2017; 231 Malik (10.1016/j.powtec.2017.09.006_bb0145) 2017; 111 Alfvén (10.1016/j.powtec.2017.09.006_bb0130) 1942; 150 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0195) 2014; 75 Hiemenz (10.1016/j.powtec.2017.09.006_bb0220) 1911; 326 Suresh (10.1016/j.powtec.2017.09.006_bb0080) 2012; 38 Malvandi (10.1016/j.powtec.2017.09.006_bb0035) 2014; 362 Gireesha (10.1016/j.powtec.2017.09.006_bb0215) 2016; 19 Choi (10.1016/j.powtec.2017.09.006_bb0020) 2001; 79 Mansor (10.1016/j.powtec.2017.09.006_bb0235) 2014 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0060) 2014; 253 Shao (10.1016/j.powtec.2017.09.006_bb0120) 2017; 117 Kumari (10.1016/j.powtec.2017.09.006_bb0200) 1990; 25 Suresh (10.1016/j.powtec.2017.09.006_bb0085) 2014; 14 Nasrin (10.1016/j.powtec.2017.09.006_bb0095) 2014; 7 Mabood (10.1016/j.powtec.2017.09.006_bb0230) 2014; 100 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0070) 2016; 213 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0040) 2015; 283 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0135) 2017; 520 Ali (10.1016/j.powtec.2017.09.006_bb0205) 2011; 47 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0185) 2016; 224 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0050) 2017; 667 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0175) 2017; 231 Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0250) 2017 Mabood (10.1016/j.powtec.2017.09.006_bb0255) 2016; 27 Adriana (10.1016/j.powtec.2017.09.006_bb0115) 2017; 104 |
References_xml | – volume: 117 start-page: 427 year: 2017 end-page: 436 ident: bb0120 article-title: Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage publication-title: Appl. Therm. Eng. – volume: 30 start-page: 357 year: 2013 end-page: 378 ident: bb0150 article-title: Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface publication-title: Eng. Comput. – volume: 126 start-page: 16 year: 2015 end-page: 25 ident: bb0225 article-title: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation publication-title: J. Pet. Sci. Eng. – volume: 231 start-page: 364 year: 2017 end-page: 369 ident: bb0110 article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation publication-title: J. Mol. Liq. – volume: 103 start-page: 1084 year: 2016 end-page: 1097 ident: bb0105 article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler publication-title: Int. J. Heat Mass Transf. – volume: 25 start-page: 331 year: 1990 end-page: 336 ident: bb0200 article-title: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux publication-title: Warme Stoffubertrag. – volume: 104 start-page: 852 year: 2017 end-page: 860 ident: bb0115 article-title: Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches publication-title: Int. J. Heat Mass Transf. – volume: 520 start-page: 201 year: 2017 end-page: 212 ident: bb0135 article-title: Transport of Magnetohydrodynamic nanofluid in a porous media publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 27 start-page: 742 year: 2016 end-page: 749 ident: bb0255 article-title: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction publication-title: Adv. Powder Technol. – volume: 38 start-page: 54 year: 2012 end-page: 60 ident: bb0080 article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer publication-title: Exp. Thermal Fluid Sci. – start-page: 99 year: 1995 end-page: 105 ident: bb0005 publication-title: Enhancing thermal conductivity of fluids with nanoparticles – volume: 213 start-page: 153 year: 2016 end-page: 161 ident: bb0070 article-title: Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry publication-title: J. Mol. Liq. – volume: 220 start-page: 635 year: 2016 end-page: 641 ident: bb0045 article-title: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet publication-title: J. Mol. Liq. – volume: 2 start-page: 1600 year: 2012 end-page: 1607 ident: bb0090 article-title: Use of Al2O3-Cu/Water hybrid nanofluid in an electronic heat sink publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – volume: 107 start-page: 281 year: 2017 end-page: 287 ident: bb0100 article-title: Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications publication-title: Int. J. Heat Mass Transf. – volume: 75 start-page: 400 year: 2014 end-page: 410 ident: bb0195 article-title: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer publication-title: Energy – volume: 283 start-page: 651 year: 2015 end-page: 663 ident: bb0040 article-title: Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 895 year: 2015 end-page: 902 ident: bb0030 article-title: Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 79 start-page: 2252 year: 2001 end-page: 2254 ident: bb0020 article-title: Anomalous thermal conductivity enhancement in nanotubes suspensions publication-title: Appl. Phys. Lett. – volume: 224 start-page: 526 year: 2016 end-page: 537 ident: bb0185 article-title: Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect publication-title: J. Mol. Liq. – volume: 78 start-page: 718 year: 2001 end-page: 720 ident: bb0025 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles publication-title: Appl. Phys. Lett. – volume: 669 start-page: 202 year: 2017 end-page: 210 ident: bb0170 article-title: Transportation of MHD nanofluid free convection in a porous semi annulus using numerical publication-title: Chem. Phys. Lett. – volume: 111 start-page: 329 year: 2017 end-page: 345 ident: bb0145 article-title: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating publication-title: Int. J. Heat Mass Transf. – volume: 47 start-page: 155 year: 2011 end-page: 162 ident: bb0205 article-title: MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field publication-title: Heat Mass Transf. – volume: 121 start-page: 280 year: 1999 end-page: 289 ident: bb0015 article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles publication-title: J. Heat Transf. – volume: 235 start-page: 873 year: 2013 end-page: 879 ident: bb0055 article-title: Heat transfer of Cu-water nanofluid flow between parallel plates publication-title: Powder Technol. – volume: 229 start-page: 530 year: 2017 end-page: 540 ident: bb0065 article-title: Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source publication-title: J. Mol. Liq. – volume: 308 start-page: 149 year: 2017 end-page: 157 ident: bb0125 article-title: Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field publication-title: Powder Technol. – volume: 42 start-page: 2748 year: 2017 end-page: 2755 ident: bb0160 article-title: Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer publication-title: Int. J. Hydrog. Energy – volume: 234 start-page: 364 year: 2017 end-page: 374 ident: bb0180 article-title: Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method publication-title: J. Mol. Liq. – volume: 362 start-page: 172 year: 2014 end-page: 179 ident: bb0035 article-title: Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel publication-title: J. Magn. Magn. Mater. – volume: 103 start-page: 336 year: 2016 end-page: 340 ident: bb0140 article-title: MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls publication-title: Int. J. Heat Mass Transf. – volume: 100 start-page: 72 year: 2014 end-page: 78 ident: bb0230 article-title: Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium publication-title: Comput. Fluids – volume: 4 start-page: 328 year: 2015 end-page: 334 ident: bb0240 article-title: Nanofluid MHD stagnation-point flow over a flat plate with heat transfer publication-title: J. Nanofluid. – volume: 253 start-page: 789 year: 2014 end-page: 796 ident: bb0060 article-title: Three dimensional heat and mass transfer in a rotating system using nanofluid publication-title: Powder Technol. – volume: 14 start-page: 2563 year: 2014 end-page: 2572 ident: bb0085 article-title: Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids publication-title: J. Nanosci. Nanotechnol. – volume: 150 start-page: 405 year: 1942 end-page: 406 ident: bb0130 article-title: Existence of electromagnetic-hydrodynamic waves publication-title: Nature – volume: 231 start-page: 555 year: 2017 end-page: 565 ident: bb0175 article-title: Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method publication-title: J. Mol. Liq. – volume: 417 start-page: 273 year: 2015 end-page: 286 ident: bb0190 article-title: Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method publication-title: Physica A – volume: 19 start-page: 313 year: 2016 end-page: 321 ident: bb0215 article-title: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field publication-title: Eng. Sci. Tech. Int. J. – year: 2014 ident: bb0235 publication-title: The MHD stagnation point flow and heat transfer towards a stretching sheet with suction in a nanofluid – start-page: 1 year: 2017 end-page: 52 ident: bb0250 article-title: Applications of Nanofluid for Heat Transfer Enhancement – volume: 7 start-page: 543 year: 2014 end-page: 556 ident: bb0095 article-title: Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles publication-title: J. Appl. Fluid Mech. – volume: 273 year: 1962 ident: bb0245 article-title: The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infnite plat plate I, uniform conditions at infinity publication-title: Proc. R. Soc. A – volume: 19 start-page: 181 year: 2006 end-page: 191 ident: bb0010 article-title: Estimation of thermal conductivity of nanofluid using experimental effective particle volume publication-title: Exp. Heat Transfer – volume: 233 start-page: 156 year: 2017 end-page: 165 ident: bb0165 article-title: Nanoparticle shapes on squeezed MHD nanofluid flow over a porous sensor surface publication-title: J. Mol. Liq. – volume: 667 start-page: 307 year: 2017 end-page: 316 ident: bb0050 article-title: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source publication-title: Chem. Phys. Lett. – volume: 416 start-page: 164 year: 2016 end-page: 173 ident: bb0075 article-title: Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model publication-title: J. Magn. Magn. Mater. – volume: 222 start-page: 462 year: 2013 end-page: 471 ident: bb0210 article-title: Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field publication-title: Appl. Math. Comput. – volume: 231 start-page: 353 year: 2017 end-page: 363 ident: bb0155 article-title: MHD flow of carbon in micropolar nanofluid with convective heat transfer in the rotating frame publication-title: J. Mol. Liq. – volume: 326 start-page: 321 year: 1911 end-page: 324 ident: bb0220 article-title: Die Grenzschicht in einem in dem gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder publication-title: Dingler Polytechnic J. – volume: 416 start-page: 164 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0075 article-title: Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.05.026 – volume: 308 start-page: 149 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0125 article-title: Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.12.024 – volume: 229 start-page: 530 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0065 article-title: Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.12.101 – volume: 38 start-page: 54 year: 2012 ident: 10.1016/j.powtec.2017.09.006_bb0080 article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2011.11.007 – volume: 7 start-page: 543 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0095 article-title: Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles publication-title: J. Appl. Fluid Mech. – volume: 233 start-page: 156 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0165 article-title: Nanoparticle shapes on squeezed MHD nanofluid flow over a porous sensor surface publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.03.017 – volume: 100 start-page: 72 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0230 article-title: Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.05.009 – volume: 126 start-page: 16 year: 2015 ident: 10.1016/j.powtec.2017.09.006_bb0225 article-title: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2014.12.006 – volume: 19 start-page: 313 issue: 1 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0215 article-title: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field publication-title: Eng. Sci. Tech. Int. J. – volume: 111 start-page: 329 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0145 article-title: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.03.123 – volume: 42 start-page: 2748 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0160 article-title: Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.09.121 – volume: 235 start-page: 873 year: 2013 ident: 10.1016/j.powtec.2017.09.006_bb0055 article-title: Heat transfer of Cu-water nanofluid flow between parallel plates publication-title: Powder Technol. doi: 10.1016/j.powtec.2012.11.030 – volume: 103 start-page: 336 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0140 article-title: MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.07.064 – volume: 213 start-page: 153 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0070 article-title: Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2015.11.015 – volume: 231 start-page: 353 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0155 article-title: MHD flow of carbon in micropolar nanofluid with convective heat transfer in the rotating frame publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.022 – volume: 2 start-page: 1600 year: 2012 ident: 10.1016/j.powtec.2017.09.006_bb0090 article-title: Use of Al2O3-Cu/Water hybrid nanofluid in an electronic heat sink publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2012.2211018 – volume: 27 start-page: 742 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0255 article-title: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.02.033 – volume: 231 start-page: 555 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0175 article-title: Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.020 – volume: 231 start-page: 364 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0110 article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.015 – volume: 30 start-page: 357 year: 2013 ident: 10.1016/j.powtec.2017.09.006_bb0150 article-title: Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface publication-title: Eng. Comput. doi: 10.1108/02644401311314330 – volume: 253 start-page: 789 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0060 article-title: Three dimensional heat and mass transfer in a rotating system using nanofluid publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.12.042 – volume: 283 start-page: 651 year: 2015 ident: 10.1016/j.powtec.2017.09.006_bb0040 article-title: Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.09.038 – volume: 107 start-page: 281 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0100 article-title: Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.11.044 – start-page: 1 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0250 – year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0235 – volume: 667 start-page: 307 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0050 article-title: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.11.013 – volume: 19 start-page: 181 year: 2006 ident: 10.1016/j.powtec.2017.09.006_bb0010 article-title: Estimation of thermal conductivity of nanofluid using experimental effective particle volume publication-title: Exp. Heat Transfer doi: 10.1080/08916150600619281 – volume: 326 start-page: 321 year: 1911 ident: 10.1016/j.powtec.2017.09.006_bb0220 article-title: Die Grenzschicht in einem in dem gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder publication-title: Dingler Polytechnic J. – volume: 79 start-page: 2252 year: 2001 ident: 10.1016/j.powtec.2017.09.006_bb0020 article-title: Anomalous thermal conductivity enhancement in nanotubes suspensions publication-title: Appl. Phys. Lett. doi: 10.1063/1.1408272 – volume: 362 start-page: 172 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0035 article-title: Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.03.014 – volume: 104 start-page: 852 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0115 article-title: Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.09.012 – volume: 78 start-page: 718 year: 2001 ident: 10.1016/j.powtec.2017.09.006_bb0025 article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles publication-title: Appl. Phys. Lett. doi: 10.1063/1.1341218 – volume: 417 start-page: 273 year: 2015 ident: 10.1016/j.powtec.2017.09.006_bb0190 article-title: Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method publication-title: Physica A doi: 10.1016/j.physa.2014.09.053 – volume: 234 start-page: 364 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0180 article-title: Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.03.104 – volume: 4 start-page: 328 year: 2015 ident: 10.1016/j.powtec.2017.09.006_bb0240 article-title: Nanofluid MHD stagnation-point flow over a flat plate with heat transfer publication-title: J. Nanofluid. doi: 10.1166/jon.2015.1165 – volume: 520 start-page: 201 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0135 article-title: Transport of Magnetohydrodynamic nanofluid in a porous media publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2017.01.066 – volume: 47 start-page: 155 year: 2011 ident: 10.1016/j.powtec.2017.09.006_bb0205 article-title: MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field publication-title: Heat Mass Transf. doi: 10.1007/s00231-010-0693-4 – volume: 121 start-page: 280 year: 1999 ident: 10.1016/j.powtec.2017.09.006_bb0015 article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles publication-title: J. Heat Transf. doi: 10.1115/1.2825978 – volume: 273 year: 1962 ident: 10.1016/j.powtec.2017.09.006_bb0245 article-title: The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infnite plat plate I, uniform conditions at infinity publication-title: Proc. R. Soc. A – volume: 224 start-page: 526 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0185 article-title: Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.10.037 – volume: 103 start-page: 1084 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0105 article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.07.070 – volume: 117 start-page: 427 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0120 article-title: Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.02.045 – volume: 14 start-page: 2563 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0085 article-title: Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.8467 – volume: 75 start-page: 400 year: 2014 ident: 10.1016/j.powtec.2017.09.006_bb0195 article-title: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer publication-title: Energy doi: 10.1016/j.energy.2014.07.089 – start-page: 99 year: 1995 ident: 10.1016/j.powtec.2017.09.006_bb0005 – volume: 150 start-page: 405 year: 1942 ident: 10.1016/j.powtec.2017.09.006_bb0130 article-title: Existence of electromagnetic-hydrodynamic waves publication-title: Nature doi: 10.1038/150405d0 – volume: 669 start-page: 202 year: 2017 ident: 10.1016/j.powtec.2017.09.006_bb0170 article-title: Transportation of MHD nanofluid free convection in a porous semi annulus using numerical publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.12.045 – volume: 220 start-page: 635 year: 2016 ident: 10.1016/j.powtec.2017.09.006_bb0045 article-title: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.125 – volume: 222 start-page: 462 year: 2013 ident: 10.1016/j.powtec.2017.09.006_bb0210 article-title: Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field publication-title: Appl. Math. Comput. – volume: 25 start-page: 331 year: 1990 ident: 10.1016/j.powtec.2017.09.006_bb0200 article-title: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux publication-title: Warme Stoffubertrag. doi: 10.1007/BF01811556 – volume: 37 start-page: 895 year: 2015 ident: 10.1016/j.powtec.2017.09.006_bb0030 article-title: Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-014-0228-x |
SSID | ssj0006310 |
Score | 2.646944 |
Snippet | An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 428 |
SubjectTerms | differential equation friction heat transfer Hybrid nanofluid Lorentz force magnetic fields nanofluids nanoparticles Nusselt number (Nu) powders Runge-Kutta-Fehlberg method Skin friction coefficient(Cf) Stagnation point flow temperature titanium dioxide |
Title | Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow |
URI | https://dx.doi.org/10.1016/j.powtec.2017.09.006 https://www.proquest.com/docview/2116919631 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOBQ8WhVykOuxDVsYnsd-4gWUGgFXEDamxUHu6TaxhFkhbgg_kBP_Yf9JZ3JA2iFhFQphySyrcQzGc84M99HyF7qktj7WERWcwhQxlxGea5FVDgJES7zqWu5CE7PZHYpvkzH0wUyGWphMK2yt_2dTW-tdX9n1M_mqC5LrPHl4LujSoGeMjnFCnaRopbvPzyneUie9NCMEHRB66F8rs3xqsNd4xDIMElbtFPkPXp9efrHULerz_Eqede7jfSge7I1suCqdbLyAkxwg_x8AZkRKgoH-nY_Qt1Lgta4736DAKo0eHpRBvb78ddkPsrYOb2-x8otWuVV8LM5nDUD6DkdaHIbHPL2Oq8d7Uh6aFnR0-yQgn_5rdtTpHUooZ2fhbv35PL46GKSRT3ZQlRwrhswNCJR0sL6fQWTWXifQ7AIYsu5Z7GLLbMCyaogGrGe2dgmaW6V0k4rCCEZF_wDWaxC5T4SymVSpNyBoybGwimvNJMKqXZVzPWVUJuED3Nsih6JHAkxZmZIOftuOskYlIyJtQHJbJLoqVfdIXG80T4dxGf-0igDi8UbPT8P0jbwseEflLxyYX5r4FWlRpuVfPrv0bfIMl51KTHbZLG5mbsdcGwau9tq7i5ZOjj5mp39AX7c-fo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOVelDhZbiSr2mm9hexz6iLSilLL0s0t6sONglaBtHkBXigvoHeuIf9pd0Jo-WVkhISDlEiZ2Hx5mHM_N9hHxIXRJ7H4vIag4BypjLKM-1iAonIcJlPnUtF8H0SGbH4mA-nq-QyVALg2mVve7vdHqrrfsjo340R3VZYo0vB98dpxTMUybnj8ga3EshjcHH6795HpInPTYjRF3QfKifa5O86nDZOEQyTNIW7hSJj-62T_9p6tb87D8jT3u_ke52j7ZBVlz1nKzfQhN8QX7ewswIFYUNnbvvoe5FQWtceD9HBFUaPJ2Vgf36cTNZjjL2lZ5eYekWrfIq-MUS9poB9ZwOPLkNXvLiNK8d7Vh6aFnRafaJgoP5rVtUpHUooZ1fhMuX5Hh_bzbJop5tISo41w1oGpEoacGAn8BoFt7nEC2C3HLuWexiy6xAtioIR6xnNrZJmlultNMKYkjGBX9FVqtQudeEcpkUKXfgqYmxcMorzaRCrl0Vc30i1CbhwxiboociR0aMhRlyzs5MJxmDkjGxNiCZTRL96VV3UBz3tE8H8Zl_ppQBa3FPz_eDtA18bfgLJa9cWF4YeFWpUWklWw---g55nM2mh-bw89GXN-QJnunyY96S1eZ86bbBy2nsu3YW_wYsT_uI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+thermophysical+properties+of+Tio2%E2%80%93Cu%2FH2O+hybrid+nanofluid+transport+dependent+on+shape+factor+in+MHD+stagnation+point+flow&rft.jtitle=Powder+technology&rft.au=Ghadikolaei%2C+S+S&rft.au=Yassari%2C+M&rft.au=Sadeghi%2C+H&rft.au=Hosseinzadeh%2C+Kh&rft.date=2017-12-01&rft.issn=0032-5910&rft.volume=322+p.428-438&rft.spage=428&rft.epage=438&rft_id=info:doi/10.1016%2Fj.powtec.2017.09.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |