Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow

An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is u...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 322; pp. 428 - 438
Main Authors Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, Kh, Ganji, D.D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅2), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅2), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅2), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nux) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective. [Display omitted] •TiO2‐Cu/H2O hybrid nanofluid is incorporated.•Analysis of thermal conductivity of hybrid nanofluid is highlighted.•Different shape factors for nanoparticles are addressed.•Nonlinear differential equations are solved numerically.
AbstractList An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅₂), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅₂), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅₂), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nuₓ) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective.
An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried out in this paper. It should be noted that hybrid nanofluid consists of two or more types of nanoparticles along with a base fluid and it is used to increase the heat transfer. Furthermore, the non-linear differential equations modeling this issue are included in this article. In order to solve these equations numerically, Runge-Kutta Fehlberg method is used as a numerical method in this problem. The main objective of this paper is to investigate the effects of change in parameters of stretching ratio parameter (A∗), nanoparticles volumetric fractions (∅2), magnetic parameter (β) and reciprocal magnetic Prandtl number (λ) on the functions including velocity, induced magnetic field and temperature for both Cu-water nanofluid and TiO2-Cu/water hybrid nanofluid. Also Lorentz force which is derived from magnetic field is mentioned in this section. In addition, the impacts of (∅2), (β) and (λ) on the profiles of nanofluid and hybrid nanofluid temperature for three categories of nanoparticle shapes named brick, cylinders, and platelets are analyzed. At the end, the influences of (∅2), (β) and (λ) on skin friction coefficient (Cf) and Nusselt number (Nux) for Cu-water nanofluid and TiO2-Cu/water hybrid fluid for different nanoparticles shapes are discussed. In all of these studies it can be seen that applying platelets shaped nanoparticles is more effective. [Display omitted] •TiO2‐Cu/H2O hybrid nanofluid is incorporated.•Analysis of thermal conductivity of hybrid nanofluid is highlighted.•Different shape factors for nanoparticles are addressed.•Nonlinear differential equations are solved numerically.
Author Hosseinzadeh, Kh
Ganji, D.D.
Yassari, M.
Sadeghi, H.
Ghadikolaei, S.S.
Author_xml – sequence: 1
  givenname: S.S.
  surname: Ghadikolaei
  fullname: Ghadikolaei, S.S.
  organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran
– sequence: 2
  givenname: M.
  surname: Yassari
  fullname: Yassari, M.
  organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran
– sequence: 3
  givenname: H.
  surname: Sadeghi
  fullname: Sadeghi, H.
  organization: Department of Mechanical Engineering, Mazandaran University Science and Technology, Babol, Iran
– sequence: 4
  givenname: Kh
  surname: Hosseinzadeh
  fullname: Hosseinzadeh, Kh
  organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran
– sequence: 5
  givenname: D.D.
  surname: Ganji
  fullname: Ganji, D.D.
  email: mirgang@nit.ac.ir
  organization: Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol, Iran
BookMark eNqFUb1uFDEYtFCQuBy8AYVLmt3459i1KZDQEbhIidIEic7yej_nfNqzje1LdB0vQMUb8iT4WCqKIFn6XMzM983MOTrzwQNCrylpKaHdxa6N4bGAaRmhfUtkS0j3DC2o6HnDmfh6hhaEcNa8lZS8QOc570hFcEoW6MeVf4Bc3L0uLnhcX9lC2oe4PWZn9IRjChFScZBxsPjOBfbr-8_14WLDbvH2OCQ3Yq99sNOh_krSPseQCh4hgh_Bl5Nk3uoI2GpTQsLO45vNR5yLvvfz0hhcxdkpPL5Ez62eMrz6O5foy6fLu_Wmub79fLX-cN0YzmVpeL-iohsEFWPPOmOtpqTTWmpuGQEysGFFWNcL1g2WDWSgvR6EkCAFo5TxFV-iN7NudfftUP2rvcsGpkl7CIesKqyTVNaIKvTdDDUp5JzAKuPKn7urWTcpStSpA7VTcwfq1IEiUp0SXqLVP-SY3F6n4_9o72ca1AweHCSVjQNvYHQJTFFjcE8L_AZhJ6id
CitedBy_id crossref_primary_10_1139_cjp_2017_0801
crossref_primary_10_1080_10407782_2024_2343591
crossref_primary_10_1080_17455030_2021_2020375
crossref_primary_10_1080_10420150_2024_2436484
crossref_primary_10_1139_cjp_2018_0526
crossref_primary_10_1080_10407782_2023_2212130
crossref_primary_10_1016_j_icheatmasstransfer_2022_106225
crossref_primary_10_1038_s41598_022_07251_y
crossref_primary_10_1108_WJE_06_2018_0204
crossref_primary_10_1016_j_ijft_2024_100631
crossref_primary_10_1016_j_molliq_2024_125546
crossref_primary_10_1140_epjs_s11734_023_00947_w
crossref_primary_10_1007_s13369_023_08058_3
crossref_primary_10_1088_1402_4896_abf615
crossref_primary_10_1002_er_6095
crossref_primary_10_1615_NanoSciTechnolIntJ_2023045603
crossref_primary_10_1002_zamm_202300063
crossref_primary_10_1088_1742_6596_1366_1_012022
crossref_primary_10_1108_HFF_05_2020_0298
crossref_primary_10_1007_s12043_020_02029_1
crossref_primary_10_3389_fchem_2024_1397066
crossref_primary_10_1016_j_icheatmasstransfer_2022_106230
crossref_primary_10_1002_apj_2985
crossref_primary_10_1155_2022_4417418
crossref_primary_10_1016_j_chaos_2021_111010
crossref_primary_10_1016_j_cjph_2022_10_009
crossref_primary_10_1007_s40995_018_0601_1
crossref_primary_10_1038_s41598_023_48676_3
crossref_primary_10_3390_fluids6060202
crossref_primary_10_1142_S0129183124400047
crossref_primary_10_1142_S0217984924501082
crossref_primary_10_1002_cite_202400100
crossref_primary_10_1016_j_est_2024_111243
crossref_primary_10_1016_j_jtice_2021_03_043
crossref_primary_10_1016_j_applthermaleng_2024_124892
crossref_primary_10_3390_nano12152552
crossref_primary_10_1007_s00231_025_03542_y
crossref_primary_10_1007_s00542_018_3908_0
crossref_primary_10_1016_j_icheatmasstransfer_2022_106325
crossref_primary_10_1016_j_applthermaleng_2019_02_111
crossref_primary_10_1016_j_eswa_2025_126517
crossref_primary_10_1080_17455030_2021_1968537
crossref_primary_10_1063_5_0249122
crossref_primary_10_1016_j_molliq_2018_07_105
crossref_primary_10_1007_s00521_022_07323_0
crossref_primary_10_1007_s13369_024_08909_7
crossref_primary_10_1515_ijcre_2021_0117
crossref_primary_10_1080_10407782_2024_2341270
crossref_primary_10_3390_math8101730
crossref_primary_10_1007_s40096_021_00377_6
crossref_primary_10_1016_j_energy_2022_124515
crossref_primary_10_1177_09544089221115496
crossref_primary_10_3390_sym12091493
crossref_primary_10_3390_nano12071049
crossref_primary_10_1177_09544062211010833
crossref_primary_10_1016_j_csite_2023_103308
crossref_primary_10_1080_10407782_2024_2321523
crossref_primary_10_1016_j_applthermaleng_2024_123465
crossref_primary_10_1108_WJE_05_2024_0318
crossref_primary_10_1016_j_aej_2021_06_085
crossref_primary_10_1063_1_5080671
crossref_primary_10_1007_s10483_020_2652_8
crossref_primary_10_1155_2024_9528362
crossref_primary_10_1080_17455030_2022_2084574
crossref_primary_10_1021_acs_est_0c07217
crossref_primary_10_1007_s10973_018_7974_4
crossref_primary_10_1007_s12648_022_02300_8
crossref_primary_10_1108_HFF_06_2019_0500
crossref_primary_10_1007_s12217_019_09757_z
crossref_primary_10_1002_er_7140
crossref_primary_10_1016_j_est_2023_108087
crossref_primary_10_1007_s10973_020_10210_2
crossref_primary_10_3390_cryst10020142
crossref_primary_10_1016_j_powtec_2018_09_023
crossref_primary_10_1108_HFF_01_2019_0057
crossref_primary_10_1115_1_4049454
crossref_primary_10_1166_jon_2020_1739
crossref_primary_10_3390_ijms22179201
crossref_primary_10_1016_j_powtec_2019_12_036
crossref_primary_10_1038_s41598_023_32360_7
crossref_primary_10_1016_j_molliq_2018_09_084
crossref_primary_10_1016_j_csite_2023_103883
crossref_primary_10_1016_j_icheatmasstransfer_2022_106244
crossref_primary_10_1038_s41598_021_99045_x
crossref_primary_10_1016_j_finmec_2023_100190
crossref_primary_10_1140_epjp_s13360_020_00809_7
crossref_primary_10_3390_math10071164
crossref_primary_10_1108_MMMS_05_2024_0128
crossref_primary_10_1016_j_padiff_2025_101100
crossref_primary_10_1142_S0217979225500018
crossref_primary_10_1016_j_cep_2020_107886
crossref_primary_10_1080_01430750_2022_2056916
crossref_primary_10_1080_16583655_2023_2254465
crossref_primary_10_1088_1402_4896_ab3bff
crossref_primary_10_1038_s41598_022_10398_3
crossref_primary_10_1108_HFF_12_2018_0748
crossref_primary_10_1016_j_icheatmasstransfer_2022_106179
crossref_primary_10_1007_s10973_023_12609_z
crossref_primary_10_1016_j_rineng_2022_100601
crossref_primary_10_1002_htj_21760
crossref_primary_10_1016_j_asej_2022_101934
crossref_primary_10_1016_j_kijoms_2017_12_001
crossref_primary_10_1063_5_0036232
crossref_primary_10_1007_s12043_024_02756_9
crossref_primary_10_1016_j_aej_2020_04_037
crossref_primary_10_1080_10407782_2023_2209926
crossref_primary_10_1038_s41598_023_34259_9
crossref_primary_10_3390_magnetochemistry8120188
crossref_primary_10_4028_p_xbZ0F1
crossref_primary_10_1080_01430750_2020_1861094
crossref_primary_10_1177_09544089211033161
crossref_primary_10_1002_zamm_202200170
crossref_primary_10_1016_j_ijhydene_2018_05_021
crossref_primary_10_1007_s13369_019_03773_2
crossref_primary_10_1002_htj_22502
crossref_primary_10_1080_01430750_2020_1749125
crossref_primary_10_1108_WJE_04_2018_0144
crossref_primary_10_3390_nano13060984
crossref_primary_10_1007_s00521_019_04221_w
crossref_primary_10_1007_s10973_022_11418_0
crossref_primary_10_1080_10407790_2024_2312954
crossref_primary_10_1007_s40096_021_00421_5
crossref_primary_10_1080_10407790_2024_2361127
crossref_primary_10_1115_1_4041497
crossref_primary_10_1016_j_csite_2017_11_004
crossref_primary_10_1108_HFF_12_2021_0767
crossref_primary_10_1177_0954406220957710
crossref_primary_10_1016_j_asej_2022_101713
crossref_primary_10_1016_j_csite_2022_101828
crossref_primary_10_1155_2022_9469164
crossref_primary_10_1080_10407782_2023_2279257
crossref_primary_10_1166_jon_2024_2181
crossref_primary_10_3390_w12061723
crossref_primary_10_1038_s41598_021_86868_x
crossref_primary_10_1088_1402_4896_ab31d3
crossref_primary_10_1142_S0217979223502375
crossref_primary_10_1016_j_ijheatfluidflow_2024_109508
crossref_primary_10_1016_j_asej_2021_101667
crossref_primary_10_1080_23311916_2024_2364052
crossref_primary_10_1016_j_ijthermalsci_2022_107525
crossref_primary_10_3390_sym13081466
crossref_primary_10_1016_j_tsep_2019_04_006
crossref_primary_10_1108_HFF_03_2021_0155
crossref_primary_10_1177_23977914241304066
crossref_primary_10_1007_s13369_020_05195_x
crossref_primary_10_1007_s00396_023_05138_6
crossref_primary_10_1016_j_jppr_2022_01_001
crossref_primary_10_1080_15376494_2018_1525780
crossref_primary_10_1108_HFF_05_2019_0441
crossref_primary_10_1080_02286203_2024_2395900
crossref_primary_10_1002_zamm_202300303
crossref_primary_10_1016_j_aej_2024_10_075
crossref_primary_10_1007_s10765_018_2422_z
crossref_primary_10_3390_math9080878
crossref_primary_10_1002_htj_21605
crossref_primary_10_1038_s41598_022_12671_x
crossref_primary_10_3390_fluids6040138
crossref_primary_10_1016_j_csite_2024_105609
crossref_primary_10_3390_nano12224102
crossref_primary_10_1002_zamm_202400388
crossref_primary_10_3390_app122211715
crossref_primary_10_1016_j_rineng_2024_102895
crossref_primary_10_1088_1402_4896_ad6bcd
crossref_primary_10_1080_10407790_2024_2364786
crossref_primary_10_1002_mma_6671
crossref_primary_10_1140_epjp_i2018_12180_1
crossref_primary_10_1016_j_amc_2021_126900
crossref_primary_10_1108_WJE_07_2020_0261
crossref_primary_10_1002_mma_7756
crossref_primary_10_1016_j_rinp_2023_106906
crossref_primary_10_1007_s13369_020_04580_w
crossref_primary_10_1515_nleng_2022_0019
crossref_primary_10_1080_02286203_2024_2349506
crossref_primary_10_1108_HFF_05_2022_0301
crossref_primary_10_1007_s13369_020_04967_9
crossref_primary_10_1002_htj_21705
crossref_primary_10_1016_j_thradv_2024_100006
crossref_primary_10_1016_j_cjph_2021_03_016
crossref_primary_10_1016_j_cjph_2021_03_017
crossref_primary_10_47836_mjms_16_2_06
crossref_primary_10_1007_s10973_020_09710_y
crossref_primary_10_3390_math9182242
crossref_primary_10_1016_j_padiff_2021_100240
crossref_primary_10_1080_10407790_2024_2386584
crossref_primary_10_1016_j_swevo_2024_101775
crossref_primary_10_1038_s41598_019_52720_6
crossref_primary_10_1038_s41598_020_63708_y
crossref_primary_10_1016_j_powtec_2018_07_045
crossref_primary_10_1177_09544089241272769
crossref_primary_10_1007_s00542_018_4076_y
crossref_primary_10_1016_j_physleta_2018_01_024
crossref_primary_10_1155_ijde_4138176
crossref_primary_10_1002_htj_21837
crossref_primary_10_1016_j_jrras_2024_101115
crossref_primary_10_1080_10407782_2023_2240502
crossref_primary_10_1016_j_cjph_2022_05_013
crossref_primary_10_1108_HFF_04_2020_0200
crossref_primary_10_1088_1402_4896_abc03c
crossref_primary_10_1016_j_ijheatfluidflow_2024_109542
crossref_primary_10_1016_j_kijoms_2018_04_001
crossref_primary_10_1007_s12648_024_03263_8
crossref_primary_10_1142_S021797922250028X
crossref_primary_10_1016_j_aej_2020_05_008
crossref_primary_10_1007_s00542_019_04332_3
crossref_primary_10_3390_pr9111932
crossref_primary_10_1007_s10973_023_12858_y
crossref_primary_10_1108_HFF_10_2021_0696
crossref_primary_10_1108_HFF_10_2019_0732
crossref_primary_10_4028_p_wwb62a
crossref_primary_10_1080_15567036_2023_2194855
crossref_primary_10_1007_s12572_024_00369_4
crossref_primary_10_1016_j_cjph_2024_11_024
crossref_primary_10_1134_S1810232821040147
crossref_primary_10_1080_01430750_2022_2111356
crossref_primary_10_3390_nano12132273
crossref_primary_10_1016_j_nanoso_2018_07_009
crossref_primary_10_1080_02286203_2023_2246243
crossref_primary_10_1002_zamm_202400114
crossref_primary_10_1063_5_0168503
crossref_primary_10_1108_MMMS_08_2019_0152
crossref_primary_10_1080_17455030_2022_2123571
crossref_primary_10_1177_16878132221127829
crossref_primary_10_1080_10407790_2023_2252589
crossref_primary_10_1007_s10973_024_13346_7
crossref_primary_10_1155_2022_6271265
crossref_primary_10_1002_htj_21341
crossref_primary_10_1038_s41598_020_65278_5
crossref_primary_10_1108_HFF_10_2019_0756
crossref_primary_10_1016_j_molliq_2018_04_141
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_101
crossref_primary_10_1002_zamm_202400248
crossref_primary_10_1007_s10973_017_6903_2
crossref_primary_10_1007_s10483_021_2801_6
crossref_primary_10_1016_j_solener_2022_09_026
crossref_primary_10_1016_j_molliq_2018_11_109
crossref_primary_10_1155_2022_6423730
crossref_primary_10_1002_mma_7142
crossref_primary_10_1515_nleng_2017_0163
crossref_primary_10_1016_j_rineng_2024_103055
crossref_primary_10_1016_j_solener_2022_09_017
crossref_primary_10_1007_s42452_022_05260_0
crossref_primary_10_1007_s12648_020_01745_z
crossref_primary_10_1140_epjp_s13360_021_01829_7
crossref_primary_10_1016_j_cjph_2022_07_003
crossref_primary_10_1016_j_powtec_2018_03_010
crossref_primary_10_1080_17455030_2022_2131012
crossref_primary_10_1088_1402_4896_ab0fd5
crossref_primary_10_1016_j_powtec_2020_03_030
crossref_primary_10_1007_s10973_020_09809_2
crossref_primary_10_1016_j_csite_2020_100835
crossref_primary_10_1063_1_5143937
crossref_primary_10_1063_5_0074894
crossref_primary_10_1002_zamm_202300936
crossref_primary_10_1140_epjp_s13360_022_02361_y
crossref_primary_10_3390_math10152605
crossref_primary_10_1002_htj_21339
crossref_primary_10_1016_j_molliq_2018_04_094
crossref_primary_10_1007_s10973_020_09347_x
crossref_primary_10_1016_j_csite_2018_04_008
crossref_primary_10_1016_j_csite_2018_04_009
crossref_primary_10_1038_s41598_021_91152_z
crossref_primary_10_1016_j_csite_2023_102902
crossref_primary_10_1016_j_molliq_2018_02_106
crossref_primary_10_1016_j_jrras_2025_101362
crossref_primary_10_1139_cjp_2017_0282
crossref_primary_10_1108_HFF_07_2020_0470
crossref_primary_10_1016_j_cjph_2018_06_013
crossref_primary_10_3390_math9212681
crossref_primary_10_1080_01430750_2022_2101523
crossref_primary_10_18186_thermal_672785
crossref_primary_10_1002_zamm_202300928
crossref_primary_10_1007_s10483_020_2638_6
crossref_primary_10_1016_j_cjph_2021_12_011
crossref_primary_10_1080_17455030_2022_2077472
crossref_primary_10_1515_nleng_2017_0135
crossref_primary_10_1016_j_jics_2022_100608
crossref_primary_10_3389_fphy_2024_1372675
crossref_primary_10_1016_j_rinp_2020_103224
crossref_primary_10_1088_1402_4896_abc5ef
crossref_primary_10_1108_HFF_10_2024_0735
crossref_primary_10_1016_j_cjph_2024_01_009
crossref_primary_10_1108_HFF_10_2019_0799
crossref_primary_10_1080_10407782_2024_2337764
crossref_primary_10_1088_0253_6102_70_2_239
crossref_primary_10_1016_j_ijhydene_2020_11_097
crossref_primary_10_1016_j_solener_2021_03_071
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125534
crossref_primary_10_1142_S0217984924502919
crossref_primary_10_1007_s10948_018_4819_0
crossref_primary_10_1007_s10973_023_12395_8
crossref_primary_10_1016_j_ijft_2024_101025
crossref_primary_10_1007_s13204_020_01360_8
crossref_primary_10_1016_j_taml_2018_03_005
crossref_primary_10_1016_j_rinp_2020_103351
crossref_primary_10_1016_j_csite_2020_100723
crossref_primary_10_1016_j_csite_2022_101972
crossref_primary_10_1016_j_matcom_2020_04_004
crossref_primary_10_1080_10407782_2023_2296134
crossref_primary_10_1016_j_molliq_2022_119134
crossref_primary_10_1088_1402_4896_ad8d40
crossref_primary_10_1515_ntrev_2022_0070
crossref_primary_10_1016_j_powtec_2018_09_005
crossref_primary_10_1016_j_aej_2023_05_005
crossref_primary_10_1016_j_ijheatmasstransfer_2018_09_104
crossref_primary_10_1016_j_csite_2021_101681
crossref_primary_10_1007_s12217_023_10065_w
crossref_primary_10_1016_j_ijhydene_2019_04_171
crossref_primary_10_1088_1402_4896_ad6c94
crossref_primary_10_1016_j_cjph_2022_01_012
crossref_primary_10_1016_j_csite_2022_102361
crossref_primary_10_1080_17455030_2022_2123967
crossref_primary_10_1016_j_molliq_2018_10_049
crossref_primary_10_1115_1_4049431
crossref_primary_10_1155_2021_5471813
crossref_primary_10_1177_09544089231200381
crossref_primary_10_1515_nleng_2021_0047
crossref_primary_10_1016_j_molliq_2020_113492
crossref_primary_10_1080_10407782_2023_2296129
crossref_primary_10_1038_s41598_023_44275_4
crossref_primary_10_1007_s13204_018_0820_y
crossref_primary_10_1155_2021_6229706
crossref_primary_10_1186_s40712_018_0089_7
crossref_primary_10_1142_S0129183122500553
crossref_primary_10_1016_j_tsep_2017_12_010
crossref_primary_10_1002_htj_22031
crossref_primary_10_1007_s10765_023_03240_z
crossref_primary_10_1080_17455030_2022_2038811
crossref_primary_10_1016_j_applthermaleng_2018_11_115
crossref_primary_10_1007_s13204_020_01597_3
crossref_primary_10_1063_1_5127327
crossref_primary_10_3390_sym15020265
crossref_primary_10_1007_s13369_024_09108_0
crossref_primary_10_1016_j_euromechflu_2023_06_001
crossref_primary_10_2139_ssrn_4113806
crossref_primary_10_1108_HFF_06_2018_0302
crossref_primary_10_1016_j_arabjc_2023_104628
crossref_primary_10_1007_s10973_023_12678_0
crossref_primary_10_1139_cjp_2018_0173
crossref_primary_10_1016_j_aej_2020_01_028
crossref_primary_10_1177_09544062231213203
crossref_primary_10_1080_01430750_2019_1681294
crossref_primary_10_1080_02286203_2024_2338034
crossref_primary_10_1142_S0217979224501881
crossref_primary_10_1016_j_aej_2025_01_031
crossref_primary_10_1080_01430750_2022_2095530
crossref_primary_10_1080_01430750_2024_2321210
crossref_primary_10_1007_s13204_020_01464_1
crossref_primary_10_1080_01430750_2021_1934539
crossref_primary_10_1038_s41598_025_85242_5
crossref_primary_10_1007_s10973_020_09256_z
crossref_primary_10_1088_1402_4896_abd1b0
crossref_primary_10_1108_HFF_04_2019_0277
crossref_primary_10_1016_j_molliq_2020_114430
crossref_primary_10_1016_j_icheatmasstransfer_2022_106303
crossref_primary_10_1080_16583655_2018_1451063
crossref_primary_10_1016_j_powtec_2020_11_043
crossref_primary_10_3390_app14198905
crossref_primary_10_1142_S0217979224501650
crossref_primary_10_1016_j_jtice_2019_01_028
crossref_primary_10_1080_10407782_2023_2175750
crossref_primary_10_1108_HFF_02_2020_0096
crossref_primary_10_3390_sym14102136
crossref_primary_10_1080_10407782_2023_2251095
crossref_primary_10_1016_j_cmpb_2019_105093
crossref_primary_10_1080_10407782_2022_2147111
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2023047771
crossref_primary_10_3389_fmats_2024_1391377
crossref_primary_10_1016_j_aej_2021_10_051
crossref_primary_10_1002_htj_22235
crossref_primary_10_1016_j_aej_2021_04_057
crossref_primary_10_1080_10407782_2024_2316222
crossref_primary_10_1080_01430750_2020_1768895
crossref_primary_10_3390_computation11070128
crossref_primary_10_3390_ma15217507
crossref_primary_10_1016_j_heliyon_2024_e31914
crossref_primary_10_46604_ijeti_2021_7681
crossref_primary_10_1007_s10973_023_12622_2
crossref_primary_10_1080_01430750_2021_2000491
crossref_primary_10_1007_s13369_023_08463_8
crossref_primary_10_1016_j_cjph_2019_11_008
crossref_primary_10_1080_17455030_2022_2026527
crossref_primary_10_1080_10407782_2023_2195689
crossref_primary_10_1080_02286203_2024_2338046
crossref_primary_10_1016_j_molliq_2024_125370
crossref_primary_10_1002_htj_21394
crossref_primary_10_1016_j_aej_2023_06_014
crossref_primary_10_1007_s12648_021_02212_z
crossref_primary_10_1007_s10973_019_08304_7
Cites_doi 10.1016/j.jmmm.2016.05.026
10.1016/j.powtec.2016.12.024
10.1016/j.molliq.2016.12.101
10.1016/j.expthermflusci.2011.11.007
10.1016/j.molliq.2017.03.017
10.1016/j.compfluid.2014.05.009
10.1016/j.petrol.2014.12.006
10.1016/j.ijheatmasstransfer.2017.03.123
10.1016/j.ijhydene.2016.09.121
10.1016/j.powtec.2012.11.030
10.1016/j.ijheatmasstransfer.2016.07.064
10.1016/j.molliq.2015.11.015
10.1016/j.molliq.2017.02.022
10.1109/TCPMT.2012.2211018
10.1016/j.apt.2016.02.033
10.1016/j.molliq.2017.02.020
10.1016/j.molliq.2017.02.015
10.1108/02644401311314330
10.1016/j.powtec.2013.12.042
10.1016/j.cma.2014.09.038
10.1016/j.ijheatmasstransfer.2016.11.044
10.1016/j.cplett.2016.11.013
10.1080/08916150600619281
10.1063/1.1408272
10.1016/j.jmmm.2014.03.014
10.1016/j.ijheatmasstransfer.2016.09.012
10.1063/1.1341218
10.1016/j.physa.2014.09.053
10.1016/j.molliq.2017.03.104
10.1166/jon.2015.1165
10.1016/j.colsurfa.2017.01.066
10.1007/s00231-010-0693-4
10.1115/1.2825978
10.1016/j.molliq.2016.10.037
10.1016/j.ijheatmasstransfer.2016.07.070
10.1016/j.applthermaleng.2017.02.045
10.1166/jnn.2014.8467
10.1016/j.energy.2014.07.089
10.1038/150405d0
10.1016/j.cplett.2016.12.045
10.1016/j.molliq.2016.04.125
10.1007/BF01811556
10.1007/s40430-014-0228-x
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.powtec.2017.09.006
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 438
ExternalDocumentID 10_1016_j_powtec_2017_09_006
S003259101730726X
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-374186b818d726cffa106aa9a3f20e0b2b40267826bf2b0b17ab889e982112343
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Thu Aug 07 13:52:25 EDT 2025
Tue Jul 01 01:21:41 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stagnation point flow
Runge-Kutta-Fehlberg method
Lorentz force
Skin friction coefficient(Cf)
Nusselt number (Nu)
Hybrid nanofluid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-374186b818d726cffa106aa9a3f20e0b2b40267826bf2b0b17ab889e982112343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116919631
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2116919631
crossref_citationtrail_10_1016_j_powtec_2017_09_006
crossref_primary_10_1016_j_powtec_2017_09_006
elsevier_sciencedirect_doi_10_1016_j_powtec_2017_09_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationTitle Powder technology
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sheikholeslami, Ganji (bb0040) 2015; 283
Sheikholeslami, Ganji (bb0065) 2017; 229
Suresh, Venkitaraj, Hameed, Sarangan (bb0085) 2014; 14
Sheikholeslami, Ganji (bb0195) 2014; 75
Sheikholeslami, Ziabakhsh, Ganji (bb0135) 2017; 520
Lee, Choi, Li, Eastman (bb0015) 1999; 121
Sheikholeslami, Ganji (bb0055) 2013; 235
Sheikholeslami, Ashorynejad, Barari, Soleimani (bb0150) 2013; 30
Choi, Eastman (bb0005) 1995
Ali, Nazar, Arifin, Pop (bb0205) 2011; 47
Hiemenz (bb0220) 1911; 326
Kang, Kim, Oh (bb0010) 2006; 19
Ahmad, Mustafa (bb0045) 2016; 220
Malik, Nayak (bb0145) 2017; 111
Sheikholeslami, Ganji (bb0050) 2017; 667
Sheikholeslami, Ganji (bb0160) 2017; 42
Shao, Mo, Chen, Yin, Yang, Jia, Cheng (bb0120) 2017; 117
Pal, Mandal (bb0225) 2015; 126
Sheikholeslami, Ganji (bb0185) 2016; 224
Kumari, Takhar, Nath (bb0200) 1990; 25
Sheikholeslami (bb0175) 2017; 231
Nasrin, Alim (bb0095) 2014; 7
Kumar, Singh (bb0210) 2013; 222
Sheikholeslami, Ganji (bb0170) 2017; 669
Sheikholeslami, Ganji (bb0030) 2015; 37
Mehrali, Sadeghinezhad, Akhiani, Latibari, Metselaar, Kherbeet, Mehrali (bb0125) 2017; 308
Sheikholeslami, Ganji, Rashidi (bb0075) 2016; 416
Kandasamy, Mohammad, Zailani, Jaafar (bb0165) 2017; 233
Eastman, Choi, Li, Yu, Thompson (bb0025) 2001; 78
Malvandi, Ganji (bb0035) 2014; 362
Sheikholeslami, Ganji (bb0060) 2014; 253
Raza, Rohni, Omar (bb0140) 2016; 103
Wei, Zou, Yuan, Li (bb0100) 2017; 107
Ahammed, Asirvatham, Wongwises (bb0105) 2016; 103
Adriana (bb0115) 2017; 104
Suresh, Venkitaraj, Selvakumar, Chandrasekar (bb0080) 2012; 38
Davies (bb0245) 1962; 273
Sheikholeslami, Ganji (bb0250) 2017
Mansor, Zaimi (bb0235) 2014
Alfvén (bb0130) 1942; 150
Selvakumar, Suresh (bb0090) 2012; 2
Choi, Zhang, Yu, Lockwood, Grulke (bb0020) 2001; 79
Sheikholeslami, Ganji (bb0190) 2015; 417
Mabood, Shateyi, Rashidi, Momoniat, Freidoonimehr (bb0255) 2016; 27
Thiagarajan, Selvaraj (bb0240) 2015; 4
Rehman, Khan, Sadiq, Malook (bb0155) 2017; 231
Sheikholeslami, Soleimani, Ganji (bb0070) 2016; 213
Rostamian, Biglari, Saedodin, Esfe (bb0110) 2017; 231
Sheikholeslami (bb0180) 2017; 234
Mabood, Khan (bb0230) 2014; 100
Gireesha, Mahanthesh, Shivakumara, Eshwarappa (bb0215) 2016; 19
Davies (10.1016/j.powtec.2017.09.006_bb0245) 1962; 273
Thiagarajan (10.1016/j.powtec.2017.09.006_bb0240) 2015; 4
Eastman (10.1016/j.powtec.2017.09.006_bb0025) 2001; 78
Selvakumar (10.1016/j.powtec.2017.09.006_bb0090) 2012; 2
Kumar (10.1016/j.powtec.2017.09.006_bb0210) 2013; 222
Lee (10.1016/j.powtec.2017.09.006_bb0015) 1999; 121
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0150) 2013; 30
Raza (10.1016/j.powtec.2017.09.006_bb0140) 2016; 103
Wei (10.1016/j.powtec.2017.09.006_bb0100) 2017; 107
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0190) 2015; 417
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0030) 2015; 37
Ahmad (10.1016/j.powtec.2017.09.006_bb0045) 2016; 220
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0075) 2016; 416
Rehman (10.1016/j.powtec.2017.09.006_bb0155) 2017; 231
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0180) 2017; 234
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0170) 2017; 669
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0160) 2017; 42
Pal (10.1016/j.powtec.2017.09.006_bb0225) 2015; 126
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0055) 2013; 235
Kandasamy (10.1016/j.powtec.2017.09.006_bb0165) 2017; 233
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0065) 2017; 229
Ahammed (10.1016/j.powtec.2017.09.006_bb0105) 2016; 103
Kang (10.1016/j.powtec.2017.09.006_bb0010) 2006; 19
Choi (10.1016/j.powtec.2017.09.006_bb0005) 1995
Mehrali (10.1016/j.powtec.2017.09.006_bb0125) 2017; 308
Rostamian (10.1016/j.powtec.2017.09.006_bb0110) 2017; 231
Malik (10.1016/j.powtec.2017.09.006_bb0145) 2017; 111
Alfvén (10.1016/j.powtec.2017.09.006_bb0130) 1942; 150
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0195) 2014; 75
Hiemenz (10.1016/j.powtec.2017.09.006_bb0220) 1911; 326
Suresh (10.1016/j.powtec.2017.09.006_bb0080) 2012; 38
Malvandi (10.1016/j.powtec.2017.09.006_bb0035) 2014; 362
Gireesha (10.1016/j.powtec.2017.09.006_bb0215) 2016; 19
Choi (10.1016/j.powtec.2017.09.006_bb0020) 2001; 79
Mansor (10.1016/j.powtec.2017.09.006_bb0235) 2014
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0060) 2014; 253
Shao (10.1016/j.powtec.2017.09.006_bb0120) 2017; 117
Kumari (10.1016/j.powtec.2017.09.006_bb0200) 1990; 25
Suresh (10.1016/j.powtec.2017.09.006_bb0085) 2014; 14
Nasrin (10.1016/j.powtec.2017.09.006_bb0095) 2014; 7
Mabood (10.1016/j.powtec.2017.09.006_bb0230) 2014; 100
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0070) 2016; 213
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0040) 2015; 283
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0135) 2017; 520
Ali (10.1016/j.powtec.2017.09.006_bb0205) 2011; 47
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0185) 2016; 224
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0050) 2017; 667
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0175) 2017; 231
Sheikholeslami (10.1016/j.powtec.2017.09.006_bb0250) 2017
Mabood (10.1016/j.powtec.2017.09.006_bb0255) 2016; 27
Adriana (10.1016/j.powtec.2017.09.006_bb0115) 2017; 104
References_xml – volume: 117
  start-page: 427
  year: 2017
  end-page: 436
  ident: bb0120
  article-title: Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage
  publication-title: Appl. Therm. Eng.
– volume: 30
  start-page: 357
  year: 2013
  end-page: 378
  ident: bb0150
  article-title: Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface
  publication-title: Eng. Comput.
– volume: 126
  start-page: 16
  year: 2015
  end-page: 25
  ident: bb0225
  article-title: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation
  publication-title: J. Pet. Sci. Eng.
– volume: 231
  start-page: 364
  year: 2017
  end-page: 369
  ident: bb0110
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
– volume: 103
  start-page: 1084
  year: 2016
  end-page: 1097
  ident: bb0105
  article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler
  publication-title: Int. J. Heat Mass Transf.
– volume: 25
  start-page: 331
  year: 1990
  end-page: 336
  ident: bb0200
  article-title: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux
  publication-title: Warme Stoffubertrag.
– volume: 104
  start-page: 852
  year: 2017
  end-page: 860
  ident: bb0115
  article-title: Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches
  publication-title: Int. J. Heat Mass Transf.
– volume: 520
  start-page: 201
  year: 2017
  end-page: 212
  ident: bb0135
  article-title: Transport of Magnetohydrodynamic nanofluid in a porous media
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 27
  start-page: 742
  year: 2016
  end-page: 749
  ident: bb0255
  article-title: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction
  publication-title: Adv. Powder Technol.
– volume: 38
  start-page: 54
  year: 2012
  end-page: 60
  ident: bb0080
  article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer
  publication-title: Exp. Thermal Fluid Sci.
– start-page: 99
  year: 1995
  end-page: 105
  ident: bb0005
  publication-title: Enhancing thermal conductivity of fluids with nanoparticles
– volume: 213
  start-page: 153
  year: 2016
  end-page: 161
  ident: bb0070
  article-title: Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry
  publication-title: J. Mol. Liq.
– volume: 220
  start-page: 635
  year: 2016
  end-page: 641
  ident: bb0045
  article-title: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet
  publication-title: J. Mol. Liq.
– volume: 2
  start-page: 1600
  year: 2012
  end-page: 1607
  ident: bb0090
  article-title: Use of Al2O3-Cu/Water hybrid nanofluid in an electronic heat sink
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 107
  start-page: 281
  year: 2017
  end-page: 287
  ident: bb0100
  article-title: Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications
  publication-title: Int. J. Heat Mass Transf.
– volume: 75
  start-page: 400
  year: 2014
  end-page: 410
  ident: bb0195
  article-title: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer
  publication-title: Energy
– volume: 283
  start-page: 651
  year: 2015
  end-page: 663
  ident: bb0040
  article-title: Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 895
  year: 2015
  end-page: 902
  ident: bb0030
  article-title: Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 79
  start-page: 2252
  year: 2001
  end-page: 2254
  ident: bb0020
  article-title: Anomalous thermal conductivity enhancement in nanotubes suspensions
  publication-title: Appl. Phys. Lett.
– volume: 224
  start-page: 526
  year: 2016
  end-page: 537
  ident: bb0185
  article-title: Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect
  publication-title: J. Mol. Liq.
– volume: 78
  start-page: 718
  year: 2001
  end-page: 720
  ident: bb0025
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
  publication-title: Appl. Phys. Lett.
– volume: 669
  start-page: 202
  year: 2017
  end-page: 210
  ident: bb0170
  article-title: Transportation of MHD nanofluid free convection in a porous semi annulus using numerical
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 329
  year: 2017
  end-page: 345
  ident: bb0145
  article-title: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating
  publication-title: Int. J. Heat Mass Transf.
– volume: 47
  start-page: 155
  year: 2011
  end-page: 162
  ident: bb0205
  article-title: MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field
  publication-title: Heat Mass Transf.
– volume: 121
  start-page: 280
  year: 1999
  end-page: 289
  ident: bb0015
  article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles
  publication-title: J. Heat Transf.
– volume: 235
  start-page: 873
  year: 2013
  end-page: 879
  ident: bb0055
  article-title: Heat transfer of Cu-water nanofluid flow between parallel plates
  publication-title: Powder Technol.
– volume: 229
  start-page: 530
  year: 2017
  end-page: 540
  ident: bb0065
  article-title: Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source
  publication-title: J. Mol. Liq.
– volume: 308
  start-page: 149
  year: 2017
  end-page: 157
  ident: bb0125
  article-title: Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field
  publication-title: Powder Technol.
– volume: 42
  start-page: 2748
  year: 2017
  end-page: 2755
  ident: bb0160
  article-title: Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer
  publication-title: Int. J. Hydrog. Energy
– volume: 234
  start-page: 364
  year: 2017
  end-page: 374
  ident: bb0180
  article-title: Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method
  publication-title: J. Mol. Liq.
– volume: 362
  start-page: 172
  year: 2014
  end-page: 179
  ident: bb0035
  article-title: Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel
  publication-title: J. Magn. Magn. Mater.
– volume: 103
  start-page: 336
  year: 2016
  end-page: 340
  ident: bb0140
  article-title: MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls
  publication-title: Int. J. Heat Mass Transf.
– volume: 100
  start-page: 72
  year: 2014
  end-page: 78
  ident: bb0230
  article-title: Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium
  publication-title: Comput. Fluids
– volume: 4
  start-page: 328
  year: 2015
  end-page: 334
  ident: bb0240
  article-title: Nanofluid MHD stagnation-point flow over a flat plate with heat transfer
  publication-title: J. Nanofluid.
– volume: 253
  start-page: 789
  year: 2014
  end-page: 796
  ident: bb0060
  article-title: Three dimensional heat and mass transfer in a rotating system using nanofluid
  publication-title: Powder Technol.
– volume: 14
  start-page: 2563
  year: 2014
  end-page: 2572
  ident: bb0085
  article-title: Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids
  publication-title: J. Nanosci. Nanotechnol.
– volume: 150
  start-page: 405
  year: 1942
  end-page: 406
  ident: bb0130
  article-title: Existence of electromagnetic-hydrodynamic waves
  publication-title: Nature
– volume: 231
  start-page: 555
  year: 2017
  end-page: 565
  ident: bb0175
  article-title: Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method
  publication-title: J. Mol. Liq.
– volume: 417
  start-page: 273
  year: 2015
  end-page: 286
  ident: bb0190
  article-title: Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method
  publication-title: Physica A
– volume: 19
  start-page: 313
  year: 2016
  end-page: 321
  ident: bb0215
  article-title: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field
  publication-title: Eng. Sci. Tech. Int. J.
– year: 2014
  ident: bb0235
  publication-title: The MHD stagnation point flow and heat transfer towards a stretching sheet with suction in a nanofluid
– start-page: 1
  year: 2017
  end-page: 52
  ident: bb0250
  article-title: Applications of Nanofluid for Heat Transfer Enhancement
– volume: 7
  start-page: 543
  year: 2014
  end-page: 556
  ident: bb0095
  article-title: Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles
  publication-title: J. Appl. Fluid Mech.
– volume: 273
  year: 1962
  ident: bb0245
  article-title: The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infnite plat plate I, uniform conditions at infinity
  publication-title: Proc. R. Soc. A
– volume: 19
  start-page: 181
  year: 2006
  end-page: 191
  ident: bb0010
  article-title: Estimation of thermal conductivity of nanofluid using experimental effective particle volume
  publication-title: Exp. Heat Transfer
– volume: 233
  start-page: 156
  year: 2017
  end-page: 165
  ident: bb0165
  article-title: Nanoparticle shapes on squeezed MHD nanofluid flow over a porous sensor surface
  publication-title: J. Mol. Liq.
– volume: 667
  start-page: 307
  year: 2017
  end-page: 316
  ident: bb0050
  article-title: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source
  publication-title: Chem. Phys. Lett.
– volume: 416
  start-page: 164
  year: 2016
  end-page: 173
  ident: bb0075
  article-title: Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model
  publication-title: J. Magn. Magn. Mater.
– volume: 222
  start-page: 462
  year: 2013
  end-page: 471
  ident: bb0210
  article-title: Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field
  publication-title: Appl. Math. Comput.
– volume: 231
  start-page: 353
  year: 2017
  end-page: 363
  ident: bb0155
  article-title: MHD flow of carbon in micropolar nanofluid with convective heat transfer in the rotating frame
  publication-title: J. Mol. Liq.
– volume: 326
  start-page: 321
  year: 1911
  end-page: 324
  ident: bb0220
  article-title: Die Grenzschicht in einem in dem gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder
  publication-title: Dingler Polytechnic J.
– volume: 416
  start-page: 164
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0075
  article-title: Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.05.026
– volume: 308
  start-page: 149
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0125
  article-title: Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.12.024
– volume: 229
  start-page: 530
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0065
  article-title: Free convection of Fe3O4-water nanofluid under the influence of an external magnetic source
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.12.101
– volume: 38
  start-page: 54
  year: 2012
  ident: 10.1016/j.powtec.2017.09.006_bb0080
  article-title: Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2011.11.007
– volume: 7
  start-page: 543
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0095
  article-title: Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles
  publication-title: J. Appl. Fluid Mech.
– volume: 233
  start-page: 156
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0165
  article-title: Nanoparticle shapes on squeezed MHD nanofluid flow over a porous sensor surface
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.03.017
– volume: 100
  start-page: 72
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0230
  article-title: Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.05.009
– volume: 126
  start-page: 16
  year: 2015
  ident: 10.1016/j.powtec.2017.09.006_bb0225
  article-title: Mixed convection–radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2014.12.006
– volume: 19
  start-page: 313
  issue: 1
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0215
  article-title: Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field
  publication-title: Eng. Sci. Tech. Int. J.
– volume: 111
  start-page: 329
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0145
  article-title: MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.123
– volume: 42
  start-page: 2748
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0160
  article-title: Influence of magnetic field on CuO–H2O nanofluid flow considering Marangoni boundary layer
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.09.121
– volume: 235
  start-page: 873
  year: 2013
  ident: 10.1016/j.powtec.2017.09.006_bb0055
  article-title: Heat transfer of Cu-water nanofluid flow between parallel plates
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.11.030
– volume: 103
  start-page: 336
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0140
  article-title: MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.07.064
– volume: 213
  start-page: 153
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0070
  article-title: Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2015.11.015
– volume: 231
  start-page: 353
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0155
  article-title: MHD flow of carbon in micropolar nanofluid with convective heat transfer in the rotating frame
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.022
– volume: 2
  start-page: 1600
  year: 2012
  ident: 10.1016/j.powtec.2017.09.006_bb0090
  article-title: Use of Al2O3-Cu/Water hybrid nanofluid in an electronic heat sink
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2012.2211018
– volume: 27
  start-page: 742
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0255
  article-title: MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.02.033
– volume: 231
  start-page: 555
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0175
  article-title: Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.020
– volume: 231
  start-page: 364
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0110
  article-title: An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.015
– volume: 30
  start-page: 357
  year: 2013
  ident: 10.1016/j.powtec.2017.09.006_bb0150
  article-title: Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface
  publication-title: Eng. Comput.
  doi: 10.1108/02644401311314330
– volume: 253
  start-page: 789
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0060
  article-title: Three dimensional heat and mass transfer in a rotating system using nanofluid
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.12.042
– volume: 283
  start-page: 651
  year: 2015
  ident: 10.1016/j.powtec.2017.09.006_bb0040
  article-title: Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.09.038
– volume: 107
  start-page: 281
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0100
  article-title: Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.11.044
– start-page: 1
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0250
– year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0235
– volume: 667
  start-page: 307
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0050
  article-title: Numerical investigation of nanofluid transportation in a curved cavity in existence of magnetic source
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.11.013
– volume: 19
  start-page: 181
  year: 2006
  ident: 10.1016/j.powtec.2017.09.006_bb0010
  article-title: Estimation of thermal conductivity of nanofluid using experimental effective particle volume
  publication-title: Exp. Heat Transfer
  doi: 10.1080/08916150600619281
– volume: 326
  start-page: 321
  year: 1911
  ident: 10.1016/j.powtec.2017.09.006_bb0220
  article-title: Die Grenzschicht in einem in dem gleichformingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder
  publication-title: Dingler Polytechnic J.
– volume: 79
  start-page: 2252
  year: 2001
  ident: 10.1016/j.powtec.2017.09.006_bb0020
  article-title: Anomalous thermal conductivity enhancement in nanotubes suspensions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1408272
– volume: 362
  start-page: 172
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0035
  article-title: Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.03.014
– volume: 104
  start-page: 852
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0115
  article-title: Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.09.012
– volume: 78
  start-page: 718
  year: 2001
  ident: 10.1016/j.powtec.2017.09.006_bb0025
  article-title: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1341218
– volume: 417
  start-page: 273
  year: 2015
  ident: 10.1016/j.powtec.2017.09.006_bb0190
  article-title: Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method
  publication-title: Physica A
  doi: 10.1016/j.physa.2014.09.053
– volume: 234
  start-page: 364
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0180
  article-title: Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.03.104
– volume: 4
  start-page: 328
  year: 2015
  ident: 10.1016/j.powtec.2017.09.006_bb0240
  article-title: Nanofluid MHD stagnation-point flow over a flat plate with heat transfer
  publication-title: J. Nanofluid.
  doi: 10.1166/jon.2015.1165
– volume: 520
  start-page: 201
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0135
  article-title: Transport of Magnetohydrodynamic nanofluid in a porous media
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2017.01.066
– volume: 47
  start-page: 155
  year: 2011
  ident: 10.1016/j.powtec.2017.09.006_bb0205
  article-title: MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-010-0693-4
– volume: 121
  start-page: 280
  year: 1999
  ident: 10.1016/j.powtec.2017.09.006_bb0015
  article-title: Measuring thermal conductivity of fluids containing oxide nanoparticles
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2825978
– volume: 273
  year: 1962
  ident: 10.1016/j.powtec.2017.09.006_bb0245
  article-title: The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infnite plat plate I, uniform conditions at infinity
  publication-title: Proc. R. Soc. A
– volume: 224
  start-page: 526
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0185
  article-title: Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.10.037
– volume: 103
  start-page: 1084
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0105
  article-title: Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.07.070
– volume: 117
  start-page: 427
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0120
  article-title: Solidification behavior of hybrid TiO2 nanofluids containing nanotubes and nanoplatelets for cold thermal energy storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.02.045
– volume: 14
  start-page: 2563
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0085
  article-title: Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3–Cu hybrid nanofluids
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.8467
– volume: 75
  start-page: 400
  year: 2014
  ident: 10.1016/j.powtec.2017.09.006_bb0195
  article-title: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.089
– start-page: 99
  year: 1995
  ident: 10.1016/j.powtec.2017.09.006_bb0005
– volume: 150
  start-page: 405
  year: 1942
  ident: 10.1016/j.powtec.2017.09.006_bb0130
  article-title: Existence of electromagnetic-hydrodynamic waves
  publication-title: Nature
  doi: 10.1038/150405d0
– volume: 669
  start-page: 202
  year: 2017
  ident: 10.1016/j.powtec.2017.09.006_bb0170
  article-title: Transportation of MHD nanofluid free convection in a porous semi annulus using numerical
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.12.045
– volume: 220
  start-page: 635
  year: 2016
  ident: 10.1016/j.powtec.2017.09.006_bb0045
  article-title: Model and comparative study for rotating flow of nanofluids due to convectively heated exponentially stretching sheet
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.125
– volume: 222
  start-page: 462
  year: 2013
  ident: 10.1016/j.powtec.2017.09.006_bb0210
  article-title: Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 331
  year: 1990
  ident: 10.1016/j.powtec.2017.09.006_bb0200
  article-title: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux
  publication-title: Warme Stoffubertrag.
  doi: 10.1007/BF01811556
– volume: 37
  start-page: 895
  year: 2015
  ident: 10.1016/j.powtec.2017.09.006_bb0030
  article-title: Unsteady nanofluid flow and heat transfer in presence of magnetic field considering thermal radiation
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-014-0228-x
SSID ssj0006310
Score 2.646944
Snippet An analysis on the subject of “induced magnetic field effect on stagnation flow of a TiO2-Cu/water hybrid nanofluid over a stretching sheet” has been carried...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 428
SubjectTerms differential equation
friction
heat transfer
Hybrid nanofluid
Lorentz force
magnetic fields
nanofluids
nanoparticles
Nusselt number (Nu)
powders
Runge-Kutta-Fehlberg method
Skin friction coefficient(Cf)
Stagnation point flow
temperature
titanium dioxide
Title Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow
URI https://dx.doi.org/10.1016/j.powtec.2017.09.006
https://www.proquest.com/docview/2116919631
Volume 322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOBQ8WhVykOuxDVsYnsd-4gWUGgFXEDamxUHu6TaxhFkhbgg_kBP_Yf9JZ3JA2iFhFQphySyrcQzGc84M99HyF7qktj7WERWcwhQxlxGea5FVDgJES7zqWu5CE7PZHYpvkzH0wUyGWphMK2yt_2dTW-tdX9n1M_mqC5LrPHl4LujSoGeMjnFCnaRopbvPzyneUie9NCMEHRB66F8rs3xqsNd4xDIMElbtFPkPXp9efrHULerz_Eqede7jfSge7I1suCqdbLyAkxwg_x8AZkRKgoH-nY_Qt1Lgta4736DAKo0eHpRBvb78ddkPsrYOb2-x8otWuVV8LM5nDUD6DkdaHIbHPL2Oq8d7Uh6aFnR0-yQgn_5rdtTpHUooZ2fhbv35PL46GKSRT3ZQlRwrhswNCJR0sL6fQWTWXifQ7AIYsu5Z7GLLbMCyaogGrGe2dgmaW6V0k4rCCEZF_wDWaxC5T4SymVSpNyBoybGwimvNJMKqXZVzPWVUJuED3Nsih6JHAkxZmZIOftuOskYlIyJtQHJbJLoqVfdIXG80T4dxGf-0igDi8UbPT8P0jbwseEflLxyYX5r4FWlRpuVfPrv0bfIMl51KTHbZLG5mbsdcGwau9tq7i5ZOjj5mp39AX7c-fo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOVelDhZbiSr2mm9hexz6iLSilLL0s0t6sONglaBtHkBXigvoHeuIf9pd0Jo-WVkhISDlEiZ2Hx5mHM_N9hHxIXRJ7H4vIag4BypjLKM-1iAonIcJlPnUtF8H0SGbH4mA-nq-QyVALg2mVve7vdHqrrfsjo340R3VZYo0vB98dpxTMUybnj8ga3EshjcHH6795HpInPTYjRF3QfKifa5O86nDZOEQyTNIW7hSJj-62T_9p6tb87D8jT3u_ke52j7ZBVlz1nKzfQhN8QX7ewswIFYUNnbvvoe5FQWtceD9HBFUaPJ2Vgf36cTNZjjL2lZ5eYekWrfIq-MUS9poB9ZwOPLkNXvLiNK8d7Vh6aFnRafaJgoP5rVtUpHUooZ1fhMuX5Hh_bzbJop5tISo41w1oGpEoacGAn8BoFt7nEC2C3HLuWexiy6xAtioIR6xnNrZJmlultNMKYkjGBX9FVqtQudeEcpkUKXfgqYmxcMorzaRCrl0Vc30i1CbhwxiboociR0aMhRlyzs5MJxmDkjGxNiCZTRL96VV3UBz3tE8H8Zl_ppQBa3FPz_eDtA18bfgLJa9cWF4YeFWpUWklWw---g55nM2mh-bw89GXN-QJnunyY96S1eZ86bbBy2nsu3YW_wYsT_uI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+thermophysical+properties+of+Tio2%E2%80%93Cu%2FH2O+hybrid+nanofluid+transport+dependent+on+shape+factor+in+MHD+stagnation+point+flow&rft.jtitle=Powder+technology&rft.au=Ghadikolaei%2C+S+S&rft.au=Yassari%2C+M&rft.au=Sadeghi%2C+H&rft.au=Hosseinzadeh%2C+Kh&rft.date=2017-12-01&rft.issn=0032-5910&rft.volume=322+p.428-438&rft.spage=428&rft.epage=438&rft_id=info:doi/10.1016%2Fj.powtec.2017.09.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon