Spatial variability of clay minerals in a semi-arid region of Turkiye

Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Addit...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 38; p. e00820
Main Authors Günal, Hikmet, Acir, Nurullah
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2024
Subjects
Online AccessGet full text
ISSN2352-0094
2352-0094
DOI10.1016/j.geodrs.2024.e00820

Cover

Loading…
Abstract Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R2 values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R2:0.713) and illite (RMSE:7.368%, R2:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain.
AbstractList Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R2 values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R2:0.713) and illite (RMSE:7.368%, R2:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain.
Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R² values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R²:0.713) and illite (RMSE:7.368%, R²:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain.
ArticleNumber e00820
Author Günal, Hikmet
Acir, Nurullah
Author_xml – sequence: 1
  givenname: Hikmet
  surname: Günal
  fullname: Günal, Hikmet
  email: hikmetgunal@harran.edu.tr
  organization: Harran University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkiye
– sequence: 2
  givenname: Nurullah
  surname: Acir
  fullname: Acir, Nurullah
  organization: Kırsehir Ahi Evran University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Kırşehir, Turkiye
BookMark eNqFkD1PwzAQhi1UJErpP2DIyJJwtpO2ZkBCVfmQKjFQZst1ztWVNC52Win_nlRhQAww3Q3P--ruuWSD2tfI2DWHjAOf3G6zDfoyxEyAyDMEmAk4Y0MhC5ECqHzwY79g4xi3ACBUIacTMWSLt71pyFTJ0QQya6qoaRPvEluZNtlRjcFUMaE6MUnEHaUdVSYBN-TrE7Y6hA9q8Yqdu47D8fccsffHxWr-nC5fn17mD8vUSqmaVEKx5q4siu5SO5uWIJ1SXMyMk3IK-dpxJ4QC4_IprksElBaMEIXjJQjjUI7YTd-7D_7zgLHRO4oWq8rU6A9RS17ISS6VUh1616M2-BgDOm2p6V71dRMMVZqDPunTW93r0yd9utfXhfNf4X2gnQntf7H7PoadgyNh0NES1hZLCmgbXXr6u-AL3AWNqg
CitedBy_id crossref_primary_10_1080_08827508_2024_2395828
Cites_doi 10.1016/j.catena.2019.104239
10.1016/B978-0-08-098258-8.00002-X
10.1007/s10021-005-0054-1
10.1109/ACCESS.2020.3014644
10.3103/S0147687413040078
10.1071/SR18352
10.1016/j.geoderma.2006.02.001
10.17762/turcomat.v12i6.5765
10.1007/s10661-024-12431-6
10.1111/ejss.12165
10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
10.1016/j.geoderma.2015.05.003
10.17221/32/2016-SWR
10.1061/(ASCE)GT.1943-5606.0000521
10.1136/fmch-2019-000262
10.2136/sssaj1999.6361748x
10.1590/18069657rbcs20180105
10.1109/TKDE.2019.2959988
10.1016/j.fuel.2023.127839
10.2136/sssaj2009.0158
10.3923/jas.2008.288.294
10.3390/s22186890
10.1016/j.geoderma.2021.115221
10.2136/sssaj2018.03.0100
10.1016/j.catena.2014.02.012
10.1346/CCMN.2007.0550407
10.1016/j.spl.2019.03.017
10.1016/j.catena.2023.106932
10.1007/s41742-021-00334-0
10.1016/j.clay.2013.04.014
10.1023/A:1010933404324
10.2307/2532051
10.1007/s11629-014-3339-z
10.1016/j.catena.2012.08.008
10.1016/B978-0-08-098258-8.00003-1
10.1177/1536867X0200200206
10.1097/SS.0000000000000022
10.1016/j.geoderma.2022.116211
10.1180/0009855023740112
10.1016/j.enggeo.2015.12.007
10.2136/sssaj2003.0293
10.1016/j.catena.2024.108053
10.1016/j.geoderma.2019.04.019
10.1016/j.geomorph.2018.11.003
10.1016/j.coesh.2017.12.003
10.1016/j.catena.2021.106009
10.2136/sssaj1994.03615995005800050033x
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2024.e00820
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2024_e00820
S2352009424000671
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c339t-305b1fd55024c87d03f99128af33704bf1f2290af47ebde0e3c0a225f1d02afe3
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Thu Jul 10 19:18:11 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 02:07:21 EDT 2025
Sat Sep 14 18:00:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial distribution
Covariate
Modeling
Artificial intelligence
Clay mineral
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-305b1fd55024c87d03f99128af33704bf1f2290af47ebde0e3c0a225f1d02afe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153643999
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153643999
crossref_citationtrail_10_1016_j_geodrs_2024_e00820
crossref_primary_10_1016_j_geodrs_2024_e00820
elsevier_sciencedirect_doi_10_1016_j_geodrs_2024_e00820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Elliot, Flanagan (bb0135) 2023
Araújo, Wetterlind, Demattê, Stenberg (bb0035) 2014; 65
Chittoori, Puppala (bb0095) 2011; 13711
Ramosaj, Pauly (bb0275) 2019; 151
Lin (bb0210) 1989; 45
Barnes (bb0045) 2013; 80
Helmke, Sparks (bb0170) 1996
Zolfaghari, Mosaddeghi, Ayoubi, Kelishadi (bb0415) 2015; 12
Razzaghi, Arthur, Moosavi (bb0280) 2021; 400
Jackson (bb0195) 1975
Gunal, Akbas, Ozgoz, Unlukara, Yıldız, Kurunç, Cetin, Ersahin (bb0160) 2008; 1050266
Behroozi, Arora, Fletcher, Western, Costelloe (bb0050) 2021; 153
Cutler, Cutler, Stevens (bb0110) 2012
Khormali, Abtahi (bb0205) 2003; 38
Breiman (bb0065) 2001; 45
Wade (bb0365) 2020
Mishra, Lal, Liu, Van Meirvenne (bb0215) 2010; 74
(bb0185) 2021
Stahr, Schuler, Haring, Clemens, Herrmann, Zarei (bb0335) 2010
Sun, Xie, Zhou, Fu, Liu (bb0350) 2023; 342
Park, Ho (bb0245) 2021; 33
Baghernejad (bb0040) 2000; 192
Dixon, Jackson (bb0120) 1959; 8
Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bb0400) 2018; 826
Wakeel, Ishfaq (bb0370) 2022
Galán, Ferrell (bb0145) 2013; 5
Steichen, Cox (bb0340) 2002; 2
Akbas, Gunal, Acir (bb0015) 2017; 124
Al-Tawaha, Günal, Křeček, Zamfir, Patel, Vyas, Celik, Al-Ramamneh (bb0025) 2021
Camberdella, Moorman, Novak, Parkin, Karlen, Turco, Konopka (bb0080) 1994; 58
Spinola, Portes, Fedenko, Lybrand, Dere, Biles, Trainor, Bowden, D'Amore (bb0330) 2022; 428
Anonymous (bb0030) 2023
Crevelin, Bicalho (bb0105) 2019; 43
Kasanin-Grubin (bb0200) 2013; 106
Sarkar, Singh, Mandal, Churchman, Bolan (bb0295) 2018
Thomas (bb0355) 1982
Bittencourt, Clarke (bb0060) 2003
Daher, Schaefer, Fernandes Filho, Francelino, Senra (bb0115) 2019; 327
Zhu, Bennett, Marchuk (bb0410) 2019; 349
Abbaslou, Abtahi, Peinado, Owliaie, Khormali (bb0010) 2013; 178
Durak, Gunal, Akbas, Kilic (bb0130) 2006; 183
Najafi-Ghiri, Mokarram, Owliaie (bb0225) 2019; 577
Allison, Moodie (bb0020) 1965
Moore, Reynolds (bb0220) 1997
Prasad, Iverson, Liaw (bb0260) 2006; 9
Abakay, Kılıç, Günal, Kılıç (bb0005) 2024; 196
Garosi, Ayoubi, Nussbaum, Sheklabadi (bb0150) 2022; 29
Hseu, Tsai, Hsi, Chen (bb0180) 2007; 55
Iqbal, Lucieer, Barry (bb0190) 2018; 73
Whittig, Allardice (bb0380) 1986
Chen, Guestrin (bb0090) 2016
Puppala, Pedarla, Hoyos, Zapata, Bheemasetti (bb0265) 2016; 200
Xue, Wu (bb0390) 2020; 8
Shahrokh, Khademi, Zeraatpisheh (bb0305) 2023; 223
Carter, Mortland, Kemper (bb0085) 1986
Nelson, Sommers (bb0230) 1996
Brownlee (bb0075) 2021
Viscarra Rossel (bb0360) 2011; 116F4
Rhoades (bb0285) 1982
Yilmaz, Çelik, Kapur, Ryan (bb0395) 2005; 291
Pachepsky, Rawls (bb0240) 1999; 636
Silva, Silva, Andrade, Coblinski, Inda, Frosi, Lima, Menzes, Tavares, Guilherme, Weindorf, Curi (bb0310) 2024; 241
Saurabh Pal (bb0300) 2021; 12
Sumner, Miller (bb0345) 1996
Pereira, Bogunovic, Muñoz-Rojas, Brevik (bb0250) 2018; 5
Biscaye (bb0055) 1965; 76
Putatunda, Rama (bb0270) 2018; 6–10
Chowdhury, Turin (bb0100) 2020; 8
Emadi, Baghernejad, Memarian, Saffari, Fathi (bb0140) 2008; 8
Soil Survey Staff (bb0315) 2014
Brigatti, Galan, Theng (bb0070) 2013; vol. 5
Gee, Bauder (bb0155) 1986
Watanabe, Funakawa, Kosaki (bb0375) 2006; 136
Zhao, Hong, Fang, Algeo, Wang, Li, Yin (bb0405) 2020; 184
Wilford, De Caritat, Bui (bb0385) 2015; 259
Drewnik, Skiba, Szymański, Zyła (bb0125) 2014; 119
Hopper (bb0175) 1981
Somaratne, Seneviratne, Coomaraswamy (bb0325) 2005; 69
Wilding (bib417) 1985
Pessoa, Libardi (bb0255) 2022; 211
Saidi, Ayoubi, Shirvani, Azizi, Zeraatpisheh (bb0290) 2022; 22
Sokolova, Tolpeshta, Rusakova, Maksimova (bb0320) 2013; 68
Günal (bib418) 2006; 3
Rhoades (10.1016/j.geodrs.2024.e00820_bb0285) 1982
Wakeel (10.1016/j.geodrs.2024.e00820_bb0370) 2022
Iqbal (10.1016/j.geodrs.2024.e00820_bb0190) 2018; 73
Somaratne (10.1016/j.geodrs.2024.e00820_bb0325) 2005; 69
Chittoori (10.1016/j.geodrs.2024.e00820_bb0095) 2011; 13711
Cutler (10.1016/j.geodrs.2024.e00820_bb0110) 2012
Wilford (10.1016/j.geodrs.2024.e00820_bb0385) 2015; 259
Araújo (10.1016/j.geodrs.2024.e00820_bb0035) 2014; 65
Steichen (10.1016/j.geodrs.2024.e00820_bb0340) 2002; 2
Biscaye (10.1016/j.geodrs.2024.e00820_bb0055) 1965; 76
Pereira (10.1016/j.geodrs.2024.e00820_bb0250) 2018; 5
Akbas (10.1016/j.geodrs.2024.e00820_bb0015) 2017; 124
Allison (10.1016/j.geodrs.2024.e00820_bb0020) 1965
Mishra (10.1016/j.geodrs.2024.e00820_bb0215) 2010; 74
Al-Tawaha (10.1016/j.geodrs.2024.e00820_bb0025) 2021
Durak (10.1016/j.geodrs.2024.e00820_bb0130) 2006; 183
Khormali (10.1016/j.geodrs.2024.e00820_bb0205) 2003; 38
Saurabh Pal (10.1016/j.geodrs.2024.e00820_bb0300) 2021; 12
Chowdhury (10.1016/j.geodrs.2024.e00820_bb0100) 2020; 8
Puppala (10.1016/j.geodrs.2024.e00820_bb0265) 2016; 200
Sumner (10.1016/j.geodrs.2024.e00820_bb0345) 1996
Lin (10.1016/j.geodrs.2024.e00820_bb0210) 1989; 45
Zhao (10.1016/j.geodrs.2024.e00820_bb0400) 2018; 826
Brownlee (10.1016/j.geodrs.2024.e00820_bb0075)
Wilding (10.1016/j.geodrs.2024.e00820_bib417) 1985
Behroozi (10.1016/j.geodrs.2024.e00820_bb0050) 2021; 153
Dixon (10.1016/j.geodrs.2024.e00820_bb0120) 1959; 8
Sun (10.1016/j.geodrs.2024.e00820_bb0350) 2023; 342
Baghernejad (10.1016/j.geodrs.2024.e00820_bb0040) 2000; 192
Barnes (10.1016/j.geodrs.2024.e00820_bb0045) 2013; 80
Zhu (10.1016/j.geodrs.2024.e00820_bb0410) 2019; 349
Jackson (10.1016/j.geodrs.2024.e00820_bb0195) 1975
Sarkar (10.1016/j.geodrs.2024.e00820_bb0295) 2018
Garosi (10.1016/j.geodrs.2024.e00820_bb0150) 2022; 29
Yilmaz (10.1016/j.geodrs.2024.e00820_bb0395) 2005; 291
Zolfaghari (10.1016/j.geodrs.2024.e00820_bb0415) 2015; 12
Prasad (10.1016/j.geodrs.2024.e00820_bb0260) 2006; 9
Gee (10.1016/j.geodrs.2024.e00820_bb0155) 1986
Thomas (10.1016/j.geodrs.2024.e00820_bb0355) 1982
Ramosaj (10.1016/j.geodrs.2024.e00820_bb0275) 2019; 151
Crevelin (10.1016/j.geodrs.2024.e00820_bb0105) 2019; 43
Breiman (10.1016/j.geodrs.2024.e00820_bb0065) 2001; 45
Pessoa (10.1016/j.geodrs.2024.e00820_bb0255) 2022; 211
Whittig (10.1016/j.geodrs.2024.e00820_bb0380) 1986
Elliot (10.1016/j.geodrs.2024.e00820_bb0135) 2023
(10.1016/j.geodrs.2024.e00820_bb0185) 2021
Gunal (10.1016/j.geodrs.2024.e00820_bb0160) 2008; 1050266
Hseu (10.1016/j.geodrs.2024.e00820_bb0180) 2007; 55
Helmke (10.1016/j.geodrs.2024.e00820_bb0170) 1996
Razzaghi (10.1016/j.geodrs.2024.e00820_bb0280) 2021; 400
Zhao (10.1016/j.geodrs.2024.e00820_bb0405) 2020; 184
Soil Survey Staff (10.1016/j.geodrs.2024.e00820_bb0315) 2014
Kasanin-Grubin (10.1016/j.geodrs.2024.e00820_bb0200) 2013; 106
Camberdella (10.1016/j.geodrs.2024.e00820_bb0080) 1994; 58
Viscarra Rossel (10.1016/j.geodrs.2024.e00820_bb0360) 2011; 116F4
Abbaslou (10.1016/j.geodrs.2024.e00820_bb0010) 2013; 178
Carter (10.1016/j.geodrs.2024.e00820_bb0085) 1986
Daher (10.1016/j.geodrs.2024.e00820_bb0115) 2019; 327
Moore (10.1016/j.geodrs.2024.e00820_bb0220) 1997
Abakay (10.1016/j.geodrs.2024.e00820_bb0005) 2024; 196
Watanabe (10.1016/j.geodrs.2024.e00820_bb0375) 2006; 136
Hopper (10.1016/j.geodrs.2024.e00820_bb0175) 1981
Wade (10.1016/j.geodrs.2024.e00820_bb0365) 2020
Xue (10.1016/j.geodrs.2024.e00820_bb0390) 2020; 8
Emadi (10.1016/j.geodrs.2024.e00820_bb0140) 2008; 8
Stahr (10.1016/j.geodrs.2024.e00820_bb0335) 2010
Nelson (10.1016/j.geodrs.2024.e00820_bb0230) 1996
Silva (10.1016/j.geodrs.2024.e00820_bb0310) 2024; 241
Pachepsky (10.1016/j.geodrs.2024.e00820_bb0240) 1999; 636
Putatunda (10.1016/j.geodrs.2024.e00820_bb0270) 2018; 6–10
Brigatti (10.1016/j.geodrs.2024.e00820_bb0070) 2013; vol. 5
Chen (10.1016/j.geodrs.2024.e00820_bb0090) 2016
Anonymous (10.1016/j.geodrs.2024.e00820_bb0030) 2023
Saidi (10.1016/j.geodrs.2024.e00820_bb0290) 2022; 22
Spinola (10.1016/j.geodrs.2024.e00820_bb0330) 2022; 428
Park (10.1016/j.geodrs.2024.e00820_bb0245) 2021; 33
Galán (10.1016/j.geodrs.2024.e00820_bb0145) 2013; 5
Sokolova (10.1016/j.geodrs.2024.e00820_bb0320) 2013; 68
Drewnik (10.1016/j.geodrs.2024.e00820_bb0125) 2014; 119
Shahrokh (10.1016/j.geodrs.2024.e00820_bb0305) 2023; 223
Bittencourt (10.1016/j.geodrs.2024.e00820_bb0060) 2003
Najafi-Ghiri (10.1016/j.geodrs.2024.e00820_bb0225) 2019; 577
Günal (10.1016/j.geodrs.2024.e00820_bib418) 2006; 3
References_xml – start-page: 383
  year: 1986
  end-page: 412
  ident: bb0155
  article-title: Particle-size analysis
  publication-title: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods—SSSA Book Series no 5, Madison, Wisconsin
– volume: 80
  start-page: 281
  year: 2013
  end-page: 290
  ident: bb0045
  article-title: An apparatus for the determination of the workability and plastic limit of clays
  publication-title: Appl. Clay Sci.
– start-page: 149
  year: 1982
  end-page: 157
  ident: bb0285
  article-title: Cation exchange capacity
  publication-title: Methods of Soil Analysis. Part 2. Agronomy Monograph No. 9, Madison, American Society of Agronomy
– volume: 196
  start-page: 264
  year: 2024
  ident: bb0005
  article-title: Tree-based algorithms for spatial modeling of soil particle distribution in arid and semi-arid region
  publication-title: Environ. Monit. Assess.
– volume: 43
  year: 2019
  ident: bb0105
  article-title: Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils
  publication-title: Rev Bras Ciênc Solo
– volume: 223
  year: 2023
  ident: bb0305
  article-title: Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: a case study in a semi-arid area in Iran
  publication-title: Catena
– volume: 211
  year: 2022
  ident: bb0255
  article-title: Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy
  publication-title: Catena
– start-page: 37
  year: 2010
  end-page: 39
  ident: bb0335
  article-title: Clay and oxide mineralogy of different limestone soils in Southeast Asia
  publication-title: Proceedings of World Congress of Soil Science, Soil Solutions for a Changing World
– volume: 8
  start-page: 288
  year: 2008
  end-page: 294
  ident: bb0140
  article-title: Genesis and clay mineralogical investigation of highly calcareous soils in semi-arid regions of Southern Iran
  publication-title: J. Appl. Sci.
– volume: 12
  start-page: 1471
  year: 2015
  end-page: 1483
  ident: bb0415
  article-title: Soil atterberg limits and consistency indices as influenced by land use and slope position in Western Iran
  publication-title: J. Mt. Sci.
– volume: 119
  start-page: 166
  year: 2014
  end-page: 173
  ident: bb0125
  article-title: Mineral composition vs. soil forming processes in loess soils—a case study from Kraków (southern Poland)
  publication-title: Catena
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 74
  start-page: 906
  year: 2010
  end-page: 914
  ident: bb0215
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
– year: 1986
  ident: bb0085
  article-title: Specific Surface. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. SSSA Book Series: 5. Madison, WI: Soil Science Society of America
– volume: 151
  start-page: 49
  year: 2019
  end-page: 57
  ident: bb0275
  article-title: Consistent estimation of residual variance with random forest out-of-bag errors
  publication-title: Stat. Probab. Lett.
– volume: 153
  start-page: 559
  year: 2021
  end-page: 569
  ident: bb0050
  article-title: Understanding the impact of soil clay mineralogy on the adsorption behavior of zinc
  publication-title: Int. J. Environ. Res.
– volume: 327
  start-page: 351
  year: 2019
  end-page: 364
  ident: bb0115
  article-title: Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: chemistry, mineralogy, genesis, and classification
  publication-title: Geomorphology
– start-page: 71
  year: 2018
  end-page: 86
  ident: bb0295
  article-title: Chapter 3- clay minerals- organic matter interactions in relation to carbon stabilization in soils
  publication-title: The Future of Soil Carbon
– volume: 9
  start-page: 181
  year: 2006
  end-page: 199
  ident: bb0260
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
– volume: 178
  start-page: 568
  year: 2013
  end-page: 584
  ident: bb0010
  article-title: Mineralogy and characteristics of soils developed on Persian gulf and Oman sea basin, southern Iran: implications for soil evolution in relation to sedimentary parent material
  publication-title: Soil Sci.
– volume: 68
  start-page: 154
  year: 2013
  end-page: 163
  ident: bb0320
  article-title: Clay minerals in the stream floodplain soils in undisturbed landscapes of the Southern Taiga (with the soil of the state central forest nature and biosphere reserve as an example)
  publication-title: Moscow Univ. Soil Sci. Bull.
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bb0210
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 8
  year: 2020
  ident: bb0100
  article-title: Variable selection strategies and its importance in clinical prediction modelling
  publication-title: Family Med. Commun. Health
– volume: 55
  start-page: 389
  year: 2007
  end-page: 401
  ident: bb0180
  article-title: Weathering sequences of clay minerals in soils along a serpentinitic toposequence
  publication-title: Clay Clay Miner.
– volume: 69
  start-page: 1580
  year: 2005
  end-page: 1589
  ident: bb0325
  article-title: Prediction of soil organic carbon across different land-use patterns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 8
  start-page: 274
  year: 1959
  end-page: 286
  ident: bb0120
  article-title: Mineralogical analysis of soil clays involving vermiculite chlorite-kaolinite differentiation
  publication-title: Clay Clay Miner.
– volume: 428
  year: 2022
  ident: bb0330
  article-title: Lithological controls on soil geochemistry and clay mineralogy across Spodosols in the coastal temperate rainforest of southeast Alaska
  publication-title: Geoderma
– start-page: 785
  year: 2016
  end-page: 794
  ident: bb0090
  article-title: XGBoost: A scalable tree boosting system
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17-August
– start-page: 157
  year: 2012
  end-page: 175
  ident: bb0110
  article-title: Random forests
  publication-title: Ensemble Machine Learning
– year: 2021
  ident: bb0075
  article-title: XGBoost With Python: Gradient Boosted Trees with XGBoost and scikit-learn. Machine Learning Mastery
– volume: 577
  start-page: 788
  year: 2019
  end-page: 796
  ident: bb0225
  article-title: Prediction of soil clay minerals from some soil properties with use of feature selection algorithm and ANFIS methods
  publication-title: Soil Res.
– year: 1985
  ident: bib417
  article-title: Spatial variability: Its documentation, accommodation, and implication to soil surveys
  publication-title: Soil Spatial Variability
– volume: 291
  start-page: 29
  year: 2005
  end-page: 37
  ident: bb0395
  article-title: Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity, and soil erosion in southeastern Turkey
  publication-title: Turk. J. Agric. For.
– volume: 12
  start-page: 2650
  year: 2021
  end-page: 2665
  ident: bb0300
  article-title: Elimination and backward selection of features P-value technique in prediction of heart disease by using machine learning algorithms
  publication-title: Turkish J. Comput. Math. Educ. TURCOMAT
– volume: 826
  start-page: 1347
  year: 2018
  end-page: 1357
  ident: bb0400
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 127
  year: 2021
  end-page: 145
  ident: bb0025
  article-title: Soil fertility decline under climate change
  publication-title: Sustainable Soil and Land Management and Climate Change
– volume: 200
  start-page: 114
  year: 2016
  end-page: 121
  ident: bb0265
  article-title: A semi-empirical swell prediction model formulated from ‘clay mineralogy and unsaturated soil’ properties
  publication-title: Eng. Geol.
– volume: 183
  year: 2006
  ident: bb0130
  article-title: Long term cultivation effects on soil properties in pastures
  publication-title: Asian J. Chem.
– volume: 5
  start-page: 7
  year: 2018
  end-page: 13
  ident: bb0250
  article-title: Soil ecosystem services, sustainability, valuation, and management
  publication-title: Curr. Opin. Environ. Sci. Health
– volume: 65
  start-page: 718
  year: 2014
  end-page: 729
  ident: bb0035
  article-title: Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques
  publication-title: Eur. J. Soil Sci.
– volume: 13711
  start-page: 997
  year: 2011
  end-page: 1008
  ident: bb0095
  article-title: Quantitative estimation of clay mineralogy in fine-grained soils
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 22
  start-page: 6890
  year: 2022
  ident: bb0290
  article-title: Comparison of different machine learning methods for predicting cation exchange capacity using environmental and remote sensing data
  publication-title: Sensors
– volume: 3
  start-page: 59
  year: 2006
  end-page: 68
  ident: bib418
  article-title: Pedogenesis and Classification of Soils Located on Two Consecutive Topographies
  publication-title: J. Agric. Fac. Gaziosmanpaşa Univ.
– volume: 116F4
  start-page: 1
  year: 2011
  end-page: 15
  ident: bb0360
  article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra
  publication-title: J Geophys Res Earth
– volume: 38
  start-page: 511
  year: 2003
  end-page: 527
  ident: bb0205
  article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran
  publication-title: Clay Miner.
– volume: 8
  start-page: 144575
  year: 2020
  end-page: 144584
  ident: bb0390
  article-title: Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks
  publication-title: IEEE Access
– volume: 184
  year: 2020
  ident: bb0405
  article-title: Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting quaternary soil deposits
  publication-title: Catena
– start-page: 1
  year: 2023
  ident: bb0135
  article-title: Estimating WEPP cropland soil erodibility from soil properties
  publication-title: Soil Erosion Research under a Changing Climate, American Society of Agricultural and Biological Engineers. January 8–13, 2023, Aguadilla, Puerto Rico, USA
– year: 1975
  ident: bb0195
  article-title: Soil Chemical Analysis: Advanced Course
– volume: 76
  start-page: 803
  year: 1965
  end-page: 832
  ident: bb0055
  article-title: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans
  publication-title: Geol. Soc. Am. Bull.
– volume: 58
  start-page: 1501
  year: 1994
  end-page: 1511
  ident: bb0080
  article-title: Field scale variability soil properties in central Iowa soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: vol. 5
  start-page: 21
  year: 2013
  end-page: 81
  ident: bb0070
  article-title: Structure and mineralogy of clay minerals
  publication-title: Developments in Clay Science
– volume: 342
  year: 2023
  ident: bb0350
  article-title: Multi-objective optimization for combustion, thermodynamic and emission characteristics of Atkinson cycle engine using tree-based machine learning and the NSGA II algorithm
  publication-title: Fuel
– volume: 124
  start-page: 202
  year: 2017
  end-page: 211
  ident: bb0015
  article-title: Spatial variability of soil potassium and its relationship to land use and parent material
  publication-title: Soil Water Res.
– start-page: 7
  year: 2022
  end-page: 17
  ident: bb0370
  article-title: Potassium dynamics in soils
  publication-title: Potash Use and Dynamics in Agriculture. Chapter 2
– volume: 6–10
  year: 2018
  ident: bb0270
  article-title: A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost
  publication-title: ACM International Conference Proceeding Series
– year: 2023
  ident: bb0030
  article-title: Overbank deposits
  publication-title: National Geographic
– volume: 192
  start-page: 165
  year: 2000
  end-page: 180
  ident: bb0040
  article-title: Variation in soil clay minerals of semi-arid regions of Fars province, Iran
  publication-title: Iran Agric. Res.
– start-page: 3751
  year: 2003
  end-page: 3753
  ident: bb0060
  article-title: Use of classification and regression trees CART to classify remotely-sensed digital images
  publication-title: International Geoscience and Remote Sensing Symposium IGARSS
– volume: 349
  start-page: 1
  year: 2019
  end-page: 10
  ident: bb0410
  article-title: Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation
  publication-title: Geoderma
– start-page: 1085
  year: 1996
  end-page: 1121
  ident: bb0345
  article-title: Cation exchange capacity and exchange coefficients
  publication-title: Methods of Soil Analysis, Part 3, Chemical Methods—SSSA
– start-page: 961
  year: 1996
  end-page: 1010
  ident: bb0230
  article-title: Total carbon, organic carbon, and organic matter
  publication-title: Methods of Soil Analysis, Part 3, Chemical Methods—SSSA Book Series no 5
– volume: 1050266
  year: 2008
  ident: bb0160
  article-title: Preparation of an up-to-date database necessary for sustainable agricultural production in Kazova
  publication-title: TUBITAK Project Report, TOVAG
– start-page: 159
  year: 1982
  end-page: 165
  ident: bb0355
  article-title: Exchangeable cations
  publication-title: Methods of Soil Analysis
– start-page: 331
  year: 1986
  end-page: 362
  ident: bb0380
  article-title: X-Ray Diffraction Techniques
  publication-title: Methods of Soil Analysis Part 2
– year: 2014
  ident: bb0315
  article-title: Soil Survey Staff. Keys to Soil Taxonomy
– year: 1981
  ident: bb0175
  article-title: A semi-quantitative x-ray diffraction technique for estimation of smectite, illite, and kaolinite
– volume: 241
  year: 2024
  ident: bb0310
  article-title: Proximal sensors for modeling clay mineralogy and characterization of soil textural fractions developed from contrasting parent materials
  publication-title: Catena
– year: 1997
  ident: bb0220
  article-title: X-Ray Diffraction and the Identification and Analysis of Clay Minerals
– volume: 106
  start-page: 54
  year: 2013
  end-page: 67
  ident: bb0200
  article-title: Clay mineralogy as a crucial factor in badland hillslope processes
  publication-title: Catena
– volume: 5
  start-page: 83
  year: 2013
  end-page: 126
  ident: bb0145
  article-title: Genesis of clay minerals
  publication-title: Developments in Clay Science
– year: 2021
  ident: bb0185
  publication-title: Hydrogeology, Chemical Weathering, and Soil Formation
– volume: 259
  start-page: 81
  year: 2015
  end-page: 92
  ident: bb0385
  article-title: Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors
  publication-title: Geoderma
– volume: 400
  year: 2021
  ident: bb0280
  article-title: Evaluating models to estimate cation exchange capacity of calcareous soils
  publication-title: Geoderma
– year: 2020
  ident: bb0365
  article-title: Hands-on Gradient Boosting with XGBoost and Scikit-Learn
– volume: 136
  start-page: 51
  year: 2006
  end-page: 63
  ident: bb0375
  article-title: Clay mineralogy and its relationship to soil solution composition in soils from different weathering environments of humid Asia: Japan, Thailand and Indonesia
  publication-title: Geoderma
– start-page: 1379
  year: 1965
  end-page: 1400
  ident: bb0020
  article-title: Carbonate
  publication-title: Methods of Soil Analysis
– volume: 2
  start-page: 183
  year: 2002
  end-page: 189
  ident: bb0340
  article-title: A note on the concordance correlation coefficient
  publication-title: Stata J Promot Commun Stat Stata
– volume: 33
  start-page: 2995
  year: 2021
  end-page: 3006
  ident: bb0245
  article-title: Tackling overfitting in boosting for noisy healthcare data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 29
  year: 2022
  ident: bb0150
  article-title: Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran
  publication-title: Geoderma Reg
– start-page: 551
  year: 1996
  end-page: 574
  ident: bb0170
  article-title: Lithium, sodium, potassium, rubidium, and cesium
  publication-title: Methods of Soil Analysis, Part 3, Chemical Methods
– volume: 636
  start-page: 1748
  year: 1999
  end-page: 1757
  ident: bb0240
  article-title: Accuracy and reliability of pedotransfer functions as affected by grouping soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 73
  start-page: 362
  year: 2018
  end-page: 373
  ident: bb0190
  article-title: Poppy crop capsule volume estimation using UAS remote sensing and random forest regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2014
  ident: 10.1016/j.geodrs.2024.e00820_bb0315
– volume: 184
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00820_bb0405
  article-title: Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting quaternary soil deposits
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104239
– start-page: 1379
  year: 1965
  ident: 10.1016/j.geodrs.2024.e00820_bb0020
  article-title: Carbonate
– year: 2020
  ident: 10.1016/j.geodrs.2024.e00820_bb0365
– start-page: 1
  year: 2023
  ident: 10.1016/j.geodrs.2024.e00820_bb0135
  article-title: Estimating WEPP cropland soil erodibility from soil properties
– start-page: 331
  year: 1986
  ident: 10.1016/j.geodrs.2024.e00820_bb0380
  article-title: X-Ray Diffraction Techniques
– year: 1975
  ident: 10.1016/j.geodrs.2024.e00820_bb0195
– volume: vol. 5
  start-page: 21
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0070
  article-title: Structure and mineralogy of clay minerals
  doi: 10.1016/B978-0-08-098258-8.00002-X
– start-page: 1085
  year: 1996
  ident: 10.1016/j.geodrs.2024.e00820_bb0345
  article-title: Cation exchange capacity and exchange coefficients
– start-page: 3751
  year: 2003
  ident: 10.1016/j.geodrs.2024.e00820_bb0060
  article-title: Use of classification and regression trees CART to classify remotely-sensed digital images
– year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0185
– volume: 9
  start-page: 181
  year: 2006
  ident: 10.1016/j.geodrs.2024.e00820_bb0260
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– volume: 8
  start-page: 144575
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00820_bb0390
  article-title: Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014644
– volume: 6–10
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00820_bb0270
  article-title: A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost
  publication-title: ACM International Conference Proceeding Series
– volume: 68
  start-page: 154
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0320
  article-title: Clay minerals in the stream floodplain soils in undisturbed landscapes of the Southern Taiga (with the soil of the state central forest nature and biosphere reserve as an example)
  publication-title: Moscow Univ. Soil Sci. Bull.
  doi: 10.3103/S0147687413040078
– volume: 577
  start-page: 788
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00820_bb0225
  article-title: Prediction of soil clay minerals from some soil properties with use of feature selection algorithm and ANFIS methods
  publication-title: Soil Res.
  doi: 10.1071/SR18352
– year: 1997
  ident: 10.1016/j.geodrs.2024.e00820_bb0220
– year: 1981
  ident: 10.1016/j.geodrs.2024.e00820_bb0175
– volume: 183
  year: 2006
  ident: 10.1016/j.geodrs.2024.e00820_bb0130
  article-title: Long term cultivation effects on soil properties in pastures
  publication-title: Asian J. Chem.
– start-page: 551
  year: 1996
  ident: 10.1016/j.geodrs.2024.e00820_bb0170
  article-title: Lithium, sodium, potassium, rubidium, and cesium
– volume: 136
  start-page: 51
  issue: 1–2
  year: 2006
  ident: 10.1016/j.geodrs.2024.e00820_bb0375
  article-title: Clay mineralogy and its relationship to soil solution composition in soils from different weathering environments of humid Asia: Japan, Thailand and Indonesia
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2006.02.001
– volume: 12
  start-page: 2650
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0300
  article-title: Elimination and backward selection of features P-value technique in prediction of heart disease by using machine learning algorithms
  publication-title: Turkish J. Comput. Math. Educ. TURCOMAT
  doi: 10.17762/turcomat.v12i6.5765
– volume: 196
  start-page: 264
  issue: 3
  year: 2024
  ident: 10.1016/j.geodrs.2024.e00820_bb0005
  article-title: Tree-based algorithms for spatial modeling of soil particle distribution in arid and semi-arid region
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-024-12431-6
– ident: 10.1016/j.geodrs.2024.e00820_bb0075
– volume: 65
  start-page: 718
  issue: 5
  year: 2014
  ident: 10.1016/j.geodrs.2024.e00820_bb0035
  article-title: Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12165
– volume: 76
  start-page: 803
  issue: 7
  year: 1965
  ident: 10.1016/j.geodrs.2024.e00820_bb0055
  article-title: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
– volume: 259
  start-page: 81
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00820_bb0385
  article-title: Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.05.003
– volume: 124
  start-page: 202
  year: 2017
  ident: 10.1016/j.geodrs.2024.e00820_bb0015
  article-title: Spatial variability of soil potassium and its relationship to land use and parent material
  publication-title: Soil Water Res.
  doi: 10.17221/32/2016-SWR
– start-page: 159
  year: 1982
  ident: 10.1016/j.geodrs.2024.e00820_bb0355
  article-title: Exchangeable cations
– volume: 13711
  start-page: 997
  year: 2011
  ident: 10.1016/j.geodrs.2024.e00820_bb0095
  article-title: Quantitative estimation of clay mineralogy in fine-grained soils
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000521
– volume: 8
  year: 2020
  ident: 10.1016/j.geodrs.2024.e00820_bb0100
  article-title: Variable selection strategies and its importance in clinical prediction modelling
  publication-title: Family Med. Commun. Health
  doi: 10.1136/fmch-2019-000262
– volume: 636
  start-page: 1748
  year: 1999
  ident: 10.1016/j.geodrs.2024.e00820_bb0240
  article-title: Accuracy and reliability of pedotransfer functions as affected by grouping soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.6361748x
– volume: 43
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00820_bb0105
  article-title: Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils
  publication-title: Rev Bras Ciênc Solo
  doi: 10.1590/18069657rbcs20180105
– volume: 33
  start-page: 2995
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0245
  article-title: Tackling overfitting in boosting for noisy healthcare data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2959988
– volume: 342
  year: 2023
  ident: 10.1016/j.geodrs.2024.e00820_bb0350
  article-title: Multi-objective optimization for combustion, thermodynamic and emission characteristics of Atkinson cycle engine using tree-based machine learning and the NSGA II algorithm
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.127839
– volume: 74
  start-page: 906
  year: 2010
  ident: 10.1016/j.geodrs.2024.e00820_bb0215
  article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2009.0158
– volume: 8
  start-page: 288
  year: 2008
  ident: 10.1016/j.geodrs.2024.e00820_bb0140
  article-title: Genesis and clay mineralogical investigation of highly calcareous soils in semi-arid regions of Southern Iran
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2008.288.294
– year: 1985
  ident: 10.1016/j.geodrs.2024.e00820_bib417
  article-title: Spatial variability: Its documentation, accommodation, and implication to soil surveys
– volume: 22
  start-page: 6890
  issue: 18
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00820_bb0290
  article-title: Comparison of different machine learning methods for predicting cation exchange capacity using environmental and remote sensing data
  publication-title: Sensors
  doi: 10.3390/s22186890
– start-page: 157
  year: 2012
  ident: 10.1016/j.geodrs.2024.e00820_bb0110
  article-title: Random forests
– volume: 400
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0280
  article-title: Evaluating models to estimate cation exchange capacity of calcareous soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115221
– volume: 826
  start-page: 1347
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00820_bb0400
  article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2018.03.0100
– volume: 119
  start-page: 166
  year: 2014
  ident: 10.1016/j.geodrs.2024.e00820_bb0125
  article-title: Mineral composition vs. soil forming processes in loess soils—a case study from Kraków (southern Poland)
  publication-title: Catena
  doi: 10.1016/j.catena.2014.02.012
– start-page: 383
  year: 1986
  ident: 10.1016/j.geodrs.2024.e00820_bb0155
  article-title: Particle-size analysis
– volume: 55
  start-page: 389
  issue: 4
  year: 2007
  ident: 10.1016/j.geodrs.2024.e00820_bb0180
  article-title: Weathering sequences of clay minerals in soils along a serpentinitic toposequence
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2007.0550407
– volume: 151
  start-page: 49
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00820_bb0275
  article-title: Consistent estimation of residual variance with random forest out-of-bag errors
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2019.03.017
– volume: 8
  start-page: 274
  year: 1959
  ident: 10.1016/j.geodrs.2024.e00820_bb0120
  article-title: Mineralogical analysis of soil clays involving vermiculite chlorite-kaolinite differentiation
  publication-title: Clay Clay Miner.
– volume: 223
  year: 2023
  ident: 10.1016/j.geodrs.2024.e00820_bb0305
  article-title: Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: a case study in a semi-arid area in Iran
  publication-title: Catena
  doi: 10.1016/j.catena.2023.106932
– volume: 153
  start-page: 559
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0050
  article-title: Understanding the impact of soil clay mineralogy on the adsorption behavior of zinc
  publication-title: Int. J. Environ. Res.
  doi: 10.1007/s41742-021-00334-0
– volume: 80
  start-page: 281
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0045
  article-title: An apparatus for the determination of the workability and plastic limit of clays
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2013.04.014
– volume: 116F4
  start-page: 1
  year: 2011
  ident: 10.1016/j.geodrs.2024.e00820_bb0360
  article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra
  publication-title: J Geophys Res Earth
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2024.e00820_bb0065
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.geodrs.2024.e00820_bb0210
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 12
  start-page: 1471
  year: 2015
  ident: 10.1016/j.geodrs.2024.e00820_bb0415
  article-title: Soil atterberg limits and consistency indices as influenced by land use and slope position in Western Iran
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-014-3339-z
– volume: 106
  start-page: 54
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0200
  article-title: Clay mineralogy as a crucial factor in badland hillslope processes
  publication-title: Catena
  doi: 10.1016/j.catena.2012.08.008
– volume: 5
  start-page: 83
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0145
  article-title: Genesis of clay minerals
  doi: 10.1016/B978-0-08-098258-8.00003-1
– volume: 2
  start-page: 183
  year: 2002
  ident: 10.1016/j.geodrs.2024.e00820_bb0340
  article-title: A note on the concordance correlation coefficient
  publication-title: Stata J Promot Commun Stat Stata
  doi: 10.1177/1536867X0200200206
– volume: 178
  start-page: 568
  issue: 10
  year: 2013
  ident: 10.1016/j.geodrs.2024.e00820_bb0010
  article-title: Mineralogy and characteristics of soils developed on Persian gulf and Oman sea basin, southern Iran: implications for soil evolution in relation to sedimentary parent material
  publication-title: Soil Sci.
  doi: 10.1097/SS.0000000000000022
– start-page: 71
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00820_bb0295
  article-title: Chapter 3- clay minerals- organic matter interactions in relation to carbon stabilization in soils
– volume: 428
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00820_bb0330
  article-title: Lithological controls on soil geochemistry and clay mineralogy across Spodosols in the coastal temperate rainforest of southeast Alaska
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116211
– volume: 291
  start-page: 29
  year: 2005
  ident: 10.1016/j.geodrs.2024.e00820_bb0395
  article-title: Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity, and soil erosion in southeastern Turkey
  publication-title: Turk. J. Agric. For.
– volume: 38
  start-page: 511
  issue: 4
  year: 2003
  ident: 10.1016/j.geodrs.2024.e00820_bb0205
  article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran
  publication-title: Clay Miner.
  doi: 10.1180/0009855023740112
– start-page: 785
  year: 2016
  ident: 10.1016/j.geodrs.2024.e00820_bb0090
  article-title: XGBoost: A scalable tree boosting system
– volume: 29
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00820_bb0150
  article-title: Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran
  publication-title: Geoderma Reg
– volume: 200
  start-page: 114
  year: 2016
  ident: 10.1016/j.geodrs.2024.e00820_bb0265
  article-title: A semi-empirical swell prediction model formulated from ‘clay mineralogy and unsaturated soil’ properties
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.12.007
– volume: 69
  start-page: 1580
  year: 2005
  ident: 10.1016/j.geodrs.2024.e00820_bb0325
  article-title: Prediction of soil organic carbon across different land-use patterns
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.0293
– start-page: 37
  year: 2010
  ident: 10.1016/j.geodrs.2024.e00820_bb0335
  article-title: Clay and oxide mineralogy of different limestone soils in Southeast Asia
– year: 2023
  ident: 10.1016/j.geodrs.2024.e00820_bb0030
  article-title: Overbank deposits
– volume: 241
  year: 2024
  ident: 10.1016/j.geodrs.2024.e00820_bb0310
  article-title: Proximal sensors for modeling clay mineralogy and characterization of soil textural fractions developed from contrasting parent materials
  publication-title: Catena
  doi: 10.1016/j.catena.2024.108053
– volume: 349
  start-page: 1
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00820_bb0410
  article-title: Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.019
– start-page: 127
  year: 2021
  ident: 10.1016/j.geodrs.2024.e00820_bb0025
  article-title: Soil fertility decline under climate change
– volume: 327
  start-page: 351
  year: 2019
  ident: 10.1016/j.geodrs.2024.e00820_bb0115
  article-title: Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: chemistry, mineralogy, genesis, and classification
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.11.003
– volume: 1050266
  year: 2008
  ident: 10.1016/j.geodrs.2024.e00820_bb0160
  article-title: Preparation of an up-to-date database necessary for sustainable agricultural production in Kazova
  publication-title: TUBITAK Project Report, TOVAG
– volume: 5
  start-page: 7
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00820_bb0250
  article-title: Soil ecosystem services, sustainability, valuation, and management
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2017.12.003
– volume: 211
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00820_bb0255
  article-title: Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy
  publication-title: Catena
  doi: 10.1016/j.catena.2021.106009
– volume: 192
  start-page: 165
  year: 2000
  ident: 10.1016/j.geodrs.2024.e00820_bb0040
  article-title: Variation in soil clay minerals of semi-arid regions of Fars province, Iran
  publication-title: Iran Agric. Res.
– volume: 58
  start-page: 1501
  year: 1994
  ident: 10.1016/j.geodrs.2024.e00820_bb0080
  article-title: Field scale variability soil properties in central Iowa soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1994.03615995005800050033x
– start-page: 7
  year: 2022
  ident: 10.1016/j.geodrs.2024.e00820_bb0370
  article-title: Potassium dynamics in soils
– start-page: 961
  year: 1996
  ident: 10.1016/j.geodrs.2024.e00820_bb0230
  article-title: Total carbon, organic carbon, and organic matter
– year: 1986
  ident: 10.1016/j.geodrs.2024.e00820_bb0085
– volume: 73
  start-page: 362
  year: 2018
  ident: 10.1016/j.geodrs.2024.e00820_bb0190
  article-title: Poppy crop capsule volume estimation using UAS remote sensing and random forest regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 149
  year: 1982
  ident: 10.1016/j.geodrs.2024.e00820_bb0285
  article-title: Cation exchange capacity
– volume: 3
  start-page: 59
  issue: 2
  year: 2006
  ident: 10.1016/j.geodrs.2024.e00820_bib418
  article-title: Pedogenesis and Classification of Soils Located on Two Consecutive Topographies
  publication-title: J. Agric. Fac. Gaziosmanpaşa Univ.
SSID ssj0002953762
Score 2.2924323
Snippet Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00820
SubjectTerms algorithms
Artificial intelligence
calcium
cation exchange capacity
clay
Clay mineral
Covariate
ecosystems
fertilizer application
illite
kaolinite
magnesium
mineral content
Modeling
Prediction
regression analysis
semiarid zones
soil formation
Spatial distribution
Title Spatial variability of clay minerals in a semi-arid region of Turkiye
URI https://dx.doi.org/10.1016/j.geodrs.2024.e00820
https://www.proquest.com/docview/3153643999
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_Eiior1xQpeY5N9NM2xlJZqoQdtsbdlsw-JtknpQ-i_dzaPgoIUvCQk7IYwO_PNTDL7DUIPXCmrDBhgoDj3WBhrTyquIWvVilsZGzi4aotxezhlzzM-q6FetRfGlVWW2F9geo7W5Z1WKc3WMklar4TmlEHMVUEC5kIK1CA0aoNqN7pPo-F4_6mFRI6zhORt5jjx3JxqE11e6fVuMr1y1N2EPZrcJ_7lpH7Bde6DBifouAwecbd4v1NUM-kZ6ruuwqBF-AvS3oJ1e4czi9Vc7vAiyVml1zhJscRrs0g8GKWx68eQpW7YZLv6THbmHE0H_Ulv6JXNETxFabTxwE7jwGpIMAhTnVD71EKoRzrSUhr6LLaBdVTu0rLQxNr4hipfgvHaQPtEWkMvUD3NUnOJcCjBUxpAPt2JmA2l1JJEHd6GVaTcMt1EtJKGUCVzuGtgMRdVidiHKGQonAxFIcMm8vazlgVzxoHxYSVo8UMDBID7gZn31boIMA73x0OmJtuuBQU8dyFXFF39--nX6MhdFXVlN6i-WW3NLQQim_iuVDR3Hr28jb4BgIffkQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6ye9CLKCq-jeC1bpuHbY-y7LK-9uIK3kKah9RHK_sQ9t8704egIIKXHtpJKZPMNzPp5BtCzqQx3jgwwMhIGYg4s4E20kLWao30OnNwwWqL8cXoQVw_yscV0m_PwmBZZYP9NaZXaN3c6TXa7L3nee-e8YoySGAVJGAupEBdZKeSHdK9vLoZjb-2WliKnCWsajMnWYBj2kN0VaXXkyvtFKm7mTh3lU_8zUn9gOvKBw03yHoTPNLL-vs2yYortsgAuwrDKqIfkPbWrNtLWnpqXvWSvuUVq_SM5gXVdObe8gCkLMV-DGWBYpPF9CVfum3yMBxM-qOgaY4QGM7TeQB2mkXeQoLBhEliG3IPoR5LtOc8DkXmI49U7tqL2GXWhY6bUIPx-siGTHvHd0inKAu3S2iswVM6QD6bpMLHWlvN0kRewCxy6YXdI7zVhjINczg2sHhVbYnYs6p1qFCHqtbhHgm-Rr3XzBl_yMetotW3FaAA3P8YedrOiwLjwD8eunDlYqY44DmGXGm6_--3n5DV0eTuVt1ejW8OyBo-qWvMDklnPl24IwhK5tlxs-g-AQjc4NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+variability+of+clay+minerals+in+a+semi-arid+region+of+Turkiye&rft.jtitle=Geoderma+Regional&rft.au=G%C3%BCnal%2C+Hikmet&rft.au=Acir%2C+Nurullah&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=38&rft_id=info:doi/10.1016%2Fj.geodrs.2024.e00820&rft.externalDocID=S2352009424000671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon