Spatial variability of clay minerals in a semi-arid region of Turkiye
Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Addit...
Saved in:
Published in | Geoderma Regional Vol. 38; p. e00820 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-0094 2352-0094 |
DOI | 10.1016/j.geodrs.2024.e00820 |
Cover
Loading…
Abstract | Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R2 values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R2:0.713) and illite (RMSE:7.368%, R2:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain. |
---|---|
AbstractList | Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R2 values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R2:0.713) and illite (RMSE:7.368%, R2:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain. Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to identify the most significant soil characteristics contributing to the spatial variability of clay minerals in a semi-arid region of Turkiye. Additionally, the study assessed the predictive capabilities of Classification and Regression Tree (CART), Random Forest Regression (RF) and eXtreme Gradient Boosting Regression (XGBoost) in estimating soil clay mineral content. Smectite+vermiculite (SMVR) was the most abundant clay mineral in the study area, followed by illite and kaolinite. Hyperparameter tuning significantly improved model accuracy, with root mean square error (RMSE) reductions ranging from 2.53% to 97.3%. The machine learning algorithms demonstrated varying performances in spatial prediction accuracy. The RF model achieved the lowest RMSE (8.587%) and the highest R² values (0.796) for predicting SMVR. The XGBoost outperformed other models for kaolinite (RMSE: 4.814%, R²:0.713) and illite (RMSE:7.368%, R²:0.613). Exchangeable cations, particularly magnesium (Mg) and calcium (Ca), were identified as crucial factors influencing the spatial distribution of clay minerals. Among these, M concentration had the strongest influence on predicting both SMVR (38.1%) and illite (26.3%). Conversely, for kaolinite prediction, Ca concentration played the most significant role (38.7%), followed by Mg (19.93%). In conclusion, this study demonstrates the effectiveness of machine learning models, particularly XGBoost which achieved the lowest RMSE for all clay minerals investigated. These models offer a valuable tool for predicting clay mineral content in the Kazova Plain. The findings highlight the importance of parent material, weathering processes, and specific soil properties, such as exchangeable cations, in shaping clay mineral distribution. This knowledge not only contributes to a deeper understanding of soil formation in semi-arid environments but also practical applications. For instance, by predicting the abundance of SVMR, known for its high cation exchange capacity land managers can develop targeted strategies for optimizing fertilizer application in the Kazova Plain. |
ArticleNumber | e00820 |
Author | Günal, Hikmet Acir, Nurullah |
Author_xml | – sequence: 1 givenname: Hikmet surname: Günal fullname: Günal, Hikmet email: hikmetgunal@harran.edu.tr organization: Harran University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkiye – sequence: 2 givenname: Nurullah surname: Acir fullname: Acir, Nurullah organization: Kırsehir Ahi Evran University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Kırşehir, Turkiye |
BookMark | eNqFkD1PwzAQhi1UJErpP2DIyJJwtpO2ZkBCVfmQKjFQZst1ztWVNC52Win_nlRhQAww3Q3P--ruuWSD2tfI2DWHjAOf3G6zDfoyxEyAyDMEmAk4Y0MhC5ECqHzwY79g4xi3ACBUIacTMWSLt71pyFTJ0QQya6qoaRPvEluZNtlRjcFUMaE6MUnEHaUdVSYBN-TrE7Y6hA9q8Yqdu47D8fccsffHxWr-nC5fn17mD8vUSqmaVEKx5q4siu5SO5uWIJ1SXMyMk3IK-dpxJ4QC4_IprksElBaMEIXjJQjjUI7YTd-7D_7zgLHRO4oWq8rU6A9RS17ISS6VUh1616M2-BgDOm2p6V71dRMMVZqDPunTW93r0yd9utfXhfNf4X2gnQntf7H7PoadgyNh0NES1hZLCmgbXXr6u-AL3AWNqg |
CitedBy_id | crossref_primary_10_1080_08827508_2024_2395828 |
Cites_doi | 10.1016/j.catena.2019.104239 10.1016/B978-0-08-098258-8.00002-X 10.1007/s10021-005-0054-1 10.1109/ACCESS.2020.3014644 10.3103/S0147687413040078 10.1071/SR18352 10.1016/j.geoderma.2006.02.001 10.17762/turcomat.v12i6.5765 10.1007/s10661-024-12431-6 10.1111/ejss.12165 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 10.1016/j.geoderma.2015.05.003 10.17221/32/2016-SWR 10.1061/(ASCE)GT.1943-5606.0000521 10.1136/fmch-2019-000262 10.2136/sssaj1999.6361748x 10.1590/18069657rbcs20180105 10.1109/TKDE.2019.2959988 10.1016/j.fuel.2023.127839 10.2136/sssaj2009.0158 10.3923/jas.2008.288.294 10.3390/s22186890 10.1016/j.geoderma.2021.115221 10.2136/sssaj2018.03.0100 10.1016/j.catena.2014.02.012 10.1346/CCMN.2007.0550407 10.1016/j.spl.2019.03.017 10.1016/j.catena.2023.106932 10.1007/s41742-021-00334-0 10.1016/j.clay.2013.04.014 10.1023/A:1010933404324 10.2307/2532051 10.1007/s11629-014-3339-z 10.1016/j.catena.2012.08.008 10.1016/B978-0-08-098258-8.00003-1 10.1177/1536867X0200200206 10.1097/SS.0000000000000022 10.1016/j.geoderma.2022.116211 10.1180/0009855023740112 10.1016/j.enggeo.2015.12.007 10.2136/sssaj2003.0293 10.1016/j.catena.2024.108053 10.1016/j.geoderma.2019.04.019 10.1016/j.geomorph.2018.11.003 10.1016/j.coesh.2017.12.003 10.1016/j.catena.2021.106009 10.2136/sssaj1994.03615995005800050033x |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2024.e00820 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2024_e00820 S2352009424000671 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABGRD ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c339t-305b1fd55024c87d03f99128af33704bf1f2290af47ebde0e3c0a225f1d02afe3 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Thu Jul 10 19:18:11 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 02:07:21 EDT 2025 Sat Sep 14 18:00:34 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatial distribution Covariate Modeling Artificial intelligence Clay mineral Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-305b1fd55024c87d03f99128af33704bf1f2290af47ebde0e3c0a225f1d02afe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153643999 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153643999 crossref_citationtrail_10_1016_j_geodrs_2024_e00820 crossref_primary_10_1016_j_geodrs_2024_e00820 elsevier_sciencedirect_doi_10_1016_j_geodrs_2024_e00820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Elliot, Flanagan (bb0135) 2023 Araújo, Wetterlind, Demattê, Stenberg (bb0035) 2014; 65 Chittoori, Puppala (bb0095) 2011; 13711 Ramosaj, Pauly (bb0275) 2019; 151 Lin (bb0210) 1989; 45 Barnes (bb0045) 2013; 80 Helmke, Sparks (bb0170) 1996 Zolfaghari, Mosaddeghi, Ayoubi, Kelishadi (bb0415) 2015; 12 Razzaghi, Arthur, Moosavi (bb0280) 2021; 400 Jackson (bb0195) 1975 Gunal, Akbas, Ozgoz, Unlukara, Yıldız, Kurunç, Cetin, Ersahin (bb0160) 2008; 1050266 Behroozi, Arora, Fletcher, Western, Costelloe (bb0050) 2021; 153 Cutler, Cutler, Stevens (bb0110) 2012 Khormali, Abtahi (bb0205) 2003; 38 Breiman (bb0065) 2001; 45 Wade (bb0365) 2020 Mishra, Lal, Liu, Van Meirvenne (bb0215) 2010; 74 (bb0185) 2021 Stahr, Schuler, Haring, Clemens, Herrmann, Zarei (bb0335) 2010 Sun, Xie, Zhou, Fu, Liu (bb0350) 2023; 342 Park, Ho (bb0245) 2021; 33 Baghernejad (bb0040) 2000; 192 Dixon, Jackson (bb0120) 1959; 8 Zhao, Zhao, Khongnawang, Arshad, Triantafilis (bb0400) 2018; 826 Wakeel, Ishfaq (bb0370) 2022 Galán, Ferrell (bb0145) 2013; 5 Steichen, Cox (bb0340) 2002; 2 Akbas, Gunal, Acir (bb0015) 2017; 124 Al-Tawaha, Günal, Křeček, Zamfir, Patel, Vyas, Celik, Al-Ramamneh (bb0025) 2021 Camberdella, Moorman, Novak, Parkin, Karlen, Turco, Konopka (bb0080) 1994; 58 Spinola, Portes, Fedenko, Lybrand, Dere, Biles, Trainor, Bowden, D'Amore (bb0330) 2022; 428 Anonymous (bb0030) 2023 Crevelin, Bicalho (bb0105) 2019; 43 Kasanin-Grubin (bb0200) 2013; 106 Sarkar, Singh, Mandal, Churchman, Bolan (bb0295) 2018 Thomas (bb0355) 1982 Bittencourt, Clarke (bb0060) 2003 Daher, Schaefer, Fernandes Filho, Francelino, Senra (bb0115) 2019; 327 Zhu, Bennett, Marchuk (bb0410) 2019; 349 Abbaslou, Abtahi, Peinado, Owliaie, Khormali (bb0010) 2013; 178 Durak, Gunal, Akbas, Kilic (bb0130) 2006; 183 Najafi-Ghiri, Mokarram, Owliaie (bb0225) 2019; 577 Allison, Moodie (bb0020) 1965 Moore, Reynolds (bb0220) 1997 Prasad, Iverson, Liaw (bb0260) 2006; 9 Abakay, Kılıç, Günal, Kılıç (bb0005) 2024; 196 Garosi, Ayoubi, Nussbaum, Sheklabadi (bb0150) 2022; 29 Hseu, Tsai, Hsi, Chen (bb0180) 2007; 55 Iqbal, Lucieer, Barry (bb0190) 2018; 73 Whittig, Allardice (bb0380) 1986 Chen, Guestrin (bb0090) 2016 Puppala, Pedarla, Hoyos, Zapata, Bheemasetti (bb0265) 2016; 200 Xue, Wu (bb0390) 2020; 8 Shahrokh, Khademi, Zeraatpisheh (bb0305) 2023; 223 Carter, Mortland, Kemper (bb0085) 1986 Nelson, Sommers (bb0230) 1996 Brownlee (bb0075) 2021 Viscarra Rossel (bb0360) 2011; 116F4 Rhoades (bb0285) 1982 Yilmaz, Çelik, Kapur, Ryan (bb0395) 2005; 291 Pachepsky, Rawls (bb0240) 1999; 636 Silva, Silva, Andrade, Coblinski, Inda, Frosi, Lima, Menzes, Tavares, Guilherme, Weindorf, Curi (bb0310) 2024; 241 Saurabh Pal (bb0300) 2021; 12 Sumner, Miller (bb0345) 1996 Pereira, Bogunovic, Muñoz-Rojas, Brevik (bb0250) 2018; 5 Biscaye (bb0055) 1965; 76 Putatunda, Rama (bb0270) 2018; 6–10 Chowdhury, Turin (bb0100) 2020; 8 Emadi, Baghernejad, Memarian, Saffari, Fathi (bb0140) 2008; 8 Soil Survey Staff (bb0315) 2014 Brigatti, Galan, Theng (bb0070) 2013; vol. 5 Gee, Bauder (bb0155) 1986 Watanabe, Funakawa, Kosaki (bb0375) 2006; 136 Zhao, Hong, Fang, Algeo, Wang, Li, Yin (bb0405) 2020; 184 Wilford, De Caritat, Bui (bb0385) 2015; 259 Drewnik, Skiba, Szymański, Zyła (bb0125) 2014; 119 Hopper (bb0175) 1981 Somaratne, Seneviratne, Coomaraswamy (bb0325) 2005; 69 Wilding (bib417) 1985 Pessoa, Libardi (bb0255) 2022; 211 Saidi, Ayoubi, Shirvani, Azizi, Zeraatpisheh (bb0290) 2022; 22 Sokolova, Tolpeshta, Rusakova, Maksimova (bb0320) 2013; 68 Günal (bib418) 2006; 3 Rhoades (10.1016/j.geodrs.2024.e00820_bb0285) 1982 Wakeel (10.1016/j.geodrs.2024.e00820_bb0370) 2022 Iqbal (10.1016/j.geodrs.2024.e00820_bb0190) 2018; 73 Somaratne (10.1016/j.geodrs.2024.e00820_bb0325) 2005; 69 Chittoori (10.1016/j.geodrs.2024.e00820_bb0095) 2011; 13711 Cutler (10.1016/j.geodrs.2024.e00820_bb0110) 2012 Wilford (10.1016/j.geodrs.2024.e00820_bb0385) 2015; 259 Araújo (10.1016/j.geodrs.2024.e00820_bb0035) 2014; 65 Steichen (10.1016/j.geodrs.2024.e00820_bb0340) 2002; 2 Biscaye (10.1016/j.geodrs.2024.e00820_bb0055) 1965; 76 Pereira (10.1016/j.geodrs.2024.e00820_bb0250) 2018; 5 Akbas (10.1016/j.geodrs.2024.e00820_bb0015) 2017; 124 Allison (10.1016/j.geodrs.2024.e00820_bb0020) 1965 Mishra (10.1016/j.geodrs.2024.e00820_bb0215) 2010; 74 Al-Tawaha (10.1016/j.geodrs.2024.e00820_bb0025) 2021 Durak (10.1016/j.geodrs.2024.e00820_bb0130) 2006; 183 Khormali (10.1016/j.geodrs.2024.e00820_bb0205) 2003; 38 Saurabh Pal (10.1016/j.geodrs.2024.e00820_bb0300) 2021; 12 Chowdhury (10.1016/j.geodrs.2024.e00820_bb0100) 2020; 8 Puppala (10.1016/j.geodrs.2024.e00820_bb0265) 2016; 200 Sumner (10.1016/j.geodrs.2024.e00820_bb0345) 1996 Lin (10.1016/j.geodrs.2024.e00820_bb0210) 1989; 45 Zhao (10.1016/j.geodrs.2024.e00820_bb0400) 2018; 826 Brownlee (10.1016/j.geodrs.2024.e00820_bb0075) Wilding (10.1016/j.geodrs.2024.e00820_bib417) 1985 Behroozi (10.1016/j.geodrs.2024.e00820_bb0050) 2021; 153 Dixon (10.1016/j.geodrs.2024.e00820_bb0120) 1959; 8 Sun (10.1016/j.geodrs.2024.e00820_bb0350) 2023; 342 Baghernejad (10.1016/j.geodrs.2024.e00820_bb0040) 2000; 192 Barnes (10.1016/j.geodrs.2024.e00820_bb0045) 2013; 80 Zhu (10.1016/j.geodrs.2024.e00820_bb0410) 2019; 349 Jackson (10.1016/j.geodrs.2024.e00820_bb0195) 1975 Sarkar (10.1016/j.geodrs.2024.e00820_bb0295) 2018 Garosi (10.1016/j.geodrs.2024.e00820_bb0150) 2022; 29 Yilmaz (10.1016/j.geodrs.2024.e00820_bb0395) 2005; 291 Zolfaghari (10.1016/j.geodrs.2024.e00820_bb0415) 2015; 12 Prasad (10.1016/j.geodrs.2024.e00820_bb0260) 2006; 9 Gee (10.1016/j.geodrs.2024.e00820_bb0155) 1986 Thomas (10.1016/j.geodrs.2024.e00820_bb0355) 1982 Ramosaj (10.1016/j.geodrs.2024.e00820_bb0275) 2019; 151 Crevelin (10.1016/j.geodrs.2024.e00820_bb0105) 2019; 43 Breiman (10.1016/j.geodrs.2024.e00820_bb0065) 2001; 45 Pessoa (10.1016/j.geodrs.2024.e00820_bb0255) 2022; 211 Whittig (10.1016/j.geodrs.2024.e00820_bb0380) 1986 Elliot (10.1016/j.geodrs.2024.e00820_bb0135) 2023 (10.1016/j.geodrs.2024.e00820_bb0185) 2021 Gunal (10.1016/j.geodrs.2024.e00820_bb0160) 2008; 1050266 Hseu (10.1016/j.geodrs.2024.e00820_bb0180) 2007; 55 Helmke (10.1016/j.geodrs.2024.e00820_bb0170) 1996 Razzaghi (10.1016/j.geodrs.2024.e00820_bb0280) 2021; 400 Zhao (10.1016/j.geodrs.2024.e00820_bb0405) 2020; 184 Soil Survey Staff (10.1016/j.geodrs.2024.e00820_bb0315) 2014 Kasanin-Grubin (10.1016/j.geodrs.2024.e00820_bb0200) 2013; 106 Camberdella (10.1016/j.geodrs.2024.e00820_bb0080) 1994; 58 Viscarra Rossel (10.1016/j.geodrs.2024.e00820_bb0360) 2011; 116F4 Abbaslou (10.1016/j.geodrs.2024.e00820_bb0010) 2013; 178 Carter (10.1016/j.geodrs.2024.e00820_bb0085) 1986 Daher (10.1016/j.geodrs.2024.e00820_bb0115) 2019; 327 Moore (10.1016/j.geodrs.2024.e00820_bb0220) 1997 Abakay (10.1016/j.geodrs.2024.e00820_bb0005) 2024; 196 Watanabe (10.1016/j.geodrs.2024.e00820_bb0375) 2006; 136 Hopper (10.1016/j.geodrs.2024.e00820_bb0175) 1981 Wade (10.1016/j.geodrs.2024.e00820_bb0365) 2020 Xue (10.1016/j.geodrs.2024.e00820_bb0390) 2020; 8 Emadi (10.1016/j.geodrs.2024.e00820_bb0140) 2008; 8 Stahr (10.1016/j.geodrs.2024.e00820_bb0335) 2010 Nelson (10.1016/j.geodrs.2024.e00820_bb0230) 1996 Silva (10.1016/j.geodrs.2024.e00820_bb0310) 2024; 241 Pachepsky (10.1016/j.geodrs.2024.e00820_bb0240) 1999; 636 Putatunda (10.1016/j.geodrs.2024.e00820_bb0270) 2018; 6–10 Brigatti (10.1016/j.geodrs.2024.e00820_bb0070) 2013; vol. 5 Chen (10.1016/j.geodrs.2024.e00820_bb0090) 2016 Anonymous (10.1016/j.geodrs.2024.e00820_bb0030) 2023 Saidi (10.1016/j.geodrs.2024.e00820_bb0290) 2022; 22 Spinola (10.1016/j.geodrs.2024.e00820_bb0330) 2022; 428 Park (10.1016/j.geodrs.2024.e00820_bb0245) 2021; 33 Galán (10.1016/j.geodrs.2024.e00820_bb0145) 2013; 5 Sokolova (10.1016/j.geodrs.2024.e00820_bb0320) 2013; 68 Drewnik (10.1016/j.geodrs.2024.e00820_bb0125) 2014; 119 Shahrokh (10.1016/j.geodrs.2024.e00820_bb0305) 2023; 223 Bittencourt (10.1016/j.geodrs.2024.e00820_bb0060) 2003 Najafi-Ghiri (10.1016/j.geodrs.2024.e00820_bb0225) 2019; 577 Günal (10.1016/j.geodrs.2024.e00820_bib418) 2006; 3 |
References_xml | – start-page: 383 year: 1986 end-page: 412 ident: bb0155 article-title: Particle-size analysis publication-title: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods—SSSA Book Series no 5, Madison, Wisconsin – volume: 80 start-page: 281 year: 2013 end-page: 290 ident: bb0045 article-title: An apparatus for the determination of the workability and plastic limit of clays publication-title: Appl. Clay Sci. – start-page: 149 year: 1982 end-page: 157 ident: bb0285 article-title: Cation exchange capacity publication-title: Methods of Soil Analysis. Part 2. Agronomy Monograph No. 9, Madison, American Society of Agronomy – volume: 196 start-page: 264 year: 2024 ident: bb0005 article-title: Tree-based algorithms for spatial modeling of soil particle distribution in arid and semi-arid region publication-title: Environ. Monit. Assess. – volume: 43 year: 2019 ident: bb0105 article-title: Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils publication-title: Rev Bras Ciênc Solo – volume: 223 year: 2023 ident: bb0305 article-title: Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: a case study in a semi-arid area in Iran publication-title: Catena – volume: 211 year: 2022 ident: bb0255 article-title: Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy publication-title: Catena – start-page: 37 year: 2010 end-page: 39 ident: bb0335 article-title: Clay and oxide mineralogy of different limestone soils in Southeast Asia publication-title: Proceedings of World Congress of Soil Science, Soil Solutions for a Changing World – volume: 8 start-page: 288 year: 2008 end-page: 294 ident: bb0140 article-title: Genesis and clay mineralogical investigation of highly calcareous soils in semi-arid regions of Southern Iran publication-title: J. Appl. Sci. – volume: 12 start-page: 1471 year: 2015 end-page: 1483 ident: bb0415 article-title: Soil atterberg limits and consistency indices as influenced by land use and slope position in Western Iran publication-title: J. Mt. Sci. – volume: 119 start-page: 166 year: 2014 end-page: 173 ident: bb0125 article-title: Mineral composition vs. soil forming processes in loess soils—a case study from Kraków (southern Poland) publication-title: Catena – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0065 article-title: Random forests publication-title: Mach. Learn. – volume: 74 start-page: 906 year: 2010 end-page: 914 ident: bb0215 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. – year: 1986 ident: bb0085 article-title: Specific Surface. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. SSSA Book Series: 5. Madison, WI: Soil Science Society of America – volume: 151 start-page: 49 year: 2019 end-page: 57 ident: bb0275 article-title: Consistent estimation of residual variance with random forest out-of-bag errors publication-title: Stat. Probab. Lett. – volume: 153 start-page: 559 year: 2021 end-page: 569 ident: bb0050 article-title: Understanding the impact of soil clay mineralogy on the adsorption behavior of zinc publication-title: Int. J. Environ. Res. – volume: 327 start-page: 351 year: 2019 end-page: 364 ident: bb0115 article-title: Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: chemistry, mineralogy, genesis, and classification publication-title: Geomorphology – start-page: 71 year: 2018 end-page: 86 ident: bb0295 article-title: Chapter 3- clay minerals- organic matter interactions in relation to carbon stabilization in soils publication-title: The Future of Soil Carbon – volume: 9 start-page: 181 year: 2006 end-page: 199 ident: bb0260 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems – volume: 178 start-page: 568 year: 2013 end-page: 584 ident: bb0010 article-title: Mineralogy and characteristics of soils developed on Persian gulf and Oman sea basin, southern Iran: implications for soil evolution in relation to sedimentary parent material publication-title: Soil Sci. – volume: 68 start-page: 154 year: 2013 end-page: 163 ident: bb0320 article-title: Clay minerals in the stream floodplain soils in undisturbed landscapes of the Southern Taiga (with the soil of the state central forest nature and biosphere reserve as an example) publication-title: Moscow Univ. Soil Sci. Bull. – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bb0210 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 8 year: 2020 ident: bb0100 article-title: Variable selection strategies and its importance in clinical prediction modelling publication-title: Family Med. Commun. Health – volume: 55 start-page: 389 year: 2007 end-page: 401 ident: bb0180 article-title: Weathering sequences of clay minerals in soils along a serpentinitic toposequence publication-title: Clay Clay Miner. – volume: 69 start-page: 1580 year: 2005 end-page: 1589 ident: bb0325 article-title: Prediction of soil organic carbon across different land-use patterns publication-title: Soil Sci. Soc. Am. J. – volume: 8 start-page: 274 year: 1959 end-page: 286 ident: bb0120 article-title: Mineralogical analysis of soil clays involving vermiculite chlorite-kaolinite differentiation publication-title: Clay Clay Miner. – volume: 428 year: 2022 ident: bb0330 article-title: Lithological controls on soil geochemistry and clay mineralogy across Spodosols in the coastal temperate rainforest of southeast Alaska publication-title: Geoderma – start-page: 785 year: 2016 end-page: 794 ident: bb0090 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17-August – start-page: 157 year: 2012 end-page: 175 ident: bb0110 article-title: Random forests publication-title: Ensemble Machine Learning – year: 2021 ident: bb0075 article-title: XGBoost With Python: Gradient Boosted Trees with XGBoost and scikit-learn. Machine Learning Mastery – volume: 577 start-page: 788 year: 2019 end-page: 796 ident: bb0225 article-title: Prediction of soil clay minerals from some soil properties with use of feature selection algorithm and ANFIS methods publication-title: Soil Res. – year: 1985 ident: bib417 article-title: Spatial variability: Its documentation, accommodation, and implication to soil surveys publication-title: Soil Spatial Variability – volume: 291 start-page: 29 year: 2005 end-page: 37 ident: bb0395 article-title: Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity, and soil erosion in southeastern Turkey publication-title: Turk. J. Agric. For. – volume: 12 start-page: 2650 year: 2021 end-page: 2665 ident: bb0300 article-title: Elimination and backward selection of features P-value technique in prediction of heart disease by using machine learning algorithms publication-title: Turkish J. Comput. Math. Educ. TURCOMAT – volume: 826 start-page: 1347 year: 2018 end-page: 1357 ident: bb0400 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. – start-page: 127 year: 2021 end-page: 145 ident: bb0025 article-title: Soil fertility decline under climate change publication-title: Sustainable Soil and Land Management and Climate Change – volume: 200 start-page: 114 year: 2016 end-page: 121 ident: bb0265 article-title: A semi-empirical swell prediction model formulated from ‘clay mineralogy and unsaturated soil’ properties publication-title: Eng. Geol. – volume: 183 year: 2006 ident: bb0130 article-title: Long term cultivation effects on soil properties in pastures publication-title: Asian J. Chem. – volume: 5 start-page: 7 year: 2018 end-page: 13 ident: bb0250 article-title: Soil ecosystem services, sustainability, valuation, and management publication-title: Curr. Opin. Environ. Sci. Health – volume: 65 start-page: 718 year: 2014 end-page: 729 ident: bb0035 article-title: Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques publication-title: Eur. J. Soil Sci. – volume: 13711 start-page: 997 year: 2011 end-page: 1008 ident: bb0095 article-title: Quantitative estimation of clay mineralogy in fine-grained soils publication-title: J. Geotech. Geoenviron. Eng. – volume: 22 start-page: 6890 year: 2022 ident: bb0290 article-title: Comparison of different machine learning methods for predicting cation exchange capacity using environmental and remote sensing data publication-title: Sensors – volume: 3 start-page: 59 year: 2006 end-page: 68 ident: bib418 article-title: Pedogenesis and Classification of Soils Located on Two Consecutive Topographies publication-title: J. Agric. Fac. Gaziosmanpaşa Univ. – volume: 116F4 start-page: 1 year: 2011 end-page: 15 ident: bb0360 article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra publication-title: J Geophys Res Earth – volume: 38 start-page: 511 year: 2003 end-page: 527 ident: bb0205 article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran publication-title: Clay Miner. – volume: 8 start-page: 144575 year: 2020 end-page: 144584 ident: bb0390 article-title: Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks publication-title: IEEE Access – volume: 184 year: 2020 ident: bb0405 article-title: Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting quaternary soil deposits publication-title: Catena – start-page: 1 year: 2023 ident: bb0135 article-title: Estimating WEPP cropland soil erodibility from soil properties publication-title: Soil Erosion Research under a Changing Climate, American Society of Agricultural and Biological Engineers. January 8–13, 2023, Aguadilla, Puerto Rico, USA – year: 1975 ident: bb0195 article-title: Soil Chemical Analysis: Advanced Course – volume: 76 start-page: 803 year: 1965 end-page: 832 ident: bb0055 article-title: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans publication-title: Geol. Soc. Am. Bull. – volume: 58 start-page: 1501 year: 1994 end-page: 1511 ident: bb0080 article-title: Field scale variability soil properties in central Iowa soils publication-title: Soil Sci. Soc. Am. J. – volume: vol. 5 start-page: 21 year: 2013 end-page: 81 ident: bb0070 article-title: Structure and mineralogy of clay minerals publication-title: Developments in Clay Science – volume: 342 year: 2023 ident: bb0350 article-title: Multi-objective optimization for combustion, thermodynamic and emission characteristics of Atkinson cycle engine using tree-based machine learning and the NSGA II algorithm publication-title: Fuel – volume: 124 start-page: 202 year: 2017 end-page: 211 ident: bb0015 article-title: Spatial variability of soil potassium and its relationship to land use and parent material publication-title: Soil Water Res. – start-page: 7 year: 2022 end-page: 17 ident: bb0370 article-title: Potassium dynamics in soils publication-title: Potash Use and Dynamics in Agriculture. Chapter 2 – volume: 6–10 year: 2018 ident: bb0270 article-title: A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost publication-title: ACM International Conference Proceeding Series – year: 2023 ident: bb0030 article-title: Overbank deposits publication-title: National Geographic – volume: 192 start-page: 165 year: 2000 end-page: 180 ident: bb0040 article-title: Variation in soil clay minerals of semi-arid regions of Fars province, Iran publication-title: Iran Agric. Res. – start-page: 3751 year: 2003 end-page: 3753 ident: bb0060 article-title: Use of classification and regression trees CART to classify remotely-sensed digital images publication-title: International Geoscience and Remote Sensing Symposium IGARSS – volume: 349 start-page: 1 year: 2019 end-page: 10 ident: bb0410 article-title: Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation publication-title: Geoderma – start-page: 1085 year: 1996 end-page: 1121 ident: bb0345 article-title: Cation exchange capacity and exchange coefficients publication-title: Methods of Soil Analysis, Part 3, Chemical Methods—SSSA – start-page: 961 year: 1996 end-page: 1010 ident: bb0230 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods of Soil Analysis, Part 3, Chemical Methods—SSSA Book Series no 5 – volume: 1050266 year: 2008 ident: bb0160 article-title: Preparation of an up-to-date database necessary for sustainable agricultural production in Kazova publication-title: TUBITAK Project Report, TOVAG – start-page: 159 year: 1982 end-page: 165 ident: bb0355 article-title: Exchangeable cations publication-title: Methods of Soil Analysis – start-page: 331 year: 1986 end-page: 362 ident: bb0380 article-title: X-Ray Diffraction Techniques publication-title: Methods of Soil Analysis Part 2 – year: 2014 ident: bb0315 article-title: Soil Survey Staff. Keys to Soil Taxonomy – year: 1981 ident: bb0175 article-title: A semi-quantitative x-ray diffraction technique for estimation of smectite, illite, and kaolinite – volume: 241 year: 2024 ident: bb0310 article-title: Proximal sensors for modeling clay mineralogy and characterization of soil textural fractions developed from contrasting parent materials publication-title: Catena – year: 1997 ident: bb0220 article-title: X-Ray Diffraction and the Identification and Analysis of Clay Minerals – volume: 106 start-page: 54 year: 2013 end-page: 67 ident: bb0200 article-title: Clay mineralogy as a crucial factor in badland hillslope processes publication-title: Catena – volume: 5 start-page: 83 year: 2013 end-page: 126 ident: bb0145 article-title: Genesis of clay minerals publication-title: Developments in Clay Science – year: 2021 ident: bb0185 publication-title: Hydrogeology, Chemical Weathering, and Soil Formation – volume: 259 start-page: 81 year: 2015 end-page: 92 ident: bb0385 article-title: Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors publication-title: Geoderma – volume: 400 year: 2021 ident: bb0280 article-title: Evaluating models to estimate cation exchange capacity of calcareous soils publication-title: Geoderma – year: 2020 ident: bb0365 article-title: Hands-on Gradient Boosting with XGBoost and Scikit-Learn – volume: 136 start-page: 51 year: 2006 end-page: 63 ident: bb0375 article-title: Clay mineralogy and its relationship to soil solution composition in soils from different weathering environments of humid Asia: Japan, Thailand and Indonesia publication-title: Geoderma – start-page: 1379 year: 1965 end-page: 1400 ident: bb0020 article-title: Carbonate publication-title: Methods of Soil Analysis – volume: 2 start-page: 183 year: 2002 end-page: 189 ident: bb0340 article-title: A note on the concordance correlation coefficient publication-title: Stata J Promot Commun Stat Stata – volume: 33 start-page: 2995 year: 2021 end-page: 3006 ident: bb0245 article-title: Tackling overfitting in boosting for noisy healthcare data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 29 year: 2022 ident: bb0150 article-title: Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran publication-title: Geoderma Reg – start-page: 551 year: 1996 end-page: 574 ident: bb0170 article-title: Lithium, sodium, potassium, rubidium, and cesium publication-title: Methods of Soil Analysis, Part 3, Chemical Methods – volume: 636 start-page: 1748 year: 1999 end-page: 1757 ident: bb0240 article-title: Accuracy and reliability of pedotransfer functions as affected by grouping soils publication-title: Soil Sci. Soc. Am. J. – volume: 73 start-page: 362 year: 2018 end-page: 373 ident: bb0190 article-title: Poppy crop capsule volume estimation using UAS remote sensing and random forest regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2014 ident: 10.1016/j.geodrs.2024.e00820_bb0315 – volume: 184 year: 2020 ident: 10.1016/j.geodrs.2024.e00820_bb0405 article-title: Potential of VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and its paleoclimatic application to two contrasting quaternary soil deposits publication-title: Catena doi: 10.1016/j.catena.2019.104239 – start-page: 1379 year: 1965 ident: 10.1016/j.geodrs.2024.e00820_bb0020 article-title: Carbonate – year: 2020 ident: 10.1016/j.geodrs.2024.e00820_bb0365 – start-page: 1 year: 2023 ident: 10.1016/j.geodrs.2024.e00820_bb0135 article-title: Estimating WEPP cropland soil erodibility from soil properties – start-page: 331 year: 1986 ident: 10.1016/j.geodrs.2024.e00820_bb0380 article-title: X-Ray Diffraction Techniques – year: 1975 ident: 10.1016/j.geodrs.2024.e00820_bb0195 – volume: vol. 5 start-page: 21 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0070 article-title: Structure and mineralogy of clay minerals doi: 10.1016/B978-0-08-098258-8.00002-X – start-page: 1085 year: 1996 ident: 10.1016/j.geodrs.2024.e00820_bb0345 article-title: Cation exchange capacity and exchange coefficients – start-page: 3751 year: 2003 ident: 10.1016/j.geodrs.2024.e00820_bb0060 article-title: Use of classification and regression trees CART to classify remotely-sensed digital images – year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0185 – volume: 9 start-page: 181 year: 2006 ident: 10.1016/j.geodrs.2024.e00820_bb0260 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – volume: 8 start-page: 144575 year: 2020 ident: 10.1016/j.geodrs.2024.e00820_bb0390 article-title: Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014644 – volume: 6–10 year: 2018 ident: 10.1016/j.geodrs.2024.e00820_bb0270 article-title: A comparative analysis of hyperopt as against other approaches for hyper-parameter optimization of XGBoost publication-title: ACM International Conference Proceeding Series – volume: 68 start-page: 154 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0320 article-title: Clay minerals in the stream floodplain soils in undisturbed landscapes of the Southern Taiga (with the soil of the state central forest nature and biosphere reserve as an example) publication-title: Moscow Univ. Soil Sci. Bull. doi: 10.3103/S0147687413040078 – volume: 577 start-page: 788 year: 2019 ident: 10.1016/j.geodrs.2024.e00820_bb0225 article-title: Prediction of soil clay minerals from some soil properties with use of feature selection algorithm and ANFIS methods publication-title: Soil Res. doi: 10.1071/SR18352 – year: 1997 ident: 10.1016/j.geodrs.2024.e00820_bb0220 – year: 1981 ident: 10.1016/j.geodrs.2024.e00820_bb0175 – volume: 183 year: 2006 ident: 10.1016/j.geodrs.2024.e00820_bb0130 article-title: Long term cultivation effects on soil properties in pastures publication-title: Asian J. Chem. – start-page: 551 year: 1996 ident: 10.1016/j.geodrs.2024.e00820_bb0170 article-title: Lithium, sodium, potassium, rubidium, and cesium – volume: 136 start-page: 51 issue: 1–2 year: 2006 ident: 10.1016/j.geodrs.2024.e00820_bb0375 article-title: Clay mineralogy and its relationship to soil solution composition in soils from different weathering environments of humid Asia: Japan, Thailand and Indonesia publication-title: Geoderma doi: 10.1016/j.geoderma.2006.02.001 – volume: 12 start-page: 2650 year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0300 article-title: Elimination and backward selection of features P-value technique in prediction of heart disease by using machine learning algorithms publication-title: Turkish J. Comput. Math. Educ. TURCOMAT doi: 10.17762/turcomat.v12i6.5765 – volume: 196 start-page: 264 issue: 3 year: 2024 ident: 10.1016/j.geodrs.2024.e00820_bb0005 article-title: Tree-based algorithms for spatial modeling of soil particle distribution in arid and semi-arid region publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-024-12431-6 – ident: 10.1016/j.geodrs.2024.e00820_bb0075 – volume: 65 start-page: 718 issue: 5 year: 2014 ident: 10.1016/j.geodrs.2024.e00820_bb0035 article-title: Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12165 – volume: 76 start-page: 803 issue: 7 year: 1965 ident: 10.1016/j.geodrs.2024.e00820_bb0055 article-title: Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2 – volume: 259 start-page: 81 year: 2015 ident: 10.1016/j.geodrs.2024.e00820_bb0385 article-title: Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors publication-title: Geoderma doi: 10.1016/j.geoderma.2015.05.003 – volume: 124 start-page: 202 year: 2017 ident: 10.1016/j.geodrs.2024.e00820_bb0015 article-title: Spatial variability of soil potassium and its relationship to land use and parent material publication-title: Soil Water Res. doi: 10.17221/32/2016-SWR – start-page: 159 year: 1982 ident: 10.1016/j.geodrs.2024.e00820_bb0355 article-title: Exchangeable cations – volume: 13711 start-page: 997 year: 2011 ident: 10.1016/j.geodrs.2024.e00820_bb0095 article-title: Quantitative estimation of clay mineralogy in fine-grained soils publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000521 – volume: 8 year: 2020 ident: 10.1016/j.geodrs.2024.e00820_bb0100 article-title: Variable selection strategies and its importance in clinical prediction modelling publication-title: Family Med. Commun. Health doi: 10.1136/fmch-2019-000262 – volume: 636 start-page: 1748 year: 1999 ident: 10.1016/j.geodrs.2024.e00820_bb0240 article-title: Accuracy and reliability of pedotransfer functions as affected by grouping soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6361748x – volume: 43 year: 2019 ident: 10.1016/j.geodrs.2024.e00820_bb0105 article-title: Comparison of the Casagrande and fall cone methods for liquid limit determinations in different clay soils publication-title: Rev Bras Ciênc Solo doi: 10.1590/18069657rbcs20180105 – volume: 33 start-page: 2995 year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0245 article-title: Tackling overfitting in boosting for noisy healthcare data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2959988 – volume: 342 year: 2023 ident: 10.1016/j.geodrs.2024.e00820_bb0350 article-title: Multi-objective optimization for combustion, thermodynamic and emission characteristics of Atkinson cycle engine using tree-based machine learning and the NSGA II algorithm publication-title: Fuel doi: 10.1016/j.fuel.2023.127839 – volume: 74 start-page: 906 year: 2010 ident: 10.1016/j.geodrs.2024.e00820_bb0215 article-title: Predicting the spatial variation of the soil organic carbon pool at a regional scale publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2009.0158 – volume: 8 start-page: 288 year: 2008 ident: 10.1016/j.geodrs.2024.e00820_bb0140 article-title: Genesis and clay mineralogical investigation of highly calcareous soils in semi-arid regions of Southern Iran publication-title: J. Appl. Sci. doi: 10.3923/jas.2008.288.294 – year: 1985 ident: 10.1016/j.geodrs.2024.e00820_bib417 article-title: Spatial variability: Its documentation, accommodation, and implication to soil surveys – volume: 22 start-page: 6890 issue: 18 year: 2022 ident: 10.1016/j.geodrs.2024.e00820_bb0290 article-title: Comparison of different machine learning methods for predicting cation exchange capacity using environmental and remote sensing data publication-title: Sensors doi: 10.3390/s22186890 – start-page: 157 year: 2012 ident: 10.1016/j.geodrs.2024.e00820_bb0110 article-title: Random forests – volume: 400 year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0280 article-title: Evaluating models to estimate cation exchange capacity of calcareous soils publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115221 – volume: 826 start-page: 1347 year: 2018 ident: 10.1016/j.geodrs.2024.e00820_bb0400 article-title: A Vis-NIR spectral library to predict clay in Australian cotton growing soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2018.03.0100 – volume: 119 start-page: 166 year: 2014 ident: 10.1016/j.geodrs.2024.e00820_bb0125 article-title: Mineral composition vs. soil forming processes in loess soils—a case study from Kraków (southern Poland) publication-title: Catena doi: 10.1016/j.catena.2014.02.012 – start-page: 383 year: 1986 ident: 10.1016/j.geodrs.2024.e00820_bb0155 article-title: Particle-size analysis – volume: 55 start-page: 389 issue: 4 year: 2007 ident: 10.1016/j.geodrs.2024.e00820_bb0180 article-title: Weathering sequences of clay minerals in soils along a serpentinitic toposequence publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2007.0550407 – volume: 151 start-page: 49 year: 2019 ident: 10.1016/j.geodrs.2024.e00820_bb0275 article-title: Consistent estimation of residual variance with random forest out-of-bag errors publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2019.03.017 – volume: 8 start-page: 274 year: 1959 ident: 10.1016/j.geodrs.2024.e00820_bb0120 article-title: Mineralogical analysis of soil clays involving vermiculite chlorite-kaolinite differentiation publication-title: Clay Clay Miner. – volume: 223 year: 2023 ident: 10.1016/j.geodrs.2024.e00820_bb0305 article-title: Mapping clay mineral types using easily accessible data and machine learning techniques in a scarce data region: a case study in a semi-arid area in Iran publication-title: Catena doi: 10.1016/j.catena.2023.106932 – volume: 153 start-page: 559 year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0050 article-title: Understanding the impact of soil clay mineralogy on the adsorption behavior of zinc publication-title: Int. J. Environ. Res. doi: 10.1007/s41742-021-00334-0 – volume: 80 start-page: 281 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0045 article-title: An apparatus for the determination of the workability and plastic limit of clays publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2013.04.014 – volume: 116F4 start-page: 1 year: 2011 ident: 10.1016/j.geodrs.2024.e00820_bb0360 article-title: Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra publication-title: J Geophys Res Earth – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2024.e00820_bb0065 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 45 start-page: 255 year: 1989 ident: 10.1016/j.geodrs.2024.e00820_bb0210 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 12 start-page: 1471 year: 2015 ident: 10.1016/j.geodrs.2024.e00820_bb0415 article-title: Soil atterberg limits and consistency indices as influenced by land use and slope position in Western Iran publication-title: J. Mt. Sci. doi: 10.1007/s11629-014-3339-z – volume: 106 start-page: 54 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0200 article-title: Clay mineralogy as a crucial factor in badland hillslope processes publication-title: Catena doi: 10.1016/j.catena.2012.08.008 – volume: 5 start-page: 83 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0145 article-title: Genesis of clay minerals doi: 10.1016/B978-0-08-098258-8.00003-1 – volume: 2 start-page: 183 year: 2002 ident: 10.1016/j.geodrs.2024.e00820_bb0340 article-title: A note on the concordance correlation coefficient publication-title: Stata J Promot Commun Stat Stata doi: 10.1177/1536867X0200200206 – volume: 178 start-page: 568 issue: 10 year: 2013 ident: 10.1016/j.geodrs.2024.e00820_bb0010 article-title: Mineralogy and characteristics of soils developed on Persian gulf and Oman sea basin, southern Iran: implications for soil evolution in relation to sedimentary parent material publication-title: Soil Sci. doi: 10.1097/SS.0000000000000022 – start-page: 71 year: 2018 ident: 10.1016/j.geodrs.2024.e00820_bb0295 article-title: Chapter 3- clay minerals- organic matter interactions in relation to carbon stabilization in soils – volume: 428 year: 2022 ident: 10.1016/j.geodrs.2024.e00820_bb0330 article-title: Lithological controls on soil geochemistry and clay mineralogy across Spodosols in the coastal temperate rainforest of southeast Alaska publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116211 – volume: 291 start-page: 29 year: 2005 ident: 10.1016/j.geodrs.2024.e00820_bb0395 article-title: Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity, and soil erosion in southeastern Turkey publication-title: Turk. J. Agric. For. – volume: 38 start-page: 511 issue: 4 year: 2003 ident: 10.1016/j.geodrs.2024.e00820_bb0205 article-title: Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran publication-title: Clay Miner. doi: 10.1180/0009855023740112 – start-page: 785 year: 2016 ident: 10.1016/j.geodrs.2024.e00820_bb0090 article-title: XGBoost: A scalable tree boosting system – volume: 29 year: 2022 ident: 10.1016/j.geodrs.2024.e00820_bb0150 article-title: Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran publication-title: Geoderma Reg – volume: 200 start-page: 114 year: 2016 ident: 10.1016/j.geodrs.2024.e00820_bb0265 article-title: A semi-empirical swell prediction model formulated from ‘clay mineralogy and unsaturated soil’ properties publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2015.12.007 – volume: 69 start-page: 1580 year: 2005 ident: 10.1016/j.geodrs.2024.e00820_bb0325 article-title: Prediction of soil organic carbon across different land-use patterns publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.0293 – start-page: 37 year: 2010 ident: 10.1016/j.geodrs.2024.e00820_bb0335 article-title: Clay and oxide mineralogy of different limestone soils in Southeast Asia – year: 2023 ident: 10.1016/j.geodrs.2024.e00820_bb0030 article-title: Overbank deposits – volume: 241 year: 2024 ident: 10.1016/j.geodrs.2024.e00820_bb0310 article-title: Proximal sensors for modeling clay mineralogy and characterization of soil textural fractions developed from contrasting parent materials publication-title: Catena doi: 10.1016/j.catena.2024.108053 – volume: 349 start-page: 1 year: 2019 ident: 10.1016/j.geodrs.2024.e00820_bb0410 article-title: Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.019 – start-page: 127 year: 2021 ident: 10.1016/j.geodrs.2024.e00820_bb0025 article-title: Soil fertility decline under climate change – volume: 327 start-page: 351 year: 2019 ident: 10.1016/j.geodrs.2024.e00820_bb0115 article-title: Semi-arid soils from a topolithosequence at James Ross Island, Weddell Sea region, Antarctica: chemistry, mineralogy, genesis, and classification publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.11.003 – volume: 1050266 year: 2008 ident: 10.1016/j.geodrs.2024.e00820_bb0160 article-title: Preparation of an up-to-date database necessary for sustainable agricultural production in Kazova publication-title: TUBITAK Project Report, TOVAG – volume: 5 start-page: 7 year: 2018 ident: 10.1016/j.geodrs.2024.e00820_bb0250 article-title: Soil ecosystem services, sustainability, valuation, and management publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2017.12.003 – volume: 211 year: 2022 ident: 10.1016/j.geodrs.2024.e00820_bb0255 article-title: Physical-hydric properties of Oxisols as influenced by soil structure and clay mineralogy publication-title: Catena doi: 10.1016/j.catena.2021.106009 – volume: 192 start-page: 165 year: 2000 ident: 10.1016/j.geodrs.2024.e00820_bb0040 article-title: Variation in soil clay minerals of semi-arid regions of Fars province, Iran publication-title: Iran Agric. Res. – volume: 58 start-page: 1501 year: 1994 ident: 10.1016/j.geodrs.2024.e00820_bb0080 article-title: Field scale variability soil properties in central Iowa soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1994.03615995005800050033x – start-page: 7 year: 2022 ident: 10.1016/j.geodrs.2024.e00820_bb0370 article-title: Potassium dynamics in soils – start-page: 961 year: 1996 ident: 10.1016/j.geodrs.2024.e00820_bb0230 article-title: Total carbon, organic carbon, and organic matter – year: 1986 ident: 10.1016/j.geodrs.2024.e00820_bb0085 – volume: 73 start-page: 362 year: 2018 ident: 10.1016/j.geodrs.2024.e00820_bb0190 article-title: Poppy crop capsule volume estimation using UAS remote sensing and random forest regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 149 year: 1982 ident: 10.1016/j.geodrs.2024.e00820_bb0285 article-title: Cation exchange capacity – volume: 3 start-page: 59 issue: 2 year: 2006 ident: 10.1016/j.geodrs.2024.e00820_bib418 article-title: Pedogenesis and Classification of Soils Located on Two Consecutive Topographies publication-title: J. Agric. Fac. Gaziosmanpaşa Univ. |
SSID | ssj0002953762 |
Score | 2.2924323 |
Snippet | Clay minerals are the source of many chemical and physical properties that influence the provision of soil-based ecosystem services. This study aimed to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00820 |
SubjectTerms | algorithms Artificial intelligence calcium cation exchange capacity clay Clay mineral Covariate ecosystems fertilizer application illite kaolinite magnesium mineral content Modeling Prediction regression analysis semiarid zones soil formation Spatial distribution |
Title | Spatial variability of clay minerals in a semi-arid region of Turkiye |
URI | https://dx.doi.org/10.1016/j.geodrs.2024.e00820 https://www.proquest.com/docview/3153643999 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke_Eiior1xQpeY5N9NM2xlJZqoQdtsbdlsw-JtknpQ-i_dzaPgoIUvCQk7IYwO_PNTDL7DUIPXCmrDBhgoDj3WBhrTyquIWvVilsZGzi4aotxezhlzzM-q6FetRfGlVWW2F9geo7W5Z1WKc3WMklar4TmlEHMVUEC5kIK1CA0aoNqN7pPo-F4_6mFRI6zhORt5jjx3JxqE11e6fVuMr1y1N2EPZrcJ_7lpH7Bde6DBifouAwecbd4v1NUM-kZ6ruuwqBF-AvS3oJ1e4czi9Vc7vAiyVml1zhJscRrs0g8GKWx68eQpW7YZLv6THbmHE0H_Ulv6JXNETxFabTxwE7jwGpIMAhTnVD71EKoRzrSUhr6LLaBdVTu0rLQxNr4hipfgvHaQPtEWkMvUD3NUnOJcCjBUxpAPt2JmA2l1JJEHd6GVaTcMt1EtJKGUCVzuGtgMRdVidiHKGQonAxFIcMm8vazlgVzxoHxYSVo8UMDBID7gZn31boIMA73x0OmJtuuBQU8dyFXFF39--nX6MhdFXVlN6i-WW3NLQQim_iuVDR3Hr28jb4BgIffkQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6ye9CLKCq-jeC1bpuHbY-y7LK-9uIK3kKah9RHK_sQ9t8704egIIKXHtpJKZPMNzPp5BtCzqQx3jgwwMhIGYg4s4E20kLWao30OnNwwWqL8cXoQVw_yscV0m_PwmBZZYP9NaZXaN3c6TXa7L3nee-e8YoySGAVJGAupEBdZKeSHdK9vLoZjb-2WliKnCWsajMnWYBj2kN0VaXXkyvtFKm7mTh3lU_8zUn9gOvKBw03yHoTPNLL-vs2yYortsgAuwrDKqIfkPbWrNtLWnpqXvWSvuUVq_SM5gXVdObe8gCkLMV-DGWBYpPF9CVfum3yMBxM-qOgaY4QGM7TeQB2mkXeQoLBhEliG3IPoR5LtOc8DkXmI49U7tqL2GXWhY6bUIPx-siGTHvHd0inKAu3S2iswVM6QD6bpMLHWlvN0kRewCxy6YXdI7zVhjINczg2sHhVbYnYs6p1qFCHqtbhHgm-Rr3XzBl_yMetotW3FaAA3P8YedrOiwLjwD8eunDlYqY44DmGXGm6_--3n5DV0eTuVt1ejW8OyBo-qWvMDklnPl24IwhK5tlxs-g-AQjc4NQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+variability+of+clay+minerals+in+a+semi-arid+region+of+Turkiye&rft.jtitle=Geoderma+Regional&rft.au=G%C3%BCnal%2C+Hikmet&rft.au=Acir%2C+Nurullah&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=38&rft_id=info:doi/10.1016%2Fj.geodrs.2024.e00820&rft.externalDocID=S2352009424000671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |