Chirped gap solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index
The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled...
Saved in:
Published in | Journal of the European Optical Society. Rapid publications Vol. 19; no. 1; p. 30 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
EDP Sciences
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1990-2573 1990-2573 |
DOI | 10.1051/jeos/2023025 |
Cover
Abstract | The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled nonlinear Schrödinger equation is reduced to an integrable form. Consequently, chirped optical solitons having various profiles such as W-shaped, bright, dark, kink and anti-kink solitons are derived. Further to this, the chirp associated with these soliton structures are extracted. The impact of dispersive reflectivity, self-phase modulation and cross-phase modulation on the pulse propagation is investigated and it is induced that the changes of self-phase modulation and cross-phase modulation cause a marked rise in soliton amplitude which is subject to minor variations by dispersive reflectivity. The physical evolutions of chirped optical solitons are described along with the corresponding chirp to pave the way for possible applications in the field of fiber BGs. |
---|---|
AbstractList | The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled nonlinear Schrödinger equation is reduced to an integrable form. Consequently, chirped optical solitons having various profiles such as W-shaped, bright, dark, kink and anti-kink solitons are derived. Further to this, the chirp associated with these soliton structures are extracted. The impact of dispersive reflectivity, self-phase modulation and cross-phase modulation on the pulse propagation is investigated and it is induced that the changes of self-phase modulation and cross-phase modulation cause a marked rise in soliton amplitude which is subject to minor variations by dispersive reflectivity. The physical evolutions of chirped optical solitons are described along with the corresponding chirp to pave the way for possible applications in the field of fiber BGs. |
Author | Sankar, Mani Krishnan, Edamana V. Al-Ghafri, Khalil S. Khan, Salam Biswas, Anjan |
Author_xml | – sequence: 1 givenname: Khalil S. orcidid: 0000-0002-4392-0742 surname: Al-Ghafri fullname: Al-Ghafri, Khalil S. – sequence: 2 givenname: Mani surname: Sankar fullname: Sankar, Mani – sequence: 3 givenname: Edamana V. surname: Krishnan fullname: Krishnan, Edamana V. – sequence: 4 givenname: Salam surname: Khan fullname: Khan, Salam – sequence: 5 givenname: Anjan surname: Biswas fullname: Biswas, Anjan |
BookMark | eNptkNtKAzEQhoNUsK3e-QB5AGtz2OxuLrV4KBS80VvDJJtsU7abJVmsfXu3toKIVzMM83_MfBM0akNrEbqm5JYSQecbG9KcEcYJE2doTKUkMyYKPvrVX6BJShtCckkzMUbvi7WPna1wDR1OofF9aBP2LXZe24jvI9Q1riP0vq0T3vl-jbvQ7Nuw9dDgBnY4ODyc0fjWQsTRugim9x92YFT28xKdO2iSvTrVKXp7fHhdPM9WL0_Lxd1qZjiX_Yy6kmpKq8JVVNuc2YwVIIzQZa5lqUVOhcvKQmsOmQVTZhJKqysLmpPKOsenaHnkVgE2qot-C3GvAnj1PQixVhB7bxqrSppnhhFBeGEyo2lJmawYEC5zI7k2A4sdWSaGlIaPlPH9ICC0fQTfKErUwbY62FYn20Po5k_o54h_178A8uuFcg |
CitedBy_id | crossref_primary_10_1051_jeos_2023038 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_02053 crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_S1039 crossref_primary_10_1007_s10973_024_12909_y crossref_primary_10_1007_s12596_023_01624_w |
Cites_doi | 10.1088/1572-9494/aca51c 10.1364/AO.24.000358 10.15302/J-SSCAE-2020.03.016 10.1016/j.physleta.2010.10.043 10.1016/j.chaos.2021.110873 10.1007/s11071-016-3145-y 10.1103/PhysRevLett.45.1095 10.1016/j.physleta.2005.05.081 10.1103/PhysRevLett.76.3955 10.1016/j.physleta.2021.127698 10.1016/S0375-9601(01)00314-0 10.3116/16091833/22/4/239/2021 10.1016/j.ijleo.2019.03.060 10.1016/j.ijleo.2020.165681 10.1016/j.ijleo.2019.163886 10.1007/s11071-015-1954-z 10.1016/j.ijleo.2018.12.156 10.1016/j.chaos.2022.112198 10.1016/j.rinp.2022.105272 10.1016/j.ijleo.2019.164096 10.1016/j.ijleo.2021.166684 10.1016/j.ijleo.2019.163993 10.1103/PhysRevE.96.032222 10.1109/JQE.1983.1071806 10.1016/j.cjph.2020.04.003 10.1088/2040-8978/14/6/065202 10.1007/s11071-021-06630-w 10.1134/S1064226920110200 10.1007/s11071-022-08138-3 10.1109/JQE.2014.2318206 10.1007/978-3-540-46064-0_4 10.1088/1464-4258/10/8/085105 10.1088/0256-307X/39/4/044202 10.1007/s11071-019-04817-w 10.1103/PhysRevE.60.3314 10.1016/j.cjph.2020.06.006 10.1103/PhysRevE.72.016617 10.1016/j.rinp.2022.106040 10.1016/j.chaos.2021.111751 10.1016/j.rinp.2021.104381 10.1016/j.ijleo.2018.12.180 10.1103/PhysRevA.84.063830 10.1038/nature22387 10.1016/j.physleta.2022.128104 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1051/jeos/2023025 |
DatabaseName | CrossRef DOAJ Open Access Full Text |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1990-2573 |
ExternalDocumentID | oai_doaj_org_article_8164c205037c4cb18129d2a0396c93bc 10_1051_jeos_2023025 |
GroupedDBID | 2WC AAFWJ AAKKN AAYXX ABDBF ABEEZ ACACY ACUHS ACULB ADBBV ADMLS AENEX AFGXO AFKRA AFPKN AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG BCNDV BENPR C1A C24 C6C CCPQU CITATION CS3 DU5 E3Z EBS EJD GROUPED_DOAJ M~E OK1 OVT PHGZM PHGZT PIMPY SOJ TH9 |
ID | FETCH-LOGICAL-c339t-1f81b11d7fd1be62e427a5c5b86b98b5615f487bb3a4eac849a8ebdeab30deff3 |
IEDL.DBID | DOA |
ISSN | 1990-2573 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Tue Jul 01 03:43:00 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-1f81b11d7fd1be62e427a5c5b86b98b5615f487bb3a4eac849a8ebdeab30deff3 |
ORCID | 0000-0002-4392-0742 |
OpenAccessLink | https://doaj.org/article/8164c205037c4cb18129d2a0396c93bc |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8164c205037c4cb18129d2a0396c93bc crossref_citationtrail_10_1051_jeos_2023025 crossref_primary_10_1051_jeos_2023025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the European Optical Society. Rapid publications |
PublicationYear | 2023 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Ahmed (R28) 2017; 96 Zayed (R33) 2020; 65 Shiojiri (R5) 1985; 24 Hamann (R11) 1996; 2594 Seadawy (R48) 2021; 225 Mollenauer (R4) 1980; 45 Jahirul (R27) 2017; 87 Atai (R22) 2005; 342 Biswas (R29) 2019; 182 Triki (R39) 2022; 34 Zhongwei (R2) 2020; 22 Yıldırım (R34) 2021; 22 Doran (R9) 1983; 19 Triki (R41) 2022; 155 Radhakrishnan (R12) 1999; 60 Zhou (R37) 2022; 39 Mecelti (R42) 2022; 437 Triki (R44) 2021; 26 Zayed (R19) 2020; 66 Daoui (R43) 2021; 146 Mansouri (R38) 2022; 43 Liu (R16) 2019; 96 Dasanayaka (R24) 2010; 375 Baratali (R25) 2012; 14 Zayed (R47) 2020; 204 Darwish (R18) 2020; 203 Zhou (R36) 2022; 160 Triki (R45) 2021; 417 Yıldırım (R20) 2021; 237 R1 R3 Huang (R13) 2005; 72 Atai (R21) 2001; 284 R7 Li (R15) 2015; 80 Zhou (R46) 2023; 111 Marin-Palomo (R8) 2017; 546 Zhong (R40) 2023; 75 Malik (R35) 2021; 105 Biswas (R30) 2019; 182 Porsezian (R6) 1996; 76 Amit Goyal (R14) 2011; 84 R10 Biswas (R17) 2019; 185 Neill (R23) 2008; 10 Chowdhury (R26) 2014; 50 Kudryashov (R31) 2020; 66 Zayed (R32) 2020; 203 |
References_xml | – volume: 75 start-page: 025003 year: 2023 ident: R40 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/aca51c – volume: 24 start-page: 358 year: 1985 ident: R5 publication-title: Appl. Opt. doi: 10.1364/AO.24.000358 – volume: 22 start-page: 100 year: 2020 ident: R2 publication-title: Strategic Study of CAE doi: 10.15302/J-SSCAE-2020.03.016 – volume: 375 start-page: 225 year: 2010 ident: R24 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.10.043 – volume: 146 start-page: 110873 year: 2021 ident: R43 publication-title: Chaos Solit. Fractals doi: 10.1016/j.chaos.2021.110873 – volume: 87 start-page: 1693 year: 2017 ident: R27 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3145-y – volume: 45 start-page: 1095 year: 1980 ident: R4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1095 – volume: 342 start-page: 404 year: 2005 ident: R22 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.05.081 – volume: 76 start-page: 3955 year: 1996 ident: R6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.3955 – volume: 417 start-page: 127698 year: 2021 ident: R45 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2021.127698 – volume: 284 start-page: 247 year: 2001 ident: R21 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(01)00314-0 – volume: 22 start-page: 239 year: 2021 ident: R34 publication-title: Ukr. J. Phys. Opt. doi: 10.3116/16091833/22/4/239/2021 – volume: 2594 start-page: 2 year: 1996 ident: R11 publication-title: SPIE – volume: 185 start-page: 50 year: 2019 ident: R17 publication-title: Optik doi: 10.1016/j.ijleo.2019.03.060 – volume: 225 start-page: 165681 year: 2021 ident: R48 publication-title: Optik doi: 10.1016/j.ijleo.2020.165681 – volume: 203 start-page: 163886 year: 2020 ident: R18 publication-title: Optik doi: 10.1016/j.ijleo.2019.163886 – volume: 80 start-page: 1451 year: 2015 ident: R15 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-1954-z – volume: 182 start-page: 88 year: 2019 ident: R29 publication-title: Optik doi: 10.1016/j.ijleo.2018.12.156 – volume: 160 start-page: 112198 year: 2022 ident: R36 publication-title: Chaos Solit. Fractals doi: 10.1016/j.chaos.2022.112198 – ident: R3 – volume: 34 start-page: 105272 year: 2022 ident: R39 publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105272 – ident: R1 – ident: R10 – volume: 204 start-page: 164096 year: 2020 ident: R47 publication-title: Optik doi: 10.1016/j.ijleo.2019.164096 – volume: 237 start-page: 166684 year: 2021 ident: R20 publication-title: Optik doi: 10.1016/j.ijleo.2021.166684 – volume: 203 start-page: 163993 year: 2020 ident: R32 publication-title: Optik doi: 10.1016/j.ijleo.2019.163993 – volume: 96 start-page: 032222 year: 2017 ident: R28 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.032222 – volume: 19 start-page: 1883 year: 1983 ident: R9 publication-title: IEEE J. Quantum Elect. doi: 10.1109/JQE.1983.1071806 – volume: 66 start-page: 187 year: 2020 ident: R19 publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2020.04.003 – volume: 14 start-page: 065202 year: 2012 ident: R25 publication-title: J. Opt. doi: 10.1088/2040-8978/14/6/065202 – volume: 105 start-page: 735 year: 2021 ident: R35 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06630-w – volume: 65 start-page: 1267 year: 2020 ident: R33 publication-title: J. Commun. Technol. Electron. doi: 10.1134/S1064226920110200 – volume: 111 start-page: 5757 year: 2023 ident: R46 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08138-3 – volume: 50 start-page: 458 year: 2014 ident: R26 publication-title: IEEE J. Quantum Elect. doi: 10.1109/JQE.2014.2318206 – ident: R7 doi: 10.1007/978-3-540-46064-0_4 – volume: 10 start-page: 085105 year: 2008 ident: R23 publication-title: J. Opt. A: Pure Appl. Opt. doi: 10.1088/1464-4258/10/8/085105 – volume: 39 start-page: 044202 year: 2022 ident: R37 publication-title: Chinese Phys. Lett. doi: 10.1088/0256-307X/39/4/044202 – volume: 96 start-page: 729 year: 2019 ident: R16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04817-w – volume: 60 start-page: 3314 year: 1999 ident: R12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.3314 – volume: 66 start-page: 401 year: 2020 ident: R31 publication-title: Chinese J. Phys. doi: 10.1016/j.cjph.2020.06.006 – volume: 72 start-page: 016617 year: 2005 ident: R13 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.016617 – volume: 43 start-page: 106040 year: 2022 ident: R38 publication-title: Results Phys. doi: 10.1016/j.rinp.2022.106040 – volume: 155 start-page: 111751 year: 2022 ident: R41 publication-title: Chaos Solit. Fractals doi: 10.1016/j.chaos.2021.111751 – volume: 26 start-page: 104381 year: 2021 ident: R44 publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104381 – volume: 182 start-page: 119 year: 2019 ident: R30 publication-title: Optik doi: 10.1016/j.ijleo.2018.12.180 – volume: 84 start-page: 063830 year: 2011 ident: R14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.063830 – volume: 546 start-page: 274 year: 2017 ident: R8 publication-title: Nature doi: 10.1038/nature22387 – volume: 437 start-page: 128104 year: 2022 ident: R42 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2022.128104 |
SSID | ssj0069145 |
Score | 2.2938983 |
Snippet | The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 30 |
SubjectTerms | bragg gratings chirped solitons polynomial law |
Title | Chirped gap solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index |
URI | https://doaj.org/article/8164c205037c4cb18129d2a0396c93bc |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SEbyIT6yPkoOeZOnuJtndHNtqKWK9aKEnlzxrpbSlrYr_3pndtfQiXrwuIRm-hMw3s5NvCLniLmMmUhDkRMJi6sYHkqc8sMCutfLAUYqS__5j0hvw-6EYbrT6wpqwUh64BK6ZAZ83MaqWpIYbjQ5J2liFTCZGMm3w9g1l-BNMlXdwIiMuqjJ3OHXNNzdbYpjPQmyJveGANnT6C4fS3Sd7FROkrdKCA7Llpodkp6jINMsj8tJ5HS_mztKRmtMlVqnB-aDjKfVY40HbCzUaURR6wFQ3xXQqnc8mX_jKGGadqE8683RaCmGoBQU7ivdQH44WAonHZNC9e-70gqoZQmAYk6sg8kAwo8im3kbaJbHjcaqEETpLtMw00CDhIfjQmikOl2nGpcqctk5pFlrnPTshNVjUnRLKbewMirykEiD1kfbMKy1Qil2zTMR1cvODUG4qpXBsWDHJiz_WAiIGwDOv8KyT6_XoeamQ8cu4NoK9HoO61sUH2O282u38r90--49Jzsku2lQmUi5IbbV4d5dALVa6QbZbt_2Hp0Zxmr4BsPPOhA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chirped+gap+solitons+in+fiber+Bragg+gratings+with+polynomial+law+of+nonlinear+refractive+index&rft.jtitle=Journal+of+the+European+Optical+Society.+Rapid+publications&rft.au=Al-Ghafri+Khalil+S.&rft.au=Sankar+Mani&rft.au=Krishnan+Edamana+V.&rft.au=Khan+Salam&rft.date=2023&rft.pub=EDP+Sciences&rft.eissn=1990-2573&rft.volume=19&rft.issue=1&rft.spage=30&rft_id=info:doi/10.1051%2Fjeos%2F2023025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8164c205037c4cb18129d2a0396c93bc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1990-2573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1990-2573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1990-2573&client=summon |