Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes
Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used...
Saved in:
Published in | Journal of membrane science Vol. 657; p. 120673 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10−5-10−6 cm2 s−1) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na2SO4 rejection >97%), outperforming the benchmark commercial nanofiltration membranes.
[Display omitted]
•Phytic acid dodecasodium salt (PADS) as additive to modulate interfacial polymerization.•PADS can retard the diffusion of amine monomers by electrostatic interaction.•The thickness of PA membrane is significantly reduced.•The optimized polyamide membrane shows high water permeance and Na2SO4 rejection. |
---|---|
AbstractList | Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10−5-10−6 cm2 s−1) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na2SO4 rejection >97%), outperforming the benchmark commercial nanofiltration membranes.
[Display omitted]
•Phytic acid dodecasodium salt (PADS) as additive to modulate interfacial polymerization.•PADS can retard the diffusion of amine monomers by electrostatic interaction.•The thickness of PA membrane is significantly reduced.•The optimized polyamide membrane shows high water permeance and Na2SO4 rejection. Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10⁻⁵-10⁻⁶ cm² s⁻¹) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na₂SO₄ rejection >97%), outperforming the benchmark commercial nanofiltration membranes. |
ArticleNumber | 120673 |
Author | Xiao, Ke Zhang, Miaomiao You, Xinda Zhang, Runnan Jiang, Zhongyi Yang, Chao Yuan, Jinqiu Zhao, Junhui Wu, Hong Yin, Zhuoyu |
Author_xml | – sequence: 1 givenname: Miaomiao surname: Zhang fullname: Zhang, Miaomiao organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 2 givenname: Xinda surname: You fullname: You, Xinda organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 3 givenname: Ke surname: Xiao fullname: Xiao, Ke organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 4 givenname: Zhuoyu surname: Yin fullname: Yin, Zhuoyu organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 5 givenname: Jinqiu surname: Yuan fullname: Yuan, Jinqiu organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 6 givenname: Junhui surname: Zhao fullname: Zhao, Junhui organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 7 givenname: Chao surname: Yang fullname: Yang, Chao organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 8 givenname: Runnan surname: Zhang fullname: Zhang, Runnan organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 9 givenname: Hong surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China – sequence: 10 givenname: Zhongyi surname: Jiang fullname: Jiang, Zhongyi organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China |
BookMark | eNqFkE9v1DAUxC1UpG4L36CHHLlk8Z9N4nCohCpKKxVxgbPl2C_NWzl2anuLlgOfHbfh1AM9WfKbGc38zsiJDx4IuWB0yyhrP-63M8zJ4JZTzreM07YTb8iGyU7UgnFxQjZUdG3dCSlPyVlKe0pZR2W_IX--BXtwOqO_r9BniKM2qF21BHecIeLvcgq--oV5qpbpmHWGSqdKPxwgHFK9TDqVD2sx4yNUY4jVhPeTO9YLxDmBA_N88NqHEV2Oa1ypO0TtIb0jb0ftErz_956Tn9dfflzd1Hffv95efb6rjRB9rhn0A_TAWskFAwGmYa3uGza0tuFgO2mH0fTDqPkgu6GRTIMZ7K6xtjHSUC7OyYc1d4mhVE9ZzZgMOFdKlB2Kt13TlPRdX6S7VWpiSCnCqJaIs45Hxah6wq32asWtnnCrFXexfXphM5if15bR6F4zX65mKAweEaIqCvAGLMZCUNmA_w_4Cy5gpUo |
CitedBy_id | crossref_primary_10_1016_j_memsci_2024_122809 crossref_primary_10_1016_j_desal_2025_118541 crossref_primary_10_1016_j_memsci_2023_121714 crossref_primary_10_1016_j_memsci_2024_122729 crossref_primary_10_1016_j_memsci_2023_121754 crossref_primary_10_1016_j_memsci_2024_122646 crossref_primary_10_1021_acs_macromol_4c02771 crossref_primary_10_1016_j_seppur_2024_130105 crossref_primary_10_1021_acsami_4c12887 crossref_primary_10_1016_j_ces_2024_120723 crossref_primary_10_1016_j_memsci_2023_122173 crossref_primary_10_1016_j_seppur_2023_126048 crossref_primary_10_1016_j_seppur_2024_131031 crossref_primary_10_1016_j_progpolymsci_2024_101815 crossref_primary_10_1016_j_seppur_2023_123411 crossref_primary_10_1016_j_desal_2023_117049 crossref_primary_10_1016_j_seppur_2023_125848 crossref_primary_10_1021_acsami_3c19291 crossref_primary_10_1016_j_watres_2023_119821 crossref_primary_10_1016_j_apsusc_2023_157496 crossref_primary_10_1016_j_cej_2023_144566 crossref_primary_10_1016_j_memsci_2023_121689 crossref_primary_10_5004_dwt_2023_29448 crossref_primary_10_1016_j_memsci_2024_122834 crossref_primary_10_1016_j_seppur_2025_131750 crossref_primary_10_1016_j_seppur_2025_132520 crossref_primary_10_1016_j_memsci_2023_121569 crossref_primary_10_1016_j_memsci_2023_121921 crossref_primary_10_1016_j_coco_2025_102339 crossref_primary_10_1016_j_cej_2022_139197 crossref_primary_10_1016_j_memsci_2023_122386 crossref_primary_10_1016_j_memsci_2023_122382 crossref_primary_10_1016_j_memsci_2025_123703 crossref_primary_10_1021_acs_est_4c04063 crossref_primary_10_1016_j_memsci_2024_123292 crossref_primary_10_1016_j_seppur_2023_123223 crossref_primary_10_1021_acs_est_2c05571 crossref_primary_10_1002_ange_202402509 crossref_primary_10_1002_app_56296 crossref_primary_10_1016_j_desal_2024_117397 crossref_primary_10_1016_j_memsci_2023_121739 crossref_primary_10_1039_D3RA04972H crossref_primary_10_1016_j_memsci_2024_122426 crossref_primary_10_1016_j_seppur_2025_132632 crossref_primary_10_1016_j_memsci_2024_122501 crossref_primary_10_1016_j_seppur_2025_131624 crossref_primary_10_1016_j_memsci_2022_121064 crossref_primary_10_1016_j_memsci_2024_123443 crossref_primary_10_1016_j_cjche_2024_03_004 crossref_primary_10_1016_j_desal_2023_116813 crossref_primary_10_1016_j_seppur_2024_128962 crossref_primary_10_1016_j_memsci_2024_123441 crossref_primary_10_1016_j_seppur_2023_125371 crossref_primary_10_1002_anie_202406830 crossref_primary_10_1016_j_cej_2024_154128 crossref_primary_10_1016_j_memsci_2023_121382 crossref_primary_10_1021_acsami_4c12144 crossref_primary_10_1016_j_cej_2025_160567 crossref_primary_10_1039_D4GC03963G crossref_primary_10_1016_j_desal_2023_117029 crossref_primary_10_1016_j_desal_2024_117422 crossref_primary_10_1016_j_desal_2023_117021 crossref_primary_10_1016_j_desal_2023_117188 crossref_primary_10_1016_j_memsci_2024_123628 crossref_primary_10_1016_j_memsci_2023_121787 crossref_primary_10_1016_j_memsci_2024_123626 crossref_primary_10_1016_j_memsci_2024_122932 crossref_primary_10_1016_j_memsci_2022_121123 crossref_primary_10_1016_j_seppur_2024_127590 crossref_primary_10_1016_j_jece_2023_111711 crossref_primary_10_1016_j_seppur_2024_131005 crossref_primary_10_1016_j_seppur_2024_126494 crossref_primary_10_1016_j_memsci_2023_121991 crossref_primary_10_1002_ange_202406830 crossref_primary_10_1016_j_desal_2023_116526 crossref_primary_10_1016_j_memsci_2024_123672 crossref_primary_10_1016_j_desal_2023_117219 crossref_primary_10_1016_j_memsci_2024_123153 crossref_primary_10_1002_app_56504 crossref_primary_10_1016_j_cej_2023_148384 crossref_primary_10_1016_j_surfin_2025_106168 crossref_primary_10_1016_j_desal_2023_117212 crossref_primary_10_1002_anie_202402509 |
Cites_doi | 10.1016/j.memsci.2021.119142 10.1021/la020920q 10.1007/s40242-021-1270-8 10.1016/j.jcis.2019.01.033 10.1002/mabi.200600053 10.1021/acs.est.9b06779 10.1016/j.memsci.2020.118153 10.1016/j.memsci.2019.01.040 10.1038/s41467-022-28183-1 10.1016/j.cej.2021.132009 10.1021/acsnano.1c00936 10.1007/s10973-016-5487-6 10.1016/j.isci.2021.102369 10.1002/app.11716 10.1126/science.aar6308 10.1016/j.memsci.2017.06.084 10.1038/31418 10.1016/j.memsci.2022.120521 10.1007/s10904-019-01177-1 10.1021/acs.est.9b00473 10.1016/j.memsci.2017.10.037 10.1016/j.desal.2021.115125 10.1039/D0TA09319J 10.1021/acs.estlett.0c00507 10.1021/acs.langmuir.6b04465 10.1016/j.memsci.2020.117980 10.1021/acs.est.9b03210 10.1002/anie.201511064 10.1016/j.memsci.2014.03.074 10.1039/C9TA08163A 10.1039/B909366B 10.1021/acs.iecr.8b06017 10.1039/C8TA03673J 10.1021/acs.est.8b02425 10.1021/la048085v 10.1002/adma.202001383 10.1021/jacs.7b12121 10.1016/j.progpolymsci.2021.101450 10.1016/j.memsci.2020.118645 10.1016/j.memsci.2021.120051 10.1016/j.memsci.2020.117874 10.1016/j.memsci.2016.09.055 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2022.120673 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
ExternalDocumentID | 10_1016_j_memsci_2022_120673 S0376738822004185 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-1e9be9e168231e3ec516a951b6d52ed78dbfc9bfa2b87b581aecbd45dd5c8c023 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Mon Aug 18 09:45:14 EDT 2025 Tue Jul 01 02:49:55 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Fri Feb 23 02:40:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interfacial polymerization Nanofiltration membrane Phytate additive Monomer diffusion Electrostatic interaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-1e9be9e168231e3ec516a951b6d52ed78dbfc9bfa2b87b581aecbd45dd5c8c023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675568249 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2675568249 crossref_primary_10_1016_j_memsci_2022_120673 crossref_citationtrail_10_1016_j_memsci_2022_120673 elsevier_sciencedirect_doi_10_1016_j_memsci_2022_120673 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-05 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gong, Gao, Tian, Zhu, Fang, Wang, Jin (bib18) 2020; 600 Zhu, Liu, Yang, Guo, Li, Xu (bib28) 2021; 627 Bowen, Sharif (bib37) 1998; 393 Bocquet, Charlaix (bib43) 2010; 39 Yang, Guo, Yao, Mei, Tang (bib24) 2019; 53 Bian, Zhang, Gong, Zhu, Jin (bib31) 2021; 37 Chen, Luo, Hang, Wan (bib7) 2018; 547 Zhang, Guo, Han, Bai, Ge, Ma, Lau, Shao (bib42) 2021; 7 Peng, Zhang, Hung, Wang, Sun, Lee, An, Liu, Zhao (bib2) 2020; 32 Liu, Wang, Wang, Mi (bib30) 2021; 617 Nowbahar, Mansard, Mecca, Paul, Arrowood, Squires (bib6) 2018; 140 You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib26) 2017; 540 Rinaudo (bib36) 2006; 6 Wang, Liang, Kang, Zhao, Xia, Yang, Wang, Zhang (bib1) 2021; 122 Yang, Huang, Yang, Wang, Xue, Zhou, Wu, Shao, Zhang (bib41) 2022; 653 Tan, Chen, Peng, Zhang, Gao (bib17) 2018; 360 Wu, Yuan, Wu, Su, Yang, You, Zhang, He, Khan, Kasher, Jiang (bib11) 2019; 576 Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib23) 2017; 523 Zhao, You, Wang, Yuan, Li, Yang, Zhang, Wang, Zhang, Wu, Jiang (bib4) 2022; 644 Kianfar, Kianfar (bib3) 2019; 29 Xiang, Xie, Hoang, Ng, Zhang (bib35) 2014; 465 Paseta, Antoran, Coronas, Tellez (bib22) 2019; 58 You, Wu, Su, Yuan, Zhang, Yu, Wu, Jiang, Cao (bib27) 2018; 6 Qiu, Fang, Shen, Yu, Zhu, Helix-Nielsen, Zhang (bib5) 2021; 15 Freger, Srebnik (bib10) 2003; 88 Darby, Platts, Daniel, Cowieson, Falconer (bib40) 2017; 127 You, Xiao, Wu, Li, Li, Yuan, Zhang, Zhang, Liang, Shen, Jiang (bib38) 2021; 24 Yin, Yang, Tang, Deng (bib25) 2020; 7 Shen, Cheng, Yi, Hung, Japip, Tian, Zhang, Jiang, Li, Wang (bib29) 2022; 13 Guan, Fan, Liu, Shi, Yuan, Zhang, You, He, Su, Jiang (bib19) 2020; 602 Song, Chen, Rong, Xie, Zhao, Wang, Chen, Wolfbeis (bib39) 2016; 55 Freger (bib8) 2003; 19 Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib15) 2019; 7 Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib21) 2020; 8 Xu, Lin, Li, Wang, Han, Liu (bib12) 2022; 427 Li, Liu, Zhu, Li, Yuan, Tian, Wang, Luis, Van der Bruggen, Lin (bib20) 2021; 512 Zhu, Cheng, Luo, Liu, Xu, Tang, Gan, Yang, Li, Liang (bib16) 2020; 54 Yang, Du, Zhang, He, Xu (bib13) 2017; 33 Yang, Zhou, Guo, Yao, Ma, Song, Feng, Tang (bib14) 2018; 52 Shen, Li, Zhang, Wang (bib32) 2020; 607 Peng, Yao, Liu, Deng, Guo, Tang (bib33) 2019; 53 Freger (bib9) 2005; 21 Ma, Yang, Yao, Guo, Xu, Tang (bib34) 2019; 540 Rinaudo (10.1016/j.memsci.2022.120673_bib36) 2006; 6 Yang (10.1016/j.memsci.2022.120673_bib41) 2022; 653 Yang (10.1016/j.memsci.2022.120673_bib14) 2018; 52 Xu (10.1016/j.memsci.2022.120673_bib12) 2022; 427 Wu (10.1016/j.memsci.2022.120673_bib11) 2019; 576 Zhao (10.1016/j.memsci.2022.120673_bib4) 2022; 644 Zhang (10.1016/j.memsci.2022.120673_bib42) 2021; 7 Yang (10.1016/j.memsci.2022.120673_bib13) 2017; 33 Paseta (10.1016/j.memsci.2022.120673_bib22) 2019; 58 Darby (10.1016/j.memsci.2022.120673_bib40) 2017; 127 Bowen (10.1016/j.memsci.2022.120673_bib37) 1998; 393 Bocquet (10.1016/j.memsci.2022.120673_bib43) 2010; 39 You (10.1016/j.memsci.2022.120673_bib26) 2017; 540 Freger (10.1016/j.memsci.2022.120673_bib8) 2003; 19 Gong (10.1016/j.memsci.2022.120673_bib18) 2020; 600 Kianfar (10.1016/j.memsci.2022.120673_bib3) 2019; 29 Shen (10.1016/j.memsci.2022.120673_bib29) 2022; 13 Freger (10.1016/j.memsci.2022.120673_bib10) 2003; 88 Li (10.1016/j.memsci.2022.120673_bib20) 2021; 512 Liu (10.1016/j.memsci.2022.120673_bib30) 2021; 617 Shen (10.1016/j.memsci.2022.120673_bib32) 2020; 607 Freger (10.1016/j.memsci.2022.120673_bib9) 2005; 21 Xiang (10.1016/j.memsci.2022.120673_bib35) 2014; 465 You (10.1016/j.memsci.2022.120673_bib38) 2021; 24 You (10.1016/j.memsci.2022.120673_bib27) 2018; 6 Ma (10.1016/j.memsci.2022.120673_bib34) 2019; 540 Chen (10.1016/j.memsci.2022.120673_bib7) 2018; 547 Peng (10.1016/j.memsci.2022.120673_bib2) 2020; 32 Nowbahar (10.1016/j.memsci.2022.120673_bib6) 2018; 140 Tan (10.1016/j.memsci.2022.120673_bib17) 2018; 360 Zhu (10.1016/j.memsci.2022.120673_bib28) 2021; 627 Wang (10.1016/j.memsci.2022.120673_bib23) 2017; 523 Song (10.1016/j.memsci.2022.120673_bib39) 2016; 55 Bian (10.1016/j.memsci.2022.120673_bib31) 2021; 37 Peng (10.1016/j.memsci.2022.120673_bib33) 2019; 53 Yin (10.1016/j.memsci.2022.120673_bib25) 2020; 7 Li (10.1016/j.memsci.2022.120673_bib21) 2020; 8 Qiu (10.1016/j.memsci.2022.120673_bib5) 2021; 15 Zhu (10.1016/j.memsci.2022.120673_bib16) 2020; 54 Yang (10.1016/j.memsci.2022.120673_bib24) 2019; 53 Guan (10.1016/j.memsci.2022.120673_bib19) 2020; 602 Wang (10.1016/j.memsci.2022.120673_bib1) 2021; 122 Yuan (10.1016/j.memsci.2022.120673_bib15) 2019; 7 |
References_xml | – volume: 29 start-page: 2176 year: 2019 end-page: 2185 ident: bib3 article-title: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 644 year: 2022 ident: bib4 article-title: Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration publication-title: J. Membr. Sci. – volume: 576 start-page: 131 year: 2019 end-page: 141 ident: bib11 article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability publication-title: J. Membr. Sci. – volume: 427 year: 2022 ident: bib12 article-title: Anionic covalent organic framework as an interlayer to fabricate negatively charged polyamide composite nanofiltration membrane featuring ions sieving publication-title: Chem. Eng. J. – volume: 540 start-page: 454 year: 2017 end-page: 463 ident: bib26 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. – volume: 540 start-page: 382 year: 2019 end-page: 388 ident: bib34 article-title: Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 9764 year: 2019 end-page: 9770 ident: bib33 article-title: Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry-structure-property relationship, and environmental implications publication-title: Environ. Sci. Technol. – volume: 55 start-page: 3936 year: 2016 end-page: 3941 ident: bib39 article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 9341 year: 2018 end-page: 9349 ident: bib14 article-title: Tannic acid/Fe publication-title: Environ. Sci. Technol. – volume: 37 start-page: 1101 year: 2021 end-page: 1109 ident: bib31 article-title: Calcium ion coordinated polyamide nanofiltration membrane for ultrahigh perm-selectivity Desalination publication-title: Chem. Res. Chin. Univ. – volume: 6 start-page: 590 year: 2006 end-page: 610 ident: bib36 article-title: Non-covalent interactions in polysaccharide systems publication-title: Macromol. Biosci. – volume: 523 start-page: 273 year: 2017 end-page: 281 ident: bib23 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. – volume: 58 start-page: 4222 year: 2019 end-page: 4230 ident: bib22 article-title: 110th Anniversary: polyamide/metal-organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water publication-title: Ind. Eng. Chem. Res. – volume: 512 year: 2021 ident: bib20 article-title: Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration publication-title: Desalination – volume: 360 start-page: 518 year: 2018 end-page: 521 ident: bib17 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science – volume: 33 start-page: 2318 year: 2017 end-page: 2324 ident: bib13 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir – volume: 600 year: 2020 ident: bib18 article-title: Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH publication-title: J. Membr. Sci. – volume: 54 start-page: 6365 year: 2020 end-page: 6374 ident: bib16 article-title: Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance publication-title: Environ. Sci. Technol. – volume: 140 start-page: 3173 year: 2018 end-page: 3176 ident: bib6 article-title: Measuring interfacial polymerization kinetics using microfluidic interferometry publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 500 year: 2022 ident: bib29 article-title: Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving publication-title: Nat. Commun. – volume: 88 start-page: 1162 year: 2003 end-page: 1169 ident: bib10 article-title: Mathematical model of charge and density distributions in interfacial polymerization of thin films publication-title: J. Appl. Polym. Sci. – volume: 127 start-page: 1201 year: 2017 end-page: 1208 ident: bib40 article-title: An isothermal titration calorimetry study of phytate binding to lysozyme publication-title: J. Therm. Anal. Calorim. – volume: 607 year: 2020 ident: bib32 article-title: Salt-tuned fabrication of novel polyamide composite nanofiltration membranes with three-dimensional turing structures for effective desalination publication-title: J. Membr. Sci. – volume: 7 start-page: 25641 year: 2019 end-page: 25649 ident: bib15 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. – volume: 602 year: 2020 ident: bib19 article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance publication-title: J. Membr. Sci. – volume: 617 year: 2021 ident: bib30 article-title: Regulating the morphology of nanofiltration membrane by thermally induced inorganic salt crystals for efficient water purification publication-title: J. Membr. Sci. – volume: 393 start-page: 663 year: 1998 end-page: 665 ident: bib37 article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore (vol 393, pg 663, 1998) publication-title: Nature – volume: 21 start-page: 1884 year: 2005 end-page: 1894 ident: bib9 article-title: Kinetics of film formation by interfacial polycondensation publication-title: Langmuir – volume: 627 year: 2021 ident: bib28 article-title: Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration publication-title: J. Membr. Sci. – volume: 39 start-page: 1073 year: 2010 end-page: 1095 ident: bib43 article-title: Nanofluidics, from bulk to interfaces publication-title: Chem. Soc. Rev. – volume: 19 start-page: 4791 year: 2003 end-page: 4797 ident: bib8 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir – volume: 53 start-page: 5301 year: 2019 end-page: 5308 ident: bib24 article-title: Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes publication-title: Environ. Sci. Technol. – volume: 122 year: 2021 ident: bib1 article-title: Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes publication-title: Prog. Polym. Sci. – volume: 32 year: 2020 ident: bib2 article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness publication-title: Adv. Mater. – volume: 7 start-page: 766 year: 2020 end-page: 772 ident: bib25 article-title: Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane publication-title: Environ. Sci. Technol. Lett. – volume: 7 year: 2021 ident: bib42 article-title: Molecularly soldered covalent organic frameworks for ultrafast precision sieving publication-title: Sci. Adv. – volume: 465 start-page: 34 year: 2014 end-page: 40 ident: bib35 article-title: Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane publication-title: J. Membr. Sci. – volume: 15 start-page: 7522 year: 2021 end-page: 7535 ident: bib5 article-title: Ionic dendrimer based polyamide membranes for ion separation publication-title: ACS Nano – volume: 24 year: 2021 ident: bib38 article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes publication-title: iScience – volume: 547 start-page: 51 year: 2018 end-page: 63 ident: bib7 article-title: Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment publication-title: J. Membr. Sci. – volume: 8 start-page: 23930 year: 2020 end-page: 23938 ident: bib21 article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. – volume: 653 year: 2022 ident: bib41 article-title: Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance publication-title: J. Membr. Sci. – volume: 6 start-page: 13191 year: 2018 end-page: 13202 ident: bib27 article-title: Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS publication-title: J. Mater. Chem. – volume: 627 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib28 article-title: Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119142 – volume: 19 start-page: 4791 year: 2003 ident: 10.1016/j.memsci.2022.120673_bib8 article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization publication-title: Langmuir doi: 10.1021/la020920q – volume: 37 start-page: 1101 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib31 article-title: Calcium ion coordinated polyamide nanofiltration membrane for ultrahigh perm-selectivity Desalination publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-021-1270-8 – volume: 540 start-page: 382 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib34 article-title: Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.033 – volume: 6 start-page: 590 year: 2006 ident: 10.1016/j.memsci.2022.120673_bib36 article-title: Non-covalent interactions in polysaccharide systems publication-title: Macromol. Biosci. doi: 10.1002/mabi.200600053 – volume: 54 start-page: 6365 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib16 article-title: Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06779 – volume: 607 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib32 article-title: Salt-tuned fabrication of novel polyamide composite nanofiltration membranes with three-dimensional turing structures for effective desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118153 – volume: 576 start-page: 131 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib11 article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.01.040 – volume: 13 start-page: 500 year: 2022 ident: 10.1016/j.memsci.2022.120673_bib29 article-title: Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving publication-title: Nat. Commun. doi: 10.1038/s41467-022-28183-1 – volume: 427 year: 2022 ident: 10.1016/j.memsci.2022.120673_bib12 article-title: Anionic covalent organic framework as an interlayer to fabricate negatively charged polyamide composite nanofiltration membrane featuring ions sieving publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132009 – volume: 15 start-page: 7522 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib5 article-title: Ionic dendrimer based polyamide membranes for ion separation publication-title: ACS Nano doi: 10.1021/acsnano.1c00936 – volume: 127 start-page: 1201 year: 2017 ident: 10.1016/j.memsci.2022.120673_bib40 article-title: An isothermal titration calorimetry study of phytate binding to lysozyme publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-016-5487-6 – volume: 24 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib38 article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes publication-title: iScience doi: 10.1016/j.isci.2021.102369 – volume: 88 start-page: 1162 year: 2003 ident: 10.1016/j.memsci.2022.120673_bib10 article-title: Mathematical model of charge and density distributions in interfacial polymerization of thin films publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.11716 – volume: 360 start-page: 518 year: 2018 ident: 10.1016/j.memsci.2022.120673_bib17 article-title: Polyamide membranes with nanoscale Turing structures for water purification publication-title: Science doi: 10.1126/science.aar6308 – volume: 540 start-page: 454 year: 2017 ident: 10.1016/j.memsci.2022.120673_bib26 article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.084 – volume: 393 start-page: 663 year: 1998 ident: 10.1016/j.memsci.2022.120673_bib37 article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore (vol 393, pg 663, 1998) publication-title: Nature doi: 10.1038/31418 – volume: 653 year: 2022 ident: 10.1016/j.memsci.2022.120673_bib41 article-title: Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120521 – volume: 29 start-page: 2176 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib3 article-title: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-019-01177-1 – volume: 53 start-page: 5301 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib24 article-title: Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b00473 – volume: 7 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib42 article-title: Molecularly soldered covalent organic frameworks for ultrafast precision sieving publication-title: Sci. Adv. – volume: 547 start-page: 51 year: 2018 ident: 10.1016/j.memsci.2022.120673_bib7 article-title: Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.10.037 – volume: 512 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib20 article-title: Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration publication-title: Desalination doi: 10.1016/j.desal.2021.115125 – volume: 8 start-page: 23930 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib21 article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration publication-title: J. Mater. Chem. doi: 10.1039/D0TA09319J – volume: 7 start-page: 766 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib25 article-title: Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.0c00507 – volume: 33 start-page: 2318 year: 2017 ident: 10.1016/j.memsci.2022.120673_bib13 article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04465 – volume: 602 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib19 article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117980 – volume: 53 start-page: 9764 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib33 article-title: Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry-structure-property relationship, and environmental implications publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03210 – volume: 55 start-page: 3936 year: 2016 ident: 10.1016/j.memsci.2022.120673_bib39 article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511064 – volume: 465 start-page: 34 year: 2014 ident: 10.1016/j.memsci.2022.120673_bib35 article-title: Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.03.074 – volume: 7 start-page: 25641 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib15 article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes publication-title: J. Mater. Chem. doi: 10.1039/C9TA08163A – volume: 39 start-page: 1073 year: 2010 ident: 10.1016/j.memsci.2022.120673_bib43 article-title: Nanofluidics, from bulk to interfaces publication-title: Chem. Soc. Rev. doi: 10.1039/B909366B – volume: 58 start-page: 4222 year: 2019 ident: 10.1016/j.memsci.2022.120673_bib22 article-title: 110th Anniversary: polyamide/metal-organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b06017 – volume: 6 start-page: 13191 year: 2018 ident: 10.1016/j.memsci.2022.120673_bib27 article-title: Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS publication-title: J. Mater. Chem. doi: 10.1039/C8TA03673J – volume: 52 start-page: 9341 year: 2018 ident: 10.1016/j.memsci.2022.120673_bib14 article-title: Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02425 – volume: 21 start-page: 1884 year: 2005 ident: 10.1016/j.memsci.2022.120673_bib9 article-title: Kinetics of film formation by interfacial polycondensation publication-title: Langmuir doi: 10.1021/la048085v – volume: 32 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib2 article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness publication-title: Adv. Mater. doi: 10.1002/adma.202001383 – volume: 140 start-page: 3173 year: 2018 ident: 10.1016/j.memsci.2022.120673_bib6 article-title: Measuring interfacial polymerization kinetics using microfluidic interferometry publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12121 – volume: 122 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib1 article-title: Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101450 – volume: 617 year: 2021 ident: 10.1016/j.memsci.2022.120673_bib30 article-title: Regulating the morphology of nanofiltration membrane by thermally induced inorganic salt crystals for efficient water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118645 – volume: 644 year: 2022 ident: 10.1016/j.memsci.2022.120673_bib4 article-title: Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.120051 – volume: 600 year: 2020 ident: 10.1016/j.memsci.2022.120673_bib18 article-title: Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.117874 – volume: 523 start-page: 273 year: 2017 ident: 10.1016/j.memsci.2022.120673_bib23 article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.055 |
SSID | ssj0017089 |
Score | 2.653958 |
Snippet | Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120673 |
SubjectTerms | diffusivity Electrostatic interaction electrostatic interactions Interfacial polymerization Monomer diffusion nanofiltration Nanofiltration membrane Phytate additive phytic acid piperazine polyamides polymerization solubility |
Title | Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes |
URI | https://dx.doi.org/10.1016/j.memsci.2022.120673 https://www.proquest.com/docview/2675568249 |
Volume | 657 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXMoBAS0CWpAr9epdEttr-7haFW2p4NKutDfLr_DQko1ge-DCb2fGSVa0EkLqMYntJDP2POyZbwj5BoQPwXvFKik1EyFo5ksD6ypWxiuZvM7wxZdXo-lMXMzlfINM-lwYDKvsZH8r07O07u4MO2oOm9vb4a8zBCLhYCEio0HtYAa7UDjLB8_rMI9CneUyeNiYYes-fS7HeN2nexgavMSyHBQIZM7fUk__COqsfc53yU5nNtJx-2V7ZCPV-2T7FZjgR_J8uYy5Fld9TREE4qFyuB1Om-XiCY9l2nxLihuvFGiLRiZ1j9TB-8D7Z80N6DOK4UUoACnYshShjBdPrAHh_ZjL5eCD2tVY5btD26Xwb-Bvg7z8RGbn339PpqyrrsAC52bFimR8MqkY4UFg4inIYuTA3vKjKMsUlY6-CsZXrvRaeakLl4KPQsYogw6g6g_IZr2s0yGhwoFVIwpjkvNC8aC5iDpor6okuC_CEeE9UW3ooMexAsbC9jFmd7ZlhUVW2JYVR4StezUt9MY77VXPL_vXFLKgHd7p-bVnr4XVhUcmQDigvS3Bn5JAIWGO_3v0z-QDXuXANPmFbK4e_qQTsGRW_jRP1VOyNf7xc3r1AmXb-Fc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPRQOqC0gKH24EhzNktje2IceqrZoKSwXQOJm_ApstWQjdlG1F_5U_2BnnAS1SAipEtc4Tuxv7JmxPf6GkG0A3nvnClZKqZjwXjGXa5hXodSukNGpRF88PO4PzsSPc3m-QH53d2EwrLLV_Y1OT9q6fdJr0ezVo1HvZA-JSDh4iChoMDttZOVhnP-Cddv088E3EPJOnu9_P_06YG1qAeY51zOWRe2ijlkfT8Eij15mfQvOhusHmcdQqOBKr11pc6cKJ1Vmo3dByBCkVz6xHYDefyFAXWDahN27-7iSrNhLefewdQyb193XS0Fl1_Ea-gLL0jzfzZA5nT9mDx9YhmTu9l-RldZPpV8aKF6ThVi9Ict_sReukrvhJKTkX9UlRdaJm9Li_jutJ-M5ngM1Fzwp7vRSECZ6tdROqYX_TW6nrL4CA0oxngk1LgXnmSJ38njOarAW05SfBwsqW2Fa8Zbel0LfYIEPCnqNnD0L5utksZpUcYNQYcGNEpnW0TpRcK-4CMorV5RRcJf5TcI7UI1vuc4x5cbYdEFtP00jCoOiMI0oNgm7r1U3XB9PvF908jL_jFkD5uiJmp868RqYznhGA8AB9iaHBZwEhIR--99f_0heDk6HR-bo4PhwiyxhSYqKk-_I4uzmNr4HN2rmPqRhS8nFc8-TP8tqNho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+interfacial+polymerization+with+phytate+as+aqueous-phase+additive+for+highly-permselective+nanofiltration+membranes&rft.jtitle=Journal+of+membrane+science&rft.au=Zhang%2C+Miaomiao&rft.au=You%2C+Xinda&rft.au=Xiao%2C+Ke&rft.au=Yin%2C+Zhuoyu&rft.date=2022-09-05&rft.issn=0376-7388&rft.volume=657&rft.spage=120673&rft_id=info:doi/10.1016%2Fj.memsci.2022.120673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2022_120673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |