Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes

Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 657; p. 120673
Main Authors Zhang, Miaomiao, You, Xinda, Xiao, Ke, Yin, Zhuoyu, Yuan, Jinqiu, Zhao, Junhui, Yang, Chao, Zhang, Runnan, Wu, Hong, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10−5-10−6 cm2 s−1) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na2SO4 rejection >97%), outperforming the benchmark commercial nanofiltration membranes. [Display omitted] •Phytic acid dodecasodium salt (PADS) as additive to modulate interfacial polymerization.•PADS can retard the diffusion of amine monomers by electrostatic interaction.•The thickness of PA membrane is significantly reduced.•The optimized polyamide membrane shows high water permeance and Na2SO4 rejection.
AbstractList Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10−5-10−6 cm2 s−1) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na2SO4 rejection >97%), outperforming the benchmark commercial nanofiltration membranes. [Display omitted] •Phytic acid dodecasodium salt (PADS) as additive to modulate interfacial polymerization.•PADS can retard the diffusion of amine monomers by electrostatic interaction.•The thickness of PA membrane is significantly reduced.•The optimized polyamide membrane shows high water permeance and Na2SO4 rejection.
Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and thus elevating nanofiltration performance. Herein, phytic acid dodecasodium salt (PADS), a small molecule salt with high solubility, is used as an aqueous-phase additive to modulate the piperazine (PIP) monomers diffusion behavior via electrostatic interaction during the IP process. The PADS with a high charge density can form long-range electrostatic interaction with the PIP molecules to retard their diffusion. The diffusion coefficient of PIP can be effectively modulated within an order of magnitude (∼10⁻⁵-10⁻⁶ cm² s⁻¹) by varying the amount of PADS. Accordingly, the growth of polyamide layer is inhibited and the membrane thickness is reduced from 95 nm to 50 nm. The optimized membrane presents a two-fold increase in water permeance while maintaining excellent salt rejection performance (Na₂SO₄ rejection >97%), outperforming the benchmark commercial nanofiltration membranes.
ArticleNumber 120673
Author Xiao, Ke
Zhang, Miaomiao
You, Xinda
Zhang, Runnan
Jiang, Zhongyi
Yang, Chao
Yuan, Jinqiu
Zhao, Junhui
Wu, Hong
Yin, Zhuoyu
Author_xml – sequence: 1
  givenname: Miaomiao
  surname: Zhang
  fullname: Zhang, Miaomiao
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 2
  givenname: Xinda
  surname: You
  fullname: You, Xinda
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 3
  givenname: Ke
  surname: Xiao
  fullname: Xiao, Ke
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 4
  givenname: Zhuoyu
  surname: Yin
  fullname: Yin, Zhuoyu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 5
  givenname: Jinqiu
  surname: Yuan
  fullname: Yuan, Jinqiu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 6
  givenname: Junhui
  surname: Zhao
  fullname: Zhao, Junhui
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 7
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 8
  givenname: Runnan
  surname: Zhang
  fullname: Zhang, Runnan
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 9
  givenname: Hong
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
– sequence: 10
  givenname: Zhongyi
  surname: Jiang
  fullname: Jiang, Zhongyi
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
BookMark eNqFkE9v1DAUxC1UpG4L36CHHLlk8Z9N4nCohCpKKxVxgbPl2C_NWzl2anuLlgOfHbfh1AM9WfKbGc38zsiJDx4IuWB0yyhrP-63M8zJ4JZTzreM07YTb8iGyU7UgnFxQjZUdG3dCSlPyVlKe0pZR2W_IX--BXtwOqO_r9BniKM2qF21BHecIeLvcgq--oV5qpbpmHWGSqdKPxwgHFK9TDqVD2sx4yNUY4jVhPeTO9YLxDmBA_N88NqHEV2Oa1ypO0TtIb0jb0ftErz_956Tn9dfflzd1Hffv95efb6rjRB9rhn0A_TAWskFAwGmYa3uGza0tuFgO2mH0fTDqPkgu6GRTIMZ7K6xtjHSUC7OyYc1d4mhVE9ZzZgMOFdKlB2Kt13TlPRdX6S7VWpiSCnCqJaIs45Hxah6wq32asWtnnCrFXexfXphM5if15bR6F4zX65mKAweEaIqCvAGLMZCUNmA_w_4Cy5gpUo
CitedBy_id crossref_primary_10_1016_j_memsci_2024_122809
crossref_primary_10_1016_j_desal_2025_118541
crossref_primary_10_1016_j_memsci_2023_121714
crossref_primary_10_1016_j_memsci_2024_122729
crossref_primary_10_1016_j_memsci_2023_121754
crossref_primary_10_1016_j_memsci_2024_122646
crossref_primary_10_1021_acs_macromol_4c02771
crossref_primary_10_1016_j_seppur_2024_130105
crossref_primary_10_1021_acsami_4c12887
crossref_primary_10_1016_j_ces_2024_120723
crossref_primary_10_1016_j_memsci_2023_122173
crossref_primary_10_1016_j_seppur_2023_126048
crossref_primary_10_1016_j_seppur_2024_131031
crossref_primary_10_1016_j_progpolymsci_2024_101815
crossref_primary_10_1016_j_seppur_2023_123411
crossref_primary_10_1016_j_desal_2023_117049
crossref_primary_10_1016_j_seppur_2023_125848
crossref_primary_10_1021_acsami_3c19291
crossref_primary_10_1016_j_watres_2023_119821
crossref_primary_10_1016_j_apsusc_2023_157496
crossref_primary_10_1016_j_cej_2023_144566
crossref_primary_10_1016_j_memsci_2023_121689
crossref_primary_10_5004_dwt_2023_29448
crossref_primary_10_1016_j_memsci_2024_122834
crossref_primary_10_1016_j_seppur_2025_131750
crossref_primary_10_1016_j_seppur_2025_132520
crossref_primary_10_1016_j_memsci_2023_121569
crossref_primary_10_1016_j_memsci_2023_121921
crossref_primary_10_1016_j_coco_2025_102339
crossref_primary_10_1016_j_cej_2022_139197
crossref_primary_10_1016_j_memsci_2023_122386
crossref_primary_10_1016_j_memsci_2023_122382
crossref_primary_10_1016_j_memsci_2025_123703
crossref_primary_10_1021_acs_est_4c04063
crossref_primary_10_1016_j_memsci_2024_123292
crossref_primary_10_1016_j_seppur_2023_123223
crossref_primary_10_1021_acs_est_2c05571
crossref_primary_10_1002_ange_202402509
crossref_primary_10_1002_app_56296
crossref_primary_10_1016_j_desal_2024_117397
crossref_primary_10_1016_j_memsci_2023_121739
crossref_primary_10_1039_D3RA04972H
crossref_primary_10_1016_j_memsci_2024_122426
crossref_primary_10_1016_j_seppur_2025_132632
crossref_primary_10_1016_j_memsci_2024_122501
crossref_primary_10_1016_j_seppur_2025_131624
crossref_primary_10_1016_j_memsci_2022_121064
crossref_primary_10_1016_j_memsci_2024_123443
crossref_primary_10_1016_j_cjche_2024_03_004
crossref_primary_10_1016_j_desal_2023_116813
crossref_primary_10_1016_j_seppur_2024_128962
crossref_primary_10_1016_j_memsci_2024_123441
crossref_primary_10_1016_j_seppur_2023_125371
crossref_primary_10_1002_anie_202406830
crossref_primary_10_1016_j_cej_2024_154128
crossref_primary_10_1016_j_memsci_2023_121382
crossref_primary_10_1021_acsami_4c12144
crossref_primary_10_1016_j_cej_2025_160567
crossref_primary_10_1039_D4GC03963G
crossref_primary_10_1016_j_desal_2023_117029
crossref_primary_10_1016_j_desal_2024_117422
crossref_primary_10_1016_j_desal_2023_117021
crossref_primary_10_1016_j_desal_2023_117188
crossref_primary_10_1016_j_memsci_2024_123628
crossref_primary_10_1016_j_memsci_2023_121787
crossref_primary_10_1016_j_memsci_2024_123626
crossref_primary_10_1016_j_memsci_2024_122932
crossref_primary_10_1016_j_memsci_2022_121123
crossref_primary_10_1016_j_seppur_2024_127590
crossref_primary_10_1016_j_jece_2023_111711
crossref_primary_10_1016_j_seppur_2024_131005
crossref_primary_10_1016_j_seppur_2024_126494
crossref_primary_10_1016_j_memsci_2023_121991
crossref_primary_10_1002_ange_202406830
crossref_primary_10_1016_j_desal_2023_116526
crossref_primary_10_1016_j_memsci_2024_123672
crossref_primary_10_1016_j_desal_2023_117219
crossref_primary_10_1016_j_memsci_2024_123153
crossref_primary_10_1002_app_56504
crossref_primary_10_1016_j_cej_2023_148384
crossref_primary_10_1016_j_surfin_2025_106168
crossref_primary_10_1016_j_desal_2023_117212
crossref_primary_10_1002_anie_202402509
Cites_doi 10.1016/j.memsci.2021.119142
10.1021/la020920q
10.1007/s40242-021-1270-8
10.1016/j.jcis.2019.01.033
10.1002/mabi.200600053
10.1021/acs.est.9b06779
10.1016/j.memsci.2020.118153
10.1016/j.memsci.2019.01.040
10.1038/s41467-022-28183-1
10.1016/j.cej.2021.132009
10.1021/acsnano.1c00936
10.1007/s10973-016-5487-6
10.1016/j.isci.2021.102369
10.1002/app.11716
10.1126/science.aar6308
10.1016/j.memsci.2017.06.084
10.1038/31418
10.1016/j.memsci.2022.120521
10.1007/s10904-019-01177-1
10.1021/acs.est.9b00473
10.1016/j.memsci.2017.10.037
10.1016/j.desal.2021.115125
10.1039/D0TA09319J
10.1021/acs.estlett.0c00507
10.1021/acs.langmuir.6b04465
10.1016/j.memsci.2020.117980
10.1021/acs.est.9b03210
10.1002/anie.201511064
10.1016/j.memsci.2014.03.074
10.1039/C9TA08163A
10.1039/B909366B
10.1021/acs.iecr.8b06017
10.1039/C8TA03673J
10.1021/acs.est.8b02425
10.1021/la048085v
10.1002/adma.202001383
10.1021/jacs.7b12121
10.1016/j.progpolymsci.2021.101450
10.1016/j.memsci.2020.118645
10.1016/j.memsci.2021.120051
10.1016/j.memsci.2020.117874
10.1016/j.memsci.2016.09.055
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2022.120673
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
ExternalDocumentID 10_1016_j_memsci_2022_120673
S0376738822004185
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-1e9be9e168231e3ec516a951b6d52ed78dbfc9bfa2b87b581aecbd45dd5c8c023
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Mon Aug 18 09:45:14 EDT 2025
Tue Jul 01 02:49:55 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Fri Feb 23 02:40:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interfacial polymerization
Nanofiltration membrane
Phytate additive
Monomer diffusion
Electrostatic interaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-1e9be9e168231e3ec516a951b6d52ed78dbfc9bfa2b87b581aecbd45dd5c8c023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675568249
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2675568249
crossref_primary_10_1016_j_memsci_2022_120673
crossref_citationtrail_10_1016_j_memsci_2022_120673
elsevier_sciencedirect_doi_10_1016_j_memsci_2022_120673
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-05
PublicationDateYYYYMMDD 2022-09-05
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-05
  day: 05
PublicationDecade 2020
PublicationTitle Journal of membrane science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gong, Gao, Tian, Zhu, Fang, Wang, Jin (bib18) 2020; 600
Zhu, Liu, Yang, Guo, Li, Xu (bib28) 2021; 627
Bowen, Sharif (bib37) 1998; 393
Bocquet, Charlaix (bib43) 2010; 39
Yang, Guo, Yao, Mei, Tang (bib24) 2019; 53
Bian, Zhang, Gong, Zhu, Jin (bib31) 2021; 37
Chen, Luo, Hang, Wan (bib7) 2018; 547
Zhang, Guo, Han, Bai, Ge, Ma, Lau, Shao (bib42) 2021; 7
Peng, Zhang, Hung, Wang, Sun, Lee, An, Liu, Zhao (bib2) 2020; 32
Liu, Wang, Wang, Mi (bib30) 2021; 617
Nowbahar, Mansard, Mecca, Paul, Arrowood, Squires (bib6) 2018; 140
You, Ma, Su, Wu, Wu, Cai, Sun, Jiang (bib26) 2017; 540
Rinaudo (bib36) 2006; 6
Wang, Liang, Kang, Zhao, Xia, Yang, Wang, Zhang (bib1) 2021; 122
Yang, Huang, Yang, Wang, Xue, Zhou, Wu, Shao, Zhang (bib41) 2022; 653
Tan, Chen, Peng, Zhang, Gao (bib17) 2018; 360
Wu, Yuan, Wu, Su, Yang, You, Zhang, He, Khan, Kasher, Jiang (bib11) 2019; 576
Wang, Li, Chen, Li, Yin, Cao, Zhong, Wu (bib23) 2017; 523
Zhao, You, Wang, Yuan, Li, Yang, Zhang, Wang, Zhang, Wu, Jiang (bib4) 2022; 644
Kianfar, Kianfar (bib3) 2019; 29
Xiang, Xie, Hoang, Ng, Zhang (bib35) 2014; 465
Paseta, Antoran, Coronas, Tellez (bib22) 2019; 58
You, Wu, Su, Yuan, Zhang, Yu, Wu, Jiang, Cao (bib27) 2018; 6
Qiu, Fang, Shen, Yu, Zhu, Helix-Nielsen, Zhang (bib5) 2021; 15
Freger, Srebnik (bib10) 2003; 88
Darby, Platts, Daniel, Cowieson, Falconer (bib40) 2017; 127
You, Xiao, Wu, Li, Li, Yuan, Zhang, Zhang, Liang, Shen, Jiang (bib38) 2021; 24
Yin, Yang, Tang, Deng (bib25) 2020; 7
Shen, Cheng, Yi, Hung, Japip, Tian, Zhang, Jiang, Li, Wang (bib29) 2022; 13
Guan, Fan, Liu, Shi, Yuan, Zhang, You, He, Su, Jiang (bib19) 2020; 602
Song, Chen, Rong, Xie, Zhao, Wang, Chen, Wolfbeis (bib39) 2016; 55
Freger (bib8) 2003; 19
Yuan, Wu, Wu, Liu, You, Zhang, Su, Yang, Shen, Jiang (bib15) 2019; 7
Li, You, Li, Yuan, Shen, Zhang, Wu, Su, Jiang (bib21) 2020; 8
Xu, Lin, Li, Wang, Han, Liu (bib12) 2022; 427
Li, Liu, Zhu, Li, Yuan, Tian, Wang, Luis, Van der Bruggen, Lin (bib20) 2021; 512
Zhu, Cheng, Luo, Liu, Xu, Tang, Gan, Yang, Li, Liang (bib16) 2020; 54
Yang, Du, Zhang, He, Xu (bib13) 2017; 33
Yang, Zhou, Guo, Yao, Ma, Song, Feng, Tang (bib14) 2018; 52
Shen, Li, Zhang, Wang (bib32) 2020; 607
Peng, Yao, Liu, Deng, Guo, Tang (bib33) 2019; 53
Freger (bib9) 2005; 21
Ma, Yang, Yao, Guo, Xu, Tang (bib34) 2019; 540
Rinaudo (10.1016/j.memsci.2022.120673_bib36) 2006; 6
Yang (10.1016/j.memsci.2022.120673_bib41) 2022; 653
Yang (10.1016/j.memsci.2022.120673_bib14) 2018; 52
Xu (10.1016/j.memsci.2022.120673_bib12) 2022; 427
Wu (10.1016/j.memsci.2022.120673_bib11) 2019; 576
Zhao (10.1016/j.memsci.2022.120673_bib4) 2022; 644
Zhang (10.1016/j.memsci.2022.120673_bib42) 2021; 7
Yang (10.1016/j.memsci.2022.120673_bib13) 2017; 33
Paseta (10.1016/j.memsci.2022.120673_bib22) 2019; 58
Darby (10.1016/j.memsci.2022.120673_bib40) 2017; 127
Bowen (10.1016/j.memsci.2022.120673_bib37) 1998; 393
Bocquet (10.1016/j.memsci.2022.120673_bib43) 2010; 39
You (10.1016/j.memsci.2022.120673_bib26) 2017; 540
Freger (10.1016/j.memsci.2022.120673_bib8) 2003; 19
Gong (10.1016/j.memsci.2022.120673_bib18) 2020; 600
Kianfar (10.1016/j.memsci.2022.120673_bib3) 2019; 29
Shen (10.1016/j.memsci.2022.120673_bib29) 2022; 13
Freger (10.1016/j.memsci.2022.120673_bib10) 2003; 88
Li (10.1016/j.memsci.2022.120673_bib20) 2021; 512
Liu (10.1016/j.memsci.2022.120673_bib30) 2021; 617
Shen (10.1016/j.memsci.2022.120673_bib32) 2020; 607
Freger (10.1016/j.memsci.2022.120673_bib9) 2005; 21
Xiang (10.1016/j.memsci.2022.120673_bib35) 2014; 465
You (10.1016/j.memsci.2022.120673_bib38) 2021; 24
You (10.1016/j.memsci.2022.120673_bib27) 2018; 6
Ma (10.1016/j.memsci.2022.120673_bib34) 2019; 540
Chen (10.1016/j.memsci.2022.120673_bib7) 2018; 547
Peng (10.1016/j.memsci.2022.120673_bib2) 2020; 32
Nowbahar (10.1016/j.memsci.2022.120673_bib6) 2018; 140
Tan (10.1016/j.memsci.2022.120673_bib17) 2018; 360
Zhu (10.1016/j.memsci.2022.120673_bib28) 2021; 627
Wang (10.1016/j.memsci.2022.120673_bib23) 2017; 523
Song (10.1016/j.memsci.2022.120673_bib39) 2016; 55
Bian (10.1016/j.memsci.2022.120673_bib31) 2021; 37
Peng (10.1016/j.memsci.2022.120673_bib33) 2019; 53
Yin (10.1016/j.memsci.2022.120673_bib25) 2020; 7
Li (10.1016/j.memsci.2022.120673_bib21) 2020; 8
Qiu (10.1016/j.memsci.2022.120673_bib5) 2021; 15
Zhu (10.1016/j.memsci.2022.120673_bib16) 2020; 54
Yang (10.1016/j.memsci.2022.120673_bib24) 2019; 53
Guan (10.1016/j.memsci.2022.120673_bib19) 2020; 602
Wang (10.1016/j.memsci.2022.120673_bib1) 2021; 122
Yuan (10.1016/j.memsci.2022.120673_bib15) 2019; 7
References_xml – volume: 29
  start-page: 2176
  year: 2019
  end-page: 2185
  ident: bib3
  article-title: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening
  publication-title: J. Inorg. Organomet. Polym. Mater.
– volume: 644
  year: 2022
  ident: bib4
  article-title: Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration
  publication-title: J. Membr. Sci.
– volume: 576
  start-page: 131
  year: 2019
  end-page: 141
  ident: bib11
  article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
  publication-title: J. Membr. Sci.
– volume: 427
  year: 2022
  ident: bib12
  article-title: Anionic covalent organic framework as an interlayer to fabricate negatively charged polyamide composite nanofiltration membrane featuring ions sieving
  publication-title: Chem. Eng. J.
– volume: 540
  start-page: 454
  year: 2017
  end-page: 463
  ident: bib26
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
– volume: 540
  start-page: 382
  year: 2019
  end-page: 388
  ident: bib34
  article-title: Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance
  publication-title: J. Colloid Interface Sci.
– volume: 53
  start-page: 9764
  year: 2019
  end-page: 9770
  ident: bib33
  article-title: Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry-structure-property relationship, and environmental implications
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 3936
  year: 2016
  end-page: 3941
  ident: bib39
  article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 9341
  year: 2018
  end-page: 9349
  ident: bib14
  article-title: Tannic acid/Fe
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 1101
  year: 2021
  end-page: 1109
  ident: bib31
  article-title: Calcium ion coordinated polyamide nanofiltration membrane for ultrahigh perm-selectivity Desalination
  publication-title: Chem. Res. Chin. Univ.
– volume: 6
  start-page: 590
  year: 2006
  end-page: 610
  ident: bib36
  article-title: Non-covalent interactions in polysaccharide systems
  publication-title: Macromol. Biosci.
– volume: 523
  start-page: 273
  year: 2017
  end-page: 281
  ident: bib23
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
– volume: 58
  start-page: 4222
  year: 2019
  end-page: 4230
  ident: bib22
  article-title: 110th Anniversary: polyamide/metal-organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water
  publication-title: Ind. Eng. Chem. Res.
– volume: 512
  year: 2021
  ident: bib20
  article-title: Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration
  publication-title: Desalination
– volume: 360
  start-page: 518
  year: 2018
  end-page: 521
  ident: bib17
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
– volume: 33
  start-page: 2318
  year: 2017
  end-page: 2324
  ident: bib13
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
– volume: 600
  year: 2020
  ident: bib18
  article-title: Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH
  publication-title: J. Membr. Sci.
– volume: 54
  start-page: 6365
  year: 2020
  end-page: 6374
  ident: bib16
  article-title: Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance
  publication-title: Environ. Sci. Technol.
– volume: 140
  start-page: 3173
  year: 2018
  end-page: 3176
  ident: bib6
  article-title: Measuring interfacial polymerization kinetics using microfluidic interferometry
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 500
  year: 2022
  ident: bib29
  article-title: Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving
  publication-title: Nat. Commun.
– volume: 88
  start-page: 1162
  year: 2003
  end-page: 1169
  ident: bib10
  article-title: Mathematical model of charge and density distributions in interfacial polymerization of thin films
  publication-title: J. Appl. Polym. Sci.
– volume: 127
  start-page: 1201
  year: 2017
  end-page: 1208
  ident: bib40
  article-title: An isothermal titration calorimetry study of phytate binding to lysozyme
  publication-title: J. Therm. Anal. Calorim.
– volume: 607
  year: 2020
  ident: bib32
  article-title: Salt-tuned fabrication of novel polyamide composite nanofiltration membranes with three-dimensional turing structures for effective desalination
  publication-title: J. Membr. Sci.
– volume: 7
  start-page: 25641
  year: 2019
  end-page: 25649
  ident: bib15
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem.
– volume: 602
  year: 2020
  ident: bib19
  article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance
  publication-title: J. Membr. Sci.
– volume: 617
  year: 2021
  ident: bib30
  article-title: Regulating the morphology of nanofiltration membrane by thermally induced inorganic salt crystals for efficient water purification
  publication-title: J. Membr. Sci.
– volume: 393
  start-page: 663
  year: 1998
  end-page: 665
  ident: bib37
  article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore (vol 393, pg 663, 1998)
  publication-title: Nature
– volume: 21
  start-page: 1884
  year: 2005
  end-page: 1894
  ident: bib9
  article-title: Kinetics of film formation by interfacial polycondensation
  publication-title: Langmuir
– volume: 627
  year: 2021
  ident: bib28
  article-title: Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration
  publication-title: J. Membr. Sci.
– volume: 39
  start-page: 1073
  year: 2010
  end-page: 1095
  ident: bib43
  article-title: Nanofluidics, from bulk to interfaces
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 4791
  year: 2003
  end-page: 4797
  ident: bib8
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
– volume: 53
  start-page: 5301
  year: 2019
  end-page: 5308
  ident: bib24
  article-title: Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes
  publication-title: Environ. Sci. Technol.
– volume: 122
  year: 2021
  ident: bib1
  article-title: Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes
  publication-title: Prog. Polym. Sci.
– volume: 32
  year: 2020
  ident: bib2
  article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness
  publication-title: Adv. Mater.
– volume: 7
  start-page: 766
  year: 2020
  end-page: 772
  ident: bib25
  article-title: Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane
  publication-title: Environ. Sci. Technol. Lett.
– volume: 7
  year: 2021
  ident: bib42
  article-title: Molecularly soldered covalent organic frameworks for ultrafast precision sieving
  publication-title: Sci. Adv.
– volume: 465
  start-page: 34
  year: 2014
  end-page: 40
  ident: bib35
  article-title: Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane
  publication-title: J. Membr. Sci.
– volume: 15
  start-page: 7522
  year: 2021
  end-page: 7535
  ident: bib5
  article-title: Ionic dendrimer based polyamide membranes for ion separation
  publication-title: ACS Nano
– volume: 24
  year: 2021
  ident: bib38
  article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
  publication-title: iScience
– volume: 547
  start-page: 51
  year: 2018
  end-page: 63
  ident: bib7
  article-title: Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 23930
  year: 2020
  end-page: 23938
  ident: bib21
  article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
– volume: 653
  year: 2022
  ident: bib41
  article-title: Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance
  publication-title: J. Membr. Sci.
– volume: 6
  start-page: 13191
  year: 2018
  end-page: 13202
  ident: bib27
  article-title: Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS
  publication-title: J. Mater. Chem.
– volume: 627
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib28
  article-title: Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119142
– volume: 19
  start-page: 4791
  year: 2003
  ident: 10.1016/j.memsci.2022.120673_bib8
  article-title: Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
  publication-title: Langmuir
  doi: 10.1021/la020920q
– volume: 37
  start-page: 1101
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib31
  article-title: Calcium ion coordinated polyamide nanofiltration membrane for ultrahigh perm-selectivity Desalination
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-021-1270-8
– volume: 540
  start-page: 382
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib34
  article-title: Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.01.033
– volume: 6
  start-page: 590
  year: 2006
  ident: 10.1016/j.memsci.2022.120673_bib36
  article-title: Non-covalent interactions in polysaccharide systems
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200600053
– volume: 54
  start-page: 6365
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib16
  article-title: Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol) decorated support toward enhanced nanofiltration performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06779
– volume: 607
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib32
  article-title: Salt-tuned fabrication of novel polyamide composite nanofiltration membranes with three-dimensional turing structures for effective desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118153
– volume: 576
  start-page: 131
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib11
  article-title: Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.01.040
– volume: 13
  start-page: 500
  year: 2022
  ident: 10.1016/j.memsci.2022.120673_bib29
  article-title: Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28183-1
– volume: 427
  year: 2022
  ident: 10.1016/j.memsci.2022.120673_bib12
  article-title: Anionic covalent organic framework as an interlayer to fabricate negatively charged polyamide composite nanofiltration membrane featuring ions sieving
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132009
– volume: 15
  start-page: 7522
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib5
  article-title: Ionic dendrimer based polyamide membranes for ion separation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00936
– volume: 127
  start-page: 1201
  year: 2017
  ident: 10.1016/j.memsci.2022.120673_bib40
  article-title: An isothermal titration calorimetry study of phytate binding to lysozyme
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-016-5487-6
– volume: 24
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib38
  article-title: Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102369
– volume: 88
  start-page: 1162
  year: 2003
  ident: 10.1016/j.memsci.2022.120673_bib10
  article-title: Mathematical model of charge and density distributions in interfacial polymerization of thin films
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.11716
– volume: 360
  start-page: 518
  year: 2018
  ident: 10.1016/j.memsci.2022.120673_bib17
  article-title: Polyamide membranes with nanoscale Turing structures for water purification
  publication-title: Science
  doi: 10.1126/science.aar6308
– volume: 540
  start-page: 454
  year: 2017
  ident: 10.1016/j.memsci.2022.120673_bib26
  article-title: Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.084
– volume: 393
  start-page: 663
  year: 1998
  ident: 10.1016/j.memsci.2022.120673_bib37
  article-title: Long-range electrostatic attraction between like-charge spheres in a charged pore (vol 393, pg 663, 1998)
  publication-title: Nature
  doi: 10.1038/31418
– volume: 653
  year: 2022
  ident: 10.1016/j.memsci.2022.120673_bib41
  article-title: Metal-organophosphate biphasic interfacial coordination reaction synthesizing nanofiltration membranes with the ultrathin selective layer, excellent acid-resistance and antifouling performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.120521
– volume: 29
  start-page: 2176
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib3
  article-title: Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-019-01177-1
– volume: 53
  start-page: 5301
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib24
  article-title: Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b00473
– volume: 7
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib42
  article-title: Molecularly soldered covalent organic frameworks for ultrafast precision sieving
  publication-title: Sci. Adv.
– volume: 547
  start-page: 51
  year: 2018
  ident: 10.1016/j.memsci.2022.120673_bib7
  article-title: Physicochemical characterization of tight nanofiltration membranes for dairy wastewater treatment
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.10.037
– volume: 512
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib20
  article-title: Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115125
– volume: 8
  start-page: 23930
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib21
  article-title: Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA09319J
– volume: 7
  start-page: 766
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib25
  article-title: Probing the contributions of interior and exterior channels of nanofillers toward the enhanced separation performance of a thin-film nanocomposite reverse osmosis membrane
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.0c00507
– volume: 33
  start-page: 2318
  year: 2017
  ident: 10.1016/j.memsci.2022.120673_bib13
  article-title: Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b04465
– volume: 602
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib19
  article-title: Incorporating arginine-Fe-III complex into polyamide membranes for enhanced water permeance and antifouling performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117980
– volume: 53
  start-page: 9764
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib33
  article-title: Tailoring polyamide rejection layer with aqueous carbonate chemistry for enhanced membrane separation: mechanistic insights, chemistry-structure-property relationship, and environmental implications
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03210
– volume: 55
  start-page: 3936
  year: 2016
  ident: 10.1016/j.memsci.2022.120673_bib39
  article-title: A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511064
– volume: 465
  start-page: 34
  year: 2014
  ident: 10.1016/j.memsci.2022.120673_bib35
  article-title: Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.03.074
– volume: 7
  start-page: 25641
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib15
  article-title: Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA08163A
– volume: 39
  start-page: 1073
  year: 2010
  ident: 10.1016/j.memsci.2022.120673_bib43
  article-title: Nanofluidics, from bulk to interfaces
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B909366B
– volume: 58
  start-page: 4222
  year: 2019
  ident: 10.1016/j.memsci.2022.120673_bib22
  article-title: 110th Anniversary: polyamide/metal-organic framework bilayered thin film composite membranes for the removal of pharmaceutical compounds from water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b06017
– volume: 6
  start-page: 13191
  year: 2018
  ident: 10.1016/j.memsci.2022.120673_bib27
  article-title: Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA03673J
– volume: 52
  start-page: 9341
  year: 2018
  ident: 10.1016/j.memsci.2022.120673_bib14
  article-title: Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02425
– volume: 21
  start-page: 1884
  year: 2005
  ident: 10.1016/j.memsci.2022.120673_bib9
  article-title: Kinetics of film formation by interfacial polycondensation
  publication-title: Langmuir
  doi: 10.1021/la048085v
– volume: 32
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib2
  article-title: Phosphonium modification leads to ultrapermeable antibacterial polyamide composite membranes with unreduced thickness
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001383
– volume: 140
  start-page: 3173
  year: 2018
  ident: 10.1016/j.memsci.2022.120673_bib6
  article-title: Measuring interfacial polymerization kinetics using microfluidic interferometry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12121
– volume: 122
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib1
  article-title: Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2021.101450
– volume: 617
  year: 2021
  ident: 10.1016/j.memsci.2022.120673_bib30
  article-title: Regulating the morphology of nanofiltration membrane by thermally induced inorganic salt crystals for efficient water purification
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118645
– volume: 644
  year: 2022
  ident: 10.1016/j.memsci.2022.120673_bib4
  article-title: Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.120051
– volume: 600
  year: 2020
  ident: 10.1016/j.memsci.2022.120673_bib18
  article-title: Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.117874
– volume: 523
  start-page: 273
  year: 2017
  ident: 10.1016/j.memsci.2022.120673_bib23
  article-title: Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.055
SSID ssj0017089
Score 2.653958
Snippet Modulating interfacial polymerization (IP) process has been recognized as an effective way to optimize the physicochemical structure of polyamide membranes and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120673
SubjectTerms diffusivity
Electrostatic interaction
electrostatic interactions
Interfacial polymerization
Monomer diffusion
nanofiltration
Nanofiltration membrane
Phytate additive
phytic acid
piperazine
polyamides
polymerization
solubility
Title Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes
URI https://dx.doi.org/10.1016/j.memsci.2022.120673
https://www.proquest.com/docview/2675568249
Volume 657
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXMoBAS0CWpAr9epdEttr-7haFW2p4NKutDfLr_DQko1ge-DCb2fGSVa0EkLqMYntJDP2POyZbwj5BoQPwXvFKik1EyFo5ksD6ypWxiuZvM7wxZdXo-lMXMzlfINM-lwYDKvsZH8r07O07u4MO2oOm9vb4a8zBCLhYCEio0HtYAa7UDjLB8_rMI9CneUyeNiYYes-fS7HeN2nexgavMSyHBQIZM7fUk__COqsfc53yU5nNtJx-2V7ZCPV-2T7FZjgR_J8uYy5Fld9TREE4qFyuB1Om-XiCY9l2nxLihuvFGiLRiZ1j9TB-8D7Z80N6DOK4UUoACnYshShjBdPrAHh_ZjL5eCD2tVY5btD26Xwb-Bvg7z8RGbn339PpqyrrsAC52bFimR8MqkY4UFg4inIYuTA3vKjKMsUlY6-CsZXrvRaeakLl4KPQsYogw6g6g_IZr2s0yGhwoFVIwpjkvNC8aC5iDpor6okuC_CEeE9UW3ooMexAsbC9jFmd7ZlhUVW2JYVR4StezUt9MY77VXPL_vXFLKgHd7p-bVnr4XVhUcmQDigvS3Bn5JAIWGO_3v0z-QDXuXANPmFbK4e_qQTsGRW_jRP1VOyNf7xc3r1AmXb-Fc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQPRQOqC0gKH24EhzNktje2IceqrZoKSwXQOJm_ApstWQjdlG1F_5U_2BnnAS1SAipEtc4Tuxv7JmxPf6GkG0A3nvnClZKqZjwXjGXa5hXodSukNGpRF88PO4PzsSPc3m-QH53d2EwrLLV_Y1OT9q6fdJr0ezVo1HvZA-JSDh4iChoMDttZOVhnP-Cddv088E3EPJOnu9_P_06YG1qAeY51zOWRe2ijlkfT8Eij15mfQvOhusHmcdQqOBKr11pc6cKJ1Vmo3dByBCkVz6xHYDefyFAXWDahN27-7iSrNhLefewdQyb193XS0Fl1_Ea-gLL0jzfzZA5nT9mDx9YhmTu9l-RldZPpV8aKF6ThVi9Ict_sReukrvhJKTkX9UlRdaJm9Li_jutJ-M5ngM1Fzwp7vRSECZ6tdROqYX_TW6nrL4CA0oxngk1LgXnmSJ38njOarAW05SfBwsqW2Fa8Zbel0LfYIEPCnqNnD0L5utksZpUcYNQYcGNEpnW0TpRcK-4CMorV5RRcJf5TcI7UI1vuc4x5cbYdEFtP00jCoOiMI0oNgm7r1U3XB9PvF908jL_jFkD5uiJmp868RqYznhGA8AB9iaHBZwEhIR--99f_0heDk6HR-bo4PhwiyxhSYqKk-_I4uzmNr4HN2rmPqRhS8nFc8-TP8tqNho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+interfacial+polymerization+with+phytate+as+aqueous-phase+additive+for+highly-permselective+nanofiltration+membranes&rft.jtitle=Journal+of+membrane+science&rft.au=Zhang%2C+Miaomiao&rft.au=You%2C+Xinda&rft.au=Xiao%2C+Ke&rft.au=Yin%2C+Zhuoyu&rft.date=2022-09-05&rft.issn=0376-7388&rft.volume=657&rft.spage=120673&rft_id=info:doi/10.1016%2Fj.memsci.2022.120673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_memsci_2022_120673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon