LiDAR applications in precision agriculture for cultivating crops: A review of recent advances

In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects in laser scanning, remote sensing, and object detection systems. This technology may be popular because it can pinpoint structures or zones of interest in millimetre detail. It can also highl...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 207; p. 107737
Main Authors Rivera, Gilberto, Porras, Raúl, Florencia, Rogelio, Sánchez-Solís, J. Patricia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects in laser scanning, remote sensing, and object detection systems. This technology may be popular because it can pinpoint structures or zones of interest in millimetre detail. It can also highlight variations and irregularities, such as surface degradation and vegetation growth. This paper presents a review of the specialised literature on LiDAR systems applied to precision agriculture; specifically, in cultivating crops. First, some preliminaries of LiDAR systems according to the mode of transport used, considering terrestrial, mobile, and aerial laser scanners, are given. Subsequently, a well-organised taxonomy of recent LiDAR applications based on the activity being performed is presented. Here, the following four categories are considered: (1) crop-related metric estimation, (2) tree and plant digitisation, (3) vision systems for object detection and navigation, and (4) planning and decision support. Lastly, we discuss some current trends and research challenges in applying LiDAR technology to cultivation activities in accordance with the state-of-the-art literature. •Compared with photogrammetry, LiDAR technology often obtains more precise 3D models.•Voxelisation is reasonably accurate when applied to tree digitisation.•The crop’s health status is often monitored by estimating the NDVI, LAI or height.•The sunlight index and wood volume are adequate for evaluating pruning structures.•The most used LiDAR sensors are VLP-16, LMS400/111/511, UTM-30LX, and Focus X330.
AbstractList In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects in laser scanning, remote sensing, and object detection systems. This technology may be popular because it can pinpoint structures or zones of interest in millimetre detail. It can also highlight variations and irregularities, such as surface degradation and vegetation growth. This paper presents a review of the specialised literature on LiDAR systems applied to precision agriculture; specifically, in cultivating crops. First, some preliminaries of LiDAR systems according to the mode of transport used, considering terrestrial, mobile, and aerial laser scanners, are given. Subsequently, a well-organised taxonomy of recent LiDAR applications based on the activity being performed is presented. Here, the following four categories are considered: (1) crop-related metric estimation, (2) tree and plant digitisation, (3) vision systems for object detection and navigation, and (4) planning and decision support. Lastly, we discuss some current trends and research challenges in applying LiDAR technology to cultivation activities in accordance with the state-of-the-art literature.
In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects in laser scanning, remote sensing, and object detection systems. This technology may be popular because it can pinpoint structures or zones of interest in millimetre detail. It can also highlight variations and irregularities, such as surface degradation and vegetation growth. This paper presents a review of the specialised literature on LiDAR systems applied to precision agriculture; specifically, in cultivating crops. First, some preliminaries of LiDAR systems according to the mode of transport used, considering terrestrial, mobile, and aerial laser scanners, are given. Subsequently, a well-organised taxonomy of recent LiDAR applications based on the activity being performed is presented. Here, the following four categories are considered: (1) crop-related metric estimation, (2) tree and plant digitisation, (3) vision systems for object detection and navigation, and (4) planning and decision support. Lastly, we discuss some current trends and research challenges in applying LiDAR technology to cultivation activities in accordance with the state-of-the-art literature. •Compared with photogrammetry, LiDAR technology often obtains more precise 3D models.•Voxelisation is reasonably accurate when applied to tree digitisation.•The crop’s health status is often monitored by estimating the NDVI, LAI or height.•The sunlight index and wood volume are adequate for evaluating pruning structures.•The most used LiDAR sensors are VLP-16, LMS400/111/511, UTM-30LX, and Focus X330.
ArticleNumber 107737
Author Florencia, Rogelio
Sánchez-Solís, J. Patricia
Porras, Raúl
Rivera, Gilberto
Author_xml – sequence: 1
  givenname: Gilberto
  orcidid: 0000-0002-2365-4651
  surname: Rivera
  fullname: Rivera, Gilberto
  email: gilberto.rivera@uacj.mx
– sequence: 2
  givenname: Raúl
  orcidid: 0000-0002-6772-5351
  surname: Porras
  fullname: Porras, Raúl
  email: raul.porras@uacj.mx
– sequence: 3
  givenname: Rogelio
  orcidid: 0000-0002-5208-6577
  surname: Florencia
  fullname: Florencia, Rogelio
  email: rogelio.florencia@uacj.mx
– sequence: 4
  givenname: J. Patricia
  orcidid: 0000-0001-5514-5061
  surname: Sánchez-Solís
  fullname: Sánchez-Solís, J. Patricia
  email: julia.sanchez@uacj.mx
BookMark eNqFkM1OwzAQhC0EEm3hDTj4yCXFjp3E6QGpKr9SJSTUM5bjrCtXaRzspIi3xyWcOMBpZ1Yzq9U3RaetawGhK0rmlND8ZjfXbt-p7TwlKYuromDFCZpQUaRJEe0pmsSYSGheludoGsKORF-KYoLe1vZu-YpV1zVWq966NmDb4s6DtiE6rLbe6qHpBw_YOI-P2h5ist1i7V0XFniJPRwsfGBnotLQ9ljVB9VqCBfozKgmwOXPnKHNw_1m9ZSsXx6fV8t1ohkr-4RyrgzNtQBQFXCqOFQVhxSIKEyqGM2yQhuVpaKuSiZUZjgxGSO8ImWeUTZD1-PZzrv3AUIv9zZoaBrVghuCTAXjKeGciBjlYzQ-H4IHIztv98p_SkrkkabcyZGmPNKUI81YW_yqadt_8-q9ss1_5duxDBFBJOVl0BYin9pGXr2snf37wBf1VZXa
CitedBy_id crossref_primary_10_3390_agronomy14112473
crossref_primary_10_1016_j_compag_2024_108807
crossref_primary_10_1364_OE_533280
crossref_primary_10_7744_kjoas_510106
crossref_primary_10_3390_agriengineering6040225
crossref_primary_10_1016_j_atech_2025_100897
crossref_primary_10_1016_j_scienta_2024_113250
crossref_primary_10_1109_ACCESS_2024_3428401
crossref_primary_10_3390_agriculture15030243
crossref_primary_10_1109_ACCESS_2025_3526202
crossref_primary_10_3390_agriculture14111954
crossref_primary_10_3390_s24165409
crossref_primary_10_1016_j_aiia_2025_01_006
crossref_primary_10_3390_agronomy14061279
crossref_primary_10_1016_j_measurement_2024_114351
crossref_primary_10_1109_TIM_2024_3391816
crossref_primary_10_3390_s24061717
crossref_primary_10_1109_JSTARS_2024_3370508
crossref_primary_10_1051_e3sconf_202447104018
crossref_primary_10_3390_s24247894
crossref_primary_10_1016_j_culher_2024_07_007
crossref_primary_10_1016_j_rsase_2024_101418
crossref_primary_10_1016_j_softx_2023_101618
crossref_primary_10_1016_j_dib_2023_109686
crossref_primary_10_3390_agriculture14081378
crossref_primary_10_1016_j_jenvman_2024_122539
crossref_primary_10_1038_s41598_023_40128_2
crossref_primary_10_3390_agronomy14061181
crossref_primary_10_3390_earth5030027
crossref_primary_10_3390_agronomy13092312
crossref_primary_10_1016_j_eswa_2024_125145
crossref_primary_10_1371_journal_pone_0297153
crossref_primary_10_3390_land14010171
crossref_primary_10_3390_rs16040699
crossref_primary_10_1016_j_atech_2024_100718
crossref_primary_10_1016_j_compag_2024_108629
crossref_primary_10_29133_yyutbd_1517109
crossref_primary_10_3390_agronomy14081824
crossref_primary_10_1016_j_biosystemseng_2024_07_002
crossref_primary_10_1007_s44279_024_00078_3
crossref_primary_10_1016_j_atech_2025_100910
crossref_primary_10_3389_fsoil_2023_1305105
crossref_primary_10_1016_j_compag_2025_110023
crossref_primary_10_3390_machines12110750
crossref_primary_10_3390_rs16122191
crossref_primary_10_3390_s25061660
crossref_primary_10_3389_fpls_2023_1215899
crossref_primary_10_3390_agriculture15020175
crossref_primary_10_1109_JSTARS_2023_3312815
crossref_primary_10_3390_agronomy14102446
crossref_primary_10_1007_s43926_024_00066_5
crossref_primary_10_3390_s24206743
crossref_primary_10_1016_j_atech_2023_100344
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1016_j_envsoft_2025_106404
crossref_primary_10_3390_rs16244623
crossref_primary_10_3389_fsufs_2023_1201994
crossref_primary_10_1109_TGRS_2024_3467674
crossref_primary_10_3390_agriculture14071122
crossref_primary_10_1016_j_apenergy_2024_122679
crossref_primary_10_3390_agriculture14020299
crossref_primary_10_3390_rs17020279
crossref_primary_10_1016_j_compag_2024_109187
crossref_primary_10_1109_JSEN_2024_3369657
crossref_primary_10_26848_rbgf_v17_6_p4761_4812
crossref_primary_10_17584_rcch_2024v18i2_17428
crossref_primary_10_3390_agriculture15060581
crossref_primary_10_1017_S0263574724000845
crossref_primary_10_3390_s23167212
crossref_primary_10_1016_j_compag_2025_110070
crossref_primary_10_19206_CE_202210
crossref_primary_10_3390_s24248035
crossref_primary_10_3390_rs16060985
crossref_primary_10_5897_AJAR2024_16714
crossref_primary_10_1016_j_compag_2024_109229
Cites_doi 10.33584/jnzg.2019.81.414
10.1016/j.geoderma.2018.09.046
10.1016/j.compag.2016.09.014
10.1016/j.enggeo.2022.106615
10.1007/s11119-019-09672-8
10.1016/j.compag.2011.11.010
10.1016/j.cag.2017.04.004
10.5194/isprs-archives-XLI-B7-171-2016
10.3389/fpls.2018.00016
10.1016/j.compag.2017.02.006
10.3390/s20041102
10.3390/rs10122007
10.1016/j.scitotenv.2019.05.453
10.3390/rs14020431
10.1080/10106049.2017.1377774
10.1021/es980176p
10.3390/rs14030675
10.1016/j.compag.2018.08.020
10.3389/fpls.2022.815218
10.1109/OJIA.2020.3015253
10.1016/j.isprsjprs.2018.12.015
10.1016/j.geomorph.2021.108081
10.1016/j.geomorph.2021.107803
10.3390/rs12152481
10.1007/s11119-016-9474-5
10.3390/f13020285
10.1016/j.cj.2021.10.010
10.3390/s17122703
10.1080/01431161.2019.1584929
10.3390/agriculture12091450
10.1016/j.compag.2019.105121
10.1007/s11119-012-9295-0
10.3390/ijgi6080255
10.1038/s41598-020-62275-6
10.1016/j.compag.2018.08.034
10.3390/rs13173538
10.3390/rs13010020
10.1109/MRA.2020.3012492
10.3390/rs12213587
10.1016/j.biosystemseng.2019.08.017
10.3390/rs14051145
10.3390/agronomy12102409
10.3390/rs13163218
10.1016/j.compag.2018.01.022
10.1007/s10457-021-00697-5
10.1007/s00468-018-1704-1
10.25046/aj0506127
10.1109/JSTARS.2017.2781132
10.1016/j.ecolind.2022.109243
10.1029/2020EA001600
10.3390/f10020148
10.3390/horticulturae8020090
10.3390/agronomy12051074
10.1016/S0924-2716(99)00003-9
10.1002/agj2.20632
10.1109/WACV51458.2022.00178
10.1016/j.compag.2019.105158
10.1109/TGRS.2018.2866056
10.3390/rs14030642
10.1080/01431161.2020.1811917
10.3390/agriculture10050146
10.3390/rs14030585
10.1016/j.isprsjprs.2015.03.003
10.1109/LRA.2018.2849499
10.3390/agronomy10020197
10.3390/rs14102292
10.3390/rs14041048
10.1175/MWR-D-21-0166.1
10.1109/JSTARS.2022.3172491
10.1016/j.compag.2021.106274
10.3390/agriculture12081241
10.1364/AO.399766
10.1080/01431161.2021.2018149
10.3390/agronomy12102509
10.1785/0220210234
10.3390/s22051844
10.5194/isprs-annals-V-3-2022-193-2022
10.3390/s141224212
10.1016/j.compind.2018.03.023
10.31577/congeo.2021.51.4.3
10.1093/jxb/erl142
10.3390/s22041379
10.1371/journal.pone.0130479
10.2480/agrmet.D-18-00012
10.3390/agronomy9070403
10.1007/s12665-021-09869-z
10.1016/j.biosystemseng.2020.07.017
10.3390/rs12101647
10.3389/frobt.2022.832165
10.1016/j.biosystemseng.2008.10.009
10.3390/s18113731
10.1016/j.jhydrol.2020.124573
10.5194/isprs-archives-XLI-B8-365-2016
10.1007/s11119-019-09676-4
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2023.107737
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_107737
S0168169923001254
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c339t-144af16c8eeabe41a4ebb4e2e087f2a31557cfa528db938a5f40f5304b096513
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Thu Jul 10 21:37:29 EDT 2025
Tue Jul 01 01:58:29 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Fri Feb 23 02:36:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Agriculture 5.0
Food sustainability
Light detection and ranging
Point cloud processing
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-144af16c8eeabe41a4ebb4e2e087f2a31557cfa528db938a5f40f5304b096513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5208-6577
0000-0001-5514-5061
0000-0002-6772-5351
0000-0002-2365-4651
PQID 2834204408
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834204408
crossref_primary_10_1016_j_compag_2023_107737
crossref_citationtrail_10_1016_j_compag_2023_107737
elsevier_sciencedirect_doi_10_1016_j_compag_2023_107737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Masjedi, Zhao, Thompson, Yang, Flatt, Crawford, Ebert, Tuinstra, Hammer, Chapman (b66) 2018
Stumvoll, Schmaltz, Glade (b90) 2021; 389
Underwood, Hung, Whelan, Sukkarieh (b101) 2016; 130
Huang, Zheng, Zhu (b39) 2022; 14
Gao, Yang, Wei, Liu (b25) 2022; 14
Gu, Zhao, Zou, Yang, Dou, Zhai (b31) 2022; 12
Shendryk, Sofonia, Garrard, Rist, Skocaj, Thorburn (b86) 2020; 92
Lau, Bentley, Martius, Shenkin, Bartholomeus, Raumonen, Malhi, Jackson, Herold (b52) 2018; 32
Malavazi, Guyonneau, Fasquel, Lagrange, Mercier (b62) 2018; 154
Chen, Yu, Tabish, Bansal, Liu, Abdelzaher, Sha (b14) 2021
Fernández-Álvarez, Armesto, Picos (b23) 2019; 10
Sun, Li, Paterson, Jiang, Xu, Robertson, Snider, Chee (b93) 2018; 9
Wang, Xing, He, Yu, Xu, Li (b108) 2022; 22
Velasquez, Higuti, Guerrero, Gasparino, Magalhães, Aroca, Becker (b102) 2020; 21
Zhou, Shi, Qiu, Yu, Zhang, Shen (b125) 2022; 400
Berk, Stajnko, Belsak, Hocevar (b6) 2020; 169
Dhami, Yu, Xu, Zhu, Dhakal, Friel, Li, Tokekar (b19) 2020
Tang, Jiang, Long, Fu, Sun (b94) 2022; 14
Jiang, Wang, Yi, Zhang, Lv (b46) 2022; 13
Tripathi, Mishra, Maurya, Singh, Wilson (b98) 2019
Zhang, Hassanzadeh, Kikkert, Pethybridge, van Aardt (b123) 2022; 15
Omasa, Hosoi, Konishi (b71) 2007; 58
Koenig, Höfle, Hämmerle, Jarmer, Siegmann, Lilienthal (b49) 2015; 104
Cruz Ulloa, Krus, Barrientos, Del Cerro, Valero (b17) 2021; 11
Hu, Lin, Peng, Wang, Zhai (b37) 2022; 12
Saha, Tsoulias, Weltzien, Zude-Sasse (b83) 2022; 8
Yuan, Li, Bhatta, Shi, Baenziger, Ge (b119) 2018; 18
Liu, Liu, He, Liu (b58) 2022; 12
Sofonia, Shendryk, Phinn, Roelfsema, Kendoul, Skocaj (b87) 2019; 82
Zhang, Hassanzadeh, Kikkert, Pethybridge, van Aardt (b122) 2020
Dilmurat, Sagan, Moose (b21) 2022; 3
Sun, Li (b92) 2017
Zhou, Zhang, Ge, Yu, Wang, Zhang (b126) 2021; 42
Lin, Liu (b56) 2021; 8
Trepekli, Friborg (b97) 2021; 13
Ghamkhar, Irie, Hagedorn (b30) 2019; 72
Itakura, Hosoi (b43) 2018; 74
Hadas, Jozkow, Walicka, Borkowski (b32) 2019; 82
Hu, Wang, Qian, Huang, Xia, Song (b38) 2018
Zhou, Gu, Cheng, Yang, Shu, Sun (b124) 2020; 10
Ziliani, Parkes, Hoteit, McCabe (b127) 2018; 10
Hu, Li, Zhang, He, Wimmer (b36) 2017; 67
Tiwari, Silver, Karnieli (b95) 2020; 198
Weiss, Biber, Laible, Bohlmann, Zell (b109) 2010
Gené-Mola, Gregorio, Guevara, Auat, Sanz-Cortiella, Escolà, Llorens, Morros, Ruiz-Hidalgo, Vilaplana, Rosell-Polo (b28) 2019; 187
Lin, Hu, Peng, Wang, Zhai (b55) 2022; 12
Wu, Zhu, Lawes, Dunkerley, Zhang (b116) 2019; 40
Wang, Peethambaran, Chen (b107) 2018; 11
Malambo, Popescu, Horne, Pugh, Rooney (b61) 2019; 149
Maimaitijiang, Sagan, Erkbol, Adrian, Newcomb, LeBauer, Pauli, Shakoor, Mockler (b60) 2020; 3
George, Barrett, Ghamkhar, Whyatt (b29) 2019; 81
Palacios-Rodríguez, Quinto, Lara-Gómez, Pérez-Romero, Recio, Álvarez-Romero, Cachinero-Vivar, Hernández-Navarro, Navarro-Cerrillo (b73) 2022; 13
Wu, Xue, Zhang, Qin, Chen, Sun (b115) 2018; 1
Rosell Polo, Sanz Cortiella, Llorens Calveras, Arnó Satorra, Ribes Dasi, Masip Vilalta, Camp, Gràcia, Solanelles Batlle, Pallejà Cabrè (b81) 2009; 102
Xian, Xu, Long, Song, Yang (b117) 2020; 59
Borowiec, Marmol (b11) 2022; 14
Rincón, García (b79) 2019; 34
Moreno, Valero, Bengochea-Guevara, Ribeiro, Garrido-Izard, Andujar (b67) 2020; 20
Wachendorf, Irie, Astor (b104) 2019; 42
Specht, Wiśniewska, Stateczny, Specht, Szostak, Lewicka, Stateczny, Widźgowski, Halicki (b88) 2022; 22
Reiser, Vázquez-Arellano, Paraforos, Garrido-Izard, Griepentrog (b78) 2018; 99
Rodriguez Padilla, Quintana, Prado, Aguilar, Shea, Oskin, Garcia (b80) 2021; 93
You, Grimm, Silwal, Davidson (b118) 2021
Srinivas, Drewitz, Magner (b89) 2020; 583
Westling, Underwood, Örn (b111) 2018; 153
Cassidy, Thomas, Higgins, Bailey, Jordan (b12) 2019; 687
Persiano, Carisi, Wang, Luzzi, Mazzoli, Bagli, Castellarin (b75) 2021
Walsh (b106) 2022; 12
Digumarti, Nieto, Cadena, Siegwart, Beardsley (b20) 2018; 3
Mao, Liu, Hao, Yang, Liu (b63) 2022; 14
Tsolakis, Bechtsis, Bochtis (b99) 2019; 9
Ivushkin, Bartholomeus, Bregt, Pulatov, Franceschini, Kramer, van Loo, Roman, Finkers (b44) 2019; 338
Bohn Reckziegel, Sheppard, Kahle, Larysch, Spiecker, Seifert, Morhart (b10) 2022; 96
Jin, Su, Wu, Pang, Gao, Hu, Liu, Guo (b47) 2018; 57
Murray, Fennell, Blackburn, Whyatt, Li (b68) 2020; 21
Zhang, Craine, McGee, Vandemark, Davis, Brown, Hulbert, Sankaran (b121) 2021; 113
Westling, Underwood, Bryson (b110) 2021; 187
Walklate, Richardson, Baker, Richards, Cross (b105) 1997; 3059
Kulkarni, Honda (b51) 2020; 5
Tsoulias, Paraforos, Xanthopoulos, Zude-Sasse (b100) 2020; 12
Krus, van Apeldoorn, Valero, Ramirez (b50) 2020; 10
Roten, Fourie, Owens, Trethewey, Ekanayake, Werner, Irie, Hagedorn, Cameron (b82) 2017; 135
Berrino, Vajda, Zahorec, Camacho, De Novellis, Carlino, Papco, Belluci Sessa, Czikhardt (b7) 2021; 51
Wu, Johansen, Phinn, Robson (b114) 2020; 12
Yun, Cao, An, Chen, Xue, Li, Pincebourde, Smith, Eichhorn (b120) 2019; 276
Estrada, Sánchez, Hernanz, Checa, Roman (b22) 2017; 6
Kamble, Kharche (b48) 2021; 7
Torres-Sánchez, López-Granados, Serrano, Arquero, Peña (b96) 2015; 10
Bhat, M., Han, S., Porikli, F., 2021. Fast polar attentive 3D object detection on LiDAR point clouds. In: Machine Learning for Autonomous Driving Workshop At the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
Masjedi, Crawford, Carpenter, Tuinstra (b65) 2020; 12
Ilesanmi, Rogers, Oboh-Ikuenobe (b41) 2021; 80
Nguyen, Badenhorst, Shi, Spangenberg, Smith, Daetwyler (b69) 2021; 13
Nowak, Pędziwiatr, Bogawski (b70) 2022; 142
Liu, Dong, Qiu (b57) 2020; 3
Wijesingha, Moeckel, Hensgen, Wachendorf (b112) 2019; 78
Akiyama, Yamamoto, Kitatsuji (b2) 2022
Gaudet, García-Medina, Krishnamurthy, Shaw, Sheridan, Yang, Newsom, Pekour (b26) 2022
Blatrix, Aramayo, Zangerlé, Roux, Jouanne, Anselme, de Boisvilliers, Krasnopolski, Assenbaum, McKey (b9) 2022; 42
Holmgren, Lindberg, Olofsson, Persson (b35) 2022; 43
Husin, Khairunniza-Bejo, Abdullah (b40) 2020; 10
Sandonís-Pozo, Llorens, Escolà, Arnó, Pascual, Martínez-Casasnovas (b84) 2022
Pagliai, Ammoniaci, Sarri, Lisci, Perria, Vieri, D’Arcangelo, Storchi, Kartsiotis (b72) 2022; 14
Aguiar, Dos Santos, Sobreira, Boaventura-Cunha, Sousa (b1) 2022; 9
Pfeiffer, Guevara, Cheein, Sanz (b76) 2018; 146
Martínez-Casasnovas, Rufat, Arnó, Arbonés, Sebé, Pascual, Gregorio, Rosell-Polo (b64) 2017; 18
Vidoni, Gallo, Ristorto, Carabin, Mazzetto, Scalera, Gasparetto (b103) 2017; 58370
Florent, Bernadett, Janos, Imri, Attila (b24) 2019; 9
Gené-Mola, Gregorio, Auat Cheein, Guevara, Llorens, Sanz-Cortiella, Escolà, Rosell-Polo (b27) 2020; 168
Maderal, Valcarcel, Delgado, Sevilla, Ojeda (b59) 2016; XLI-B8
LeVoir, Farley, Sun, Xu (b53) 2020; 1
Irish, Lillycrop (b42) 1999; 54
Arnó, Vallès, Llorens, Sanz, Masip, Palacín, Rosell-Polo (b4) 2013; 14
Janowski, Wroblewski, Rucinska, Kubowicz-Grajewska, Tysiac (b45) 2022; 301
Cecchi, Pantani (b13) 1994; 2
Barragán, Campos, Sanchez (b5) 2016; XLI-B7
Ao, Wu, Hu, Sun, Su, Guo, Xin (b3) 2022; 10
Pretto, Aravecchia, Burgard, Chebrolu, Dornhege, Falck, Fleckenstein, Fontenla, Imperoli, Khanna (b77) 2021; 28
Sultan Mahmud, He (b91) 2020
Pan, L., Liu, L., Condon, A.G., Estavillo, G.M., Coe, R.A., Bull, G., Stone, E.A., Petersson, L., Rolland, V., 2022. Biomass prediction with 3D point clouds from LiDAR. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1330–1340.
Christiansen, Laursen, Jørgensen, Skovsen, Gislum (b15) 2017; 17
Dellaert, Yen-Chen (b18) 2020
Holmén, Eichinger, Flocchini (b34) 1998; 32
Willers, Wu, O’Hara, Jenkins (b113) 2012; 82
Li, Shamshiri, Schirrmann, Weltzien, Shafian, Laursen (b54) 2022; 14
Colaço, Schaefer, Bramley (b16) 2021; 13
Hämmerle, Höfle (b33) 2014; 14
Shemanin, A., E. (b85) 2021; 867
Pagliai (10.1016/j.compag.2023.107737_b72) 2022; 14
Ilesanmi (10.1016/j.compag.2023.107737_b41) 2021; 80
Zhang (10.1016/j.compag.2023.107737_b123) 2022; 15
Borowiec (10.1016/j.compag.2023.107737_b11) 2022; 14
Torres-Sánchez (10.1016/j.compag.2023.107737_b96) 2015; 10
Hämmerle (10.1016/j.compag.2023.107737_b33) 2014; 14
Holmgren (10.1016/j.compag.2023.107737_b35) 2022; 43
Sofonia (10.1016/j.compag.2023.107737_b87) 2019; 82
Shemanin (10.1016/j.compag.2023.107737_b85) 2021; 867
Zhang (10.1016/j.compag.2023.107737_b122) 2020
Koenig (10.1016/j.compag.2023.107737_b49) 2015; 104
Liu (10.1016/j.compag.2023.107737_b58) 2022; 12
Gené-Mola (10.1016/j.compag.2023.107737_b28) 2019; 187
10.1016/j.compag.2023.107737_b74
Florent (10.1016/j.compag.2023.107737_b24) 2019; 9
Wang (10.1016/j.compag.2023.107737_b108) 2022; 22
Lin (10.1016/j.compag.2023.107737_b56) 2021; 8
Gao (10.1016/j.compag.2023.107737_b25) 2022; 14
Hu (10.1016/j.compag.2023.107737_b36) 2017; 67
Masjedi (10.1016/j.compag.2023.107737_b65) 2020; 12
Rincón (10.1016/j.compag.2023.107737_b79) 2019; 34
Cecchi (10.1016/j.compag.2023.107737_b13) 1994; 2
Tiwari (10.1016/j.compag.2023.107737_b95) 2020; 198
Maderal (10.1016/j.compag.2023.107737_b59) 2016; XLI-B8
Velasquez (10.1016/j.compag.2023.107737_b102) 2020; 21
Estrada (10.1016/j.compag.2023.107737_b22) 2017; 6
Ivushkin (10.1016/j.compag.2023.107737_b44) 2019; 338
Wu (10.1016/j.compag.2023.107737_b115) 2018; 1
Weiss (10.1016/j.compag.2023.107737_b109) 2010
Zhang (10.1016/j.compag.2023.107737_b121) 2021; 113
Ao (10.1016/j.compag.2023.107737_b3) 2022; 10
Berrino (10.1016/j.compag.2023.107737_b7) 2021; 51
Rodriguez Padilla (10.1016/j.compag.2023.107737_b80) 2021; 93
Pfeiffer (10.1016/j.compag.2023.107737_b76) 2018; 146
Nowak (10.1016/j.compag.2023.107737_b70) 2022; 142
Sun (10.1016/j.compag.2023.107737_b93) 2018; 9
Shendryk (10.1016/j.compag.2023.107737_b86) 2020; 92
Reiser (10.1016/j.compag.2023.107737_b78) 2018; 99
Tripathi (10.1016/j.compag.2023.107737_b98) 2019
Trepekli (10.1016/j.compag.2023.107737_b97) 2021; 13
Persiano (10.1016/j.compag.2023.107737_b75) 2021
Wu (10.1016/j.compag.2023.107737_b116) 2019; 40
George (10.1016/j.compag.2023.107737_b29) 2019; 81
Aguiar (10.1016/j.compag.2023.107737_b1) 2022; 9
Westling (10.1016/j.compag.2023.107737_b110) 2021; 187
Xian (10.1016/j.compag.2023.107737_b117) 2020; 59
Sun (10.1016/j.compag.2023.107737_b92) 2017
Tang (10.1016/j.compag.2023.107737_b94) 2022; 14
Martínez-Casasnovas (10.1016/j.compag.2023.107737_b64) 2017; 18
Walklate (10.1016/j.compag.2023.107737_b105) 1997; 3059
Westling (10.1016/j.compag.2023.107737_b111) 2018; 153
Jin (10.1016/j.compag.2023.107737_b47) 2018; 57
Sandonís-Pozo (10.1016/j.compag.2023.107737_b84) 2022
Palacios-Rodríguez (10.1016/j.compag.2023.107737_b73) 2022; 13
Roten (10.1016/j.compag.2023.107737_b82) 2017; 135
Moreno (10.1016/j.compag.2023.107737_b67) 2020; 20
Zhou (10.1016/j.compag.2023.107737_b126) 2021; 42
Ziliani (10.1016/j.compag.2023.107737_b127) 2018; 10
Arnó (10.1016/j.compag.2023.107737_b4) 2013; 14
Chen (10.1016/j.compag.2023.107737_b14) 2021
Holmén (10.1016/j.compag.2023.107737_b34) 1998; 32
Dellaert (10.1016/j.compag.2023.107737_b18) 2020
Digumarti (10.1016/j.compag.2023.107737_b20) 2018; 3
Malavazi (10.1016/j.compag.2023.107737_b62) 2018; 154
Maimaitijiang (10.1016/j.compag.2023.107737_b60) 2020; 3
Nguyen (10.1016/j.compag.2023.107737_b69) 2021; 13
Underwood (10.1016/j.compag.2023.107737_b101) 2016; 130
Walsh (10.1016/j.compag.2023.107737_b106) 2022; 12
10.1016/j.compag.2023.107737_b8
Vidoni (10.1016/j.compag.2023.107737_b103) 2017; 58370
Gu (10.1016/j.compag.2023.107737_b31) 2022; 12
Saha (10.1016/j.compag.2023.107737_b83) 2022; 8
Hadas (10.1016/j.compag.2023.107737_b32) 2019; 82
Itakura (10.1016/j.compag.2023.107737_b43) 2018; 74
Jiang (10.1016/j.compag.2023.107737_b46) 2022; 13
Lin (10.1016/j.compag.2023.107737_b55) 2022; 12
Specht (10.1016/j.compag.2023.107737_b88) 2022; 22
Fernández-Álvarez (10.1016/j.compag.2023.107737_b23) 2019; 10
Li (10.1016/j.compag.2023.107737_b54) 2022; 14
Yun (10.1016/j.compag.2023.107737_b120) 2019; 276
Yuan (10.1016/j.compag.2023.107737_b119) 2018; 18
Stumvoll (10.1016/j.compag.2023.107737_b90) 2021; 389
Sultan Mahmud (10.1016/j.compag.2023.107737_b91) 2020
Tsoulias (10.1016/j.compag.2023.107737_b100) 2020; 12
Berk (10.1016/j.compag.2023.107737_b6) 2020; 169
Hu (10.1016/j.compag.2023.107737_b38) 2018
Janowski (10.1016/j.compag.2023.107737_b45) 2022; 301
Blatrix (10.1016/j.compag.2023.107737_b9) 2022; 42
Liu (10.1016/j.compag.2023.107737_b57) 2020; 3
LeVoir (10.1016/j.compag.2023.107737_b53) 2020; 1
Gené-Mola (10.1016/j.compag.2023.107737_b27) 2020; 168
Bohn Reckziegel (10.1016/j.compag.2023.107737_b10) 2022; 96
Ghamkhar (10.1016/j.compag.2023.107737_b30) 2019; 72
Willers (10.1016/j.compag.2023.107737_b113) 2012; 82
Zhou (10.1016/j.compag.2023.107737_b124) 2020; 10
Hu (10.1016/j.compag.2023.107737_b37) 2022; 12
Masjedi (10.1016/j.compag.2023.107737_b66) 2018
Cassidy (10.1016/j.compag.2023.107737_b12) 2019; 687
Mao (10.1016/j.compag.2023.107737_b63) 2022; 14
Wachendorf (10.1016/j.compag.2023.107737_b104) 2019; 42
Colaço (10.1016/j.compag.2023.107737_b16) 2021; 13
Irish (10.1016/j.compag.2023.107737_b42) 1999; 54
You (10.1016/j.compag.2023.107737_b118) 2021
Lau (10.1016/j.compag.2023.107737_b52) 2018; 32
Tsolakis (10.1016/j.compag.2023.107737_b99) 2019; 9
Huang (10.1016/j.compag.2023.107737_b39) 2022; 14
Zhou (10.1016/j.compag.2023.107737_b125) 2022; 400
Husin (10.1016/j.compag.2023.107737_b40) 2020; 10
Christiansen (10.1016/j.compag.2023.107737_b15) 2017; 17
Rosell Polo (10.1016/j.compag.2023.107737_b81) 2009; 102
Malambo (10.1016/j.compag.2023.107737_b61) 2019; 149
Kulkarni (10.1016/j.compag.2023.107737_b51) 2020; 5
Srinivas (10.1016/j.compag.2023.107737_b89) 2020; 583
Kamble (10.1016/j.compag.2023.107737_b48) 2021; 7
Krus (10.1016/j.compag.2023.107737_b50) 2020; 10
Dilmurat (10.1016/j.compag.2023.107737_b21) 2022; 3
Pretto (10.1016/j.compag.2023.107737_b77) 2021; 28
Gaudet (10.1016/j.compag.2023.107737_b26) 2022
Barragán (10.1016/j.compag.2023.107737_b5) 2016; XLI-B7
Omasa (10.1016/j.compag.2023.107737_b71) 2007; 58
Murray (10.1016/j.compag.2023.107737_b68) 2020; 21
Wijesingha (10.1016/j.compag.2023.107737_b112) 2019; 78
Akiyama (10.1016/j.compag.2023.107737_b2) 2022
Dhami (10.1016/j.compag.2023.107737_b19) 2020
Wang (10.1016/j.compag.2023.107737_b107) 2018; 11
Cruz Ulloa (10.1016/j.compag.2023.107737_b17) 2021; 11
Wu (10.1016/j.compag.2023.107737_b114) 2020; 12
References_xml – volume: 6
  start-page: 255
  year: 2017
  ident: b22
  article-title: Enabling the use of Sentinel-2 and LiDAR data for common agriculture policy funds assignment
  publication-title: ISPRS Int. J. Geo-Inf.
– start-page: 1
  year: 2022
  end-page: 6
  ident: b2
  article-title: Wide-area road surface condition observation system utilizing traveling sensing by LiDAR
  publication-title: 2022 IEEE International Conference on Consumer Electronics
– volume: 9
  start-page: 160
  year: 2019
  end-page: 173
  ident: b24
  article-title: Evaluation of soil water management properties based on LiDAR data and soil analyses, at farm level
  publication-title: Nat. Resour. Sustain. Dev.
– volume: 104
  start-page: 112
  year: 2015
  end-page: 125
  ident: b49
  article-title: Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 82
  year: 2019
  ident: b87
  article-title: Monitoring sugarcane growth response to varying nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 2643
  year: 2020
  end-page: 2649
  ident: b19
  article-title: Crop height and plot estimation for phenotyping from unmanned aerial vehicles using 3D LiDAR
  publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 149
  start-page: 1
  year: 2019
  end-page: 13
  ident: b61
  article-title: Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial LiDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 583
  year: 2020
  ident: b89
  article-title: Evaluating watershed-based optimized decision support framework for conservation practice placement in Plum Creek Minnesota
  publication-title: J. Hydrol.
– volume: 15
  start-page: 4027
  year: 2022
  end-page: 4044
  ident: b123
  article-title: Evaluation of leaf area index (LAI) of broadacre crops using UAS-based LiDAR point clouds and multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 12
  year: 2022
  ident: b106
  article-title: In-field estimation of fruit quality and quantity
  publication-title: Agronomy
– volume: 10
  start-page: 1
  year: 2015
  end-page: 20
  ident: b96
  article-title: High-throughput 3D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology
  publication-title: PLOS ONE
– volume: XLI-B7
  start-page: 171
  year: 2016
  end-page: 176
  ident: b5
  article-title: Automatic generation of building mapping using digital, vertical and aerial high resolution photographs and LiDAR point clouds
  publication-title: Int. Arch. Photogramme. Remote Sens. Spatial Inf. Sci.
– volume: 12
  start-page: 1450
  year: 2022
  ident: b55
  article-title: Segmentation and stratification methods of field maize terrestrial LiDAR point cloud
  publication-title: Agriculture
– volume: 42
  year: 2022
  ident: b9
  article-title: Interpreting landscapes of pre-columbian raised-field agriculture using high-resolution LiDAR topography
  publication-title: J. Archaeol. Sci.: Reports
– volume: 14
  start-page: 431
  year: 2022
  ident: b39
  article-title: High-throughput legume seed phenotyping using a handheld 3D laser scanner
  publication-title: Remote Sens.
– volume: 42
  year: 2019
  ident: b104
  article-title: The benefit of spectral and point-cloud data for herbage yield and quality assessment of grasslands
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 198
  start-page: 91
  year: 2020
  end-page: 104
  ident: b95
  article-title: Developing object-based image procedures for classifying and characterising different protected agriculture structures using LiDAR and orthophoto
  publication-title: Biosyst. Eng.
– volume: 10
  year: 2019
  ident: b23
  article-title: LiDAR-based wildfire prevention in WUI: The automatic detection, measurement and evaluation of forest fuels
  publication-title: Forests
– volume: 14
  start-page: 290
  year: 2013
  end-page: 306
  ident: b4
  article-title: Leaf area index estimation in vineyards using a ground-based LiDAR scanner
  publication-title: Precis. Agric.
– year: 2020
  ident: b91
  article-title: Measuring tree canopy density using a LiDAR-guided system for precision spraying
  publication-title: ASABE
– volume: 9
  year: 2022
  ident: b1
  article-title: Localization and mapping on agriculture based on point-feature extraction and semiplanes segmentation from 3D LiDAR data
  publication-title: Front. Robotics and AI
– volume: 10
  year: 2020
  ident: b40
  article-title: Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of basal stem rot (BSR) disease
  publication-title: Sci. Rep.
– start-page: EGU21
  year: 2021
  end-page: 2894
  ident: b75
  article-title: Assessing fluvial flooding hazard with a DEM-based hierarchical filling-&-spilling algorithm: A case study in northern Italy
  publication-title: EGU General Assembly Conference Abstracts
– volume: 102
  start-page: 128
  year: 2009
  end-page: 134
  ident: b81
  article-title: A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements
  publication-title: Biosyst. Eng.
– volume: 10
  start-page: 1239
  year: 2022
  end-page: 1250
  ident: b3
  article-title: Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks
  publication-title: The Crop J.
– volume: 135
  start-page: 128
  year: 2017
  end-page: 133
  ident: b82
  article-title: Urine patch detection using LiDAR technology to improve nitrogen use efficiency in grazed pastures
  publication-title: Comput. Electron. Agric.
– volume: 3
  year: 2020
  ident: b60
  article-title: UAV-based sorghum growth monitoring: A comparative analysis of LiDAR and photogrammetry
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 42
  start-page: 738
  year: 2021
  end-page: 755
  ident: b126
  article-title: Research on volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and clustering segmentation
  publication-title: Int. J. Remote Sens.
– volume: 169
  year: 2020
  ident: b6
  article-title: Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system
  publication-title: Comput. Electron. Agric.
– volume: 9
  year: 2019
  ident: b99
  article-title: AgROS: A robot operating system based emulation tool for agricultural robotics
  publication-title: Agronomy
– volume: 168
  year: 2020
  ident: b27
  article-title: Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow
  publication-title: Comput. Electron. Agric.
– volume: 153
  start-page: 177
  year: 2018
  end-page: 187
  ident: b111
  article-title: Light interception modelling using unstructured LiDAR data in avocado orchards
  publication-title: Comput. Electron. Agric.
– volume: 43
  start-page: 299
  year: 2022
  end-page: 329
  ident: b35
  article-title: Tree crown segmentation in three dimensions using density models derived from airborne laser scanning
  publication-title: Int. J. Remote Sens.
– volume: 18
  start-page: 111
  year: 2017
  end-page: 132
  ident: b64
  article-title: Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds
  publication-title: Precis. Agric.
– volume: 21
  start-page: 349
  year: 2020
  end-page: 368
  ident: b102
  article-title: Reactive navigation system based on H
  publication-title: Precis. Agric.
– volume: 154
  start-page: 71
  year: 2018
  end-page: 79
  ident: b62
  article-title: LiDAR-only based navigation algorithm for an autonomous agricultural robot
  publication-title: Comput. Electron. Agric.
– volume: 11
  year: 2021
  ident: b17
  article-title: Robotic fertilisation using localisation systems based on point clouds in strip-cropping fields
  publication-title: Agronomy
– volume: 13
  start-page: 285
  year: 2022
  ident: b73
  article-title: Carbon sequestration in carob (Ceratonia siliqua L.) plantations under the EU afforestation program in Southern Spain using low-density aerial laser scanning (ALS) data
  publication-title: Forests
– volume: 1
  start-page: 74
  year: 2020
  end-page: 94
  ident: b53
  article-title: High-accuracy adaptive low-cost location sensing subsystems for autonomous rover in precision agriculture
  publication-title: IEEE Open J. Ind. Appl.
– volume: 28
  start-page: 29
  year: 2021
  end-page: 49
  ident: b77
  article-title: Building an aerial-ground robotics system for precision farming: An adaptable solution
  publication-title: IEEE Robot. Autom. Mag.
– volume: 14
  start-page: 24212
  year: 2014
  end-page: 24230
  ident: b33
  article-title: Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture
  publication-title: Sensors
– volume: 8
  year: 2021
  ident: b56
  article-title: Martian atmospheric CO
  publication-title: Earth and Space Sci.
– volume: 13
  year: 2021
  ident: b16
  article-title: Broadacre mapping of wheat biomass using ground-based LiDAR technology
  publication-title: Remote Sens.
– volume: 32
  start-page: 3068
  year: 1998
  end-page: 3076
  ident: b34
  article-title: Application of elastic LiDAR to PM10 emissions from agricultural nonpoint sources
  publication-title: Environ. Sci. Technol.
– volume: 276
  year: 2019
  ident: b120
  article-title: Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns
  publication-title: Agricult. Forest Meteorol.
– volume: 72
  year: 2019
  ident: b30
  article-title: Real-time, non-destructive and in-field foliage yield and growth rate measurement in perennial ryegrass (Lolium perenne L.)
  publication-title: Plant Methods
– volume: 142
  year: 2022
  ident: b70
  article-title: Hidden gaps under the canopy: Lidar-based detection and quantification of porosity in tree belts
  publication-title: Ecol. Indic.
– volume: 58
  start-page: 881
  year: 2007
  end-page: 898
  ident: b71
  article-title: 3D LiDAR imaging for detecting and understanding plant responses and canopy structure
  publication-title: J. Exp. Bot.
– volume: 40
  start-page: 5973
  year: 2019
  end-page: 5991
  ident: b116
  article-title: Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure
  publication-title: Int. J. Remote Sens.
– volume: 12
  start-page: 1241
  year: 2022
  ident: b31
  article-title: Innovative leaf area detection models for orchard tree thick canopy based on LiDAR point cloud data
  publication-title: Agriculture
– year: 2021
  ident: b14
  article-title: LiDAR cluster first and camera inference later: A new perspective towards autonomous driving
– volume: 12
  year: 2020
  ident: b100
  article-title: Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner
  publication-title: Remote Sens.
– volume: 22
  year: 2022
  ident: b108
  article-title: Evaluation of a new lightweight UAV-borne topo-bathymetric LiDAR for shallow water bathymetry and object detection
  publication-title: Sensors
– volume: 10
  start-page: 2007
  year: 2018
  ident: b127
  article-title: Intra-season crop height variability at commercial farm scales using a fixed-wing UAV
  publication-title: Remote Sens.
– volume: 3
  start-page: 193
  year: 2022
  end-page: 199
  ident: b21
  article-title: AI-driven maize yield forecasting using unmanned aerial vehicle-based hyperspectral and LiDAR data fusion
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 96
  start-page: 89
  year: 2022
  end-page: 104
  ident: b10
  article-title: Virtual pruning of 3D trees as a tool for managing shading effects in agroforestry systems
  publication-title: Agrofor. Syst.
– volume: 54
  start-page: 123
  year: 1999
  end-page: 129
  ident: b42
  article-title: Scanning laser mapping of the coastal zone: the SHOALS system
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  year: 2020
  ident: b124
  article-title: Analysis of plant height changes of lodged maize using UAV-LiDAR data
  publication-title: Agriculture
– volume: 3059
  start-page: 143
  year: 1997
  end-page: 151
  ident: b105
  article-title: Short-range lidar measurement of top fruit tree canopies for pesticide applications research in the United Kingdom
  publication-title: Advances in Laser Remote Sensing for Terrestrial and Oceanographic Applications
– volume: 5
  start-page: 1047
  year: 2020
  end-page: 1053
  ident: b51
  article-title: Estimating LAI of rice using NDVI derived from MODIS surface reflectance
  publication-title: Adv. Sci. Technol. Eng. Syst. J.
– volume: 12
  start-page: 2409
  year: 2022
  ident: b37
  article-title: Rapeseed leaf estimation methods at field scale by using terrestrial LiDAR point cloud
  publication-title: Agronomy
– volume: 20
  year: 2020
  ident: b67
  article-title: On-ground vineyard reconstruction using a LiDAR-based automated system
  publication-title: Sensors
– volume: 8
  start-page: 90
  year: 2022
  ident: b83
  article-title: Estimation of vegetative growth in strawberry plants using mobile LiDAR laser scanner
  publication-title: Horticulturae
– volume: 14
  start-page: 1145
  year: 2022
  ident: b72
  article-title: Comparison of aerial and ground 3D point clouds for canopy size assessment in precision viticulture
  publication-title: Remote Sens.
– volume: 34
  start-page: 164
  year: 2019
  end-page: 178
  ident: b79
  article-title: Synergetic efficiency of LiDAR and WorldView-2 for 3D urban cartography in Northeast Mexico
  publication-title: Geocarto Int.
– volume: 1
  year: 2018
  ident: b115
  article-title: Plant 3D reconstruction based on LiDAR and multi-view sequence images
  publication-title: Int. J. Precis. Agric. Aviat.
– volume: 187
  year: 2021
  ident: b110
  article-title: A procedure for automated tree pruning suggestion using LiDAR scans of fruit trees
  publication-title: Comput. Electron. Agric.
– start-page: 465
  year: 2020
  end-page: 468
  ident: b122
  article-title: Toward a structural description of row crops using UAS-based LiDAR point clouds
  publication-title: IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
– volume: 2
  start-page: 979
  year: 1994
  end-page: 981
  ident: b13
  article-title: Fluorescence LiDAR remote sensing of vegetation: Research advances in Europe
  publication-title: Proceedings of IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium
– volume: 146
  start-page: 104
  year: 2018
  end-page: 113
  ident: b76
  article-title: Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation
  publication-title: Comput. Electron. Agric.
– volume: 80
  year: 2021
  ident: b41
  article-title: Evaluation of geohazards in the Cape Girardeau area using LiDAR and GIS, Southeast Missouri, USA
  publication-title: Environ. Earth Sci.
– volume: 74
  start-page: 109
  year: 2018
  end-page: 113
  ident: b43
  article-title: Automatic individual tree detection and canopy segmentation from three-dimensional point cloud images obtained from ground-based LiDAR
  publication-title: J. Agric. Meteorol.
– start-page: 7719
  year: 2018
  end-page: 7722
  ident: b66
  article-title: Sorghum biomass prediction using UAV-based remote sensing data and crop model simulation
  publication-title: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium
– volume: 14
  start-page: 642
  year: 2022
  ident: b94
  article-title: Identification of the yield of camellia oleifera based on color space by the optimized mean shift clustering algorithm using terrestrial laser scanning
  publication-title: Remote Sens.
– volume: 14
  start-page: 585
  year: 2022
  ident: b54
  article-title: UAV oblique imagery with an adaptive micro-terrain model for estimation of leaf area index and height of maize canopy from 3D point clouds
  publication-title: Remote Sens.
– volume: 78
  start-page: 352
  year: 2019
  end-page: 359
  ident: b112
  article-title: Evaluation of 3D point cloud-based models for the prediction of grassland biomass
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 58370
  year: 2017
  ident: b103
  article-title: ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming
  publication-title: ASME International Mechanical Engineering Congress and Exposition
– year: 2022
  ident: b26
  article-title: Evaluation of coupled wind/wave model simulations of offshore winds in the Mid-Atlantic bight using LiDAR-equipped buoys
  publication-title: Mon. Weather Rev.
– volume: 301
  year: 2022
  ident: b45
  article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
  publication-title: Eng. Geol.
– volume: 14
  start-page: 675
  year: 2022
  ident: b63
  article-title: Development of a combined orchard harvesting robot navigation system
  publication-title: Remote Sens.
– year: 2021
  ident: b118
  article-title: Semantics-guided skeletonization of sweet cherry trees for robotic pruning
– reference: Bhat, M., Han, S., Porikli, F., 2021. Fast polar attentive 3D object detection on LiDAR point clouds. In: Machine Learning for Autonomous Driving Workshop At the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
– volume: 22
  year: 2022
  ident: b88
  article-title: Analysis of methods for determining shallow waterbody depths based on images taken by unmanned aerial vehicles
  publication-title: Sensors
– volume: 113
  start-page: 3269
  year: 2021
  end-page: 3280
  ident: b121
  article-title: High-throughput phenotyping of canopy height in cool-season crops using sensing techniques
  publication-title: Agron. J.
– volume: 81
  start-page: 55
  year: 2019
  end-page: 60
  ident: b29
  article-title: Evaluation of LiDAR scanning for measurement of yield in perennial ryegrass
  publication-title: J. New Zealand Grasslands
– volume: 51
  start-page: 345
  year: 2021
  end-page: 371
  ident: b7
  article-title: Interpretation of spatiotemporal gravity changes accompanying the earthquake of 21 August 2017 on Ischia (Italy)
  publication-title: Contrib. Geophys. Geodesy
– volume: 11
  start-page: 606
  year: 2018
  end-page: 627
  ident: b107
  article-title: LiDAR point clouds to 3-D urban models
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 82
  year: 2019
  ident: b32
  article-title: Apple orchard inventory with a LiDAR equipped unmanned aerial system
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 2537
  year: 2021
  end-page: 2542
  ident: b48
  article-title: Obstacle detection using LiDAR
  publication-title: Int. J. Sci. Res. Eng. Trends
– volume: 867
  year: 2021
  ident: b85
  article-title: LiDAR measurements of hydrogen fluoride concentration in atmospheric boundary layer
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 57
  start-page: 1336
  year: 2018
  end-page: 1346
  ident: b47
  article-title: Stem–leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 32
  start-page: 1219
  year: 2018
  end-page: 1231
  ident: b52
  article-title: Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling
  publication-title: Trees
– volume: 13
  year: 2021
  ident: b69
  article-title: Design of an unmanned ground vehicle and LiDAR pipeline for the high-throughput phenotyping of biomass in perennial ryegrass
  publication-title: Remote Sens.
– start-page: 1
  year: 2022
  end-page: 23
  ident: b84
  article-title: Satellite multispectral indices to estimate canopy parameters and within-field management zones in super-intensive almond orchards
  publication-title: Precis. Agric.
– volume: 21
  start-page: 473
  year: 2020
  end-page: 483
  ident: b68
  article-title: The novel use of proximal photogrammetry and terrestrial LiDAR to quantify the structural complexity of orchard trees
  publication-title: Precis. Agric.
– volume: 14
  start-page: 2292
  year: 2022
  ident: b25
  article-title: Individual maize location and height estimation in field from UAV-Borne LiDAR and RGB images
  publication-title: Remote Sens.
– volume: 13
  start-page: 815218
  year: 2022
  ident: b46
  article-title: Autonomous navigation system of greenhouse mobile robot based on 3D Lidar and 2D LiDAR SLAM
  publication-title: Front. Plant Sci.
– volume: 92
  year: 2020
  ident: b86
  article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2020
  ident: b18
  article-title: Neural volume rendering: NeRF and beyond
– volume: 99
  start-page: 42
  year: 2018
  end-page: 52
  ident: b78
  article-title: Iterative individual plant clustering in maize with assembled 2D LiDAR data
  publication-title: Comput. Ind.
– volume: 10
  year: 2020
  ident: b50
  article-title: Acquiring plant features with optical sensing devices in an organic strip-cropping system
  publication-title: Agronomy
– volume: 400
  year: 2022
  ident: b125
  article-title: Experimental study on morphological characteristics of landslide dams in different shaped valleys
  publication-title: Geomorphology
– volume: 338
  start-page: 502
  year: 2019
  end-page: 512
  ident: b44
  article-title: UAV based soil salinity assessment of cropland
  publication-title: Geoderma
– volume: 187
  start-page: 171
  year: 2019
  end-page: 184
  ident: b28
  article-title: Fruit detection in an apple orchard using a mobile terrestrial laser scanner
  publication-title: Biosyst. Eng.
– volume: 13
  year: 2021
  ident: b97
  article-title: Deriving aerodynamic roughness length at ultra-high resolution in agricultural areas using UAV-borne LiDAR
  publication-title: Remote Sens.
– volume: 9
  start-page: 16
  year: 2018
  ident: b93
  article-title: In-field high throughput phenotyping and phenotype data analysis for cotton plant growth using LiDAR
  publication-title: Front. Plant Sci.
– volume: 12
  start-page: 2509
  year: 2022
  ident: b58
  article-title: Precision variable-rate spraying robot by using single 3D LIDAR in orchards
  publication-title: Agronomy
– start-page: 1
  year: 2018
  end-page: 6
  ident: b38
  article-title: LiDAR-based SLAM and autonomous navigation for forestry quadrotors
  publication-title: 2018 IEEE CSAA Guidance, Navigation and Control Conference
– volume: 389
  year: 2021
  ident: b90
  article-title: Dynamic characterization of a slow-moving landslide system: Assessing the challenges of small process scales utilizing multi-temporal TLS data
  publication-title: Geomorphology
– volume: 12
  year: 2020
  ident: b114
  article-title: Suitability of airborne and terrestrial laser scanning for mapping tree crop structural metrics for improved orchard management
  publication-title: Remote Sens.
– volume: 59
  start-page: 8638
  year: 2020
  end-page: 8644
  ident: b117
  article-title: Early forest-fire detection using scanning polarization LiDAR
  publication-title: Appl. Opt.
– volume: 3
  start-page: 3043
  year: 2018
  end-page: 3050
  ident: b20
  article-title: Automatic segmentation of tree structure from point cloud data
  publication-title: IEEE Robot. Autom. Lett.
– volume: 3
  start-page: 72
  year: 2020
  end-page: 76
  ident: b57
  article-title: Analysis of cotton height spatial variability based on UAV-LIDAR
  publication-title: Precis. Agric. Aviat.
– volume: 93
  start-page: 494
  year: 2021
  end-page: 499
  ident: b80
  article-title: Near-field high-resolution maps of the ridgecrest earthquakes from aerial imagery
  publication-title: Seismol. Res. Lett.
– start-page: 339
  year: 2010
  end-page: 345
  ident: b109
  article-title: Plant species classification using a 3D LiDAR sensor and machine learning
  publication-title: 2010 Ninth International Conference on Machine Learning and Applications
– volume: 82
  start-page: 15
  year: 2012
  end-page: 22
  ident: b113
  article-title: A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications
  publication-title: Comput. Electron. Agric.
– volume: 687
  start-page: 277
  year: 2019
  end-page: 286
  ident: b12
  article-title: A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 1
  year: 2017
  end-page: 13
  ident: b36
  article-title: Efficient tree modeling from airborne LiDAR point clouds
  publication-title: Comput. Graph.
– volume: 18
  start-page: 3731
  year: 2018
  ident: b119
  article-title: Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS
  publication-title: Sensors
– volume: 17
  start-page: 2703
  year: 2017
  ident: b15
  article-title: Designing and testing a UAV mapping system for agricultural field surveying
  publication-title: Sensors
– start-page: 3
  year: 2019
  end-page: 24
  ident: b98
  article-title: Estimates for world population and global food availability for global health
  publication-title: The Role of Functional Food Security in Global Health
– volume: 14
  start-page: 1048
  year: 2022
  ident: b11
  article-title: Using LiDAR system as a data source for agricultural land boundaries
  publication-title: Remote Sens.
– start-page: 1
  year: 2017
  ident: b92
  article-title: In-field high throughput phenotyping and phenotype data analysis for cotton plant growth using LiDAR
  publication-title: 2017 ASABE Annual International Meeting
– volume: 130
  start-page: 83
  year: 2016
  end-page: 96
  ident: b101
  article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors
  publication-title: Comput. Electron. Agric.
– volume: 12
  year: 2020
  ident: b65
  article-title: Multi-temporal predictive modelling of sorghum biomass using UAV-based hyperspectral and LiDAR data
  publication-title: Remote Sens.
– reference: Pan, L., Liu, L., Condon, A.G., Estavillo, G.M., Coe, R.A., Bull, G., Stone, E.A., Petersson, L., Rolland, V., 2022. Biomass prediction with 3D point clouds from LiDAR. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 1330–1340.
– volume: XLI-B8
  start-page: 365
  year: 2016
  end-page: 372
  ident: b59
  article-title: Automatic river network extraction from LiDAR data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 81
  start-page: 55
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b29
  article-title: Evaluation of LiDAR scanning for measurement of yield in perennial ryegrass
  publication-title: J. New Zealand Grasslands
  doi: 10.33584/jnzg.2019.81.414
– volume: 338
  start-page: 502
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b44
  article-title: UAV based soil salinity assessment of cropland
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.046
– start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b84
  article-title: Satellite multispectral indices to estimate canopy parameters and within-field management zones in super-intensive almond orchards
  publication-title: Precis. Agric.
– volume: 130
  start-page: 83
  year: 2016
  ident: 10.1016/j.compag.2023.107737_b101
  article-title: Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.09.014
– start-page: 3
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b98
  article-title: Estimates for world population and global food availability for global health
– volume: 301
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b45
  article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106615
– volume: 21
  start-page: 349
  issue: 2
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b102
  article-title: Reactive navigation system based on H∞ control system and LiDAR readings on corn crops
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09672-8
– volume: 82
  start-page: 15
  year: 2012
  ident: 10.1016/j.compag.2023.107737_b113
  article-title: A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.11.010
– volume: 67
  start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b36
  article-title: Efficient tree modeling from airborne LiDAR point clouds
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2017.04.004
– volume: XLI-B7
  start-page: 171
  year: 2016
  ident: 10.1016/j.compag.2023.107737_b5
  article-title: Automatic generation of building mapping using digital, vertical and aerial high resolution photographs and LiDAR point clouds
  publication-title: Int. Arch. Photogramme. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLI-B7-171-2016
– volume: 9
  start-page: 16
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b93
  article-title: In-field high throughput phenotyping and phenotype data analysis for cotton plant growth using LiDAR
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00016
– volume: 135
  start-page: 128
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b82
  article-title: Urine patch detection using LiDAR technology to improve nitrogen use efficiency in grazed pastures
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.02.006
– volume: 20
  issue: 4
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b67
  article-title: On-ground vineyard reconstruction using a LiDAR-based automated system
  publication-title: Sensors
  doi: 10.3390/s20041102
– volume: 10
  start-page: 2007
  issue: 12
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b127
  article-title: Intra-season crop height variability at commercial farm scales using a fixed-wing UAV
  publication-title: Remote Sens.
  doi: 10.3390/rs10122007
– volume: 687
  start-page: 277
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b12
  article-title: A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.453
– volume: 14
  start-page: 431
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b39
  article-title: High-throughput legume seed phenotyping using a handheld 3D laser scanner
  publication-title: Remote Sens.
  doi: 10.3390/rs14020431
– volume: 34
  start-page: 164
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b79
  article-title: Synergetic efficiency of LiDAR and WorldView-2 for 3D urban cartography in Northeast Mexico
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2017.1377774
– volume: 32
  start-page: 3068
  issue: 20
  year: 1998
  ident: 10.1016/j.compag.2023.107737_b34
  article-title: Application of elastic LiDAR to PM10 emissions from agricultural nonpoint sources
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es980176p
– start-page: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b2
  article-title: Wide-area road surface condition observation system utilizing traveling sensing by LiDAR
– year: 2020
  ident: 10.1016/j.compag.2023.107737_b18
– volume: 14
  start-page: 675
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b63
  article-title: Development of a combined orchard harvesting robot navigation system
  publication-title: Remote Sens.
  doi: 10.3390/rs14030675
– volume: 82
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b87
  article-title: Monitoring sugarcane growth response to varying nitrogen application rates: A comparison of UAV SLAM LiDAR and photogrammetry
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 153
  start-page: 177
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b111
  article-title: Light interception modelling using unstructured LiDAR data in avocado orchards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.020
– volume: 13
  start-page: 815218
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b46
  article-title: Autonomous navigation system of greenhouse mobile robot based on 3D Lidar and 2D LiDAR SLAM
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.815218
– volume: 92
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b86
  article-title: Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 1
  start-page: 74
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b53
  article-title: High-accuracy adaptive low-cost location sensing subsystems for autonomous rover in precision agriculture
  publication-title: IEEE Open J. Ind. Appl.
  doi: 10.1109/OJIA.2020.3015253
– volume: 149
  start-page: 1
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b61
  article-title: Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial LiDAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.12.015
– volume: 400
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b125
  article-title: Experimental study on morphological characteristics of landslide dams in different shaped valleys
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2021.108081
– volume: 389
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b90
  article-title: Dynamic characterization of a slow-moving landslide system: Assessing the challenges of small process scales utilizing multi-temporal TLS data
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2021.107803
– volume: 12
  issue: 15
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b100
  article-title: Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner
  publication-title: Remote Sens.
  doi: 10.3390/rs12152481
– volume: 18
  start-page: 111
  issue: 1
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b64
  article-title: Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9474-5
– volume: 13
  start-page: 285
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b73
  article-title: Carbon sequestration in carob (Ceratonia siliqua L.) plantations under the EU afforestation program in Southern Spain using low-density aerial laser scanning (ALS) data
  publication-title: Forests
  doi: 10.3390/f13020285
– volume: 10
  start-page: 1239
  issue: 5
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b3
  article-title: Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks
  publication-title: The Crop J.
  doi: 10.1016/j.cj.2021.10.010
– volume: 17
  start-page: 2703
  issue: 12
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b15
  article-title: Designing and testing a UAV mapping system for agricultural field surveying
  publication-title: Sensors
  doi: 10.3390/s17122703
– volume: 40
  start-page: 5973
  issue: 15
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b116
  article-title: Comparison of machine learning algorithms for classification of LiDAR points for characterization of canola canopy structure
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1584929
– year: 2020
  ident: 10.1016/j.compag.2023.107737_b91
  article-title: Measuring tree canopy density using a LiDAR-guided system for precision spraying
  publication-title: ASABE
– volume: 12
  start-page: 1450
  issue: 9
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b55
  article-title: Segmentation and stratification methods of field maize terrestrial LiDAR point cloud
  publication-title: Agriculture
  doi: 10.3390/agriculture12091450
– start-page: 2643
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b19
  article-title: Crop height and plot estimation for phenotyping from unmanned aerial vehicles using 3D LiDAR
– start-page: EGU21
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b75
  article-title: Assessing fluvial flooding hazard with a DEM-based hierarchical filling-&-spilling algorithm: A case study in northern Italy
– volume: 276
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b120
  article-title: Simulation of multi-platform LiDAR for assessing total leaf area in tree crowns
  publication-title: Agricult. Forest Meteorol.
– volume: 168
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b27
  article-title: Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105121
– volume: 14
  start-page: 290
  issue: 3
  year: 2013
  ident: 10.1016/j.compag.2023.107737_b4
  article-title: Leaf area index estimation in vineyards using a ground-based LiDAR scanner
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9295-0
– volume: 6
  start-page: 255
  issue: 8
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b22
  article-title: Enabling the use of Sentinel-2 and LiDAR data for common agriculture policy funds assignment
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6080255
– volume: 10
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b40
  article-title: Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of basal stem rot (BSR) disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62275-6
– volume: 154
  start-page: 71
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b62
  article-title: LiDAR-only based navigation algorithm for an autonomous agricultural robot
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.034
– volume: 13
  issue: 17
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b97
  article-title: Deriving aerodynamic roughness length at ultra-high resolution in agricultural areas using UAV-borne LiDAR
  publication-title: Remote Sens.
  doi: 10.3390/rs13173538
– volume: 13
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b69
  article-title: Design of an unmanned ground vehicle and LiDAR pipeline for the high-throughput phenotyping of biomass in perennial ryegrass
  publication-title: Remote Sens.
  doi: 10.3390/rs13010020
– volume: 28
  start-page: 29
  issue: 3
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b77
  article-title: Building an aerial-ground robotics system for precision farming: An adaptable solution
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2020.3012492
– start-page: 7719
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b66
  article-title: Sorghum biomass prediction using UAV-based remote sensing data and crop model simulation
– volume: 12
  issue: 21
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b65
  article-title: Multi-temporal predictive modelling of sorghum biomass using UAV-based hyperspectral and LiDAR data
  publication-title: Remote Sens.
  doi: 10.3390/rs12213587
– volume: 187
  start-page: 171
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b28
  article-title: Fruit detection in an apple orchard using a mobile terrestrial laser scanner
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.08.017
– year: 2021
  ident: 10.1016/j.compag.2023.107737_b118
– volume: 14
  start-page: 1145
  issue: 5
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b72
  article-title: Comparison of aerial and ground 3D point clouds for canopy size assessment in precision viticulture
  publication-title: Remote Sens.
  doi: 10.3390/rs14051145
– volume: 12
  start-page: 2409
  issue: 10
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b37
  article-title: Rapeseed leaf estimation methods at field scale by using terrestrial LiDAR point cloud
  publication-title: Agronomy
  doi: 10.3390/agronomy12102409
– volume: 867
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b85
  article-title: LiDAR measurements of hydrogen fluoride concentration in atmospheric boundary layer
– volume: 13
  issue: 16
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b16
  article-title: Broadacre mapping of wheat biomass using ground-based LiDAR technology
  publication-title: Remote Sens.
  doi: 10.3390/rs13163218
– volume: 146
  start-page: 104
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b76
  article-title: Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.01.022
– volume: 96
  start-page: 89
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b10
  article-title: Virtual pruning of 3D trees as a tool for managing shading effects in agroforestry systems
  publication-title: Agrofor. Syst.
  doi: 10.1007/s10457-021-00697-5
– volume: 32
  start-page: 1219
  issue: 5
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b52
  article-title: Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling
  publication-title: Trees
  doi: 10.1007/s00468-018-1704-1
– volume: 5
  start-page: 1047
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b51
  article-title: Estimating LAI of rice using NDVI derived from MODIS surface reflectance
  publication-title: Adv. Sci. Technol. Eng. Syst. J.
  doi: 10.25046/aj0506127
– volume: 11
  start-page: 606
  issue: 2
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b107
  article-title: LiDAR point clouds to 3-D urban models: A review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2781132
– volume: 3
  start-page: 72
  issue: 3
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b57
  article-title: Analysis of cotton height spatial variability based on UAV-LIDAR
  publication-title: Precis. Agric. Aviat.
– volume: 142
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b70
  article-title: Hidden gaps under the canopy: Lidar-based detection and quantification of porosity in tree belts
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.109243
– volume: 8
  issue: 11
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b56
  article-title: Martian atmospheric CO2 and pressure profiling with differential absorption LiDAR: System consideration and simulation results
  publication-title: Earth and Space Sci.
  doi: 10.1029/2020EA001600
– volume: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b23
  article-title: LiDAR-based wildfire prevention in WUI: The automatic detection, measurement and evaluation of forest fuels
  publication-title: Forests
  doi: 10.3390/f10020148
– volume: 8
  start-page: 90
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b83
  article-title: Estimation of vegetative growth in strawberry plants using mobile LiDAR laser scanner
  publication-title: Horticulturae
  doi: 10.3390/horticulturae8020090
– volume: 12
  issue: 5
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b106
  article-title: In-field estimation of fruit quality and quantity
  publication-title: Agronomy
  doi: 10.3390/agronomy12051074
– start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b92
  article-title: In-field high throughput phenotyping and phenotype data analysis for cotton plant growth using LiDAR
– volume: 2
  start-page: 979
  year: 1994
  ident: 10.1016/j.compag.2023.107737_b13
  article-title: Fluorescence LiDAR remote sensing of vegetation: Research advances in Europe
– volume: 54
  start-page: 123
  issue: 2
  year: 1999
  ident: 10.1016/j.compag.2023.107737_b42
  article-title: Scanning laser mapping of the coastal zone: the SHOALS system
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(99)00003-9
– volume: 113
  start-page: 3269
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b121
  article-title: High-throughput phenotyping of canopy height in cool-season crops using sensing techniques
  publication-title: Agron. J.
  doi: 10.1002/agj2.20632
– volume: 7
  start-page: 2537
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b48
  article-title: Obstacle detection using LiDAR
  publication-title: Int. J. Sci. Res. Eng. Trends
– ident: 10.1016/j.compag.2023.107737_b74
  doi: 10.1109/WACV51458.2022.00178
– volume: 169
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b6
  article-title: Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105158
– ident: 10.1016/j.compag.2023.107737_b8
– volume: 57
  start-page: 1336
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b47
  article-title: Stem–leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2866056
– volume: 14
  start-page: 642
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b94
  article-title: Identification of the yield of camellia oleifera based on color space by the optimized mean shift clustering algorithm using terrestrial laser scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs14030642
– volume: 78
  start-page: 352
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b112
  article-title: Evaluation of 3D point cloud-based models for the prediction of grassland biomass
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 42
  start-page: 738
  issue: 2
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b126
  article-title: Research on volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and clustering segmentation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1811917
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b17
  article-title: Robotic fertilisation using localisation systems based on point clouds in strip-cropping fields
  publication-title: Agronomy
– volume: 10
  issue: 5
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b124
  article-title: Analysis of plant height changes of lodged maize using UAV-LiDAR data
  publication-title: Agriculture
  doi: 10.3390/agriculture10050146
– volume: 14
  start-page: 585
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b54
  article-title: UAV oblique imagery with an adaptive micro-terrain model for estimation of leaf area index and height of maize canopy from 3D point clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs14030585
– volume: 104
  start-page: 112
  year: 2015
  ident: 10.1016/j.compag.2023.107737_b49
  article-title: Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.003
– volume: 3
  start-page: 3043
  issue: 4
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b20
  article-title: Automatic segmentation of tree structure from point cloud data
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2849499
– volume: 9
  start-page: 160
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b24
  article-title: Evaluation of soil water management properties based on LiDAR data and soil analyses, at farm level
  publication-title: Nat. Resour. Sustain. Dev.
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b50
  article-title: Acquiring plant features with optical sensing devices in an organic strip-cropping system
  publication-title: Agronomy
  doi: 10.3390/agronomy10020197
– volume: 14
  start-page: 2292
  issue: 10
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b25
  article-title: Individual maize location and height estimation in field from UAV-Borne LiDAR and RGB images
  publication-title: Remote Sens.
  doi: 10.3390/rs14102292
– volume: 14
  start-page: 1048
  issue: 4
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b11
  article-title: Using LiDAR system as a data source for agricultural land boundaries
  publication-title: Remote Sens.
  doi: 10.3390/rs14041048
– year: 2022
  ident: 10.1016/j.compag.2023.107737_b26
  article-title: Evaluation of coupled wind/wave model simulations of offshore winds in the Mid-Atlantic bight using LiDAR-equipped buoys
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-21-0166.1
– volume: 3059
  start-page: 143
  year: 1997
  ident: 10.1016/j.compag.2023.107737_b105
  article-title: Short-range lidar measurement of top fruit tree canopies for pesticide applications research in the United Kingdom
– volume: 15
  start-page: 4027
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b123
  article-title: Evaluation of leaf area index (LAI) of broadacre crops using UAS-based LiDAR point clouds and multispectral imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3172491
– volume: 187
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b110
  article-title: A procedure for automated tree pruning suggestion using LiDAR scans of fruit trees
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106274
– volume: 12
  start-page: 1241
  issue: 8
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b31
  article-title: Innovative leaf area detection models for orchard tree thick canopy based on LiDAR point cloud data
  publication-title: Agriculture
  doi: 10.3390/agriculture12081241
– volume: 59
  start-page: 8638
  issue: 28
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b117
  article-title: Early forest-fire detection using scanning polarization LiDAR
  publication-title: Appl. Opt.
  doi: 10.1364/AO.399766
– volume: 43
  start-page: 299
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b35
  article-title: Tree crown segmentation in three dimensions using density models derived from airborne laser scanning
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.2018149
– volume: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b115
  article-title: Plant 3D reconstruction based on LiDAR and multi-view sequence images
  publication-title: Int. J. Precis. Agric. Aviat.
– volume: 42
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b9
  article-title: Interpreting landscapes of pre-columbian raised-field agriculture using high-resolution LiDAR topography
  publication-title: J. Archaeol. Sci.: Reports
– volume: 42
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b104
  article-title: The benefit of spectral and point-cloud data for herbage yield and quality assessment of grasslands
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
– volume: 12
  start-page: 2509
  issue: 10
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b58
  article-title: Precision variable-rate spraying robot by using single 3D LIDAR in orchards
  publication-title: Agronomy
  doi: 10.3390/agronomy12102509
– year: 2021
  ident: 10.1016/j.compag.2023.107737_b14
– volume: 82
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b32
  article-title: Apple orchard inventory with a LiDAR equipped unmanned aerial system
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 93
  start-page: 494
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b80
  article-title: Near-field high-resolution maps of the ridgecrest earthquakes from aerial imagery
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/0220210234
– start-page: 465
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b122
  article-title: Toward a structural description of row crops using UAS-based LiDAR point clouds
– volume: 22
  issue: 5
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b88
  article-title: Analysis of methods for determining shallow waterbody depths based on images taken by unmanned aerial vehicles
  publication-title: Sensors
  doi: 10.3390/s22051844
– volume: 72
  issue: 15
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b30
  article-title: Real-time, non-destructive and in-field foliage yield and growth rate measurement in perennial ryegrass (Lolium perenne L.)
  publication-title: Plant Methods
– volume: 3
  start-page: 193
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b21
  article-title: AI-driven maize yield forecasting using unmanned aerial vehicle-based hyperspectral and LiDAR data fusion
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-annals-V-3-2022-193-2022
– start-page: 339
  year: 2010
  ident: 10.1016/j.compag.2023.107737_b109
  article-title: Plant species classification using a 3D LiDAR sensor and machine learning
– start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b38
  article-title: LiDAR-based SLAM and autonomous navigation for forestry quadrotors
– volume: 3
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b60
  article-title: UAV-based sorghum growth monitoring: A comparative analysis of LiDAR and photogrammetry
  publication-title: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– volume: 14
  start-page: 24212
  issue: 12
  year: 2014
  ident: 10.1016/j.compag.2023.107737_b33
  article-title: Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture
  publication-title: Sensors
  doi: 10.3390/s141224212
– volume: 99
  start-page: 42
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b78
  article-title: Iterative individual plant clustering in maize with assembled 2D LiDAR data
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.03.023
– volume: 51
  start-page: 345
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b7
  article-title: Interpretation of spatiotemporal gravity changes accompanying the earthquake of 21 August 2017 on Ischia (Italy)
  publication-title: Contrib. Geophys. Geodesy
  doi: 10.31577/congeo.2021.51.4.3
– volume: 58
  start-page: 881
  issue: 4
  year: 2007
  ident: 10.1016/j.compag.2023.107737_b71
  article-title: 3D LiDAR imaging for detecting and understanding plant responses and canopy structure
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl142
– volume: 22
  issue: 4
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b108
  article-title: Evaluation of a new lightweight UAV-borne topo-bathymetric LiDAR for shallow water bathymetry and object detection
  publication-title: Sensors
  doi: 10.3390/s22041379
– volume: 10
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.compag.2023.107737_b96
  article-title: High-throughput 3D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0130479
– volume: 58370
  year: 2017
  ident: 10.1016/j.compag.2023.107737_b103
  article-title: ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming
– volume: 74
  start-page: 109
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b43
  article-title: Automatic individual tree detection and canopy segmentation from three-dimensional point cloud images obtained from ground-based LiDAR
  publication-title: J. Agric. Meteorol.
  doi: 10.2480/agrmet.D-18-00012
– volume: 9
  issue: 7
  year: 2019
  ident: 10.1016/j.compag.2023.107737_b99
  article-title: AgROS: A robot operating system based emulation tool for agricultural robotics
  publication-title: Agronomy
  doi: 10.3390/agronomy9070403
– volume: 80
  issue: 17
  year: 2021
  ident: 10.1016/j.compag.2023.107737_b41
  article-title: Evaluation of geohazards in the Cape Girardeau area using LiDAR and GIS, Southeast Missouri, USA
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-021-09869-z
– volume: 198
  start-page: 91
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b95
  article-title: Developing object-based image procedures for classifying and characterising different protected agriculture structures using LiDAR and orthophoto
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.07.017
– volume: 12
  issue: 10
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b114
  article-title: Suitability of airborne and terrestrial laser scanning for mapping tree crop structural metrics for improved orchard management
  publication-title: Remote Sens.
  doi: 10.3390/rs12101647
– volume: 9
  year: 2022
  ident: 10.1016/j.compag.2023.107737_b1
  article-title: Localization and mapping on agriculture based on point-feature extraction and semiplanes segmentation from 3D LiDAR data
  publication-title: Front. Robotics and AI
  doi: 10.3389/frobt.2022.832165
– volume: 102
  start-page: 128
  issue: 2
  year: 2009
  ident: 10.1016/j.compag.2023.107737_b81
  article-title: A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.10.009
– volume: 18
  start-page: 3731
  issue: 11
  year: 2018
  ident: 10.1016/j.compag.2023.107737_b119
  article-title: Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS
  publication-title: Sensors
  doi: 10.3390/s18113731
– volume: 583
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b89
  article-title: Evaluating watershed-based optimized decision support framework for conservation practice placement in Plum Creek Minnesota
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124573
– volume: XLI-B8
  start-page: 365
  year: 2016
  ident: 10.1016/j.compag.2023.107737_b59
  article-title: Automatic river network extraction from LiDAR data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-archives-XLI-B8-365-2016
– volume: 21
  start-page: 473
  issue: 3
  year: 2020
  ident: 10.1016/j.compag.2023.107737_b68
  article-title: The novel use of proximal photogrammetry and terrestrial LiDAR to quantify the structural complexity of orchard trees
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09676-4
SSID ssj0016987
Score 2.6144826
SecondaryResourceType review_article
Snippet In recent years, Light Detection and Ranging (LiDAR) technology has been one of the most innovative subjects in laser scanning, remote sensing, and object...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107737
SubjectTerms agriculture
Agriculture 5.0
electronics
Food sustainability
lidar
Light detection and ranging
Point cloud processing
precision agriculture
Remote sensing
taxonomy
trees
vegetation
vision
Title LiDAR applications in precision agriculture for cultivating crops: A review of recent advances
URI https://dx.doi.org/10.1016/j.compag.2023.107737
https://www.proquest.com/docview/2834204408
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhe0kPpU1amrQNCuTqXVsPS-7NbLNsHs2h3UJOFbI9WhyCd9nHNb89I1tOmhAI9CaLkTEjefQJfTMfISfWJVnJCh1ZlVSR4HEZ6UrKiFmtnAYWp5XPd_55lU7_iPNreb1Dxn0ujKdVhtjfxfQ2WoeeUfDmaFnXo98IVnSSZohQ_J4tfU1QIZRf5cO7B5oHGuguZTrF0xJa9-lzLcer5XnPh15CHLuU8mroL29PzwJ1u_tM3pN3ATbSvPuyD2QHmj3yNp-vQukM2Cd_L-sf-S_67400rRu6XAUVHWofrSlCVerbrbZZM6deyGv9nea0S2WhC4ctT9ykgSSw_khmk9PZeBoF9YSo5DzbRHhSwolISw1gCxCJFVAUAhjEOAvMcgQSqnRWMl0VGddWOhE7yWNR-IIwCf9EBs2igc-EKlcCQ1xVStCi0DZjIAFiZXklHDhxQHjvM1OGyuJe4OLW9BSyG9N52nhPm87TByR6GLXsKmu8Yq_66TBPVojB4P_KyON-9gz-PP5GxDaw2K4NYivBWtHtw_9--xey6586Ns9XMtistvANgcqmOGpX4hF5k59dTK_uAcMT6W4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcEI9dLW8jcQ1N_EgcbhEPFSg9QFfihOUk46orlFZt-f_YiQO7CAmJm-XYUTTjjD_L38wHcKJNlBY0l4FOojLgLCwCWQoRUC0TI5GGcenyne8Gce8Pv3kUj0tw3ubCOFqlj_1NTK-jte_pemt2p-Nx98GCFRnFqUUobs8WfBlWXHUq0YGV7Pq2N3i7TIhT2WRNx_bAZCe0GXQ1zaumeo9OnYq47UoSJ4j--Q71IVbXG9DVBqx75Eiy5uM2YQmrLVjLRjNfPQO34ak_vsjuyb-X0mRckenMC-kQ_T6aWLRKXLuWN6tGxGl5zc9IRppsFjIxtuW4m8TzBOY_YXh1OTzvBV5AISgYSxeBPSxZX8SFRNQ58khzzHOOFEPrCKqZxRJJYbSgssxTJrUwPDSChTx3NWEi9gs61aTC30ASUyC10KoQKHkudUpRIIaJZiU3aPgOsNZmqvDFxZ3GxbNqWWR_VWNp5SytGkvvQPA2a9oU1_hifNK6Q_23SJSN_1_MPG69p-z_4y5FdIWTl7my8IrTWnd799tvP4IfveFdX_WvB7d7sOqeNOSefegsZi94YHHLIj_06_IVxRXsHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LiDAR+applications+in+precision+agriculture+for+cultivating+crops%3A+A+review+of+recent+advances&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Rivera%2C+Gilberto&rft.au=Porras%2C+Ra%C3%BAl&rft.au=Florencia%2C+Rogelio&rft.au=S%C3%A1nchez-Sol%C3%ADs%2C+J.+Patricia&rft.date=2023-04-01&rft.issn=0168-1699&rft.volume=207+p.107737-&rft_id=info:doi/10.1016%2Fj.compag.2023.107737&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon