Acute Stress State Classification Based on Electrodermal Activity Modeling
Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recogni...
Saved in:
Published in | IEEE transactions on affective computing Vol. 14; no. 1; pp. 788 - 799 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2021.3055294 |
Cover
Loading…
Abstract | Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to classify the stress state at a single-subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is successfully detected with an average accuracy of 94.62 percent. Besides, we proposed a further 4-class pattern recognition system able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as 75.00 percent. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios. |
---|---|
AbstractList | Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to classify the stress state at a single-subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is successfully detected with an average accuracy of 94.62 percent. Besides, we proposed a further 4-class pattern recognition system able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as 75.00 percent. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios. |
Author | Bailon, Raquel Scilingo, Enzo Pasquale Aguilo, Jordi Lazaro, Jesus Greco, Alberto Garzon-Rey, Jorge Mario Valenza, Gaetano de la Camara, Concepcion |
Author_xml | – sequence: 1 givenname: Alberto orcidid: 0000-0002-4822-5562 surname: Greco fullname: Greco, Alberto email: a.greco@centropiaggio.unipi.it organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy – sequence: 2 givenname: Gaetano orcidid: 0000-0001-6574-1879 surname: Valenza fullname: Valenza, Gaetano email: g.valenza@iet.unipi.it organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy – sequence: 3 givenname: Jesus orcidid: 0000-0001-8742-0072 surname: Lazaro fullname: Lazaro, Jesus email: jlazarop@unizar.es organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA – sequence: 4 givenname: Jorge Mario surname: Garzon-Rey fullname: Garzon-Rey, Jorge Mario email: JorgeMario.Garzon@uab.cat organization: Department of Engineering Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain – sequence: 5 givenname: Jordi surname: Aguilo fullname: Aguilo, Jordi email: jordi.aguilo@uab.es organization: Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain – sequence: 6 givenname: Concepcion surname: de la Camara fullname: de la Camara, Concepcion email: conchidlc@hotmail.com organization: Psychiatry Service, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain – sequence: 7 givenname: Raquel surname: Bailon fullname: Bailon, Raquel email: rbailon@unizar.es organization: Department of Engineering Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain – sequence: 8 givenname: Enzo Pasquale orcidid: 0000-0003-2588-4917 surname: Scilingo fullname: Scilingo, Enzo Pasquale email: e.scilingo@ing.unipi.it organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy |
BookMark | eNp9kE1LAzEQhoNUsNb-Ab0seN46yexXjmtp_aDiwXpestlEUra7NUmF_nvTD0Q8OJd3ZnjfGXguyaDrO0XINYUJpcDvluV8Pp0wYHSCkKaMJ2dkSHnCY4QkHfzqL8jYuRWEQsSM5UPyXMqtV9Gbt8q5ICIM01Y4Z7SRwpu-i-6FU00UmlmrpLd9o-xatFEpvfkyfhe9hE1ruo8rcq5F69T4pCPyPp8tp4_x4vXhaVouYonIfUxRJLUShc513oDIswZlCjVkKGrJad7IWqcFgqhZkopCQh6WmQCtkww0ZTgit8e7G9t_bpXz1arf2i68rFheAC8wQwgudnRJ2ztnla421qyF3VUUqj226oCt2mOrTthCqPgTksYfKHgrTPt_9OYYNUqpn18cE0CW4jc_gnwQ |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1007_s13369_024_09927_1 crossref_primary_10_3390_s24165085 crossref_primary_10_3390_electronics12061498 crossref_primary_10_1109_ACCESS_2024_3463742 crossref_primary_10_1109_THMS_2024_3354413 crossref_primary_10_1152_ajpregu_00251_2022 crossref_primary_10_1111_ejn_16463 crossref_primary_10_1016_j_displa_2025_103008 crossref_primary_10_1109_TAFFC_2022_3197842 crossref_primary_10_3390_s23052504 crossref_primary_10_1016_j_eswa_2025_127097 crossref_primary_10_3389_fnins_2023_1138091 crossref_primary_10_3390_brainsci13070994 crossref_primary_10_1088_1361_6579_ada51b crossref_primary_10_3390_info16020086 crossref_primary_10_1109_JBHI_2023_3315755 crossref_primary_10_3389_fphys_2023_1147260 crossref_primary_10_3389_fpsyt_2024_1500310 crossref_primary_10_1088_1361_6579_ac5007 crossref_primary_10_3390_bios13030397 crossref_primary_10_1016_j_compbiomed_2024_108918 crossref_primary_10_1061_JCEMD4_COENG_13861 crossref_primary_10_3390_s24041096 crossref_primary_10_1109_ACCESS_2023_3281194 crossref_primary_10_1142_S0219477522500134 crossref_primary_10_1016_j_buildenv_2022_108988 crossref_primary_10_1016_j_actpsy_2025_104877 crossref_primary_10_1016_j_mex_2025_103205 |
Cites_doi | 10.1016/j.bbr.2017.12.021 10.1007/978-3-642-24600-5_16 10.1111/j.1553-2712.2001.tb01132.x 10.1093/bioinformatics/btm344 10.1155/2012/403908 10.1097/01.PSY.0000035721.12441.17 10.1098/rsta.2008.0267 10.1109/TITB.2009.2036164 10.1111/j.1469-8986.2009.00961.x 10.1109/iMac4s.2013.6526476 10.1016/j.jbi.2017.08.006 10.1002/hbm.22237 10.1109/JSEN.2016.2623677 10.1109/TBME.2009.2038487 10.1016/j.jneumeth.2010.04.028 10.1002/9780470479216.corpsy0943 10.1007/978-3-540-35488-8_6 10.1016/j.ijhcs.2014.05.006 10.1016/j.eswa.2017.01.040 10.1016/B978-0-08-045396-5.00188-3 10.3390/s19081849 10.1037/t02889-000 10.1136/bmj.315.7107.530 10.1111/j.1469-8986.2009.00972.x 10.1023/A:1012487302797 10.1109/MC.2015.316 10.1007/978-3-319-46705-4 10.1109/TITB.2011.2169804 10.1142/S0129065716500416 10.1109/JBHI.2016.2553578 10.3390/s121115888 10.1037/13086-004 10.1109/NaBIC.2011.6089448 10.1109/MCE.2016.2590178 10.1016/j.neubiorev.2013.11.005 10.1016/j.yfrne.2018.03.001 10.1007/s11517-018-1879-z 10.1088/0967-3334/33/8/1289 10.1177/1754073914565517 10.1016/S0167-8760(96)00713-1 10.1109/ICSENS.2014.6985421 10.1109/EMBC.2015.7319705 10.1007/s10803-013-1996-3 10.1007/978-3-642-24965-5_39 10.1007/s10439-016-1606-6 10.1016/j.snb.2015.02.025 10.1371/journal.pone.0113618 10.1016/j.arr.2018.09.005 10.1016/j.psyneuen.2011.12.010 10.1109/TITS.2005.848368 10.1109/34.954607 10.1007/s10802-016-0147-7 10.1109/EMBC.2019.8857745 10.1111/j.1469-8986.2012.01483.x 10.1016/j.jneumeth.2005.02.001 10.1097/PSY.0b013e3181810658 10.1109/TBME.2015.2474131 10.1109/JBHI.2018.2884644 10.7326/0003-4819-117-10-854 10.5665/sleep.4346 10.3390/electronics5030046 10.1109/TITS.2014.2365681 10.1007/s13369-013-0786-8 10.1109/MECO.2016.7525765 10.1016/j.neubiorev.2011.02.003 10.1177/107385840200800209 10.1016/j.ynstr.2016.11.001 10.1146/annurev.ps.44.020193.000245 10.3390/s140407120 10.1007/s11906-001-0047-1 10.1093/oso/9780195087574.003.0011 10.1289/ehp.8132 10.1159/000119004 10.1016/j.compind.2017.05.004 10.1111/srt.12132 10.4316/AECE.2014.03009 10.1145/1961189.1961199 10.1159/000050681 10.1109/TIE.2010.2103538 10.1007/978-1-4614-1126-0 10.1109/JSEN.2017.2727539 10.1016/j.bspc.2010.12.001 10.1146/annurev.psych.53.100901.135217 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2021.3055294 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Computer Science |
EISSN | 1949-3045 |
EndPage | 799 |
ExternalDocumentID | 10_1109_TAFFC_2021_3055294 9340325 |
Genre | orig-research |
GrantInformation_xml | – fundername: Italian Ministry of Education and Research – fundername: European Union's Framework Programme for Research and Innovation Horizon grantid: 2014-2020 – fundername: European Regional Development Fund; FEDER grantid: RTI2018-097723-B-I00; LMP44-18 funderid: 10.13039/501100008530 – fundername: Marie Skłodowska-Curie grantid: 745755 – fundername: Instituto de Salud Carlos III funderid: 10.13039/501100004587 – fundername: Ministerio de Ciencia, Innovación y Universidades; MCIU funderid: 10.13039/100014440 – fundername: AEI |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c339t-13a4bea8f7f7d0a76d3c50b063abc917dcbf5830ab245a8c079176a0ff460f123 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Jun 29 12:54:59 EDT 2025 Tue Jul 01 02:57:53 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Wed Aug 27 02:14:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-13a4bea8f7f7d0a76d3c50b063abc917dcbf5830ab245a8c079176a0ff460f123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8742-0072 0000-0003-2588-4917 0000-0002-4822-5562 0000-0001-6574-1879 |
OpenAccessLink | http://zaguan.unizar.es/record/98450 |
PQID | 2780983630 |
PQPubID | 2040414 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2780983630 crossref_primary_10_1109_TAFFC_2021_3055294 ieee_primary_9340325 crossref_citationtrail_10_1109_TAFFC_2021_3055294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Jan.-March-1 2023-1-1 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan.-March-1 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref82 Association (ref8) ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 Guyon (ref73) 2002; 46 ref2 ref1 ref39 ref38 ref71 ref70 ref72 ref24 ref68 ref23 ref67 Pagani (ref20) 1991; 83 ref26 ref25 ref69 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref51 doi: 10.1016/j.bbr.2017.12.021 – ident: ref49 doi: 10.1007/978-3-642-24600-5_16 – ident: ref64 doi: 10.1111/j.1553-2712.2001.tb01132.x – ident: ref71 doi: 10.1093/bioinformatics/btm344 – ident: ref16 doi: 10.1155/2012/403908 – ident: ref83 doi: 10.1097/01.PSY.0000035721.12441.17 – ident: ref37 doi: 10.1098/rsta.2008.0267 – ident: ref47 doi: 10.1109/TITB.2009.2036164 – ident: ref82 doi: 10.1111/j.1469-8986.2009.00961.x – ident: ref19 doi: 10.1109/iMac4s.2013.6526476 – ident: ref26 doi: 10.1016/j.jbi.2017.08.006 – ident: ref29 doi: 10.1002/hbm.22237 – ident: ref40 doi: 10.1109/JSEN.2016.2623677 – ident: ref76 doi: 10.1109/TBME.2009.2038487 – ident: ref53 doi: 10.1016/j.jneumeth.2010.04.028 – ident: ref65 doi: 10.1002/9780470479216.corpsy0943 – ident: ref72 doi: 10.1007/978-3-540-35488-8_6 – ident: ref28 doi: 10.1016/j.ijhcs.2014.05.006 – ident: ref35 doi: 10.1016/j.eswa.2017.01.040 – ident: ref7 doi: 10.1016/B978-0-08-045396-5.00188-3 – ident: ref27 doi: 10.3390/s19081849 – ident: ref63 doi: 10.1037/t02889-000 – ident: ref14 doi: 10.1136/bmj.315.7107.530 – ident: ref54 doi: 10.1111/j.1469-8986.2009.00972.x – volume: 46 start-page: 389 issue: 1 year: 2002 ident: ref73 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: ref18 doi: 10.1109/MC.2015.316 – ident: ref57 doi: 10.1007/978-3-319-46705-4 – ident: ref75 doi: 10.1109/TITB.2011.2169804 – ident: ref30 doi: 10.1142/S0129065716500416 – ident: ref58 doi: 10.1109/JBHI.2016.2553578 – ident: ref38 doi: 10.3390/s121115888 – ident: ref9 doi: 10.1037/13086-004 – ident: ref22 doi: 10.1109/NaBIC.2011.6089448 – ident: ref10 doi: 10.1109/MCE.2016.2590178 – ident: ref62 doi: 10.1016/j.neubiorev.2013.11.005 – ident: ref6 doi: 10.1016/j.yfrne.2018.03.001 – ident: ref17 doi: 10.1007/s11517-018-1879-z – ident: ref80 doi: 10.1088/0967-3334/33/8/1289 – ident: ref15 doi: 10.1177/1754073914565517 – ident: ref67 doi: 10.1016/S0167-8760(96)00713-1 – ident: ref32 doi: 10.1109/ICSENS.2014.6985421 – ident: ref41 doi: 10.1109/EMBC.2015.7319705 – ident: ref46 doi: 10.1007/s10803-013-1996-3 – volume: 83 start-page: 43 year: 1991 ident: ref20 article-title: Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction publication-title: Circulation – ident: ref50 doi: 10.1007/978-3-642-24965-5_39 – ident: ref69 doi: 10.1007/s10439-016-1606-6 – ident: ref70 doi: 10.1016/j.snb.2015.02.025 – ident: ref60 doi: 10.1371/journal.pone.0113618 – ident: ref79 doi: 10.1016/j.arr.2018.09.005 – ident: ref85 doi: 10.1016/j.psyneuen.2011.12.010 – ident: ref23 doi: 10.1109/TITS.2005.848368 – ident: ref39 doi: 10.1109/34.954607 – ident: ref45 doi: 10.1007/s10802-016-0147-7 – ident: ref68 doi: 10.1109/EMBC.2019.8857745 – ident: ref52 doi: 10.1111/j.1469-8986.2012.01483.x – ident: ref56 doi: 10.1016/j.jneumeth.2005.02.001 – ident: ref84 doi: 10.1097/PSY.0b013e3181810658 – ident: ref55 doi: 10.1109/TBME.2015.2474131 – ident: ref86 doi: 10.1109/JBHI.2018.2884644 – ident: ref4 doi: 10.7326/0003-4819-117-10-854 – ident: ref44 doi: 10.5665/sleep.4346 – ident: ref42 doi: 10.3390/electronics5030046 – ident: ref21 doi: 10.1109/TITS.2014.2365681 – ident: ref31 doi: 10.1007/s13369-013-0786-8 – ident: ref34 doi: 10.1109/MECO.2016.7525765 – ident: ref11 doi: 10.1016/j.neubiorev.2011.02.003 – ident: ref43 doi: 10.1177/107385840200800209 – ident: ref78 doi: 10.1016/j.ynstr.2016.11.001 – ident: ref1 doi: 10.1146/annurev.ps.44.020193.000245 – ident: ref24 doi: 10.3390/s140407120 – ident: ref12 doi: 10.1007/s11906-001-0047-1 – ident: ref2 doi: 10.1093/oso/9780195087574.003.0011 – ident: ref5 doi: 10.1289/ehp.8132 – ident: ref61 doi: 10.1159/000119004 – ident: ref33 doi: 10.1016/j.compind.2017.05.004 – ident: ref77 doi: 10.1002/9780470479216.corpsy0943 – ident: ref81 doi: 10.1111/srt.12132 – ident: ref8 article-title: Stress: The different kinds of stress – ident: ref48 doi: 10.4316/AECE.2014.03009 – ident: ref74 doi: 10.1145/1961189.1961199 – ident: ref13 doi: 10.1159/000050681 – ident: ref36 doi: 10.1109/TIE.2010.2103538 – ident: ref66 doi: 10.1007/978-1-4614-1126-0 – ident: ref25 doi: 10.1109/JSEN.2017.2727539 – ident: ref59 doi: 10.1016/j.bspc.2010.12.001 – ident: ref3 doi: 10.1146/annurev.psych.53.100901.135217 |
SSID | ssj0000333627 |
Score | 2.484313 |
Snippet | Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 788 |
SubjectTerms | Accuracy Algorithms Classification Computational modeling convex optimization Decomposition electrodermal activity Feature extraction Pattern recognition Pattern recognition systems Physiology Protocols Psychology Robustness Stimuli Stress Stress recognition stress sources Stress state Support vector machines Task analysis trier social stress test |
Title | Acute Stress State Classification Based on Electrodermal Activity Modeling |
URI | https://ieeexplore.ieee.org/document/9340325 https://www.proquest.com/docview/2780983630 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nbpQaEEUCvLABmmd2EnssaBGVSVYaKVukV9ZQC2CdoBfj-08JB5CbJZjK5bPvpfv7gO4CgtuiA5ZgBVTARXYBIISq8hJreOIiYQaH-X7kMxXdLGO1y24aXJhjDE--MyMXdO_5eut2jtX2YQTikkUt6FtDbcyV6vxp2BCLC9O67wYzCfLaZbdWQswCseurFXE6RfZ48FUfnBgL1ayHtzXCyqjSZ7G-50cq49vtRr_u-JDOKj0SzQtD8QRtMymD70auwFVV7kP3YbzvQ9gMVX2K3r0eSPI65_Io2W6OCJPOnRrpZ1GtjErcXO04-j2P6pEn0AOU81lth_DKpst7-ZBBbIQKEK4g6IXVBrBirRINRZpoomKsbSai5DK2nJaySJmBAsZ0VgwhVPbmQhcFDTBhZV7J9DZbDfmFJB7aDHGPdQlggrDubHqmmQsKUIpsCJDCOvtz1VVgdwBYTzn3hLBPPckyx3J8opkQ7hu5ryU9Tf-HD1wNGhGVts_hFFN5by6om95lDLMGUkIPvt91jl0HbZ86W8ZQWf3ujcXVgPZyUt_9D4BFiTX5w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH6CMtCFo4Aopwc2SOvETmKPpSIqVxdaiS3ylQXUImgH-PXYziFxCLFZjq1YfvZ7z-_6AM7CghuiQxZgxVRABTaBoMQqclLrOGIiocZH-Y6T0ZTePMaPK3DR5MIYY3zwmem5pvfl67laOlNZnxOKSRSvwpqV-3FYZms1FhVMiOXGaZ0Zg3l_MsiyoX0DRmHPFbaKOP0ifTycyg8e7AVLtgn39ZLKeJKn3nIhe-rjW7XG_655CzYqDRMNyiOxDStm1oHNGr0BVZe5A-2G973vwM1A2a_owWeOIK-BIo-X6SKJPPHQpZV3GtnGVYmcox1Pt_9RJf4EcqhqLrd9F6bZ1WQ4CiqYhUARwh0YvaDSCFakRaqxSBNNVIyl1V2EVPY1p5UsYkawkBGNBVM4tZ2JwEVBE1xYybcHrdl8ZvYBOVeLMc5VlwgqDOfGKmySsaQIpcCKdCGstz9XVQ1yB4XxnPu3COa5J1nuSJZXJOvCeTPnpazA8efoHUeDZmS1_V04qqmcV5f0LY9ShjkjCcEHv886hfXR5P4uv7se3x5C2yHNl9aXI2gtXpfm2OojC3nij-EngyLbMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+Stress+State+Classification+Based+on+Electrodermal+Activity+Modeling&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Greco%2C+Alberto&rft.au=Valenza%2C+Gaetano&rft.au=L%C3%A1zaro%2C+Jes%C3%BAs&rft.au=Garz%C3%B3n-Rey%2C+Jorge+Mario&rft.date=2023-01-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=14&rft.issue=1&rft.spage=788&rft.epage=799&rft_id=info:doi/10.1109%2FTAFFC.2021.3055294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2021_3055294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |