Acute Stress State Classification Based on Electrodermal Activity Modeling

Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recogni...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 14; no. 1; pp. 788 - 799
Main Authors Greco, Alberto, Valenza, Gaetano, Lazaro, Jesus, Garzon-Rey, Jorge Mario, Aguilo, Jordi, de la Camara, Concepcion, Bailon, Raquel, Scilingo, Enzo Pasquale
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2021.3055294

Cover

Loading…
Abstract Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to classify the stress state at a single-subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is successfully detected with an average accuracy of 94.62 percent. Besides, we proposed a further 4-class pattern recognition system able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as 75.00 percent. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios.
AbstractList Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to classify the stress state at a single-subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is successfully detected with an average accuracy of 94.62 percent. Besides, we proposed a further 4-class pattern recognition system able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as 75.00 percent. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios.
Author Bailon, Raquel
Scilingo, Enzo Pasquale
Aguilo, Jordi
Lazaro, Jesus
Greco, Alberto
Garzon-Rey, Jorge Mario
Valenza, Gaetano
de la Camara, Concepcion
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0002-4822-5562
  surname: Greco
  fullname: Greco, Alberto
  email: a.greco@centropiaggio.unipi.it
  organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
– sequence: 2
  givenname: Gaetano
  orcidid: 0000-0001-6574-1879
  surname: Valenza
  fullname: Valenza, Gaetano
  email: g.valenza@iet.unipi.it
  organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
– sequence: 3
  givenname: Jesus
  orcidid: 0000-0001-8742-0072
  surname: Lazaro
  fullname: Lazaro, Jesus
  email: jlazarop@unizar.es
  organization: Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
– sequence: 4
  givenname: Jorge Mario
  surname: Garzon-Rey
  fullname: Garzon-Rey, Jorge Mario
  email: JorgeMario.Garzon@uab.cat
  organization: Department of Engineering Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain
– sequence: 5
  givenname: Jordi
  surname: Aguilo
  fullname: Aguilo, Jordi
  email: jordi.aguilo@uab.es
  organization: Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
– sequence: 6
  givenname: Concepcion
  surname: de la Camara
  fullname: de la Camara, Concepcion
  email: conchidlc@hotmail.com
  organization: Psychiatry Service, Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
– sequence: 7
  givenname: Raquel
  surname: Bailon
  fullname: Bailon, Raquel
  email: rbailon@unizar.es
  organization: Department of Engineering Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain
– sequence: 8
  givenname: Enzo Pasquale
  orcidid: 0000-0003-2588-4917
  surname: Scilingo
  fullname: Scilingo, Enzo Pasquale
  email: e.scilingo@ing.unipi.it
  organization: Department of Information Engineering & Research Centre E. Piaggio, School of Engineering, University of Pisa, Pisa, Italy
BookMark eNp9kE1LAzEQhoNUsNb-Ab0seN46yexXjmtp_aDiwXpestlEUra7NUmF_nvTD0Q8OJd3ZnjfGXguyaDrO0XINYUJpcDvluV8Pp0wYHSCkKaMJ2dkSHnCY4QkHfzqL8jYuRWEQsSM5UPyXMqtV9Gbt8q5ICIM01Y4Z7SRwpu-i-6FU00UmlmrpLd9o-xatFEpvfkyfhe9hE1ruo8rcq5F69T4pCPyPp8tp4_x4vXhaVouYonIfUxRJLUShc513oDIswZlCjVkKGrJad7IWqcFgqhZkopCQh6WmQCtkww0ZTgit8e7G9t_bpXz1arf2i68rFheAC8wQwgudnRJ2ztnla421qyF3VUUqj226oCt2mOrTthCqPgTksYfKHgrTPt_9OYYNUqpn18cE0CW4jc_gnwQ
CODEN ITACBQ
CitedBy_id crossref_primary_10_1007_s13369_024_09927_1
crossref_primary_10_3390_s24165085
crossref_primary_10_3390_electronics12061498
crossref_primary_10_1109_ACCESS_2024_3463742
crossref_primary_10_1109_THMS_2024_3354413
crossref_primary_10_1152_ajpregu_00251_2022
crossref_primary_10_1111_ejn_16463
crossref_primary_10_1016_j_displa_2025_103008
crossref_primary_10_1109_TAFFC_2022_3197842
crossref_primary_10_3390_s23052504
crossref_primary_10_1016_j_eswa_2025_127097
crossref_primary_10_3389_fnins_2023_1138091
crossref_primary_10_3390_brainsci13070994
crossref_primary_10_1088_1361_6579_ada51b
crossref_primary_10_3390_info16020086
crossref_primary_10_1109_JBHI_2023_3315755
crossref_primary_10_3389_fphys_2023_1147260
crossref_primary_10_3389_fpsyt_2024_1500310
crossref_primary_10_1088_1361_6579_ac5007
crossref_primary_10_3390_bios13030397
crossref_primary_10_1016_j_compbiomed_2024_108918
crossref_primary_10_1061_JCEMD4_COENG_13861
crossref_primary_10_3390_s24041096
crossref_primary_10_1109_ACCESS_2023_3281194
crossref_primary_10_1142_S0219477522500134
crossref_primary_10_1016_j_buildenv_2022_108988
crossref_primary_10_1016_j_actpsy_2025_104877
crossref_primary_10_1016_j_mex_2025_103205
Cites_doi 10.1016/j.bbr.2017.12.021
10.1007/978-3-642-24600-5_16
10.1111/j.1553-2712.2001.tb01132.x
10.1093/bioinformatics/btm344
10.1155/2012/403908
10.1097/01.PSY.0000035721.12441.17
10.1098/rsta.2008.0267
10.1109/TITB.2009.2036164
10.1111/j.1469-8986.2009.00961.x
10.1109/iMac4s.2013.6526476
10.1016/j.jbi.2017.08.006
10.1002/hbm.22237
10.1109/JSEN.2016.2623677
10.1109/TBME.2009.2038487
10.1016/j.jneumeth.2010.04.028
10.1002/9780470479216.corpsy0943
10.1007/978-3-540-35488-8_6
10.1016/j.ijhcs.2014.05.006
10.1016/j.eswa.2017.01.040
10.1016/B978-0-08-045396-5.00188-3
10.3390/s19081849
10.1037/t02889-000
10.1136/bmj.315.7107.530
10.1111/j.1469-8986.2009.00972.x
10.1023/A:1012487302797
10.1109/MC.2015.316
10.1007/978-3-319-46705-4
10.1109/TITB.2011.2169804
10.1142/S0129065716500416
10.1109/JBHI.2016.2553578
10.3390/s121115888
10.1037/13086-004
10.1109/NaBIC.2011.6089448
10.1109/MCE.2016.2590178
10.1016/j.neubiorev.2013.11.005
10.1016/j.yfrne.2018.03.001
10.1007/s11517-018-1879-z
10.1088/0967-3334/33/8/1289
10.1177/1754073914565517
10.1016/S0167-8760(96)00713-1
10.1109/ICSENS.2014.6985421
10.1109/EMBC.2015.7319705
10.1007/s10803-013-1996-3
10.1007/978-3-642-24965-5_39
10.1007/s10439-016-1606-6
10.1016/j.snb.2015.02.025
10.1371/journal.pone.0113618
10.1016/j.arr.2018.09.005
10.1016/j.psyneuen.2011.12.010
10.1109/TITS.2005.848368
10.1109/34.954607
10.1007/s10802-016-0147-7
10.1109/EMBC.2019.8857745
10.1111/j.1469-8986.2012.01483.x
10.1016/j.jneumeth.2005.02.001
10.1097/PSY.0b013e3181810658
10.1109/TBME.2015.2474131
10.1109/JBHI.2018.2884644
10.7326/0003-4819-117-10-854
10.5665/sleep.4346
10.3390/electronics5030046
10.1109/TITS.2014.2365681
10.1007/s13369-013-0786-8
10.1109/MECO.2016.7525765
10.1016/j.neubiorev.2011.02.003
10.1177/107385840200800209
10.1016/j.ynstr.2016.11.001
10.1146/annurev.ps.44.020193.000245
10.3390/s140407120
10.1007/s11906-001-0047-1
10.1093/oso/9780195087574.003.0011
10.1289/ehp.8132
10.1159/000119004
10.1016/j.compind.2017.05.004
10.1111/srt.12132
10.4316/AECE.2014.03009
10.1145/1961189.1961199
10.1159/000050681
10.1109/TIE.2010.2103538
10.1007/978-1-4614-1126-0
10.1109/JSEN.2017.2727539
10.1016/j.bspc.2010.12.001
10.1146/annurev.psych.53.100901.135217
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2021.3055294
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1949-3045
EndPage 799
ExternalDocumentID 10_1109_TAFFC_2021_3055294
9340325
Genre orig-research
GrantInformation_xml – fundername: Italian Ministry of Education and Research
– fundername: European Union's Framework Programme for Research and Innovation Horizon
  grantid: 2014-2020
– fundername: European Regional Development Fund; FEDER
  grantid: RTI2018-097723-B-I00; LMP44-18
  funderid: 10.13039/501100008530
– fundername: Marie Skłodowska-Curie
  grantid: 745755
– fundername: Instituto de Salud Carlos III
  funderid: 10.13039/501100004587
– fundername: Ministerio de Ciencia, Innovación y Universidades; MCIU
  funderid: 10.13039/100014440
– fundername: AEI
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-13a4bea8f7f7d0a76d3c50b063abc917dcbf5830ab245a8c079176a0ff460f123
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Sun Jun 29 12:54:59 EDT 2025
Tue Jul 01 02:57:53 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Wed Aug 27 02:14:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-13a4bea8f7f7d0a76d3c50b063abc917dcbf5830ab245a8c079176a0ff460f123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8742-0072
0000-0003-2588-4917
0000-0002-4822-5562
0000-0001-6574-1879
OpenAccessLink http://zaguan.unizar.es/record/98450
PQID 2780983630
PQPubID 2040414
PageCount 12
ParticipantIDs proquest_journals_2780983630
crossref_primary_10_1109_TAFFC_2021_3055294
ieee_primary_9340325
crossref_citationtrail_10_1109_TAFFC_2021_3055294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.-March-1
2023-1-1
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref82
Association (ref8)
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
Guyon (ref73) 2002; 46
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref68
ref23
ref67
Pagani (ref20) 1991; 83
ref26
ref25
ref69
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref51
  doi: 10.1016/j.bbr.2017.12.021
– ident: ref49
  doi: 10.1007/978-3-642-24600-5_16
– ident: ref64
  doi: 10.1111/j.1553-2712.2001.tb01132.x
– ident: ref71
  doi: 10.1093/bioinformatics/btm344
– ident: ref16
  doi: 10.1155/2012/403908
– ident: ref83
  doi: 10.1097/01.PSY.0000035721.12441.17
– ident: ref37
  doi: 10.1098/rsta.2008.0267
– ident: ref47
  doi: 10.1109/TITB.2009.2036164
– ident: ref82
  doi: 10.1111/j.1469-8986.2009.00961.x
– ident: ref19
  doi: 10.1109/iMac4s.2013.6526476
– ident: ref26
  doi: 10.1016/j.jbi.2017.08.006
– ident: ref29
  doi: 10.1002/hbm.22237
– ident: ref40
  doi: 10.1109/JSEN.2016.2623677
– ident: ref76
  doi: 10.1109/TBME.2009.2038487
– ident: ref53
  doi: 10.1016/j.jneumeth.2010.04.028
– ident: ref65
  doi: 10.1002/9780470479216.corpsy0943
– ident: ref72
  doi: 10.1007/978-3-540-35488-8_6
– ident: ref28
  doi: 10.1016/j.ijhcs.2014.05.006
– ident: ref35
  doi: 10.1016/j.eswa.2017.01.040
– ident: ref7
  doi: 10.1016/B978-0-08-045396-5.00188-3
– ident: ref27
  doi: 10.3390/s19081849
– ident: ref63
  doi: 10.1037/t02889-000
– ident: ref14
  doi: 10.1136/bmj.315.7107.530
– ident: ref54
  doi: 10.1111/j.1469-8986.2009.00972.x
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: ref73
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: ref18
  doi: 10.1109/MC.2015.316
– ident: ref57
  doi: 10.1007/978-3-319-46705-4
– ident: ref75
  doi: 10.1109/TITB.2011.2169804
– ident: ref30
  doi: 10.1142/S0129065716500416
– ident: ref58
  doi: 10.1109/JBHI.2016.2553578
– ident: ref38
  doi: 10.3390/s121115888
– ident: ref9
  doi: 10.1037/13086-004
– ident: ref22
  doi: 10.1109/NaBIC.2011.6089448
– ident: ref10
  doi: 10.1109/MCE.2016.2590178
– ident: ref62
  doi: 10.1016/j.neubiorev.2013.11.005
– ident: ref6
  doi: 10.1016/j.yfrne.2018.03.001
– ident: ref17
  doi: 10.1007/s11517-018-1879-z
– ident: ref80
  doi: 10.1088/0967-3334/33/8/1289
– ident: ref15
  doi: 10.1177/1754073914565517
– ident: ref67
  doi: 10.1016/S0167-8760(96)00713-1
– ident: ref32
  doi: 10.1109/ICSENS.2014.6985421
– ident: ref41
  doi: 10.1109/EMBC.2015.7319705
– ident: ref46
  doi: 10.1007/s10803-013-1996-3
– volume: 83
  start-page: 43
  year: 1991
  ident: ref20
  article-title: Sympathovagal interaction during mental stress. A study using spectral analysis of heart rate variability in healthy control subjects and patients with a prior myocardial infarction
  publication-title: Circulation
– ident: ref50
  doi: 10.1007/978-3-642-24965-5_39
– ident: ref69
  doi: 10.1007/s10439-016-1606-6
– ident: ref70
  doi: 10.1016/j.snb.2015.02.025
– ident: ref60
  doi: 10.1371/journal.pone.0113618
– ident: ref79
  doi: 10.1016/j.arr.2018.09.005
– ident: ref85
  doi: 10.1016/j.psyneuen.2011.12.010
– ident: ref23
  doi: 10.1109/TITS.2005.848368
– ident: ref39
  doi: 10.1109/34.954607
– ident: ref45
  doi: 10.1007/s10802-016-0147-7
– ident: ref68
  doi: 10.1109/EMBC.2019.8857745
– ident: ref52
  doi: 10.1111/j.1469-8986.2012.01483.x
– ident: ref56
  doi: 10.1016/j.jneumeth.2005.02.001
– ident: ref84
  doi: 10.1097/PSY.0b013e3181810658
– ident: ref55
  doi: 10.1109/TBME.2015.2474131
– ident: ref86
  doi: 10.1109/JBHI.2018.2884644
– ident: ref4
  doi: 10.7326/0003-4819-117-10-854
– ident: ref44
  doi: 10.5665/sleep.4346
– ident: ref42
  doi: 10.3390/electronics5030046
– ident: ref21
  doi: 10.1109/TITS.2014.2365681
– ident: ref31
  doi: 10.1007/s13369-013-0786-8
– ident: ref34
  doi: 10.1109/MECO.2016.7525765
– ident: ref11
  doi: 10.1016/j.neubiorev.2011.02.003
– ident: ref43
  doi: 10.1177/107385840200800209
– ident: ref78
  doi: 10.1016/j.ynstr.2016.11.001
– ident: ref1
  doi: 10.1146/annurev.ps.44.020193.000245
– ident: ref24
  doi: 10.3390/s140407120
– ident: ref12
  doi: 10.1007/s11906-001-0047-1
– ident: ref2
  doi: 10.1093/oso/9780195087574.003.0011
– ident: ref5
  doi: 10.1289/ehp.8132
– ident: ref61
  doi: 10.1159/000119004
– ident: ref33
  doi: 10.1016/j.compind.2017.05.004
– ident: ref77
  doi: 10.1002/9780470479216.corpsy0943
– ident: ref81
  doi: 10.1111/srt.12132
– ident: ref8
  article-title: Stress: The different kinds of stress
– ident: ref48
  doi: 10.4316/AECE.2014.03009
– ident: ref74
  doi: 10.1145/1961189.1961199
– ident: ref13
  doi: 10.1159/000050681
– ident: ref36
  doi: 10.1109/TIE.2010.2103538
– ident: ref66
  doi: 10.1007/978-1-4614-1126-0
– ident: ref25
  doi: 10.1109/JSEN.2017.2727539
– ident: ref59
  doi: 10.1016/j.bspc.2010.12.001
– ident: ref3
  doi: 10.1146/annurev.psych.53.100901.135217
SSID ssj0000333627
Score 2.484313
Snippet Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality. Accordingly, it would be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 788
SubjectTerms Accuracy
Algorithms
Classification
Computational modeling
convex optimization
Decomposition
electrodermal activity
Feature extraction
Pattern recognition
Pattern recognition systems
Physiology
Protocols
Psychology
Robustness
Stimuli
Stress
Stress recognition
stress sources
Stress state
Support vector machines
Task analysis
trier social stress test
Title Acute Stress State Classification Based on Electrodermal Activity Modeling
URI https://ieeexplore.ieee.org/document/9340325
https://www.proquest.com/docview/2780983630
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nbpQaEEUCvLABmmd2EnssaBGVSVYaKVukV9ZQC2CdoBfj-08JB5CbJZjK5bPvpfv7gO4CgtuiA5ZgBVTARXYBIISq8hJreOIiYQaH-X7kMxXdLGO1y24aXJhjDE--MyMXdO_5eut2jtX2YQTikkUt6FtDbcyV6vxp2BCLC9O67wYzCfLaZbdWQswCseurFXE6RfZ48FUfnBgL1ayHtzXCyqjSZ7G-50cq49vtRr_u-JDOKj0SzQtD8QRtMymD70auwFVV7kP3YbzvQ9gMVX2K3r0eSPI65_Io2W6OCJPOnRrpZ1GtjErcXO04-j2P6pEn0AOU81lth_DKpst7-ZBBbIQKEK4g6IXVBrBirRINRZpoomKsbSai5DK2nJaySJmBAsZ0VgwhVPbmQhcFDTBhZV7J9DZbDfmFJB7aDHGPdQlggrDubHqmmQsKUIpsCJDCOvtz1VVgdwBYTzn3hLBPPckyx3J8opkQ7hu5ryU9Tf-HD1wNGhGVts_hFFN5by6om95lDLMGUkIPvt91jl0HbZ86W8ZQWf3ujcXVgPZyUt_9D4BFiTX5w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH6CMtCFo4Aopwc2SOvETmKPpSIqVxdaiS3ylQXUImgH-PXYziFxCLFZjq1YfvZ7z-_6AM7CghuiQxZgxVRABTaBoMQqclLrOGIiocZH-Y6T0ZTePMaPK3DR5MIYY3zwmem5pvfl67laOlNZnxOKSRSvwpqV-3FYZms1FhVMiOXGaZ0Zg3l_MsiyoX0DRmHPFbaKOP0ifTycyg8e7AVLtgn39ZLKeJKn3nIhe-rjW7XG_655CzYqDRMNyiOxDStm1oHNGr0BVZe5A-2G973vwM1A2a_owWeOIK-BIo-X6SKJPPHQpZV3GtnGVYmcox1Pt_9RJf4EcqhqLrd9F6bZ1WQ4CiqYhUARwh0YvaDSCFakRaqxSBNNVIyl1V2EVPY1p5UsYkawkBGNBVM4tZ2JwEVBE1xYybcHrdl8ZvYBOVeLMc5VlwgqDOfGKmySsaQIpcCKdCGstz9XVQ1yB4XxnPu3COa5J1nuSJZXJOvCeTPnpazA8efoHUeDZmS1_V04qqmcV5f0LY9ShjkjCcEHv886hfXR5P4uv7se3x5C2yHNl9aXI2gtXpfm2OojC3nij-EngyLbMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+Stress+State+Classification+Based+on+Electrodermal+Activity+Modeling&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Greco%2C+Alberto&rft.au=Valenza%2C+Gaetano&rft.au=L%C3%A1zaro%2C+Jes%C3%BAs&rft.au=Garz%C3%B3n-Rey%2C+Jorge+Mario&rft.date=2023-01-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=14&rft.issue=1&rft.spage=788&rft.epage=799&rft_id=info:doi/10.1109%2FTAFFC.2021.3055294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2021_3055294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon