Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil
•LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil...
Saved in:
Published in | Geoderma Regional Vol. 22; p. e00313 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil LST from 1985 to 2019 in the dry season.
The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km2 is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations. |
---|---|
AbstractList | •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil LST from 1985 to 2019 in the dry season.
The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km2 is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations. The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km² is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations. |
ArticleNumber | e00313 |
Author | Sayão, Veridiana Maria Marques, Karina P.P. Safanelli, José Lucas dos Santos, Natasha Valadares Poppiel, Raul Roberto Demattê, José A.M. de Sousa Mendes, Wanderson |
Author_xml | – sequence: 1 givenname: Veridiana Maria surname: Sayão fullname: Sayão, Veridiana Maria email: veridiana.sayao@alumni.usp.br – sequence: 2 givenname: Natasha Valadares surname: dos Santos fullname: dos Santos, Natasha Valadares email: natasha.valadares.santos@usp.br – sequence: 3 givenname: Wanderson surname: de Sousa Mendes fullname: de Sousa Mendes, Wanderson email: wandersonsm@usp.br – sequence: 4 givenname: Karina P.P. surname: Marques fullname: Marques, Karina P.P. email: karina.marques@usp.br – sequence: 5 givenname: José Lucas surname: Safanelli fullname: Safanelli, José Lucas email: jose.lucas.safanelli@usp.br – sequence: 6 givenname: Raul Roberto surname: Poppiel fullname: Poppiel, Raul Roberto email: raulpoppiel@usp.br – sequence: 7 givenname: José A.M. surname: Demattê fullname: Demattê, José A.M. email: jamdemat@usp.br |
BookMark | eNqFkD9PwzAQxS1UJErpN2DIyNL2YsdJzYAEiH9SJZaOSJbjXFpXqV1spxJ8ehKFATHAdE937530fudkZJ1FQi5TmKeQ5ovdfIOu8mFOgcIcAVjKTsiYMk5nACIb_dBnZBrCDgCo4KzI6Zi8rZStkjbgoumFdkf0id4qu8GQ9JtSeUyCM00SWl8rjUnE_QG9im132DtrovPGbhJjO1sbt6hCTO68-jTNBTmtVRNw-j0nZP34sL5_nq1en17ub1czzZiIs5RBodMiW5acl3ktMpHxTJRaQF0Aq0VXqKyWCkWqlShUDpxWdZmjzilbQsYm5Gp4e_DuvcUQ5d4EjU3XCF0bJOU0o5wBF501G6zauxA81vLgzV75D5mC7HHKnRxwyh6nHHB2setfMW2iisbZ6JVp_gvfDGHsEBwNehm0QauxMh51lJUzfz_4Ake9las |
CitedBy_id | crossref_primary_10_1007_s11356_023_26442_2 crossref_primary_10_1016_j_neucom_2023_03_025 crossref_primary_10_1016_j_catena_2023_106915 crossref_primary_10_3390_rs14163935 crossref_primary_10_1007_s10668_021_01587_7 crossref_primary_10_1007_s10661_024_13038_7 crossref_primary_10_1109_MGRS_2024_3394040 crossref_primary_10_1186_s13717_023_00426_z crossref_primary_10_3390_rs13112223 crossref_primary_10_1007_s11356_022_19997_z crossref_primary_10_11628_ksppe_2022_25_6_685 crossref_primary_10_3390_w16203009 crossref_primary_10_1016_j_rsase_2024_101142 crossref_primary_10_12944_CWE_18_3_13 crossref_primary_10_1016_j_apgeog_2021_102604 crossref_primary_10_1007_s10661_023_12212_7 crossref_primary_10_1016_j_jsames_2022_104020 crossref_primary_10_1002_vzj2_20323 crossref_primary_10_1155_2024_1107242 crossref_primary_10_1016_j_ecolind_2025_113077 crossref_primary_10_3390_rs16183460 crossref_primary_10_1016_j_scitotenv_2023_163572 crossref_primary_10_1016_j_rsase_2022_100871 crossref_primary_10_1109_JSEN_2023_3246842 |
Cites_doi | 10.1080/01431160310001618103 10.3390/S7102115 10.1002/joc.1996 10.4090/juee.2008.v2n2.068074 10.2307/2529310 10.1016/j.isprsjprs.2017.01.001 10.1080/02757259309532182 10.1111/j.1365-246X.1989.tb02287.x 10.1038/s41598-017-03432-2 10.1038/s41586-018-0411-9 10.1177/001316446002000104 10.1016/j.tree.2013.12.001 10.1016/j.jag.2011.10.007 10.18011/bioeng2007v1n2p197-208 10.1007/s12665-011-1145-2 10.1016/j.rse.2005.11.016 10.1016/j.rse.2018.04.047 10.1016/j.rse.2012.12.008 10.1080/014311600210876 10.1016/j.rse.2015.06.017 10.1080/09640568.2012.717888 10.1016/S0924-2716(03)00016-9 10.1590/S0100-06832009000400001 10.1590/S0103-84782014000600008 10.1016/j.rse.2003.11.005 10.1080/01431169608948714 10.1017/S0021859600079442 10.1016/j.geoderma.2017.11.015 10.1016/j.geoderma.2018.03.026 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2020.e00313 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2020_e00313 S2352009420300626 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABGRD ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-1307c1748b55b6f9494549bc90f703f9313bd8ae91ca97a6052dfb6ec6238043 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Tue Aug 05 11:41:47 EDT 2025 Tue Jul 01 02:07:18 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 Tue Dec 03 03:45:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Leptosols Satellite image classification Ferralsols Acrisols Arenosols Land surface temperature Environmental monitoring Remote sensing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-1307c1748b55b6f9494549bc90f703f9313bd8ae91ca97a6052dfb6ec6238043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2524253059 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2524253059 crossref_primary_10_1016_j_geodrs_2020_e00313 crossref_citationtrail_10_1016_j_geodrs_2020_e00313 elsevier_sciencedirect_doi_10_1016_j_geodrs_2020_e00313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bonn, O’Neill (b0015) 1993; 7 Cohen (b0040) 1960; 20 Molin, P.G., Souza, F.T. de, Sampaio, J.V., Fransozi, A.A., Ferraz, S.F.B., 2015. Mapeamento de uso e cobertura do solo da bacia do rio Piracicaba, SP: Anos 1990, 2000 e 2010. CIRCULAR TÉCNICA IPEF n. 207, pp. 1–11. Sobrino, Raissouni (b0235) 2000; 21 Ruiz, L.F.C., Ten Caten, A., Dalmolin, R.S.D., 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, Santa Maria, v.44, n.6, 1001-1007, jun. 2014. Feizizadeh, Blaschke, Nazmfar, Akbari, Kohbanani (b0075) 2013; 56 Sayão, Demattê, Bedin, Nanni, Rizzo (b0230) 2018; 325 Fall, Niyogi, Gluhovsky, Pielke, Kalnay, Rochon (b0070) 2010; 30 Pal, Ziaul (b0175) 2017; 20 Berberoglu, Evrendilek, Ozkan, Donmez (b0010) 2007; 7 QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation. Muster, Langer, Abnizova, Young, Boike (b0150) 2015; 168 Oliveira, J.B., Prado, H., Bejar, O.I.G., Oliveira, E.R., Nogobardi, R.C., Assis, E.A., 1989. Carta Pedológica Semidetalhada do Estado de São Paulo: Piracicaba. São Paulo, Secretaria de Agricultura/CPA/IA, Secretaria da Economia e Planejamento/CAR/IGC. (Mapa escala 1:100.000) Robbins, Bushell, Butler (b0205) 1987; 108 Knight, Minasny, McBratney, Koen, Murphy (b0105) 2018; 313 Rogers, Kearney (b0210) 2004; 25 Ermida, Soares, Mantas, Göttsche, Trigo (b0065) 2020; 12 Onwuka, Mang (b0165) 2018; 8 Landis, Koch (b0110) 1977; 33 . Laurance, Sayer, Cassman (b0115) 2014; 29 (Accessed on March 1, 2019). Tran, Pla, Latorre-Carmona, Myint, Caetano, Kieu (b0250) 2017; 124 IBGE, 2017. Monitoramento da Cobertura e Uso da Terra do Brasil 2000 – 2010 – 2012 – 2014: Em Grade Territorial Estatística. Rio de Janeiro, 2017. 31p. Available at (Accessed on May 19th, 2020). Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, 2004. p. 494. Chen, Zhao, Li, Yin (b0035) 2006; 104 Demattê, Fongaro, Rizzo, Safanelli (b0055) 2018; 212 Weng, Lu, Schubring (b0265) 2004; 89 CONAB, 2018. Acompanhamento da Safra Brasileira: Cana-de-açúcar. v.4 Safra 2017/18 n.3 - Quarto levantamento. Dezembro 2018. Companhia Nacional de Abastecimento. Madeira, N. J., 1993. Etude Quantitative des Relations Constituants Minéralogiques-Réflectance Diffuse des Latosols Brésiliens: Application à l'utilisation Pédologique des Données Satellitaires TM (Région de Brasilia); Pierre et Marie Curie Université: Paris, France, p. 250. Vezzani, Mielniczuk (b0260) 2009; 33 Dousset, Gourmelon (b0060) 2003; 58 Allen, Singh, Dalal (b0005) 2011 Sun, Wu, Tan (b0245) 2012; 65 Yuan, Wang, Cui, Meng, Kurban, Maeyer (b0270) 2017; 7 Mezzalira, S., 1965. Descrição geológica e geográfica das folhas de Piracicaba e São Carlos. São Paulo, Instituto Geográfico e Geológico, p. 37. Pereira-Coltri, Fagnani, Labaki, Ferreira, Demétrio (b0180) 2007; 1 Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Sattelite-1 Symposium, Greenbelt: NASA SP-351 I, 309–317. Crosta, A., 1999. Processamento digital de imagens de sensoriamento remoto. UNICAMP/Instituto de Geociências. Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0120) 2013; 131 Kanianska, R., 2016. Agriculture and Its Impact on Land‐Use, Environment, and Ecosystem Services. 10.5772/63719. In: Almusaed, A. Landscape Ecology – The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. Available at Brigaud, Vasseur (b0025) 1989; 98 Sabins, F.F., 1996. Remote Sensing: Principles and Interpretation, 3rd ed. W.H. Freeman and Company, New York, p. 494. Bourscheidt, V., 2015. Análise da influência do uso do solo nas variações de temperatura utilizando imagens MODIS e Landsat-8. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE. Perinotto, J.A.J., Zaine, M.F., 1996. Evolução de paisagens no decorrer do tempo em Rio Claro, SP. In: Zaine, M.F., Perinotto, J.A.J. Patrimônios Naturais e História Geológica de Rio Claro – SP. Ed. Câmara Municipal de Rio Claro e Arquivo Público e Histórico do Mun. de Rio Claro. McFeeters (b0135) 1996; 17 R Core Team, 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. USGS, 2016. Landsat5 (L5) data users handbook. Document number LSDS: 1574 version 1.0. Available at Gasparim, Ricieri, Silva, Dallacort, Gnoatto (b0080) 2005; 27 Pereira-Coltri, Ferreira, Freitas, Demétrio (b0185) 2008; 2 Mao, Wang, Luo, Ren (b0130) 2012; 18 Osińska-Skotak (b0170) 2007; 21 Ndossi, Avdan (b0155) 2016; 8 Briassoulis, H. Analysis of land use change: theoretical and modeling approaches. 1.ed. Virginia: Regional Research Institute, West Virginia University, 2000. Jensen (b0095) 2007 Song, Hansen, Stehman, Potapov, Tyukavina, Vermote, Townshend (b0240) 2018; 560 Muster (10.1016/j.geodrs.2020.e00313_b0150) 2015; 168 10.1016/j.geodrs.2020.e00313_b0160 Chen (10.1016/j.geodrs.2020.e00313_b0035) 2006; 104 10.1016/j.geodrs.2020.e00313_b0085 Pereira-Coltri (10.1016/j.geodrs.2020.e00313_b0180) 2007; 1 10.1016/j.geodrs.2020.e00313_b0200 Bonn (10.1016/j.geodrs.2020.e00313_b0015) 1993; 7 10.1016/j.geodrs.2020.e00313_b0045 Yuan (10.1016/j.geodrs.2020.e00313_b0270) 2017; 7 10.1016/j.geodrs.2020.e00313_b0125 Li (10.1016/j.geodrs.2020.e00313_b0120) 2013; 131 Cohen (10.1016/j.geodrs.2020.e00313_b0040) 1960; 20 Pereira-Coltri (10.1016/j.geodrs.2020.e00313_b0185) 2008; 2 Berberoglu (10.1016/j.geodrs.2020.e00313_b0010) 2007; 7 Gasparim (10.1016/j.geodrs.2020.e00313_b0080) 2005; 27 Laurance (10.1016/j.geodrs.2020.e00313_b0115) 2014; 29 Feizizadeh (10.1016/j.geodrs.2020.e00313_b0075) 2013; 56 10.1016/j.geodrs.2020.e00313_b0090 10.1016/j.geodrs.2020.e00313_b0050 Allen (10.1016/j.geodrs.2020.e00313_b0005) 2011 10.1016/j.geodrs.2020.e00313_b0255 Tran (10.1016/j.geodrs.2020.e00313_b0250) 2017; 124 10.1016/j.geodrs.2020.e00313_b0215 Ndossi (10.1016/j.geodrs.2020.e00313_b0155) 2016; 8 Vezzani (10.1016/j.geodrs.2020.e00313_b0260) 2009; 33 Osińska-Skotak (10.1016/j.geodrs.2020.e00313_b0170) 2007; 21 Demattê (10.1016/j.geodrs.2020.e00313_b0055) 2018; 212 Robbins (10.1016/j.geodrs.2020.e00313_b0205) 1987; 108 Ermida (10.1016/j.geodrs.2020.e00313_b0065) 2020; 12 10.1016/j.geodrs.2020.e00313_b0020 McFeeters (10.1016/j.geodrs.2020.e00313_b0135) 1996; 17 Fall (10.1016/j.geodrs.2020.e00313_b0070) 2010; 30 10.1016/j.geodrs.2020.e00313_b0140 10.1016/j.geodrs.2020.e00313_b0220 10.1016/j.geodrs.2020.e00313_b0145 10.1016/j.geodrs.2020.e00313_b0100 Mao (10.1016/j.geodrs.2020.e00313_b0130) 2012; 18 Jensen (10.1016/j.geodrs.2020.e00313_b0095) 2007 10.1016/j.geodrs.2020.e00313_b0225 Brigaud (10.1016/j.geodrs.2020.e00313_b0025) 1989; 98 Rogers (10.1016/j.geodrs.2020.e00313_b0210) 2004; 25 Song (10.1016/j.geodrs.2020.e00313_b0240) 2018; 560 Weng (10.1016/j.geodrs.2020.e00313_b0265) 2004; 89 Onwuka (10.1016/j.geodrs.2020.e00313_b0165) 2018; 8 Pal (10.1016/j.geodrs.2020.e00313_b0175) 2017; 20 10.1016/j.geodrs.2020.e00313_b0190 10.1016/j.geodrs.2020.e00313_b0030 10.1016/j.geodrs.2020.e00313_b0195 Sobrino (10.1016/j.geodrs.2020.e00313_b0235) 2000; 21 Sayão (10.1016/j.geodrs.2020.e00313_b0230) 2018; 325 Knight (10.1016/j.geodrs.2020.e00313_b0105) 2018; 313 Landis (10.1016/j.geodrs.2020.e00313_b0110) 1977; 33 Dousset (10.1016/j.geodrs.2020.e00313_b0060) 2003; 58 Sun (10.1016/j.geodrs.2020.e00313_b0245) 2012; 65 |
References_xml | – volume: 20 start-page: 125 year: 2017 end-page: 145 ident: b0175 article-title: Detection of land use and land cover change and land surface temperature in English Bazar urban centre publication-title: Egypt. J. Remote Sens. Space Sci. – reference: Perinotto, J.A.J., Zaine, M.F., 1996. Evolução de paisagens no decorrer do tempo em Rio Claro, SP. In: Zaine, M.F., Perinotto, J.A.J. Patrimônios Naturais e História Geológica de Rio Claro – SP. Ed. Câmara Municipal de Rio Claro e Arquivo Público e Histórico do Mun. de Rio Claro. – volume: 7 start-page: 3287 year: 2017 ident: b0270 article-title: Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia publication-title: Sci. Rep. – volume: 20 start-page: 37 year: 1960 end-page: 46 ident: b0040 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. – reference: CONAB, 2018. Acompanhamento da Safra Brasileira: Cana-de-açúcar. v.4 Safra 2017/18 n.3 - Quarto levantamento. Dezembro 2018. Companhia Nacional de Abastecimento. – volume: 30 start-page: 1980 year: 2010 end-page: 1993 ident: b0070 article-title: Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis publication-title: Int. J. Climatol. – volume: 29 start-page: 107 year: 2014 end-page: 116 ident: b0115 article-title: Agricultural Expansion and its impacts on tropical nature publication-title: Trends Ecol. Evol. – reference: Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Sattelite-1 Symposium, Greenbelt: NASA SP-351 I, 309–317. – volume: 8 start-page: 34 year: 2018 end-page: 37 ident: b0165 article-title: Effects of soil temperature on some soil properties and plant growth publication-title: Adv Plants Agric Res. – reference: Sabins, F.F., 1996. Remote Sensing: Principles and Interpretation, 3rd ed. W.H. Freeman and Company, New York, p. 494. – volume: 27 start-page: 107 year: 2005 end-page: 115 ident: b0080 article-title: Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu publication-title: Acta Sci. Agron. – volume: 65 start-page: 1687 year: 2012 end-page: 1694 ident: b0245 article-title: The relationship between land surface temperature and land use/land cover in Guangzhou, China publication-title: Environmental Earth Sciences – volume: 58 start-page: 43 year: 2003 end-page: 54 ident: b0060 article-title: Satellite multi-sensor data analysis of urban surface temperatures and land cover publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 89 start-page: 467 year: 2004 end-page: 548 ident: b0265 article-title: Estimation of land surface temperature- vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. – volume: 131 start-page: 14 year: 2013 end-page: 37 ident: b0120 article-title: Satellite-Derived Land Surface Temperature: Current Status and Perspectives publication-title: Remote Sens. Environ. – volume: 17 start-page: 1425 year: 1996 end-page: 1432 ident: b0135 article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. – reference: Ruiz, L.F.C., Ten Caten, A., Dalmolin, R.S.D., 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, Santa Maria, v.44, n.6, 1001-1007, jun. 2014. – volume: 124 start-page: 119 year: 2017 end-page: 132 ident: b0250 article-title: Characterizing the relationship between land use land cover change and land surface temperature publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 7 start-page: 2115 year: 2007 end-page: 2127 ident: b0010 article-title: Modeling forest productivity using Envisat MERIS data publication-title: Sensors – reference: R Core Team, 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. – reference: Mezzalira, S., 1965. Descrição geológica e geográfica das folhas de Piracicaba e São Carlos. São Paulo, Instituto Geográfico e Geológico, p. 37. – reference: Molin, P.G., Souza, F.T. de, Sampaio, J.V., Fransozi, A.A., Ferraz, S.F.B., 2015. Mapeamento de uso e cobertura do solo da bacia do rio Piracicaba, SP: Anos 1990, 2000 e 2010. CIRCULAR TÉCNICA IPEF n. 207, pp. 1–11. – reference: Bourscheidt, V., 2015. Análise da influência do uso do solo nas variações de temperatura utilizando imagens MODIS e Landsat-8. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE. – year: 2007 ident: b0095 article-title: Remote Sensing of the Environment: An Earth Resource Perspective – reference: .(Accessed on March 1, 2019). – reference: >. (Accessed on May 19th, 2020). – volume: 104 start-page: 133 year: 2006 end-page: 146 ident: b0035 article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes publication-title: Remote Sens. Environ. – volume: 2 start-page: 68 year: 2008 end-page: 74 ident: b0185 article-title: Changes in land cover and use affect the local and regional climate in Piracicaba, Brazil publication-title: J. Urban Environ. Eng. – volume: 212 start-page: 161 year: 2018 end-page: 175 ident: b0055 article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. – volume: 33 start-page: 743 year: 2009 end-page: 755 ident: b0260 article-title: Uma visão sobre qualidade do solo publication-title: Rev. Bras. Ciênc. Solo, Viçosa – volume: 21 start-page: 1 year: 2007 end-page: 10 ident: b0170 article-title: Studies of soil temperature on the basis of satellite data publication-title: Int. Agrophys. – reference: IBGE, 2017. Monitoramento da Cobertura e Uso da Terra do Brasil 2000 – 2010 – 2012 – 2014: Em Grade Territorial Estatística. Rio de Janeiro, 2017. 31p. Available at – reference: QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation. – reference: Briassoulis, H. Analysis of land use change: theoretical and modeling approaches. 1.ed. Virginia: Regional Research Institute, West Virginia University, 2000. – reference: Crosta, A., 1999. Processamento digital de imagens de sensoriamento remoto. UNICAMP/Instituto de Geociências. – reference: Oliveira, J.B., Prado, H., Bejar, O.I.G., Oliveira, E.R., Nogobardi, R.C., Assis, E.A., 1989. Carta Pedológica Semidetalhada do Estado de São Paulo: Piracicaba. São Paulo, Secretaria de Agricultura/CPA/IA, Secretaria da Economia e Planejamento/CAR/IGC. (Mapa escala 1:100.000), – volume: 33 start-page: 159 year: 1977 end-page: 174 ident: b0110 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 18 start-page: 528 year: 2012 end-page: 536 ident: b0130 article-title: Integrating AVHRR and MODIS data to monitor 5 NDVI changes and their relationships with climatic parameters in Northeast China publication-title: Int. J. Appl. Earth Observation Geoinformation – volume: 56 start-page: 1290 year: 2013 end-page: 1315 ident: b0075 article-title: Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran publication-title: J. Environ. Plann. Manage. – reference: . (Accessed on March 1, 2019). – reference: Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, 2004. p. 494. – start-page: 25 year: 2011 end-page: 35 ident: b0005 article-title: Soil Health indicators under Climate Change: A Review of current Knowledge publication-title: Soil Health and Climate Change – volume: 325 start-page: 125 year: 2018 end-page: 140 ident: b0230 article-title: Satellite land surface temperature and reflectance related with soil attributes publication-title: Geoderma – volume: 98 start-page: 525 year: 1989 end-page: 542 ident: b0025 article-title: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks publication-title: Geophys. J. Int. – volume: 25 start-page: 2317 year: 2004 end-page: 2335 ident: b0210 article-title: Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices publication-title: Int. J. Remote Sens. – volume: 7 start-page: 281 year: 1993 end-page: 302 ident: b0015 article-title: Thermal infrared remote sensing of soils: evolution, trends and perspectives publication-title: Remote Sens. Rev. – volume: 12 start-page: 21p year: 2020 ident: b0065 article-title: Google earth engine open-source code for land surface temperature estimation from the landsat series publication-title: Remote Sensing – volume: 313 start-page: 241 year: 2018 end-page: 249 ident: b0105 article-title: Soil temperature increase in eastern Australia for the past 50 years publication-title: Geoderma – volume: 21 start-page: 353 year: 2000 end-page: 366 ident: b0235 article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco publication-title: Int. J. Remote Sens. – volume: 1 start-page: 197 year: 2007 end-page: 208 ident: b0180 article-title: Variabilidade dos principais elementos climáticos e urbanização na região de Piracicaba, SP publication-title: Revista Brasileira de Engenharia de Biossistemas – reference: . – volume: 560 start-page: 639 year: 2018 end-page: 643 ident: b0240 article-title: Global land change from 1982 to 2016 publication-title: Nature – reference: USGS, 2016. Landsat5 (L5) data users handbook. Document number LSDS: 1574 version 1.0. Available at – volume: 108 start-page: 407 year: 1987 end-page: 417 ident: b0205 article-title: Decline in plant and animal production from ageing pastures of green panic (Panicum maximum var. trichoglume) publication-title: J. Agric. Sci. – volume: 8 start-page: 31 p year: 2016 ident: b0155 article-title: Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat. A PyQGIS Plugin publication-title: Remote Sens. – volume: 168 start-page: 1 year: 2015 end-page: 12 ident: b0150 article-title: Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes publication-title: Remote Sens. Environ. – reference: Madeira, N. J., 1993. Etude Quantitative des Relations Constituants Minéralogiques-Réflectance Diffuse des Latosols Brésiliens: Application à l'utilisation Pédologique des Données Satellitaires TM (Région de Brasilia); Pierre et Marie Curie Université: Paris, France, p. 250. – reference: Kanianska, R., 2016. Agriculture and Its Impact on Land‐Use, Environment, and Ecosystem Services. 10.5772/63719. In: Almusaed, A. Landscape Ecology – The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. Available at < – volume: 25 start-page: 2317 issue: 12 year: 2004 ident: 10.1016/j.geodrs.2020.e00313_b0210 article-title: Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001618103 – volume: 7 start-page: 2115 issue: 10 year: 2007 ident: 10.1016/j.geodrs.2020.e00313_b0010 article-title: Modeling forest productivity using Envisat MERIS data publication-title: Sensors doi: 10.3390/S7102115 – volume: 30 start-page: 1980 issue: 13 year: 2010 ident: 10.1016/j.geodrs.2020.e00313_b0070 article-title: Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis publication-title: Int. J. Climatol. doi: 10.1002/joc.1996 – volume: 2 start-page: 68 issue: 2 year: 2008 ident: 10.1016/j.geodrs.2020.e00313_b0185 article-title: Changes in land cover and use affect the local and regional climate in Piracicaba, Brazil publication-title: J. Urban Environ. Eng. doi: 10.4090/juee.2008.v2n2.068074 – ident: 10.1016/j.geodrs.2020.e00313_b0090 – volume: 33 start-page: 159 year: 1977 ident: 10.1016/j.geodrs.2020.e00313_b0110 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 8 start-page: 31 p year: 2016 ident: 10.1016/j.geodrs.2020.e00313_b0155 article-title: Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat. A PyQGIS Plugin publication-title: Remote Sens. – ident: 10.1016/j.geodrs.2020.e00313_b0225 – ident: 10.1016/j.geodrs.2020.e00313_b0085 – volume: 124 start-page: 119 year: 2017 ident: 10.1016/j.geodrs.2020.e00313_b0250 article-title: Characterizing the relationship between land use land cover change and land surface temperature publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.001 – volume: 7 start-page: 281 year: 1993 ident: 10.1016/j.geodrs.2020.e00313_b0015 article-title: Thermal infrared remote sensing of soils: evolution, trends and perspectives publication-title: Remote Sens. Rev. doi: 10.1080/02757259309532182 – ident: 10.1016/j.geodrs.2020.e00313_b0255 – volume: 98 start-page: 525 year: 1989 ident: 10.1016/j.geodrs.2020.e00313_b0025 article-title: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1989.tb02287.x – ident: 10.1016/j.geodrs.2020.e00313_b0100 – volume: 7 start-page: 3287 year: 2017 ident: 10.1016/j.geodrs.2020.e00313_b0270 article-title: Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia publication-title: Sci. Rep. doi: 10.1038/s41598-017-03432-2 – start-page: 25 year: 2011 ident: 10.1016/j.geodrs.2020.e00313_b0005 article-title: Soil Health indicators under Climate Change: A Review of current Knowledge – ident: 10.1016/j.geodrs.2020.e00313_b0190 – volume: 560 start-page: 639 year: 2018 ident: 10.1016/j.geodrs.2020.e00313_b0240 article-title: Global land change from 1982 to 2016 publication-title: Nature doi: 10.1038/s41586-018-0411-9 – ident: 10.1016/j.geodrs.2020.e00313_b0020 – year: 2007 ident: 10.1016/j.geodrs.2020.e00313_b0095 – ident: 10.1016/j.geodrs.2020.e00313_b0125 – volume: 20 start-page: 37 year: 1960 ident: 10.1016/j.geodrs.2020.e00313_b0040 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 29 start-page: 107 issue: 2 year: 2014 ident: 10.1016/j.geodrs.2020.e00313_b0115 article-title: Agricultural Expansion and its impacts on tropical nature publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2013.12.001 – ident: 10.1016/j.geodrs.2020.e00313_b0160 – ident: 10.1016/j.geodrs.2020.e00313_b0030 – ident: 10.1016/j.geodrs.2020.e00313_b0200 – volume: 27 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.geodrs.2020.e00313_b0080 article-title: Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu publication-title: Acta Sci. Agron. – volume: 18 start-page: 528 year: 2012 ident: 10.1016/j.geodrs.2020.e00313_b0130 article-title: Integrating AVHRR and MODIS data to monitor 5 NDVI changes and their relationships with climatic parameters in Northeast China publication-title: Int. J. Appl. Earth Observation Geoinformation doi: 10.1016/j.jag.2011.10.007 – volume: 1 start-page: 197 issue: 2 year: 2007 ident: 10.1016/j.geodrs.2020.e00313_b0180 article-title: Variabilidade dos principais elementos climáticos e urbanização na região de Piracicaba, SP publication-title: Revista Brasileira de Engenharia de Biossistemas doi: 10.18011/bioeng2007v1n2p197-208 – volume: 65 start-page: 1687 year: 2012 ident: 10.1016/j.geodrs.2020.e00313_b0245 article-title: The relationship between land surface temperature and land use/land cover in Guangzhou, China publication-title: Environmental Earth Sciences doi: 10.1007/s12665-011-1145-2 – volume: 104 start-page: 133 issue: 2 year: 2006 ident: 10.1016/j.geodrs.2020.e00313_b0035 article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.11.016 – volume: 20 start-page: 125 issue: 1 year: 2017 ident: 10.1016/j.geodrs.2020.e00313_b0175 article-title: Detection of land use and land cover change and land surface temperature in English Bazar urban centre publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 212 start-page: 161 year: 2018 ident: 10.1016/j.geodrs.2020.e00313_b0055 article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.047 – volume: 131 start-page: 14 year: 2013 ident: 10.1016/j.geodrs.2020.e00313_b0120 article-title: Satellite-Derived Land Surface Temperature: Current Status and Perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – ident: 10.1016/j.geodrs.2020.e00313_b0195 – volume: 8 start-page: 34 issue: 1 year: 2018 ident: 10.1016/j.geodrs.2020.e00313_b0165 article-title: Effects of soil temperature on some soil properties and plant growth publication-title: Adv Plants Agric Res. – volume: 21 start-page: 353 issue: 2 year: 2000 ident: 10.1016/j.geodrs.2020.e00313_b0235 article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210876 – volume: 168 start-page: 1 year: 2015 ident: 10.1016/j.geodrs.2020.e00313_b0150 article-title: Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.017 – ident: 10.1016/j.geodrs.2020.e00313_b0050 – volume: 21 start-page: 1 year: 2007 ident: 10.1016/j.geodrs.2020.e00313_b0170 article-title: Studies of soil temperature on the basis of satellite data publication-title: Int. Agrophys. – volume: 56 start-page: 1290 year: 2013 ident: 10.1016/j.geodrs.2020.e00313_b0075 article-title: Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran publication-title: J. Environ. Plann. Manage. doi: 10.1080/09640568.2012.717888 – ident: 10.1016/j.geodrs.2020.e00313_b0140 – volume: 58 start-page: 43 year: 2003 ident: 10.1016/j.geodrs.2020.e00313_b0060 article-title: Satellite multi-sensor data analysis of urban surface temperatures and land cover publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/S0924-2716(03)00016-9 – volume: 12 start-page: 21p issue: 1471 year: 2020 ident: 10.1016/j.geodrs.2020.e00313_b0065 article-title: Google earth engine open-source code for land surface temperature estimation from the landsat series publication-title: Remote Sensing – ident: 10.1016/j.geodrs.2020.e00313_b0045 – volume: 33 start-page: 743 issue: 4 year: 2009 ident: 10.1016/j.geodrs.2020.e00313_b0260 article-title: Uma visão sobre qualidade do solo publication-title: Rev. Bras. Ciênc. Solo, Viçosa doi: 10.1590/S0100-06832009000400001 – ident: 10.1016/j.geodrs.2020.e00313_b0215 – ident: 10.1016/j.geodrs.2020.e00313_b0220 doi: 10.1590/S0103-84782014000600008 – volume: 89 start-page: 467 year: 2004 ident: 10.1016/j.geodrs.2020.e00313_b0265 article-title: Estimation of land surface temperature- vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.005 – volume: 17 start-page: 1425 year: 1996 ident: 10.1016/j.geodrs.2020.e00313_b0135 article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – ident: 10.1016/j.geodrs.2020.e00313_b0145 – volume: 108 start-page: 407 issue: 2 year: 1987 ident: 10.1016/j.geodrs.2020.e00313_b0205 article-title: Decline in plant and animal production from ageing pastures of green panic (Panicum maximum var. trichoglume) publication-title: J. Agric. Sci. doi: 10.1017/S0021859600079442 – volume: 313 start-page: 241 year: 2018 ident: 10.1016/j.geodrs.2020.e00313_b0105 article-title: Soil temperature increase in eastern Australia for the past 50 years publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.015 – volume: 325 start-page: 125 year: 2018 ident: 10.1016/j.geodrs.2020.e00313_b0230 article-title: Satellite land surface temperature and reflectance related with soil attributes publication-title: Geoderma doi: 10.1016/j.geoderma.2018.03.026 |
SSID | ssj0002953762 |
Score | 2.310876 |
Snippet | •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C... The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e00313 |
SubjectTerms | Acrisols anthropogenic activities Arenosols Brazil climate dry season energy transfer Environmental monitoring Ferralsols forests land cover Land surface temperature land use Landsat Leptosols pastures rain Remote sensing Satellite image classification soil water content statistical analysis straw surface temperature texture time series analysis |
Title | Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil |
URI | https://dx.doi.org/10.1016/j.geodrs.2020.e00313 https://www.proquest.com/docview/2524253059 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FcOFSFbUISou2Uq9uNuu1vXsMUVHatDkAFRyQrH0io-BEdnLh1zPjBxJICImTZWvWsse781h_8w0hP5wJbsyCi5gXPgJ_KyLNpI2CNCwOPPamKRL7t0hn_8Wf6-R6QKZ9LQzCKjvb39r0xlp3V0adNkfrohhd8LihDBIc5imDuHyH7HLwrmxIdie_57PF01YLV8hZwps2cwmPcExfRNcgvW79ylVI3c3ZT9-QGb7mpF6Y68YHnX0kH7rgkU7a59snA19-Ijd_denotvYjBClSi5hM2tbz1hSvGF15Wq-KJa23VdDWU-Sj6siU6X2zqHF3jxYliCHiXdcbelrph2L5mVye_bqczqKuZ0Jk41hhZ3mWWcgypEkSkwYllIAM0FjFAqztoODljJPaq7HVKtOQzHAXTOothEGSifiADMtV6Q8JDWIsM4cZEWRsMQjpVMo0gAVIXCZFOCJxr6Pcdnzi2NZimffAsbu81WyOms1bzR6R6GnUuuXTeEM-69WfP5sXOZj8N0Z-779WDksG_4Po0q-2IJRgngWGTn15992PyR6etWizr2S4qbb-G4QnG3PSTT88zs-v5o-yyOVo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4BLRQWIQqFGgmNYr-0k9qGH8qh22e1eWKQekCw_q6AlWyW7QvRn8QsZJ04lkFAlpF4T24rG43k433yD0GtnghuT4DLiuc_A3_JME2GzIAxhgTJvuiKx80Ux-cI_XeQXO-jXUAsTYZXJ9vc2vbPW6ckoSXN0VVWjz5R1lEGcgp4SiMsTsnLmf_6AvK09mX6ATX5D6dnH5ftJlloLZJYxGRuwk9JCMC5MnpsiSC45JErGShLgCATJxsw4ob0cWy1LDTE_dcEU3kK0IAhnsOw9tBfJsOBU7Z1OZ5PFzc0OlZEihXZd7XKaxU8cavY6YNmlX7smMoVT8tZ33In_8ol_eYfO5Z09RPspVsWnvTgO0I6vH6Gvc107vG39KGIisY0QUNyXD7c4PjG68bhdVyvcbpugrceR_ipxN-PvnQ2Jl4m4qmFYBNjrdoPfNfq6Wj1Gy7uQ4xO0W69r_xThwMeidDEBgwSRwSBdCFEEMDi5KwUPh4gNMlI20ZfHLhorNeDUvqlesipKVvWSPUTZzayrnr7jlvHlIH71hxoq8DC3zHw17JaCExp_u-jar7cwKI9pHdhV-ey_Vz9G9yfL87maTxez5-hBfNMD3Y7Q7qbZ-hcQGW3My6SKGKk7Vv7fWJUezw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+use%2Fland+cover+changes+and+bare+soil+surface+temperature+monitoring+in+southeast+Brazil&rft.jtitle=Geoderma+Regional&rft.au=Say%C3%A3o%2C+Veridiana+Maria&rft.au=dos+Santos%2C+Natasha+Valadares&rft.au=de+Sousa+Mendes%2C+Wanderson&rft.au=Marques%2C+Karina+P.P.&rft.date=2020-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=22+p.e00313-&rft_id=info:doi/10.1016%2Fj.geodrs.2020.e00313&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |