Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil

•LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 22; p. e00313
Main Authors Sayão, Veridiana Maria, dos Santos, Natasha Valadares, de Sousa Mendes, Wanderson, Marques, Karina P.P., Safanelli, José Lucas, Poppiel, Raul Roberto, Demattê, José A.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil LST from 1985 to 2019 in the dry season. The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km2 is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations.
AbstractList •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C and 17–31 °C on moist and dry seasons.•Arenosols presented the highest LST mean values in both seasons.•There was a warming trend on bare soil LST from 1985 to 2019 in the dry season. The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km2 is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations.
The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus, our objective was to evaluate LST patterns driven by LULC changes, detected over a time series of Landsat images. The study area of 2990 km² is located in the Piracicaba region, state of São Paulo, Brazil. We acquired Landsat images from 1985 to 2019, in dry and moist seasons. Six LULC classes (agriculture, bare soil, straw, forest, water, and pasture) were identified by maximum-likelihood supervised classification every five years and then LST was estimated using the inversion of Planck’s function in the thermal band. Spectral indices representing vegetation, water, bare soil, and straw were calculated and correlated to LST in specific years. Bare soil images and their respective LST in both seasons were used annually to approach the influence of bare soil areas on the LST, considering soil class, time and rainfall. LULC alterations over 1985–2015 were an important factor on the LST change, which varied on average from 21.46 °C to 41.31 °C in the moist season and 17.05 °C to 31.67 °C in the dry one. Water bodies and vegetation had the lowest LST values, whereas bare soil and straw had the highest ones. The correlation between LST and spectral indices somewhat agreed with such patterns. Arenosols presented the highest LST mean values in both seasons and differed from Acrisols in the dry season, which is probably related to their texture and mineralogical composition. In the moist season, LST was negatively correlated to rainfall, suggesting the influence of soil moisture content on its surface temperature. In the dry season, the LST of bare soil areas increased by an average of 0.13 °C per year, indicating a warming trend. In general, LST increased in the studied period, probably due to the increase of anthropic activity, such as the expansion of agricultural areas. These findings can assist future studies on the influence of soils and land use on climate alterations.
ArticleNumber e00313
Author Sayão, Veridiana Maria
Marques, Karina P.P.
Safanelli, José Lucas
dos Santos, Natasha Valadares
Poppiel, Raul Roberto
Demattê, José A.M.
de Sousa Mendes, Wanderson
Author_xml – sequence: 1
  givenname: Veridiana Maria
  surname: Sayão
  fullname: Sayão, Veridiana Maria
  email: veridiana.sayao@alumni.usp.br
– sequence: 2
  givenname: Natasha Valadares
  surname: dos Santos
  fullname: dos Santos, Natasha Valadares
  email: natasha.valadares.santos@usp.br
– sequence: 3
  givenname: Wanderson
  surname: de Sousa Mendes
  fullname: de Sousa Mendes, Wanderson
  email: wandersonsm@usp.br
– sequence: 4
  givenname: Karina P.P.
  surname: Marques
  fullname: Marques, Karina P.P.
  email: karina.marques@usp.br
– sequence: 5
  givenname: José Lucas
  surname: Safanelli
  fullname: Safanelli, José Lucas
  email: jose.lucas.safanelli@usp.br
– sequence: 6
  givenname: Raul Roberto
  surname: Poppiel
  fullname: Poppiel, Raul Roberto
  email: raulpoppiel@usp.br
– sequence: 7
  givenname: José A.M.
  surname: Demattê
  fullname: Demattê, José A.M.
  email: jamdemat@usp.br
BookMark eNqFkD9PwzAQxS1UJErpN2DIyNL2YsdJzYAEiH9SJZaOSJbjXFpXqV1spxJ8ehKFATHAdE937530fudkZJ1FQi5TmKeQ5ovdfIOu8mFOgcIcAVjKTsiYMk5nACIb_dBnZBrCDgCo4KzI6Zi8rZStkjbgoumFdkf0id4qu8GQ9JtSeUyCM00SWl8rjUnE_QG9im132DtrovPGbhJjO1sbt6hCTO68-jTNBTmtVRNw-j0nZP34sL5_nq1en17ub1czzZiIs5RBodMiW5acl3ktMpHxTJRaQF0Aq0VXqKyWCkWqlShUDpxWdZmjzilbQsYm5Gp4e_DuvcUQ5d4EjU3XCF0bJOU0o5wBF501G6zauxA81vLgzV75D5mC7HHKnRxwyh6nHHB2setfMW2iisbZ6JVp_gvfDGHsEBwNehm0QauxMh51lJUzfz_4Ake9las
CitedBy_id crossref_primary_10_1007_s11356_023_26442_2
crossref_primary_10_1016_j_neucom_2023_03_025
crossref_primary_10_1016_j_catena_2023_106915
crossref_primary_10_3390_rs14163935
crossref_primary_10_1007_s10668_021_01587_7
crossref_primary_10_1007_s10661_024_13038_7
crossref_primary_10_1109_MGRS_2024_3394040
crossref_primary_10_1186_s13717_023_00426_z
crossref_primary_10_3390_rs13112223
crossref_primary_10_1007_s11356_022_19997_z
crossref_primary_10_11628_ksppe_2022_25_6_685
crossref_primary_10_3390_w16203009
crossref_primary_10_1016_j_rsase_2024_101142
crossref_primary_10_12944_CWE_18_3_13
crossref_primary_10_1016_j_apgeog_2021_102604
crossref_primary_10_1007_s10661_023_12212_7
crossref_primary_10_1016_j_jsames_2022_104020
crossref_primary_10_1002_vzj2_20323
crossref_primary_10_1155_2024_1107242
crossref_primary_10_1016_j_ecolind_2025_113077
crossref_primary_10_3390_rs16183460
crossref_primary_10_1016_j_scitotenv_2023_163572
crossref_primary_10_1016_j_rsase_2022_100871
crossref_primary_10_1109_JSEN_2023_3246842
Cites_doi 10.1080/01431160310001618103
10.3390/S7102115
10.1002/joc.1996
10.4090/juee.2008.v2n2.068074
10.2307/2529310
10.1016/j.isprsjprs.2017.01.001
10.1080/02757259309532182
10.1111/j.1365-246X.1989.tb02287.x
10.1038/s41598-017-03432-2
10.1038/s41586-018-0411-9
10.1177/001316446002000104
10.1016/j.tree.2013.12.001
10.1016/j.jag.2011.10.007
10.18011/bioeng2007v1n2p197-208
10.1007/s12665-011-1145-2
10.1016/j.rse.2005.11.016
10.1016/j.rse.2018.04.047
10.1016/j.rse.2012.12.008
10.1080/014311600210876
10.1016/j.rse.2015.06.017
10.1080/09640568.2012.717888
10.1016/S0924-2716(03)00016-9
10.1590/S0100-06832009000400001
10.1590/S0103-84782014000600008
10.1016/j.rse.2003.11.005
10.1080/01431169608948714
10.1017/S0021859600079442
10.1016/j.geoderma.2017.11.015
10.1016/j.geoderma.2018.03.026
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geodrs.2020.e00313
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2352-0094
ExternalDocumentID 10_1016_j_geodrs_2020_e00313
S2352009420300626
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXKI
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-1307c1748b55b6f9494549bc90f703f9313bd8ae91ca97a6052dfb6ec6238043
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Tue Aug 05 11:41:47 EDT 2025
Tue Jul 01 02:07:18 EDT 2025
Thu Apr 24 23:13:11 EDT 2025
Tue Dec 03 03:45:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Leptosols
Satellite image classification
Ferralsols
Acrisols
Arenosols
Land surface temperature
Environmental monitoring
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-1307c1748b55b6f9494549bc90f703f9313bd8ae91ca97a6052dfb6ec6238043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524253059
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524253059
crossref_primary_10_1016_j_geodrs_2020_e00313
crossref_citationtrail_10_1016_j_geodrs_2020_e00313
elsevier_sciencedirect_doi_10_1016_j_geodrs_2020_e00313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Geoderma Regional
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bonn, O’Neill (b0015) 1993; 7
Cohen (b0040) 1960; 20
Molin, P.G., Souza, F.T. de, Sampaio, J.V., Fransozi, A.A., Ferraz, S.F.B., 2015. Mapeamento de uso e cobertura do solo da bacia do rio Piracicaba, SP: Anos 1990, 2000 e 2010. CIRCULAR TÉCNICA IPEF n. 207, pp. 1–11.
Sobrino, Raissouni (b0235) 2000; 21
Ruiz, L.F.C., Ten Caten, A., Dalmolin, R.S.D., 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, Santa Maria, v.44, n.6, 1001-1007, jun. 2014.
Feizizadeh, Blaschke, Nazmfar, Akbari, Kohbanani (b0075) 2013; 56
Sayão, Demattê, Bedin, Nanni, Rizzo (b0230) 2018; 325
Fall, Niyogi, Gluhovsky, Pielke, Kalnay, Rochon (b0070) 2010; 30
Pal, Ziaul (b0175) 2017; 20
Berberoglu, Evrendilek, Ozkan, Donmez (b0010) 2007; 7
QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation.
Muster, Langer, Abnizova, Young, Boike (b0150) 2015; 168
Oliveira, J.B., Prado, H., Bejar, O.I.G., Oliveira, E.R., Nogobardi, R.C., Assis, E.A., 1989. Carta Pedológica Semidetalhada do Estado de São Paulo: Piracicaba. São Paulo, Secretaria de Agricultura/CPA/IA, Secretaria da Economia e Planejamento/CAR/IGC. (Mapa escala 1:100.000)
Robbins, Bushell, Butler (b0205) 1987; 108
Knight, Minasny, McBratney, Koen, Murphy (b0105) 2018; 313
Rogers, Kearney (b0210) 2004; 25
Ermida, Soares, Mantas, Göttsche, Trigo (b0065) 2020; 12
Onwuka, Mang (b0165) 2018; 8
Landis, Koch (b0110) 1977; 33
.
Laurance, Sayer, Cassman (b0115) 2014; 29
(Accessed on March 1, 2019).
Tran, Pla, Latorre-Carmona, Myint, Caetano, Kieu (b0250) 2017; 124
IBGE, 2017. Monitoramento da Cobertura e Uso da Terra do Brasil 2000 – 2010 – 2012 – 2014: Em Grade Territorial Estatística. Rio de Janeiro, 2017. 31p. Available at
(Accessed on May 19th, 2020).
Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, 2004. p. 494.
Chen, Zhao, Li, Yin (b0035) 2006; 104
Demattê, Fongaro, Rizzo, Safanelli (b0055) 2018; 212
Weng, Lu, Schubring (b0265) 2004; 89
CONAB, 2018. Acompanhamento da Safra Brasileira: Cana-de-açúcar. v.4 Safra 2017/18 n.3 - Quarto levantamento. Dezembro 2018. Companhia Nacional de Abastecimento.
Madeira, N. J., 1993. Etude Quantitative des Relations Constituants Minéralogiques-Réflectance Diffuse des Latosols Brésiliens: Application à l'utilisation Pédologique des Données Satellitaires TM (Région de Brasilia); Pierre et Marie Curie Université: Paris, France, p. 250.
Vezzani, Mielniczuk (b0260) 2009; 33
Dousset, Gourmelon (b0060) 2003; 58
Allen, Singh, Dalal (b0005) 2011
Sun, Wu, Tan (b0245) 2012; 65
Yuan, Wang, Cui, Meng, Kurban, Maeyer (b0270) 2017; 7
Mezzalira, S., 1965. Descrição geológica e geográfica das folhas de Piracicaba e São Carlos. São Paulo, Instituto Geográfico e Geológico, p. 37.
Pereira-Coltri, Fagnani, Labaki, Ferreira, Demétrio (b0180) 2007; 1
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Sattelite-1 Symposium, Greenbelt: NASA SP-351 I, 309–317.
Crosta, A., 1999. Processamento digital de imagens de sensoriamento remoto. UNICAMP/Instituto de Geociências.
Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0120) 2013; 131
Kanianska, R., 2016. Agriculture and Its Impact on Land‐Use, Environment, and Ecosystem Services. 10.5772/63719. In: Almusaed, A. Landscape Ecology – The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. Available at
Brigaud, Vasseur (b0025) 1989; 98
Sabins, F.F., 1996. Remote Sensing: Principles and Interpretation, 3rd ed. W.H. Freeman and Company, New York, p. 494.
Bourscheidt, V., 2015. Análise da influência do uso do solo nas variações de temperatura utilizando imagens MODIS e Landsat-8. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE.
Perinotto, J.A.J., Zaine, M.F., 1996. Evolução de paisagens no decorrer do tempo em Rio Claro, SP. In: Zaine, M.F., Perinotto, J.A.J. Patrimônios Naturais e História Geológica de Rio Claro – SP. Ed. Câmara Municipal de Rio Claro e Arquivo Público e Histórico do Mun. de Rio Claro.
McFeeters (b0135) 1996; 17
R Core Team, 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
USGS, 2016. Landsat5 (L5) data users handbook. Document number LSDS: 1574 version 1.0. Available at
Gasparim, Ricieri, Silva, Dallacort, Gnoatto (b0080) 2005; 27
Pereira-Coltri, Ferreira, Freitas, Demétrio (b0185) 2008; 2
Mao, Wang, Luo, Ren (b0130) 2012; 18
Osińska-Skotak (b0170) 2007; 21
Ndossi, Avdan (b0155) 2016; 8
Briassoulis, H. Analysis of land use change: theoretical and modeling approaches. 1.ed. Virginia: Regional Research Institute, West Virginia University, 2000.
Jensen (b0095) 2007
Song, Hansen, Stehman, Potapov, Tyukavina, Vermote, Townshend (b0240) 2018; 560
Muster (10.1016/j.geodrs.2020.e00313_b0150) 2015; 168
10.1016/j.geodrs.2020.e00313_b0160
Chen (10.1016/j.geodrs.2020.e00313_b0035) 2006; 104
10.1016/j.geodrs.2020.e00313_b0085
Pereira-Coltri (10.1016/j.geodrs.2020.e00313_b0180) 2007; 1
10.1016/j.geodrs.2020.e00313_b0200
Bonn (10.1016/j.geodrs.2020.e00313_b0015) 1993; 7
10.1016/j.geodrs.2020.e00313_b0045
Yuan (10.1016/j.geodrs.2020.e00313_b0270) 2017; 7
10.1016/j.geodrs.2020.e00313_b0125
Li (10.1016/j.geodrs.2020.e00313_b0120) 2013; 131
Cohen (10.1016/j.geodrs.2020.e00313_b0040) 1960; 20
Pereira-Coltri (10.1016/j.geodrs.2020.e00313_b0185) 2008; 2
Berberoglu (10.1016/j.geodrs.2020.e00313_b0010) 2007; 7
Gasparim (10.1016/j.geodrs.2020.e00313_b0080) 2005; 27
Laurance (10.1016/j.geodrs.2020.e00313_b0115) 2014; 29
Feizizadeh (10.1016/j.geodrs.2020.e00313_b0075) 2013; 56
10.1016/j.geodrs.2020.e00313_b0090
10.1016/j.geodrs.2020.e00313_b0050
Allen (10.1016/j.geodrs.2020.e00313_b0005) 2011
10.1016/j.geodrs.2020.e00313_b0255
Tran (10.1016/j.geodrs.2020.e00313_b0250) 2017; 124
10.1016/j.geodrs.2020.e00313_b0215
Ndossi (10.1016/j.geodrs.2020.e00313_b0155) 2016; 8
Vezzani (10.1016/j.geodrs.2020.e00313_b0260) 2009; 33
Osińska-Skotak (10.1016/j.geodrs.2020.e00313_b0170) 2007; 21
Demattê (10.1016/j.geodrs.2020.e00313_b0055) 2018; 212
Robbins (10.1016/j.geodrs.2020.e00313_b0205) 1987; 108
Ermida (10.1016/j.geodrs.2020.e00313_b0065) 2020; 12
10.1016/j.geodrs.2020.e00313_b0020
McFeeters (10.1016/j.geodrs.2020.e00313_b0135) 1996; 17
Fall (10.1016/j.geodrs.2020.e00313_b0070) 2010; 30
10.1016/j.geodrs.2020.e00313_b0140
10.1016/j.geodrs.2020.e00313_b0220
10.1016/j.geodrs.2020.e00313_b0145
10.1016/j.geodrs.2020.e00313_b0100
Mao (10.1016/j.geodrs.2020.e00313_b0130) 2012; 18
Jensen (10.1016/j.geodrs.2020.e00313_b0095) 2007
10.1016/j.geodrs.2020.e00313_b0225
Brigaud (10.1016/j.geodrs.2020.e00313_b0025) 1989; 98
Rogers (10.1016/j.geodrs.2020.e00313_b0210) 2004; 25
Song (10.1016/j.geodrs.2020.e00313_b0240) 2018; 560
Weng (10.1016/j.geodrs.2020.e00313_b0265) 2004; 89
Onwuka (10.1016/j.geodrs.2020.e00313_b0165) 2018; 8
Pal (10.1016/j.geodrs.2020.e00313_b0175) 2017; 20
10.1016/j.geodrs.2020.e00313_b0190
10.1016/j.geodrs.2020.e00313_b0030
10.1016/j.geodrs.2020.e00313_b0195
Sobrino (10.1016/j.geodrs.2020.e00313_b0235) 2000; 21
Sayão (10.1016/j.geodrs.2020.e00313_b0230) 2018; 325
Knight (10.1016/j.geodrs.2020.e00313_b0105) 2018; 313
Landis (10.1016/j.geodrs.2020.e00313_b0110) 1977; 33
Dousset (10.1016/j.geodrs.2020.e00313_b0060) 2003; 58
Sun (10.1016/j.geodrs.2020.e00313_b0245) 2012; 65
References_xml – volume: 20
  start-page: 125
  year: 2017
  end-page: 145
  ident: b0175
  article-title: Detection of land use and land cover change and land surface temperature in English Bazar urban centre
  publication-title: Egypt. J. Remote Sens. Space Sci.
– reference: Perinotto, J.A.J., Zaine, M.F., 1996. Evolução de paisagens no decorrer do tempo em Rio Claro, SP. In: Zaine, M.F., Perinotto, J.A.J. Patrimônios Naturais e História Geológica de Rio Claro – SP. Ed. Câmara Municipal de Rio Claro e Arquivo Público e Histórico do Mun. de Rio Claro.
– volume: 7
  start-page: 3287
  year: 2017
  ident: b0270
  article-title: Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia
  publication-title: Sci. Rep.
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: b0040
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
– reference: CONAB, 2018. Acompanhamento da Safra Brasileira: Cana-de-açúcar. v.4 Safra 2017/18 n.3 - Quarto levantamento. Dezembro 2018. Companhia Nacional de Abastecimento.
– volume: 30
  start-page: 1980
  year: 2010
  end-page: 1993
  ident: b0070
  article-title: Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis
  publication-title: Int. J. Climatol.
– volume: 29
  start-page: 107
  year: 2014
  end-page: 116
  ident: b0115
  article-title: Agricultural Expansion and its impacts on tropical nature
  publication-title: Trends Ecol. Evol.
– reference: Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1974. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Sattelite-1 Symposium, Greenbelt: NASA SP-351 I, 309–317.
– volume: 8
  start-page: 34
  year: 2018
  end-page: 37
  ident: b0165
  article-title: Effects of soil temperature on some soil properties and plant growth
  publication-title: Adv Plants Agric Res.
– reference: Sabins, F.F., 1996. Remote Sensing: Principles and Interpretation, 3rd ed. W.H. Freeman and Company, New York, p. 494.
– volume: 27
  start-page: 107
  year: 2005
  end-page: 115
  ident: b0080
  article-title: Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu
  publication-title: Acta Sci. Agron.
– volume: 65
  start-page: 1687
  year: 2012
  end-page: 1694
  ident: b0245
  article-title: The relationship between land surface temperature and land use/land cover in Guangzhou, China
  publication-title: Environmental Earth Sciences
– volume: 58
  start-page: 43
  year: 2003
  end-page: 54
  ident: b0060
  article-title: Satellite multi-sensor data analysis of urban surface temperatures and land cover
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 89
  start-page: 467
  year: 2004
  end-page: 548
  ident: b0265
  article-title: Estimation of land surface temperature- vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
– volume: 131
  start-page: 14
  year: 2013
  end-page: 37
  ident: b0120
  article-title: Satellite-Derived Land Surface Temperature: Current Status and Perspectives
  publication-title: Remote Sens. Environ.
– volume: 17
  start-page: 1425
  year: 1996
  end-page: 1432
  ident: b0135
  article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
– reference: Ruiz, L.F.C., Ten Caten, A., Dalmolin, R.S.D., 2014. Árvore de decisão e a densidade mínima de amostras no mapeamento da cobertura da terra. Ciência Rural, Santa Maria, v.44, n.6, 1001-1007, jun. 2014.
– volume: 124
  start-page: 119
  year: 2017
  end-page: 132
  ident: b0250
  article-title: Characterizing the relationship between land use land cover change and land surface temperature
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 7
  start-page: 2115
  year: 2007
  end-page: 2127
  ident: b0010
  article-title: Modeling forest productivity using Envisat MERIS data
  publication-title: Sensors
– reference: R Core Team, 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
– reference: Mezzalira, S., 1965. Descrição geológica e geográfica das folhas de Piracicaba e São Carlos. São Paulo, Instituto Geográfico e Geológico, p. 37.
– reference: Molin, P.G., Souza, F.T. de, Sampaio, J.V., Fransozi, A.A., Ferraz, S.F.B., 2015. Mapeamento de uso e cobertura do solo da bacia do rio Piracicaba, SP: Anos 1990, 2000 e 2010. CIRCULAR TÉCNICA IPEF n. 207, pp. 1–11.
– reference: Bourscheidt, V., 2015. Análise da influência do uso do solo nas variações de temperatura utilizando imagens MODIS e Landsat-8. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 25 a 29 de abril de 2015, INPE.
– year: 2007
  ident: b0095
  article-title: Remote Sensing of the Environment: An Earth Resource Perspective
– reference: .(Accessed on March 1, 2019).
– reference: >. (Accessed on May 19th, 2020).
– volume: 104
  start-page: 133
  year: 2006
  end-page: 146
  ident: b0035
  article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 68
  year: 2008
  end-page: 74
  ident: b0185
  article-title: Changes in land cover and use affect the local and regional climate in Piracicaba, Brazil
  publication-title: J. Urban Environ. Eng.
– volume: 212
  start-page: 161
  year: 2018
  end-page: 175
  ident: b0055
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 743
  year: 2009
  end-page: 755
  ident: b0260
  article-title: Uma visão sobre qualidade do solo
  publication-title: Rev. Bras. Ciênc. Solo, Viçosa
– volume: 21
  start-page: 1
  year: 2007
  end-page: 10
  ident: b0170
  article-title: Studies of soil temperature on the basis of satellite data
  publication-title: Int. Agrophys.
– reference: IBGE, 2017. Monitoramento da Cobertura e Uso da Terra do Brasil 2000 – 2010 – 2012 – 2014: Em Grade Territorial Estatística. Rio de Janeiro, 2017. 31p. Available at
– reference: QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation.
– reference: Briassoulis, H. Analysis of land use change: theoretical and modeling approaches. 1.ed. Virginia: Regional Research Institute, West Virginia University, 2000.
– reference: Crosta, A., 1999. Processamento digital de imagens de sensoriamento remoto. UNICAMP/Instituto de Geociências.
– reference: Oliveira, J.B., Prado, H., Bejar, O.I.G., Oliveira, E.R., Nogobardi, R.C., Assis, E.A., 1989. Carta Pedológica Semidetalhada do Estado de São Paulo: Piracicaba. São Paulo, Secretaria de Agricultura/CPA/IA, Secretaria da Economia e Planejamento/CAR/IGC. (Mapa escala 1:100.000),
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: b0110
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 18
  start-page: 528
  year: 2012
  end-page: 536
  ident: b0130
  article-title: Integrating AVHRR and MODIS data to monitor 5 NDVI changes and their relationships with climatic parameters in Northeast China
  publication-title: Int. J. Appl. Earth Observation Geoinformation
– volume: 56
  start-page: 1290
  year: 2013
  end-page: 1315
  ident: b0075
  article-title: Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran
  publication-title: J. Environ. Plann. Manage.
– reference: . (Accessed on March 1, 2019).
– reference: Hillel, D., 2004. Introduction to Environmental Soil Physics. Elsevier Academic Press, Amsterdam, 2004. p. 494.
– start-page: 25
  year: 2011
  end-page: 35
  ident: b0005
  article-title: Soil Health indicators under Climate Change: A Review of current Knowledge
  publication-title: Soil Health and Climate Change
– volume: 325
  start-page: 125
  year: 2018
  end-page: 140
  ident: b0230
  article-title: Satellite land surface temperature and reflectance related with soil attributes
  publication-title: Geoderma
– volume: 98
  start-page: 525
  year: 1989
  end-page: 542
  ident: b0025
  article-title: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks
  publication-title: Geophys. J. Int.
– volume: 25
  start-page: 2317
  year: 2004
  end-page: 2335
  ident: b0210
  article-title: Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices
  publication-title: Int. J. Remote Sens.
– volume: 7
  start-page: 281
  year: 1993
  end-page: 302
  ident: b0015
  article-title: Thermal infrared remote sensing of soils: evolution, trends and perspectives
  publication-title: Remote Sens. Rev.
– volume: 12
  start-page: 21p
  year: 2020
  ident: b0065
  article-title: Google earth engine open-source code for land surface temperature estimation from the landsat series
  publication-title: Remote Sensing
– volume: 313
  start-page: 241
  year: 2018
  end-page: 249
  ident: b0105
  article-title: Soil temperature increase in eastern Australia for the past 50 years
  publication-title: Geoderma
– volume: 21
  start-page: 353
  year: 2000
  end-page: 366
  ident: b0235
  article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco
  publication-title: Int. J. Remote Sens.
– volume: 1
  start-page: 197
  year: 2007
  end-page: 208
  ident: b0180
  article-title: Variabilidade dos principais elementos climáticos e urbanização na região de Piracicaba, SP
  publication-title: Revista Brasileira de Engenharia de Biossistemas
– reference: .
– volume: 560
  start-page: 639
  year: 2018
  end-page: 643
  ident: b0240
  article-title: Global land change from 1982 to 2016
  publication-title: Nature
– reference: USGS, 2016. Landsat5 (L5) data users handbook. Document number LSDS: 1574 version 1.0. Available at
– volume: 108
  start-page: 407
  year: 1987
  end-page: 417
  ident: b0205
  article-title: Decline in plant and animal production from ageing pastures of green panic (Panicum maximum var. trichoglume)
  publication-title: J. Agric. Sci.
– volume: 8
  start-page: 31 p
  year: 2016
  ident: b0155
  article-title: Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat. A PyQGIS Plugin
  publication-title: Remote Sens.
– volume: 168
  start-page: 1
  year: 2015
  end-page: 12
  ident: b0150
  article-title: Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes
  publication-title: Remote Sens. Environ.
– reference: Madeira, N. J., 1993. Etude Quantitative des Relations Constituants Minéralogiques-Réflectance Diffuse des Latosols Brésiliens: Application à l'utilisation Pédologique des Données Satellitaires TM (Région de Brasilia); Pierre et Marie Curie Université: Paris, France, p. 250.
– reference: Kanianska, R., 2016. Agriculture and Its Impact on Land‐Use, Environment, and Ecosystem Services. 10.5772/63719. In: Almusaed, A. Landscape Ecology – The Influences of Land Use and Anthropogenic Impacts of Landscape Creation. Available at <
– volume: 25
  start-page: 2317
  issue: 12
  year: 2004
  ident: 10.1016/j.geodrs.2020.e00313_b0210
  article-title: Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001618103
– volume: 7
  start-page: 2115
  issue: 10
  year: 2007
  ident: 10.1016/j.geodrs.2020.e00313_b0010
  article-title: Modeling forest productivity using Envisat MERIS data
  publication-title: Sensors
  doi: 10.3390/S7102115
– volume: 30
  start-page: 1980
  issue: 13
  year: 2010
  ident: 10.1016/j.geodrs.2020.e00313_b0070
  article-title: Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1996
– volume: 2
  start-page: 68
  issue: 2
  year: 2008
  ident: 10.1016/j.geodrs.2020.e00313_b0185
  article-title: Changes in land cover and use affect the local and regional climate in Piracicaba, Brazil
  publication-title: J. Urban Environ. Eng.
  doi: 10.4090/juee.2008.v2n2.068074
– ident: 10.1016/j.geodrs.2020.e00313_b0090
– volume: 33
  start-page: 159
  year: 1977
  ident: 10.1016/j.geodrs.2020.e00313_b0110
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 8
  start-page: 31 p
  year: 2016
  ident: 10.1016/j.geodrs.2020.e00313_b0155
  article-title: Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat. A PyQGIS Plugin
  publication-title: Remote Sens.
– ident: 10.1016/j.geodrs.2020.e00313_b0225
– ident: 10.1016/j.geodrs.2020.e00313_b0085
– volume: 124
  start-page: 119
  year: 2017
  ident: 10.1016/j.geodrs.2020.e00313_b0250
  article-title: Characterizing the relationship between land use land cover change and land surface temperature
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.01.001
– volume: 7
  start-page: 281
  year: 1993
  ident: 10.1016/j.geodrs.2020.e00313_b0015
  article-title: Thermal infrared remote sensing of soils: evolution, trends and perspectives
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259309532182
– ident: 10.1016/j.geodrs.2020.e00313_b0255
– volume: 98
  start-page: 525
  year: 1989
  ident: 10.1016/j.geodrs.2020.e00313_b0025
  article-title: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1989.tb02287.x
– ident: 10.1016/j.geodrs.2020.e00313_b0100
– volume: 7
  start-page: 3287
  year: 2017
  ident: 10.1016/j.geodrs.2020.e00313_b0270
  article-title: Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03432-2
– start-page: 25
  year: 2011
  ident: 10.1016/j.geodrs.2020.e00313_b0005
  article-title: Soil Health indicators under Climate Change: A Review of current Knowledge
– ident: 10.1016/j.geodrs.2020.e00313_b0190
– volume: 560
  start-page: 639
  year: 2018
  ident: 10.1016/j.geodrs.2020.e00313_b0240
  article-title: Global land change from 1982 to 2016
  publication-title: Nature
  doi: 10.1038/s41586-018-0411-9
– ident: 10.1016/j.geodrs.2020.e00313_b0020
– year: 2007
  ident: 10.1016/j.geodrs.2020.e00313_b0095
– ident: 10.1016/j.geodrs.2020.e00313_b0125
– volume: 20
  start-page: 37
  year: 1960
  ident: 10.1016/j.geodrs.2020.e00313_b0040
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 29
  start-page: 107
  issue: 2
  year: 2014
  ident: 10.1016/j.geodrs.2020.e00313_b0115
  article-title: Agricultural Expansion and its impacts on tropical nature
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2013.12.001
– ident: 10.1016/j.geodrs.2020.e00313_b0160
– ident: 10.1016/j.geodrs.2020.e00313_b0030
– ident: 10.1016/j.geodrs.2020.e00313_b0200
– volume: 27
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.geodrs.2020.e00313_b0080
  article-title: Temperatura no perfil do solo utilizando duas densidades de cobertura e solo nu
  publication-title: Acta Sci. Agron.
– volume: 18
  start-page: 528
  year: 2012
  ident: 10.1016/j.geodrs.2020.e00313_b0130
  article-title: Integrating AVHRR and MODIS data to monitor 5 NDVI changes and their relationships with climatic parameters in Northeast China
  publication-title: Int. J. Appl. Earth Observation Geoinformation
  doi: 10.1016/j.jag.2011.10.007
– volume: 1
  start-page: 197
  issue: 2
  year: 2007
  ident: 10.1016/j.geodrs.2020.e00313_b0180
  article-title: Variabilidade dos principais elementos climáticos e urbanização na região de Piracicaba, SP
  publication-title: Revista Brasileira de Engenharia de Biossistemas
  doi: 10.18011/bioeng2007v1n2p197-208
– volume: 65
  start-page: 1687
  year: 2012
  ident: 10.1016/j.geodrs.2020.e00313_b0245
  article-title: The relationship between land surface temperature and land use/land cover in Guangzhou, China
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-011-1145-2
– volume: 104
  start-page: 133
  issue: 2
  year: 2006
  ident: 10.1016/j.geodrs.2020.e00313_b0035
  article-title: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.11.016
– volume: 20
  start-page: 125
  issue: 1
  year: 2017
  ident: 10.1016/j.geodrs.2020.e00313_b0175
  article-title: Detection of land use and land cover change and land surface temperature in English Bazar urban centre
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 212
  start-page: 161
  year: 2018
  ident: 10.1016/j.geodrs.2020.e00313_b0055
  article-title: Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.047
– volume: 131
  start-page: 14
  year: 2013
  ident: 10.1016/j.geodrs.2020.e00313_b0120
  article-title: Satellite-Derived Land Surface Temperature: Current Status and Perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– ident: 10.1016/j.geodrs.2020.e00313_b0195
– volume: 8
  start-page: 34
  issue: 1
  year: 2018
  ident: 10.1016/j.geodrs.2020.e00313_b0165
  article-title: Effects of soil temperature on some soil properties and plant growth
  publication-title: Adv Plants Agric Res.
– volume: 21
  start-page: 353
  issue: 2
  year: 2000
  ident: 10.1016/j.geodrs.2020.e00313_b0235
  article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210876
– volume: 168
  start-page: 1
  year: 2015
  ident: 10.1016/j.geodrs.2020.e00313_b0150
  article-title: Spatio-temporal sensitivity of MODIS land surface temperature anomalies indicates high potential for large-scale land cover change detection in Arctic permafrost landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.017
– ident: 10.1016/j.geodrs.2020.e00313_b0050
– volume: 21
  start-page: 1
  year: 2007
  ident: 10.1016/j.geodrs.2020.e00313_b0170
  article-title: Studies of soil temperature on the basis of satellite data
  publication-title: Int. Agrophys.
– volume: 56
  start-page: 1290
  year: 2013
  ident: 10.1016/j.geodrs.2020.e00313_b0075
  article-title: Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran
  publication-title: J. Environ. Plann. Manage.
  doi: 10.1080/09640568.2012.717888
– ident: 10.1016/j.geodrs.2020.e00313_b0140
– volume: 58
  start-page: 43
  year: 2003
  ident: 10.1016/j.geodrs.2020.e00313_b0060
  article-title: Satellite multi-sensor data analysis of urban surface temperatures and land cover
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/S0924-2716(03)00016-9
– volume: 12
  start-page: 21p
  issue: 1471
  year: 2020
  ident: 10.1016/j.geodrs.2020.e00313_b0065
  article-title: Google earth engine open-source code for land surface temperature estimation from the landsat series
  publication-title: Remote Sensing
– ident: 10.1016/j.geodrs.2020.e00313_b0045
– volume: 33
  start-page: 743
  issue: 4
  year: 2009
  ident: 10.1016/j.geodrs.2020.e00313_b0260
  article-title: Uma visão sobre qualidade do solo
  publication-title: Rev. Bras. Ciênc. Solo, Viçosa
  doi: 10.1590/S0100-06832009000400001
– ident: 10.1016/j.geodrs.2020.e00313_b0215
– ident: 10.1016/j.geodrs.2020.e00313_b0220
  doi: 10.1590/S0103-84782014000600008
– volume: 89
  start-page: 467
  year: 2004
  ident: 10.1016/j.geodrs.2020.e00313_b0265
  article-title: Estimation of land surface temperature- vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.005
– volume: 17
  start-page: 1425
  year: 1996
  ident: 10.1016/j.geodrs.2020.e00313_b0135
  article-title: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– ident: 10.1016/j.geodrs.2020.e00313_b0145
– volume: 108
  start-page: 407
  issue: 2
  year: 1987
  ident: 10.1016/j.geodrs.2020.e00313_b0205
  article-title: Decline in plant and animal production from ageing pastures of green panic (Panicum maximum var. trichoglume)
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600079442
– volume: 313
  start-page: 241
  year: 2018
  ident: 10.1016/j.geodrs.2020.e00313_b0105
  article-title: Soil temperature increase in eastern Australia for the past 50 years
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.015
– volume: 325
  start-page: 125
  year: 2018
  ident: 10.1016/j.geodrs.2020.e00313_b0230
  article-title: Satellite land surface temperature and reflectance related with soil attributes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.03.026
SSID ssj0002953762
Score 2.310876
Snippet •LULC changes are mainly related to the sugarcane cultivation and management.•Bare soil and straw had the highest LST.•LST varied on average from 21 to 41 °C...
The land surface temperature (LST) provides important information about energy exchange processes, which are influenced by land use/land cover (LULC). Thus,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e00313
SubjectTerms Acrisols
anthropogenic activities
Arenosols
Brazil
climate
dry season
energy transfer
Environmental monitoring
Ferralsols
forests
land cover
Land surface temperature
land use
Landsat
Leptosols
pastures
rain
Remote sensing
Satellite image classification
soil water content
statistical analysis
straw
surface temperature
texture
time series analysis
Title Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil
URI https://dx.doi.org/10.1016/j.geodrs.2020.e00313
https://www.proquest.com/docview/2524253059
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FcOFSFbUISou2Uq9uNuu1vXsMUVHatDkAFRyQrH0io-BEdnLh1zPjBxJICImTZWvWsse781h_8w0hP5wJbsyCi5gXPgJ_KyLNpI2CNCwOPPamKRL7t0hn_8Wf6-R6QKZ9LQzCKjvb39r0xlp3V0adNkfrohhd8LihDBIc5imDuHyH7HLwrmxIdie_57PF01YLV8hZwps2cwmPcExfRNcgvW79ylVI3c3ZT9-QGb7mpF6Y68YHnX0kH7rgkU7a59snA19-Ijd_denotvYjBClSi5hM2tbz1hSvGF15Wq-KJa23VdDWU-Sj6siU6X2zqHF3jxYliCHiXdcbelrph2L5mVye_bqczqKuZ0Jk41hhZ3mWWcgypEkSkwYllIAM0FjFAqztoODljJPaq7HVKtOQzHAXTOothEGSifiADMtV6Q8JDWIsM4cZEWRsMQjpVMo0gAVIXCZFOCJxr6Pcdnzi2NZimffAsbu81WyOms1bzR6R6GnUuuXTeEM-69WfP5sXOZj8N0Z-779WDksG_4Po0q-2IJRgngWGTn15992PyR6etWizr2S4qbb-G4QnG3PSTT88zs-v5o-yyOVo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4BLRQWIQqFGgmNYr-0k9qGH8qh22e1eWKQekCw_q6AlWyW7QvRn8QsZJ04lkFAlpF4T24rG43k433yD0GtnghuT4DLiuc_A3_JME2GzIAxhgTJvuiKx80Ux-cI_XeQXO-jXUAsTYZXJ9vc2vbPW6ckoSXN0VVWjz5R1lEGcgp4SiMsTsnLmf_6AvK09mX6ATX5D6dnH5ftJlloLZJYxGRuwk9JCMC5MnpsiSC45JErGShLgCATJxsw4ob0cWy1LDTE_dcEU3kK0IAhnsOw9tBfJsOBU7Z1OZ5PFzc0OlZEihXZd7XKaxU8cavY6YNmlX7smMoVT8tZ33In_8ol_eYfO5Z09RPspVsWnvTgO0I6vH6Gvc107vG39KGIisY0QUNyXD7c4PjG68bhdVyvcbpugrceR_ipxN-PvnQ2Jl4m4qmFYBNjrdoPfNfq6Wj1Gy7uQ4xO0W69r_xThwMeidDEBgwSRwSBdCFEEMDi5KwUPh4gNMlI20ZfHLhorNeDUvqlesipKVvWSPUTZzayrnr7jlvHlIH71hxoq8DC3zHw17JaCExp_u-jar7cwKI9pHdhV-ey_Vz9G9yfL87maTxez5-hBfNMD3Y7Q7qbZ-hcQGW3My6SKGKk7Vv7fWJUezw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+use%2Fland+cover+changes+and+bare+soil+surface+temperature+monitoring+in+southeast+Brazil&rft.jtitle=Geoderma+Regional&rft.au=Say%C3%A3o%2C+Veridiana+Maria&rft.au=dos+Santos%2C+Natasha+Valadares&rft.au=de+Sousa+Mendes%2C+Wanderson&rft.au=Marques%2C+Karina+P.P.&rft.date=2020-09-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=22+p.e00313-&rft_id=info:doi/10.1016%2Fj.geodrs.2020.e00313&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon