Modeling winter barley root distribution in flat and raised bed planting systems subject to full, deficit and rainfed irrigation
In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treat...
Saved in:
Published in | Rhizosphere Vol. 16; p. 100257 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treatments were the combinations of full, deficit, and rainfed irrigations under the raised bed and conventional flat planting systems. The two new models showed good performance in comparison with the other existing models. Further analysis based on the cumulative specific root length approach revealed that full irrigation resulted in thicker and thinner roots in the shallow soil depths of the raised bed and flat planting systems, respectively. In contrast, under deficit and rainfed irrigations, thinner and thicker roots were respectively developed in the shallow soil depths of the raised bed and flat planting system. This shows that under suboptimal soil water content, the crops in the raised bed planting system might be able to seek water by developing a network of thin and long roots in the soil matrix. |
---|---|
AbstractList | In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treatments were the combinations of full, deficit, and rainfed irrigations under the raised bed and conventional flat planting systems. The two new models showed good performance in comparison with the other existing models. Further analysis based on the cumulative specific root length approach revealed that full irrigation resulted in thicker and thinner roots in the shallow soil depths of the raised bed and flat planting systems, respectively. In contrast, under deficit and rainfed irrigations, thinner and thicker roots were respectively developed in the shallow soil depths of the raised bed and flat planting system. This shows that under suboptimal soil water content, the crops in the raised bed planting system might be able to seek water by developing a network of thin and long roots in the soil matrix. |
ArticleNumber | 100257 |
Author | Ahmadi, Seyed Hamid Sepaskhah, Ali Reza Zarei, Mojgan |
Author_xml | – sequence: 1 givenname: Seyed Hamid surname: Ahmadi fullname: Ahmadi, Seyed Hamid email: seyedhamid.ahmadi@gmail.com organization: Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran – sequence: 2 givenname: Ali Reza surname: Sepaskhah fullname: Sepaskhah, Ali Reza organization: Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran – sequence: 3 givenname: Mojgan surname: Zarei fullname: Zarei, Mojgan organization: Water Engineering Department, School of Agriculture, Fasa University, Fasa, Iran |
BookMark | eNqFkE1rVDEUhoO0YG37D1xk6cIZ83FzZ64LQUq1QqWbug43yUl7hkwyJrmW2fnTzfWKiAtdhByS87y8PC_ISUwRCHnJ2Zoz3r_ZrfMjlsPjWjAxPzGhNs_ImeiUWAk-bE_-mJ-Ty1J2jDG-6aXq5Rn5_jk5CBgf6BPGCpmaMQc40pxSpQ5LzWimiilSjNSHsdIxOppHLOCoaecQxlhnvhxLhX2hZTI7sJXWRP0UwmvqwKPF32D0jcKc8WGccy_IqR9Dgctf9zn58uH6_upmdXv38dPV-9uVlXKoK85Nb5np1Gbcmt6zzkjLBuaHQSrfC94bpxz0ynLovGqjHIADtH-39QakPCevltxDTl8nKFXvsVgIrT6kqWjRDVuhOtaJtvp2WbU5lZLB61b_Z9na-gfNmZ7N651ezOvZvF7MN7j7Cz5k3I_5-D_s3YJBc_ANIetiEaIFh7nZ1C7hvwN-AK96pFA |
CitedBy_id | crossref_primary_10_1016_j_agwat_2023_108357 crossref_primary_10_1007_s42106_024_00290_7 crossref_primary_10_1016_j_rhisph_2023_100820 crossref_primary_10_1111_sum_70026 crossref_primary_10_1016_j_fcr_2025_109786 crossref_primary_10_1016_j_rhisph_2021_100452 crossref_primary_10_1002_vzj2_20382 crossref_primary_10_3389_fpls_2022_1085409 |
Cites_doi | 10.1071/BT06118 10.1111/j.1475-2743.2012.00445.x 10.1016/j.agwat.2007.04.007 10.1111/jac.12360 10.1007/s00376-016-5226-8 10.2489/jswc.70.1.54 10.1016/S0378-3774(99)00031-1 10.4141/cjps91-005 10.3390/soilsystems3030044 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 10.1016/0378-3774(83)90089-6 10.1051/agro:2004033 10.1007/s11104-004-1096-4 10.2136/sssaj2001.6541027x 10.1016/j.agwat.2018.02.009 10.1016/0022-1694(70)90255-6 10.2136/vzj2004.2710 10.1016/j.fcr.2016.02.013 10.1007/BF02257569 10.1016/j.eja.2017.09.014 10.1111/j.1469-8137.1991.tb00565.x 10.2136/vzj2017.08.0154 10.1111/sum.12317 10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2 10.1007/s11104-018-3864-6 10.1007/s11104-006-9172-6 10.1098/rsif.2019.0556 10.2134/agronj2009.0288 10.1007/s11104-014-2082-0 10.1016/j.agwat.2018.08.031 10.1002/hyp.6751 10.1139/x87-131 10.1007/s00271-009-0200-1 10.1111/pce.12684 10.2134/agronj2012.0506 10.4141/cjss96-004 10.1016/j.agee.2017.05.012 10.1071/FP11031 10.1016/j.agwat.2011.03.013 10.1071/FP06055 10.1093/jxb/erp389 10.1007/s11104-006-9096-1 10.2136/vzj2007.0119 10.2307/2402227 10.1002/2016WR019392 10.1071/SR07229 10.1023/A:1004702807951 10.1016/j.fcr.2003.09.003 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 10.1111/j.1439-037X.1989.tb00778.x 10.1080/11263500701626069 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.rhisph.2020.100257 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 10_1016_j_rhisph_2020_100257 S2452219820301695 |
GroupedDBID | --M 0R~ AABVA AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-11b6c0b457a8b6f04b3c090f9935f6216bd5de65c1e4f55de39e1eef99d8fbe33 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Fri Aug 22 20:39:10 EDT 2025 Tue Jul 01 03:12:54 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Fri Feb 23 02:36:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rhizosphere Hordeum vulgare L Specific root length Root growth model Root mass density |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-11b6c0b457a8b6f04b3c090f9935f6216bd5de65c1e4f55de39e1eef99d8fbe33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2498254042 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2498254042 crossref_citationtrail_10_1016_j_rhisph_2020_100257 crossref_primary_10_1016_j_rhisph_2020_100257 elsevier_sciencedirect_doi_10_1016_j_rhisph_2020_100257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Rhizosphere |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lv, Kang, Li, Wan (bib45) 2010; 28 Palta, Turner (bib58) 2019; 439 Cooley, Lowery, Kelling, Wilner (bib16) 2007; 21 Archontoulis, Miguez (bib7) 2015; 107 Elder (bib22) 2018 Gale, Grigal (bib28) 1987; 17 Zuo, Jie, Zhang, Meng (bib78) 2004; 3 Dupuy, Gregory, Bengough (bib19) 2010; 61 Ryser (bib65) 2006; 286 Wang, Xie, Jia (bib73) 2016; 33 Hartmann, Simunek, Aidoo, Seidel, Lazarovitch (bib31) 2017; 17 Jung, Park, Jensen, Kim, Kim (bib40) 2019; 16 He, McHugh, Li, Wang, Li, Rasaily, Li (bib35) 2012; 28 Baburai Nagesh (bib11) 2006 Lynch (bib46) 2007; 55 Gao, Hodgkinson, Jin, Watts, Ashton, Shen, Ren, Dodd, Binley, Phillips, Hedden, Hawkesford, Whalley (bib29) 2016; 39 Palta, Chen, Milroy, Rebetzke, Dreccer, Watt (bib57) 2011; 38 Zhang, Sun, Duan, Wang, Shen, Liu (bib87) 2007; 92 Schenk (bib66) 2008; 7 Ahmadi, Sepaskhah, Zarei (bib5) 2018; 210 Dwyer, Ma, Stewart, Hayhoe, Balchin, Culley, McGovern (bib20) 1996; 76 Tremblay, Wallach (bib70) 2004; 24 He, Li, McHugh, Wang, Lu, Li, Zhang (bib34) 2015; 70 Manschadi, Christofer, deVoil, Hammer (bib49) 2006; 33 Barraclough, Kuhlmann, Weir (bib88) 1989; 163 Kotu, Deshpande (bib42) 2019 Zhou, Plauborg, Parsons, Andersen (bib77) 2018; 202 Nash, Sutcliffe (bib54) 1970; 10 Ahmadi, Plauborg, Andersen, Sepaskhah, Jensen, Hansen (bib4) 2011; 98 Schenk, Jackson (bib67) 2002; 72 Ivani, Dehghan (bib37) 2018 Vrugt, Hopmans, Simunek (bib71) 2001; 65 Adiku, Braddock, Rose (bib1) 1996; 185 He, Li, McHugh, Ma, Cao, Wang, Zhang, Zhang (bib33) 2008; 46 Lambers, Atkin, Millenaar (bib80) 2002 Passioura (bib60) 1983; 7 Carvalho, Foulkes (bib14) 2012 Hodgkinson, Dodd, Binley, Ashton, White, Watts, Walley (bib36) 2017; 91 Yang, Donohue, McVicar (bib75) 2016; 52 Allen, Pereira, Raes, Smith (bib6) 1998 Fahong, Xuqing, Sayre (bib23) 2004; 87 Jackson, Schenk, Jobbágy, Canadell, Colello, Dickinson, Field, Friedlingstein, Heimann, Hibbard, Kicklighter, Kleidon, Neilson, Parton, Sala, Sykes (bib38) 2000; 10 Wu, Zhang, Gui (bib74) 1999; 215 Kong, Wang, Feng, Li, Si, Zhang (bib41) 2010; 102 Ebrahim (bib21) 2008 Gerwitz, Page (bib30) 1974; 11 Lynch, Ho (bib48) 2005; 269 Palta, Watt (bib59) 2009 Asadi (bib8) 2018 Eissenstat (bib79) 1991; 118 Metselaar, Pinheiro, van Lier (bib52) 2019; 3 Fischer, Sayre, Ortiz Monasterio (bib26) 2005 Mehrabi, Sepaskhah, Ahmadi (bib89) 2020 Corneo, Keitel, Kertesz, Dijkstra (bib17) 2017; 246 (bib62) 2017 Peng, Liu, Dong, Xue, Neely, Marek, Ibrahim, Zhang, Leskovar, Rudd (bib61) 2019; 205 Fan, McConkey, Wang, Janzen (bib24) 2016; 189 Oliveira, van Noordwijk, Gaze, Brouwer, Bona, Mosca, Hairiah (bib55) 2000 Robinson (bib64) 1999; 42 Cai, Vanderborght, Couvreur, Mboh, Vereecken (bib13) 2017; 17 Nakhforoosh, Grausgruber, Kaul, Bodner (bib53) 2014; 380 Dubois (bib18) 2018 Kleidon (bib81) 2004; 17 Ahmadi, Agharezaee, Kamgar-Haghighi, Sepaskhah (bib2) 2017; 33 Sayre, Limon, Govaerts (bib85) 2005 Sheng, Hunt (bib68) 1991; 71 Kuhl, Kendall, van Dam, Hyndman (bib43) 2018; 17 Govaerts, Sayre, Lichter, Dendooven, Deckers (bib86) 2007; 291 Sayre, Hobbs (bib84) 2004 Ostonen, Püttsepp, Biel, Alberton, Bakker, Lõhmus, Majdi, Metcalfe, Olsthoorn, Pronk, Vanguelova, Weih, Brunner (bib56) 2007; 141 Jung (10.1016/j.rhisph.2020.100257_bib40) 2019; 16 Kuhl (10.1016/j.rhisph.2020.100257_bib43) 2018; 17 Yang (10.1016/j.rhisph.2020.100257_bib75) 2016; 52 Ivani (10.1016/j.rhisph.2020.100257_bib37) 2018 Lynch (10.1016/j.rhisph.2020.100257_bib46) 2007; 55 Dupuy (10.1016/j.rhisph.2020.100257_bib19) 2010; 61 Gerwitz (10.1016/j.rhisph.2020.100257_bib30) 1974; 11 Cooley (10.1016/j.rhisph.2020.100257_bib16) 2007; 21 Fahong (10.1016/j.rhisph.2020.100257_bib23) 2004; 87 Palta (10.1016/j.rhisph.2020.100257_bib58) 2019; 439 Passioura (10.1016/j.rhisph.2020.100257_bib60) 1983; 7 (10.1016/j.rhisph.2020.100257_bib62) 2017 Jackson (10.1016/j.rhisph.2020.100257_bib38) 2000; 10 Metselaar (10.1016/j.rhisph.2020.100257_bib52) 2019; 3 Nash (10.1016/j.rhisph.2020.100257_bib54) 1970; 10 Dubois (10.1016/j.rhisph.2020.100257_bib18) 2018 Wang (10.1016/j.rhisph.2020.100257_bib73) 2016; 33 Adiku (10.1016/j.rhisph.2020.100257_bib1) 1996; 185 Lynch (10.1016/j.rhisph.2020.100257_bib48) 2005; 269 Ahmadi (10.1016/j.rhisph.2020.100257_bib2) 2017; 33 Ahmadi (10.1016/j.rhisph.2020.100257_bib5) 2018; 210 Hodgkinson (10.1016/j.rhisph.2020.100257_bib36) 2017; 91 Elder (10.1016/j.rhisph.2020.100257_bib22) 2018 Nakhforoosh (10.1016/j.rhisph.2020.100257_bib53) 2014; 380 Manschadi (10.1016/j.rhisph.2020.100257_bib49) 2006; 33 Gao (10.1016/j.rhisph.2020.100257_bib29) 2016; 39 Oliveira (10.1016/j.rhisph.2020.100257_bib55) 2000 Kotu (10.1016/j.rhisph.2020.100257_bib42) 2019 Ebrahim (10.1016/j.rhisph.2020.100257_bib21) 2008 Palta (10.1016/j.rhisph.2020.100257_bib59) 2009 Sayre (10.1016/j.rhisph.2020.100257_bib85) 2005 Zhou (10.1016/j.rhisph.2020.100257_bib77) 2018; 202 Zhang (10.1016/j.rhisph.2020.100257_bib87) 2007; 92 Kleidon (10.1016/j.rhisph.2020.100257_bib81) 2004; 17 Mehrabi (10.1016/j.rhisph.2020.100257_bib89) 2020 Peng (10.1016/j.rhisph.2020.100257_bib61) 2019; 205 Fan (10.1016/j.rhisph.2020.100257_bib24) 2016; 189 Kong (10.1016/j.rhisph.2020.100257_bib41) 2010; 102 Govaerts (10.1016/j.rhisph.2020.100257_bib86) 2007; 291 Hartmann (10.1016/j.rhisph.2020.100257_bib31) 2017; 17 Ostonen (10.1016/j.rhisph.2020.100257_bib56) 2007; 141 Tremblay (10.1016/j.rhisph.2020.100257_bib70) 2004; 24 Palta (10.1016/j.rhisph.2020.100257_bib57) 2011; 38 Lambers (10.1016/j.rhisph.2020.100257_bib80) 2002 He (10.1016/j.rhisph.2020.100257_bib34) 2015; 70 Sheng (10.1016/j.rhisph.2020.100257_bib68) 1991; 71 Carvalho (10.1016/j.rhisph.2020.100257_bib14) 2012 Ryser (10.1016/j.rhisph.2020.100257_bib65) 2006; 286 Robinson (10.1016/j.rhisph.2020.100257_bib64) 1999; 42 Sayre (10.1016/j.rhisph.2020.100257_bib84) 2004 Ahmadi (10.1016/j.rhisph.2020.100257_bib4) 2011; 98 He (10.1016/j.rhisph.2020.100257_bib33) 2008; 46 Schenk (10.1016/j.rhisph.2020.100257_bib67) 2002; 72 Schenk (10.1016/j.rhisph.2020.100257_bib66) 2008; 7 Barraclough (10.1016/j.rhisph.2020.100257_bib88) 1989; 163 Corneo (10.1016/j.rhisph.2020.100257_bib17) 2017; 246 Cai (10.1016/j.rhisph.2020.100257_bib13) 2017; 17 Dwyer (10.1016/j.rhisph.2020.100257_bib20) 1996; 76 Allen (10.1016/j.rhisph.2020.100257_bib6) 1998 He (10.1016/j.rhisph.2020.100257_bib35) 2012; 28 Wu (10.1016/j.rhisph.2020.100257_bib74) 1999; 215 Gale (10.1016/j.rhisph.2020.100257_bib28) 1987; 17 Vrugt (10.1016/j.rhisph.2020.100257_bib71) 2001; 65 Lv (10.1016/j.rhisph.2020.100257_bib45) 2010; 28 Archontoulis (10.1016/j.rhisph.2020.100257_bib7) 2015; 107 Fischer (10.1016/j.rhisph.2020.100257_bib26) 2005 Baburai Nagesh (10.1016/j.rhisph.2020.100257_bib11) 2006 Eissenstat (10.1016/j.rhisph.2020.100257_bib79) 1991; 118 Zuo (10.1016/j.rhisph.2020.100257_bib78) 2004; 3 Asadi (10.1016/j.rhisph.2020.100257_bib8) 2018 |
References_xml | – volume: 269 start-page: 45 year: 2005 end-page: 56 ident: bib48 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant Soil – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bib54 article-title: River flow forecasting through conceptual models Part I—a discussion of principles publication-title: J. Hydrol. – volume: 33 start-page: 1047 year: 2016 end-page: 1060 ident: bib73 article-title: Incorporation of a dynamic root distribution into CLM4.5: evaluation of carbon and water fluxes over Amazon publication-title: Adv. Atmos. Sci. – volume: 185 start-page: 125 year: 1996 end-page: 135 ident: bib1 article-title: Modelling the effect of varying soil water on root growth dynamics of annual crops publication-title: Plant Soil – year: 2005 ident: bib85 article-title: Experiences with permanent bed planting systems CIMMYT, Mexico publication-title: Evaluation and Performance of Permanent Raised Bed Cropping Systems in Asia, Australia and Mexico – volume: 65 start-page: 1027 year: 2001 end-page: 1037 ident: bib71 article-title: Calibration of a two-dimensional root water uptake model publication-title: Soil Sci. Soc. Am. J. – volume: 210 start-page: 304 year: 2018 end-page: 315 ident: bib5 article-title: Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems publication-title: Agric. Water Manag. – start-page: 604 year: 2009 ident: bib59 article-title: Vigorous crop root systems: form and function for improving the capture of water and nutrients publication-title: Crop Physiology: Applications for Genetic Improvement and Agronomy – volume: 91 start-page: 74 year: 2017 end-page: 83 ident: bib36 article-title: Root growth in field-grown winter wheat: some effects of soil conditions, season and genotype publication-title: Eur. J. Agron. – volume: 10 start-page: 470 year: 2000 end-page: 483 ident: bib38 article-title: Belowground consequences of vegetation change and their treatment in models publication-title: Ecol. Appl. – start-page: 337 year: 2004 end-page: 355 ident: bib84 article-title: The raised-bed system of cultivation for irrigated production conditions publication-title: Sustainable Agriculture and the International Rice-Wheat System – volume: 215 start-page: 7 year: 1999 end-page: 17 ident: bib74 article-title: Modeling soil water movement with water uptake by roots publication-title: Plant Soil – volume: 291 start-page: 39 year: 2007 end-page: 54 ident: bib86 article-title: Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems publication-title: Plant Soil – volume: 3 start-page: 271 year: 2004 end-page: 277 ident: bib78 article-title: A generalized function of wheat's root length density distributions publication-title: Vadose Zone J. – year: 2005 ident: bib26 article-title: The effect of raised bed planting on irrigated wheat yield as influenced by variety and row spacing publication-title: Proceedings of a Workshop Held in Griffith – volume: 439 start-page: 31 year: 2019 end-page: 43 ident: bib58 article-title: Crop root system traits cannot be seen as a silver bullet delivering drought resistance publication-title: Plant Soil – volume: 189 start-page: 68 year: 2016 end-page: 74 ident: bib24 article-title: Root distribution by depth for temperate agricultural crops publication-title: Field Crop. Res. – volume: 70 start-page: 54 year: 2015 end-page: 62 ident: bib34 article-title: Permanent raised beds improved crop performance and water use on the North China Plain publication-title: J. Soil Water Conserv. – volume: 28 start-page: 387 year: 2010 end-page: 398 ident: bib45 article-title: Effect of irrigation methods on root development and profile soil water uptake in winter wheat publication-title: Irrigat. Sci. – volume: 98 start-page: 1280 year: 2011 end-page: 1290 ident: bib4 article-title: Effects of irrigation strategies and soils on field grown potatoes: root distribution publication-title: Agric. Water Manag. – start-page: 300 year: 1998 ident: bib6 article-title: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56 – start-page: 148 year: 2018 ident: bib18 article-title: Modeling and Simulation – volume: 7 start-page: 265 year: 1983 end-page: 280 ident: bib60 article-title: Roots and drought resistance publication-title: Agric. Water Manag. – volume: 286 start-page: 1 year: 2006 end-page: 6 ident: bib65 article-title: The mysterious root length publication-title: Plant Soil – volume: 42 start-page: 189 year: 1999 end-page: 204 ident: bib64 article-title: A comparison of soil–water distribution under ridge and bed cultivated potatoes publication-title: Agric. Water Manag. – start-page: 284 year: 2008 ident: bib21 article-title: Responses of Root and Shoot Growth of Durum Wheat (Triticum Turgidum L. Var Durum) and Barley (Hordeum Vulgare L.) Plants to Different Water and Nitrogen Levels – volume: 87 start-page: 35 year: 2004 end-page: 42 ident: bib23 article-title: Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China publication-title: Field Crop. Res. – volume: 11 year: 1974 ident: bib30 article-title: An empirical mathematical model to describe plant root systems publication-title: J. Appl. Ecol. – volume: 46 start-page: 659 year: 2008 end-page: 666 ident: bib33 article-title: Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China publication-title: Aust. J. Soil Res. – year: 2018 ident: bib8 article-title: Raised bed planting systems publication-title: Agricultural Research, Education, and Extension Organization, Deputy of Extesnion, Minsitry of Jihad Agriculture – volume: 16 start-page: 20190556 year: 2019 ident: bib40 article-title: A design principle of root length distribution of plants publication-title: J. R. Soc. Interface – volume: 33 start-page: 823 year: 2006 end-page: 837 ident: bib49 article-title: The role of root architectural traits in adaptation of wheat to water-limited environments publication-title: Funct. Plant Biol. – year: 2017 ident: bib62 article-title: R: A Language and Environment for Statistical Computing – volume: 21 start-page: 2390 year: 2007 end-page: 2399 ident: bib16 article-title: Water dynamics in drip and overhead sprinkler irrigated potato hills and development of dry zones publication-title: Hydrol. Process. – year: 2020 ident: bib89 article-title: Winter wheat root distribution with irrigation, planting methods, and nitrogen application publication-title: Nutrient Cycl. Agroecosyst – volume: 39 start-page: 1662 year: 2016 end-page: 1668 ident: bib29 article-title: Deep roots and soil structure publication-title: Plant Cell Environ. – volume: 17 start-page: 2714 year: 2004 end-page: 2722 ident: bib81 article-title: Global datasets of rooting zone depth inferred from inverse methods publication-title: J. Clim. – volume: 76 start-page: 23 year: 1996 end-page: 28 ident: bib20 article-title: Root mass distribution under conventional and conservation tillage publication-title: Can. J. Soil Sci. – volume: 205 start-page: 571 year: 2019 end-page: 585 ident: bib61 article-title: Root morphological traits of winter wheat under contrasting environments publication-title: J. Agron. Crop Sci. – volume: 163 start-page: 352 year: 1989 end-page: 360 ident: bib88 article-title: The effects of prolonged drought and nitrogen-fertilizer on root and shoot growth and water-uptake by winter-wheat publication-title: J. Agron. Crop Sci. – year: 2018 ident: bib37 article-title: Mechanized Cultivation of Wheat on Raised Beds. Agricultural Research, Education, and Extension Organization – volume: 380 start-page: 211 year: 2014 end-page: 229 ident: bib53 article-title: Wheat root diversity and root functional characterization publication-title: Plant Soil – volume: 107 start-page: 786 year: 2015 end-page: 798 ident: bib7 article-title: Nonlinear regression models and applications in agricultural research publication-title: Agron. J. – volume: 38 start-page: 347 year: 2011 end-page: 354 ident: bib57 article-title: Large root systems: are they useful in adapting wheat to dry environments? publication-title: Funct. Plant Biol. – year: 2006 ident: bib11 article-title: The Physiological and Genetic Bases of Water-Use Efficiency in Winter Wheat – volume: 17 start-page: 170040 year: 2017 ident: bib31 article-title: Implementation and application of a root growth module in HYDRUS publication-title: Vadose Zone J. – volume: 17 start-page: 170154 year: 2018 ident: bib43 article-title: Quantifying soil water and root dynamics using a coupled hydrogeophysical inversion publication-title: Vadose Zone J. – start-page: 521 year: 2002 end-page: 552 ident: bib80 article-title: Respiratory patterns in roots in relation to their functioning publication-title: Plant roots: the hidden half – volume: 102 start-page: 154 year: 2010 end-page: 162 ident: bib41 article-title: A root-zone soil regime of wheat: physiological and growth responses to furrow irrigation in raised bed planting in northern China publication-title: Agron. J. – start-page: 587pp year: 2000 ident: bib55 article-title: Auger sampling, ingrowth cores and pinboard methods publication-title: Root Methods: A Handbook – volume: 24 start-page: 351 year: 2004 end-page: 365 ident: bib70 article-title: Comparison of parameter estimation methods for crop models publication-title: Agronomie – volume: 92 start-page: 41 year: 2007 end-page: 47 ident: bib87 article-title: Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China publication-title: Agric. Water Manag. – start-page: 705 year: 2018 end-page: 718 ident: bib22 article-title: The apparent paradox of complexity in ensemble modeling publication-title: Handbook of Statistical Analysis and Data Mining Applications – volume: 55 start-page: 493 year: 2007 end-page: 512 ident: bib46 article-title: Roots of the second green revolution publication-title: Aust. J. Bot. – volume: 72 start-page: 311 year: 2002 end-page: 328 ident: bib67 article-title: The global biogeography of roots publication-title: Ecol. Monogr. – volume: 28 start-page: 536 year: 2012 end-page: 543 ident: bib35 article-title: Permanent raised beds improved soil structure and yield of spring wheat in arid north-western China publication-title: Soil Use Manag. – start-page: 568 year: 2019 ident: bib42 article-title: Data Science – volume: 7 start-page: 1119 year: 2008 end-page: 1124 ident: bib66 article-title: The shallowest possible water extraction profile: a null model for global root distributions publication-title: Vadose Zone J. – volume: 202 start-page: 9 year: 2018 end-page: 18 ident: bib77 article-title: Potato canopy growth, yield and soil water dynamics under different irrigation systems publication-title: Agric. Water Manag. – volume: 118 start-page: 63 year: 1991 end-page: 68 ident: bib79 article-title: On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks publication-title: New Phytol. – volume: 141 start-page: 426 year: 2007 end-page: 442 ident: bib56 article-title: Specific root length as an indicator of environmental change publication-title: Plant Biosyst. – volume: 71 start-page: 41 year: 1991 end-page: 49 ident: bib68 article-title: Shoot and root dry weight and soil water in wheat, triticale and rve publication-title: Can. J. Plant Sci. – volume: 33 start-page: 106 year: 2017 end-page: 119 ident: bib2 article-title: Compatibility of root growth and tuber production of potato cultivars with dynamic and static water-saving irrigation managements publication-title: Soil Use Manag. – year: 2012 ident: bib14 article-title: Roots and uptake of water and nutrients publication-title: Sustainable Food Production – volume: 3 start-page: 44 year: 2019 ident: bib52 article-title: Mathematical description of rooting profiles of agricultural crops and its effect on transpiration prediction by a hydrological model publication-title: Soil Systems – volume: 52 start-page: 8260 year: 2016 end-page: 8276 ident: bib75 article-title: Global estimation of effective plant rooting depth: implications for hydrological modeling publication-title: Water Resour. Res. – volume: 61 start-page: 2131 year: 2010 end-page: 2143 ident: bib19 article-title: Root growth models: towards a new generation of continuous approaches publication-title: J. Exp. Bot. – volume: 17 start-page: 160125 year: 2017 ident: bib13 article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation publication-title: Vadose Zone J. – volume: 246 start-page: 21 year: 2017 end-page: 29 ident: bib17 article-title: Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield publication-title: Agric. Ecosyst. Environ. – volume: 17 start-page: 829 year: 1987 end-page: 834 ident: bib28 article-title: Vertical root distributions of northern tree species in relation to successional status publication-title: Can. J. For. Res. – start-page: 604 year: 2009 ident: 10.1016/j.rhisph.2020.100257_bib59 article-title: Vigorous crop root systems: form and function for improving the capture of water and nutrients – volume: 55 start-page: 493 year: 2007 ident: 10.1016/j.rhisph.2020.100257_bib46 article-title: Roots of the second green revolution publication-title: Aust. J. Bot. doi: 10.1071/BT06118 – year: 2006 ident: 10.1016/j.rhisph.2020.100257_bib11 – volume: 28 start-page: 536 year: 2012 ident: 10.1016/j.rhisph.2020.100257_bib35 article-title: Permanent raised beds improved soil structure and yield of spring wheat in arid north-western China publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2012.00445.x – volume: 92 start-page: 41 year: 2007 ident: 10.1016/j.rhisph.2020.100257_bib87 article-title: Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2007.04.007 – year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib8 article-title: Raised bed planting systems – volume: 17 start-page: 170040 year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib31 article-title: Implementation and application of a root growth module in HYDRUS publication-title: Vadose Zone J. – volume: 205 start-page: 571 year: 2019 ident: 10.1016/j.rhisph.2020.100257_bib61 article-title: Root morphological traits of winter wheat under contrasting environments publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12360 – volume: 33 start-page: 1047 year: 2016 ident: 10.1016/j.rhisph.2020.100257_bib73 article-title: Incorporation of a dynamic root distribution into CLM4.5: evaluation of carbon and water fluxes over Amazon publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-016-5226-8 – volume: 70 start-page: 54 year: 2015 ident: 10.1016/j.rhisph.2020.100257_bib34 article-title: Permanent raised beds improved crop performance and water use on the North China Plain publication-title: J. Soil Water Conserv. doi: 10.2489/jswc.70.1.54 – volume: 42 start-page: 189 year: 1999 ident: 10.1016/j.rhisph.2020.100257_bib64 article-title: A comparison of soil–water distribution under ridge and bed cultivated potatoes publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(99)00031-1 – volume: 71 start-page: 41 year: 1991 ident: 10.1016/j.rhisph.2020.100257_bib68 article-title: Shoot and root dry weight and soil water in wheat, triticale and rve publication-title: Can. J. Plant Sci. doi: 10.4141/cjps91-005 – volume: 3 start-page: 44 year: 2019 ident: 10.1016/j.rhisph.2020.100257_bib52 article-title: Mathematical description of rooting profiles of agricultural crops and its effect on transpiration prediction by a hydrological model publication-title: Soil Systems doi: 10.3390/soilsystems3030044 – volume: 10 start-page: 470 year: 2000 ident: 10.1016/j.rhisph.2020.100257_bib38 article-title: Belowground consequences of vegetation change and their treatment in models publication-title: Ecol. Appl. doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 – volume: 7 start-page: 265 year: 1983 ident: 10.1016/j.rhisph.2020.100257_bib60 article-title: Roots and drought resistance publication-title: Agric. Water Manag. doi: 10.1016/0378-3774(83)90089-6 – year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib37 – year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib62 – volume: 24 start-page: 351 year: 2004 ident: 10.1016/j.rhisph.2020.100257_bib70 article-title: Comparison of parameter estimation methods for crop models publication-title: Agronomie doi: 10.1051/agro:2004033 – volume: 269 start-page: 45 year: 2005 ident: 10.1016/j.rhisph.2020.100257_bib48 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant Soil doi: 10.1007/s11104-004-1096-4 – volume: 65 start-page: 1027 year: 2001 ident: 10.1016/j.rhisph.2020.100257_bib71 article-title: Calibration of a two-dimensional root water uptake model publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6541027x – year: 2005 ident: 10.1016/j.rhisph.2020.100257_bib26 article-title: The effect of raised bed planting on irrigated wheat yield as influenced by variety and row spacing – volume: 202 start-page: 9 year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib77 article-title: Potato canopy growth, yield and soil water dynamics under different irrigation systems publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.02.009 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.rhisph.2020.100257_bib54 article-title: River flow forecasting through conceptual models Part I—a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – start-page: 148 year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib18 – volume: 3 start-page: 271 year: 2004 ident: 10.1016/j.rhisph.2020.100257_bib78 article-title: A generalized function of wheat's root length density distributions publication-title: Vadose Zone J. doi: 10.2136/vzj2004.2710 – volume: 189 start-page: 68 year: 2016 ident: 10.1016/j.rhisph.2020.100257_bib24 article-title: Root distribution by depth for temperate agricultural crops publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2016.02.013 – volume: 185 start-page: 125 year: 1996 ident: 10.1016/j.rhisph.2020.100257_bib1 article-title: Modelling the effect of varying soil water on root growth dynamics of annual crops publication-title: Plant Soil doi: 10.1007/BF02257569 – volume: 91 start-page: 74 year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib36 article-title: Root growth in field-grown winter wheat: some effects of soil conditions, season and genotype publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2017.09.014 – volume: 118 start-page: 63 year: 1991 ident: 10.1016/j.rhisph.2020.100257_bib79 article-title: On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks publication-title: New Phytol. doi: 10.1111/j.1469-8137.1991.tb00565.x – volume: 17 start-page: 170154 year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib43 article-title: Quantifying soil water and root dynamics using a coupled hydrogeophysical inversion publication-title: Vadose Zone J. doi: 10.2136/vzj2017.08.0154 – volume: 33 start-page: 106 year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib2 article-title: Compatibility of root growth and tuber production of potato cultivars with dynamic and static water-saving irrigation managements publication-title: Soil Use Manag. doi: 10.1111/sum.12317 – volume: 17 start-page: 2714 year: 2004 ident: 10.1016/j.rhisph.2020.100257_bib81 article-title: Global datasets of rooting zone depth inferred from inverse methods publication-title: J. Clim. doi: 10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2 – volume: 439 start-page: 31 year: 2019 ident: 10.1016/j.rhisph.2020.100257_bib58 article-title: Crop root system traits cannot be seen as a silver bullet delivering drought resistance publication-title: Plant Soil doi: 10.1007/s11104-018-3864-6 – volume: 291 start-page: 39 year: 2007 ident: 10.1016/j.rhisph.2020.100257_bib86 article-title: Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems publication-title: Plant Soil doi: 10.1007/s11104-006-9172-6 – volume: 16 start-page: 20190556 year: 2019 ident: 10.1016/j.rhisph.2020.100257_bib40 article-title: A design principle of root length distribution of plants publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0556 – volume: 102 start-page: 154 year: 2010 ident: 10.1016/j.rhisph.2020.100257_bib41 article-title: A root-zone soil regime of wheat: physiological and growth responses to furrow irrigation in raised bed planting in northern China publication-title: Agron. J. doi: 10.2134/agronj2009.0288 – start-page: 568 year: 2019 ident: 10.1016/j.rhisph.2020.100257_bib42 – volume: 380 start-page: 211 year: 2014 ident: 10.1016/j.rhisph.2020.100257_bib53 article-title: Wheat root diversity and root functional characterization publication-title: Plant Soil doi: 10.1007/s11104-014-2082-0 – start-page: 587pp year: 2000 ident: 10.1016/j.rhisph.2020.100257_bib55 article-title: Auger sampling, ingrowth cores and pinboard methods – volume: 210 start-page: 304 year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib5 article-title: Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.08.031 – volume: 21 start-page: 2390 year: 2007 ident: 10.1016/j.rhisph.2020.100257_bib16 article-title: Water dynamics in drip and overhead sprinkler irrigated potato hills and development of dry zones publication-title: Hydrol. Process. doi: 10.1002/hyp.6751 – volume: 17 start-page: 829 year: 1987 ident: 10.1016/j.rhisph.2020.100257_bib28 article-title: Vertical root distributions of northern tree species in relation to successional status publication-title: Can. J. For. Res. doi: 10.1139/x87-131 – volume: 28 start-page: 387 year: 2010 ident: 10.1016/j.rhisph.2020.100257_bib45 article-title: Effect of irrigation methods on root development and profile soil water uptake in winter wheat publication-title: Irrigat. Sci. doi: 10.1007/s00271-009-0200-1 – year: 2020 ident: 10.1016/j.rhisph.2020.100257_bib89 article-title: Winter wheat root distribution with irrigation, planting methods, and nitrogen application publication-title: Nutrient Cycl. Agroecosyst – start-page: 705 year: 2018 ident: 10.1016/j.rhisph.2020.100257_bib22 article-title: The apparent paradox of complexity in ensemble modeling – start-page: 284 year: 2008 ident: 10.1016/j.rhisph.2020.100257_bib21 – volume: 39 start-page: 1662 year: 2016 ident: 10.1016/j.rhisph.2020.100257_bib29 article-title: Deep roots and soil structure publication-title: Plant Cell Environ. doi: 10.1111/pce.12684 – volume: 107 start-page: 786 year: 2015 ident: 10.1016/j.rhisph.2020.100257_bib7 article-title: Nonlinear regression models and applications in agricultural research publication-title: Agron. J. doi: 10.2134/agronj2012.0506 – year: 2012 ident: 10.1016/j.rhisph.2020.100257_bib14 article-title: Roots and uptake of water and nutrients – volume: 76 start-page: 23 year: 1996 ident: 10.1016/j.rhisph.2020.100257_bib20 article-title: Root mass distribution under conventional and conservation tillage publication-title: Can. J. Soil Sci. doi: 10.4141/cjss96-004 – volume: 246 start-page: 21 year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib17 article-title: Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.05.012 – volume: 38 start-page: 347 year: 2011 ident: 10.1016/j.rhisph.2020.100257_bib57 article-title: Large root systems: are they useful in adapting wheat to dry environments? publication-title: Funct. Plant Biol. doi: 10.1071/FP11031 – start-page: 300 year: 1998 ident: 10.1016/j.rhisph.2020.100257_bib6 – volume: 98 start-page: 1280 year: 2011 ident: 10.1016/j.rhisph.2020.100257_bib4 article-title: Effects of irrigation strategies and soils on field grown potatoes: root distribution publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2011.03.013 – volume: 17 start-page: 160125 year: 2017 ident: 10.1016/j.rhisph.2020.100257_bib13 article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation publication-title: Vadose Zone J. – volume: 33 start-page: 823 year: 2006 ident: 10.1016/j.rhisph.2020.100257_bib49 article-title: The role of root architectural traits in adaptation of wheat to water-limited environments publication-title: Funct. Plant Biol. doi: 10.1071/FP06055 – volume: 61 start-page: 2131 year: 2010 ident: 10.1016/j.rhisph.2020.100257_bib19 article-title: Root growth models: towards a new generation of continuous approaches publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp389 – volume: 286 start-page: 1 year: 2006 ident: 10.1016/j.rhisph.2020.100257_bib65 article-title: The mysterious root length publication-title: Plant Soil doi: 10.1007/s11104-006-9096-1 – volume: 7 start-page: 1119 year: 2008 ident: 10.1016/j.rhisph.2020.100257_bib66 article-title: The shallowest possible water extraction profile: a null model for global root distributions publication-title: Vadose Zone J. doi: 10.2136/vzj2007.0119 – volume: 11 year: 1974 ident: 10.1016/j.rhisph.2020.100257_bib30 article-title: An empirical mathematical model to describe plant root systems publication-title: J. Appl. Ecol. doi: 10.2307/2402227 – year: 2005 ident: 10.1016/j.rhisph.2020.100257_bib85 article-title: Experiences with permanent bed planting systems CIMMYT, Mexico – volume: 52 start-page: 8260 year: 2016 ident: 10.1016/j.rhisph.2020.100257_bib75 article-title: Global estimation of effective plant rooting depth: implications for hydrological modeling publication-title: Water Resour. Res. doi: 10.1002/2016WR019392 – volume: 46 start-page: 659 year: 2008 ident: 10.1016/j.rhisph.2020.100257_bib33 article-title: Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China publication-title: Aust. J. Soil Res. doi: 10.1071/SR07229 – start-page: 337 year: 2004 ident: 10.1016/j.rhisph.2020.100257_bib84 article-title: The raised-bed system of cultivation for irrigated production conditions – volume: 215 start-page: 7 year: 1999 ident: 10.1016/j.rhisph.2020.100257_bib74 article-title: Modeling soil water movement with water uptake by roots publication-title: Plant Soil doi: 10.1023/A:1004702807951 – volume: 87 start-page: 35 year: 2004 ident: 10.1016/j.rhisph.2020.100257_bib23 article-title: Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2003.09.003 – volume: 72 start-page: 311 year: 2002 ident: 10.1016/j.rhisph.2020.100257_bib67 article-title: The global biogeography of roots publication-title: Ecol. Monogr. doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2 – volume: 163 start-page: 352 year: 1989 ident: 10.1016/j.rhisph.2020.100257_bib88 article-title: The effects of prolonged drought and nitrogen-fertilizer on root and shoot growth and water-uptake by winter-wheat publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.1989.tb00778.x – volume: 141 start-page: 426 year: 2007 ident: 10.1016/j.rhisph.2020.100257_bib56 article-title: Specific root length as an indicator of environmental change publication-title: Plant Biosyst. doi: 10.1080/11263500701626069 – start-page: 521 year: 2002 ident: 10.1016/j.rhisph.2020.100257_bib80 article-title: Respiratory patterns in roots in relation to their functioning |
SSID | ssj0001763563 |
Score | 2.1839747 |
Snippet | In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100257 |
SubjectTerms | Hordeum vulgare L irrigation rates mass density raised beds Rhizosphere Root growth model Root mass density soil water content Specific root length winter barley |
Title | Modeling winter barley root distribution in flat and raised bed planting systems subject to full, deficit and rainfed irrigation |
URI | https://dx.doi.org/10.1016/j.rhisph.2020.100257 https://www.proquest.com/docview/2498254042 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQSPlrVNk7bHMRxTcRcd7BaSJsHKaEfbId78083rx0QRBA-Ffr1SXpL3nd9D6FqErklCohwqjAAHJXFk4CqHBKBuGZNeDV_8OGezRXC_pMsemnR7YaCsspX9jUyvpXV7Z9Ryc7RO09ET5AzterMqjACkCN1BA5_EzE7twfjuYTb_CrXUIGyQawYSB2i6TXR1pVfxkpZrSEz4DSIpqKrfldQPcV3roOk-2muNRzxu_u8A9XR2iD6gnRlsKsdvgP1QYAkJ9HdsTeIKK8DFbVta4TTDZiUqLDKFC0gZKSztsV6Jul0EblCdS1xuJERncJVjiM7fYKUBZ2JLmBlLlRZFjc6RZ0doMb19nsyctq-CkxASV47nSZa4MqChiCQzbiBJ4sausaYKNcz3mFRUaUYTTweG2lMSa09r-1xFRmpCjlE_yzN9gnBEIyGMiUOahEEcGetqu8LXLNLWdBEkGiLSMZInLeg49L5Y8a667JU37OfAft6wf4icLdW6Ad344_2wGyP-bfJwqxf-oLzqhpTbdQXJEpHpfFNy65aC82xl2um_v36GduGqqX45R_2q2OgLa8NU8rKdo5-d9_G6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D3oRRcVvI3i0rF2atD2OoUzddnEDbyFpEqyMtrQd4s0_3bx-KIogeCiUpq-Ul-R95_cQuhKBa-KAKIcKI8BBiR3pu8ohPqhbxqRXwxdPZ2y88O-f6NMaGnVnYaCsspX9jUyvpXX7pN9ys58nSf8RcoZ2v1kVRgBShK6jDUCnoj20Mbx7GM--Qi01CBvkmoHEAZruEF1d6VU8J2UOiYlBg0gKqup3JfVDXNc66HYHbbfGIx42_7eL1nS6h96hnRkcKsevgP1QYAkJ9DdsTeIKK8DFbVta4STFZikqLFKFC0gZKSztlS9F3S4CN6jOJS5XEqIzuMowROevsdKAM_FJmBpLlRRFjc6RpftocXszH42dtq-CExMSVY7nSRa70qeBCCUzri9J7EausaYKNWzgMamo0ozGnvYNtbck0p7WdlyFRmpCDlAvzVJ9iHBIQyGMiQIaB34UGutqu2KgWait6SJIeIRIx0get6Dj0PtiybvqshfesJ8D-3nD_iPkfFLlDejGH-8H3Rzxb4uHW73wB-VlN6Xc7itIlohUZ6uSW7cUnGcr047__fULtDmeTyd8cjd7OEFbMNJUwpyiXlWs9Jm1Zyp53q7XDwi-9KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+winter+barley+root+distribution+in+flat+and+raised+bed+planting+systems+subject+to+full%2C+deficit+and+rainfed+irrigation&rft.jtitle=Rhizosphere&rft.au=Ahmadi%2C+Seyed+Hamid&rft.au=Sepaskhah%2C+Ali+Reza&rft.au=Zarei%2C+Mojgan&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=16&rft_id=info:doi/10.1016%2Fj.rhisph.2020.100257&rft.externalDocID=S2452219820301695 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |