Modeling winter barley root distribution in flat and raised bed planting systems subject to full, deficit and rainfed irrigation

In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treat...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 16; p. 100257
Main Authors Ahmadi, Seyed Hamid, Sepaskhah, Ali Reza, Zarei, Mojgan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treatments were the combinations of full, deficit, and rainfed irrigations under the raised bed and conventional flat planting systems. The two new models showed good performance in comparison with the other existing models. Further analysis based on the cumulative specific root length approach revealed that full irrigation resulted in thicker and thinner roots in the shallow soil depths of the raised bed and flat planting systems, respectively. In contrast, under deficit and rainfed irrigations, thinner and thicker roots were respectively developed in the shallow soil depths of the raised bed and flat planting system. This shows that under suboptimal soil water content, the crops in the raised bed planting system might be able to seek water by developing a network of thin and long roots in the soil matrix.
AbstractList In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance of the new models was compared with the several existing depth-decaying and depth-cumulative root distribution models. The experimental treatments were the combinations of full, deficit, and rainfed irrigations under the raised bed and conventional flat planting systems. The two new models showed good performance in comparison with the other existing models. Further analysis based on the cumulative specific root length approach revealed that full irrigation resulted in thicker and thinner roots in the shallow soil depths of the raised bed and flat planting systems, respectively. In contrast, under deficit and rainfed irrigations, thinner and thicker roots were respectively developed in the shallow soil depths of the raised bed and flat planting system. This shows that under suboptimal soil water content, the crops in the raised bed planting system might be able to seek water by developing a network of thin and long roots in the soil matrix.
ArticleNumber 100257
Author Ahmadi, Seyed Hamid
Sepaskhah, Ali Reza
Zarei, Mojgan
Author_xml – sequence: 1
  givenname: Seyed Hamid
  surname: Ahmadi
  fullname: Ahmadi, Seyed Hamid
  email: seyedhamid.ahmadi@gmail.com
  organization: Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran
– sequence: 2
  givenname: Ali Reza
  surname: Sepaskhah
  fullname: Sepaskhah, Ali Reza
  organization: Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: Mojgan
  surname: Zarei
  fullname: Zarei, Mojgan
  organization: Water Engineering Department, School of Agriculture, Fasa University, Fasa, Iran
BookMark eNqFkE1rVDEUhoO0YG37D1xk6cIZ83FzZ64LQUq1QqWbug43yUl7hkwyJrmW2fnTzfWKiAtdhByS87y8PC_ISUwRCHnJ2Zoz3r_ZrfMjlsPjWjAxPzGhNs_ImeiUWAk-bE_-mJ-Ty1J2jDG-6aXq5Rn5_jk5CBgf6BPGCpmaMQc40pxSpQ5LzWimiilSjNSHsdIxOppHLOCoaecQxlhnvhxLhX2hZTI7sJXWRP0UwmvqwKPF32D0jcKc8WGccy_IqR9Dgctf9zn58uH6_upmdXv38dPV-9uVlXKoK85Nb5np1Gbcmt6zzkjLBuaHQSrfC94bpxz0ynLovGqjHIADtH-39QakPCevltxDTl8nKFXvsVgIrT6kqWjRDVuhOtaJtvp2WbU5lZLB61b_Z9na-gfNmZ7N651ezOvZvF7MN7j7Cz5k3I_5-D_s3YJBc_ANIetiEaIFh7nZ1C7hvwN-AK96pFA
CitedBy_id crossref_primary_10_1016_j_agwat_2023_108357
crossref_primary_10_1007_s42106_024_00290_7
crossref_primary_10_1016_j_rhisph_2023_100820
crossref_primary_10_1111_sum_70026
crossref_primary_10_1016_j_fcr_2025_109786
crossref_primary_10_1016_j_rhisph_2021_100452
crossref_primary_10_1002_vzj2_20382
crossref_primary_10_3389_fpls_2022_1085409
Cites_doi 10.1071/BT06118
10.1111/j.1475-2743.2012.00445.x
10.1016/j.agwat.2007.04.007
10.1111/jac.12360
10.1007/s00376-016-5226-8
10.2489/jswc.70.1.54
10.1016/S0378-3774(99)00031-1
10.4141/cjps91-005
10.3390/soilsystems3030044
10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2
10.1016/0378-3774(83)90089-6
10.1051/agro:2004033
10.1007/s11104-004-1096-4
10.2136/sssaj2001.6541027x
10.1016/j.agwat.2018.02.009
10.1016/0022-1694(70)90255-6
10.2136/vzj2004.2710
10.1016/j.fcr.2016.02.013
10.1007/BF02257569
10.1016/j.eja.2017.09.014
10.1111/j.1469-8137.1991.tb00565.x
10.2136/vzj2017.08.0154
10.1111/sum.12317
10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2
10.1007/s11104-018-3864-6
10.1007/s11104-006-9172-6
10.1098/rsif.2019.0556
10.2134/agronj2009.0288
10.1007/s11104-014-2082-0
10.1016/j.agwat.2018.08.031
10.1002/hyp.6751
10.1139/x87-131
10.1007/s00271-009-0200-1
10.1111/pce.12684
10.2134/agronj2012.0506
10.4141/cjss96-004
10.1016/j.agee.2017.05.012
10.1071/FP11031
10.1016/j.agwat.2011.03.013
10.1071/FP06055
10.1093/jxb/erp389
10.1007/s11104-006-9096-1
10.2136/vzj2007.0119
10.2307/2402227
10.1002/2016WR019392
10.1071/SR07229
10.1023/A:1004702807951
10.1016/j.fcr.2003.09.003
10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
10.1111/j.1439-037X.1989.tb00778.x
10.1080/11263500701626069
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rhisph.2020.100257
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 10_1016_j_rhisph_2020_100257
S2452219820301695
GroupedDBID --M
0R~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-11b6c0b457a8b6f04b3c090f9935f6216bd5de65c1e4f55de39e1eef99d8fbe33
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Fri Aug 22 20:39:10 EDT 2025
Tue Jul 01 03:12:54 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Fri Feb 23 02:36:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rhizosphere
Hordeum vulgare L
Specific root length
Root growth model
Root mass density
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-11b6c0b457a8b6f04b3c090f9935f6216bd5de65c1e4f55de39e1eef99d8fbe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2498254042
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2498254042
crossref_citationtrail_10_1016_j_rhisph_2020_100257
crossref_primary_10_1016_j_rhisph_2020_100257
elsevier_sciencedirect_doi_10_1016_j_rhisph_2020_100257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Rhizosphere
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lv, Kang, Li, Wan (bib45) 2010; 28
Palta, Turner (bib58) 2019; 439
Cooley, Lowery, Kelling, Wilner (bib16) 2007; 21
Archontoulis, Miguez (bib7) 2015; 107
Elder (bib22) 2018
Gale, Grigal (bib28) 1987; 17
Zuo, Jie, Zhang, Meng (bib78) 2004; 3
Dupuy, Gregory, Bengough (bib19) 2010; 61
Ryser (bib65) 2006; 286
Wang, Xie, Jia (bib73) 2016; 33
Hartmann, Simunek, Aidoo, Seidel, Lazarovitch (bib31) 2017; 17
Jung, Park, Jensen, Kim, Kim (bib40) 2019; 16
He, McHugh, Li, Wang, Li, Rasaily, Li (bib35) 2012; 28
Baburai Nagesh (bib11) 2006
Lynch (bib46) 2007; 55
Gao, Hodgkinson, Jin, Watts, Ashton, Shen, Ren, Dodd, Binley, Phillips, Hedden, Hawkesford, Whalley (bib29) 2016; 39
Palta, Chen, Milroy, Rebetzke, Dreccer, Watt (bib57) 2011; 38
Zhang, Sun, Duan, Wang, Shen, Liu (bib87) 2007; 92
Schenk (bib66) 2008; 7
Ahmadi, Sepaskhah, Zarei (bib5) 2018; 210
Dwyer, Ma, Stewart, Hayhoe, Balchin, Culley, McGovern (bib20) 1996; 76
Tremblay, Wallach (bib70) 2004; 24
He, Li, McHugh, Wang, Lu, Li, Zhang (bib34) 2015; 70
Manschadi, Christofer, deVoil, Hammer (bib49) 2006; 33
Barraclough, Kuhlmann, Weir (bib88) 1989; 163
Kotu, Deshpande (bib42) 2019
Zhou, Plauborg, Parsons, Andersen (bib77) 2018; 202
Nash, Sutcliffe (bib54) 1970; 10
Ahmadi, Plauborg, Andersen, Sepaskhah, Jensen, Hansen (bib4) 2011; 98
Schenk, Jackson (bib67) 2002; 72
Ivani, Dehghan (bib37) 2018
Vrugt, Hopmans, Simunek (bib71) 2001; 65
Adiku, Braddock, Rose (bib1) 1996; 185
He, Li, McHugh, Ma, Cao, Wang, Zhang, Zhang (bib33) 2008; 46
Lambers, Atkin, Millenaar (bib80) 2002
Passioura (bib60) 1983; 7
Carvalho, Foulkes (bib14) 2012
Hodgkinson, Dodd, Binley, Ashton, White, Watts, Walley (bib36) 2017; 91
Yang, Donohue, McVicar (bib75) 2016; 52
Allen, Pereira, Raes, Smith (bib6) 1998
Fahong, Xuqing, Sayre (bib23) 2004; 87
Jackson, Schenk, Jobbágy, Canadell, Colello, Dickinson, Field, Friedlingstein, Heimann, Hibbard, Kicklighter, Kleidon, Neilson, Parton, Sala, Sykes (bib38) 2000; 10
Wu, Zhang, Gui (bib74) 1999; 215
Kong, Wang, Feng, Li, Si, Zhang (bib41) 2010; 102
Ebrahim (bib21) 2008
Gerwitz, Page (bib30) 1974; 11
Lynch, Ho (bib48) 2005; 269
Palta, Watt (bib59) 2009
Asadi (bib8) 2018
Eissenstat (bib79) 1991; 118
Metselaar, Pinheiro, van Lier (bib52) 2019; 3
Fischer, Sayre, Ortiz Monasterio (bib26) 2005
Mehrabi, Sepaskhah, Ahmadi (bib89) 2020
Corneo, Keitel, Kertesz, Dijkstra (bib17) 2017; 246
(bib62) 2017
Peng, Liu, Dong, Xue, Neely, Marek, Ibrahim, Zhang, Leskovar, Rudd (bib61) 2019; 205
Fan, McConkey, Wang, Janzen (bib24) 2016; 189
Oliveira, van Noordwijk, Gaze, Brouwer, Bona, Mosca, Hairiah (bib55) 2000
Robinson (bib64) 1999; 42
Cai, Vanderborght, Couvreur, Mboh, Vereecken (bib13) 2017; 17
Nakhforoosh, Grausgruber, Kaul, Bodner (bib53) 2014; 380
Dubois (bib18) 2018
Kleidon (bib81) 2004; 17
Ahmadi, Agharezaee, Kamgar-Haghighi, Sepaskhah (bib2) 2017; 33
Sayre, Limon, Govaerts (bib85) 2005
Sheng, Hunt (bib68) 1991; 71
Kuhl, Kendall, van Dam, Hyndman (bib43) 2018; 17
Govaerts, Sayre, Lichter, Dendooven, Deckers (bib86) 2007; 291
Sayre, Hobbs (bib84) 2004
Ostonen, Püttsepp, Biel, Alberton, Bakker, Lõhmus, Majdi, Metcalfe, Olsthoorn, Pronk, Vanguelova, Weih, Brunner (bib56) 2007; 141
Jung (10.1016/j.rhisph.2020.100257_bib40) 2019; 16
Kuhl (10.1016/j.rhisph.2020.100257_bib43) 2018; 17
Yang (10.1016/j.rhisph.2020.100257_bib75) 2016; 52
Ivani (10.1016/j.rhisph.2020.100257_bib37) 2018
Lynch (10.1016/j.rhisph.2020.100257_bib46) 2007; 55
Dupuy (10.1016/j.rhisph.2020.100257_bib19) 2010; 61
Gerwitz (10.1016/j.rhisph.2020.100257_bib30) 1974; 11
Cooley (10.1016/j.rhisph.2020.100257_bib16) 2007; 21
Fahong (10.1016/j.rhisph.2020.100257_bib23) 2004; 87
Palta (10.1016/j.rhisph.2020.100257_bib58) 2019; 439
Passioura (10.1016/j.rhisph.2020.100257_bib60) 1983; 7
(10.1016/j.rhisph.2020.100257_bib62) 2017
Jackson (10.1016/j.rhisph.2020.100257_bib38) 2000; 10
Metselaar (10.1016/j.rhisph.2020.100257_bib52) 2019; 3
Nash (10.1016/j.rhisph.2020.100257_bib54) 1970; 10
Dubois (10.1016/j.rhisph.2020.100257_bib18) 2018
Wang (10.1016/j.rhisph.2020.100257_bib73) 2016; 33
Adiku (10.1016/j.rhisph.2020.100257_bib1) 1996; 185
Lynch (10.1016/j.rhisph.2020.100257_bib48) 2005; 269
Ahmadi (10.1016/j.rhisph.2020.100257_bib2) 2017; 33
Ahmadi (10.1016/j.rhisph.2020.100257_bib5) 2018; 210
Hodgkinson (10.1016/j.rhisph.2020.100257_bib36) 2017; 91
Elder (10.1016/j.rhisph.2020.100257_bib22) 2018
Nakhforoosh (10.1016/j.rhisph.2020.100257_bib53) 2014; 380
Manschadi (10.1016/j.rhisph.2020.100257_bib49) 2006; 33
Gao (10.1016/j.rhisph.2020.100257_bib29) 2016; 39
Oliveira (10.1016/j.rhisph.2020.100257_bib55) 2000
Kotu (10.1016/j.rhisph.2020.100257_bib42) 2019
Ebrahim (10.1016/j.rhisph.2020.100257_bib21) 2008
Palta (10.1016/j.rhisph.2020.100257_bib59) 2009
Sayre (10.1016/j.rhisph.2020.100257_bib85) 2005
Zhou (10.1016/j.rhisph.2020.100257_bib77) 2018; 202
Zhang (10.1016/j.rhisph.2020.100257_bib87) 2007; 92
Kleidon (10.1016/j.rhisph.2020.100257_bib81) 2004; 17
Mehrabi (10.1016/j.rhisph.2020.100257_bib89) 2020
Peng (10.1016/j.rhisph.2020.100257_bib61) 2019; 205
Fan (10.1016/j.rhisph.2020.100257_bib24) 2016; 189
Kong (10.1016/j.rhisph.2020.100257_bib41) 2010; 102
Govaerts (10.1016/j.rhisph.2020.100257_bib86) 2007; 291
Hartmann (10.1016/j.rhisph.2020.100257_bib31) 2017; 17
Ostonen (10.1016/j.rhisph.2020.100257_bib56) 2007; 141
Tremblay (10.1016/j.rhisph.2020.100257_bib70) 2004; 24
Palta (10.1016/j.rhisph.2020.100257_bib57) 2011; 38
Lambers (10.1016/j.rhisph.2020.100257_bib80) 2002
He (10.1016/j.rhisph.2020.100257_bib34) 2015; 70
Sheng (10.1016/j.rhisph.2020.100257_bib68) 1991; 71
Carvalho (10.1016/j.rhisph.2020.100257_bib14) 2012
Ryser (10.1016/j.rhisph.2020.100257_bib65) 2006; 286
Robinson (10.1016/j.rhisph.2020.100257_bib64) 1999; 42
Sayre (10.1016/j.rhisph.2020.100257_bib84) 2004
Ahmadi (10.1016/j.rhisph.2020.100257_bib4) 2011; 98
He (10.1016/j.rhisph.2020.100257_bib33) 2008; 46
Schenk (10.1016/j.rhisph.2020.100257_bib67) 2002; 72
Schenk (10.1016/j.rhisph.2020.100257_bib66) 2008; 7
Barraclough (10.1016/j.rhisph.2020.100257_bib88) 1989; 163
Corneo (10.1016/j.rhisph.2020.100257_bib17) 2017; 246
Cai (10.1016/j.rhisph.2020.100257_bib13) 2017; 17
Dwyer (10.1016/j.rhisph.2020.100257_bib20) 1996; 76
Allen (10.1016/j.rhisph.2020.100257_bib6) 1998
He (10.1016/j.rhisph.2020.100257_bib35) 2012; 28
Wu (10.1016/j.rhisph.2020.100257_bib74) 1999; 215
Gale (10.1016/j.rhisph.2020.100257_bib28) 1987; 17
Vrugt (10.1016/j.rhisph.2020.100257_bib71) 2001; 65
Lv (10.1016/j.rhisph.2020.100257_bib45) 2010; 28
Archontoulis (10.1016/j.rhisph.2020.100257_bib7) 2015; 107
Fischer (10.1016/j.rhisph.2020.100257_bib26) 2005
Baburai Nagesh (10.1016/j.rhisph.2020.100257_bib11) 2006
Eissenstat (10.1016/j.rhisph.2020.100257_bib79) 1991; 118
Zuo (10.1016/j.rhisph.2020.100257_bib78) 2004; 3
Asadi (10.1016/j.rhisph.2020.100257_bib8) 2018
References_xml – volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  ident: bib48
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant Soil
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: bib54
  article-title: River flow forecasting through conceptual models Part I—a discussion of principles
  publication-title: J. Hydrol.
– volume: 33
  start-page: 1047
  year: 2016
  end-page: 1060
  ident: bib73
  article-title: Incorporation of a dynamic root distribution into CLM4.5: evaluation of carbon and water fluxes over Amazon
  publication-title: Adv. Atmos. Sci.
– volume: 185
  start-page: 125
  year: 1996
  end-page: 135
  ident: bib1
  article-title: Modelling the effect of varying soil water on root growth dynamics of annual crops
  publication-title: Plant Soil
– year: 2005
  ident: bib85
  article-title: Experiences with permanent bed planting systems CIMMYT, Mexico
  publication-title: Evaluation and Performance of Permanent Raised Bed Cropping Systems in Asia, Australia and Mexico
– volume: 65
  start-page: 1027
  year: 2001
  end-page: 1037
  ident: bib71
  article-title: Calibration of a two-dimensional root water uptake model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 210
  start-page: 304
  year: 2018
  end-page: 315
  ident: bib5
  article-title: Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems
  publication-title: Agric. Water Manag.
– start-page: 604
  year: 2009
  ident: bib59
  article-title: Vigorous crop root systems: form and function for improving the capture of water and nutrients
  publication-title: Crop Physiology: Applications for Genetic Improvement and Agronomy
– volume: 91
  start-page: 74
  year: 2017
  end-page: 83
  ident: bib36
  article-title: Root growth in field-grown winter wheat: some effects of soil conditions, season and genotype
  publication-title: Eur. J. Agron.
– volume: 10
  start-page: 470
  year: 2000
  end-page: 483
  ident: bib38
  article-title: Belowground consequences of vegetation change and their treatment in models
  publication-title: Ecol. Appl.
– start-page: 337
  year: 2004
  end-page: 355
  ident: bib84
  article-title: The raised-bed system of cultivation for irrigated production conditions
  publication-title: Sustainable Agriculture and the International Rice-Wheat System
– volume: 215
  start-page: 7
  year: 1999
  end-page: 17
  ident: bib74
  article-title: Modeling soil water movement with water uptake by roots
  publication-title: Plant Soil
– volume: 291
  start-page: 39
  year: 2007
  end-page: 54
  ident: bib86
  article-title: Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems
  publication-title: Plant Soil
– volume: 3
  start-page: 271
  year: 2004
  end-page: 277
  ident: bib78
  article-title: A generalized function of wheat's root length density distributions
  publication-title: Vadose Zone J.
– year: 2005
  ident: bib26
  article-title: The effect of raised bed planting on irrigated wheat yield as influenced by variety and row spacing
  publication-title: Proceedings of a Workshop Held in Griffith
– volume: 439
  start-page: 31
  year: 2019
  end-page: 43
  ident: bib58
  article-title: Crop root system traits cannot be seen as a silver bullet delivering drought resistance
  publication-title: Plant Soil
– volume: 189
  start-page: 68
  year: 2016
  end-page: 74
  ident: bib24
  article-title: Root distribution by depth for temperate agricultural crops
  publication-title: Field Crop. Res.
– volume: 70
  start-page: 54
  year: 2015
  end-page: 62
  ident: bib34
  article-title: Permanent raised beds improved crop performance and water use on the North China Plain
  publication-title: J. Soil Water Conserv.
– volume: 28
  start-page: 387
  year: 2010
  end-page: 398
  ident: bib45
  article-title: Effect of irrigation methods on root development and profile soil water uptake in winter wheat
  publication-title: Irrigat. Sci.
– volume: 98
  start-page: 1280
  year: 2011
  end-page: 1290
  ident: bib4
  article-title: Effects of irrigation strategies and soils on field grown potatoes: root distribution
  publication-title: Agric. Water Manag.
– start-page: 300
  year: 1998
  ident: bib6
  article-title: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56
– start-page: 148
  year: 2018
  ident: bib18
  article-title: Modeling and Simulation
– volume: 7
  start-page: 265
  year: 1983
  end-page: 280
  ident: bib60
  article-title: Roots and drought resistance
  publication-title: Agric. Water Manag.
– volume: 286
  start-page: 1
  year: 2006
  end-page: 6
  ident: bib65
  article-title: The mysterious root length
  publication-title: Plant Soil
– volume: 42
  start-page: 189
  year: 1999
  end-page: 204
  ident: bib64
  article-title: A comparison of soil–water distribution under ridge and bed cultivated potatoes
  publication-title: Agric. Water Manag.
– start-page: 284
  year: 2008
  ident: bib21
  article-title: Responses of Root and Shoot Growth of Durum Wheat (Triticum Turgidum L. Var Durum) and Barley (Hordeum Vulgare L.) Plants to Different Water and Nitrogen Levels
– volume: 87
  start-page: 35
  year: 2004
  end-page: 42
  ident: bib23
  article-title: Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China
  publication-title: Field Crop. Res.
– volume: 11
  year: 1974
  ident: bib30
  article-title: An empirical mathematical model to describe plant root systems
  publication-title: J. Appl. Ecol.
– volume: 46
  start-page: 659
  year: 2008
  end-page: 666
  ident: bib33
  article-title: Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China
  publication-title: Aust. J. Soil Res.
– year: 2018
  ident: bib8
  article-title: Raised bed planting systems
  publication-title: Agricultural Research, Education, and Extension Organization, Deputy of Extesnion, Minsitry of Jihad Agriculture
– volume: 16
  start-page: 20190556
  year: 2019
  ident: bib40
  article-title: A design principle of root length distribution of plants
  publication-title: J. R. Soc. Interface
– volume: 33
  start-page: 823
  year: 2006
  end-page: 837
  ident: bib49
  article-title: The role of root architectural traits in adaptation of wheat to water-limited environments
  publication-title: Funct. Plant Biol.
– year: 2017
  ident: bib62
  article-title: R: A Language and Environment for Statistical Computing
– volume: 21
  start-page: 2390
  year: 2007
  end-page: 2399
  ident: bib16
  article-title: Water dynamics in drip and overhead sprinkler irrigated potato hills and development of dry zones
  publication-title: Hydrol. Process.
– year: 2020
  ident: bib89
  article-title: Winter wheat root distribution with irrigation, planting methods, and nitrogen application
  publication-title: Nutrient Cycl. Agroecosyst
– volume: 39
  start-page: 1662
  year: 2016
  end-page: 1668
  ident: bib29
  article-title: Deep roots and soil structure
  publication-title: Plant Cell Environ.
– volume: 17
  start-page: 2714
  year: 2004
  end-page: 2722
  ident: bib81
  article-title: Global datasets of rooting zone depth inferred from inverse methods
  publication-title: J. Clim.
– volume: 76
  start-page: 23
  year: 1996
  end-page: 28
  ident: bib20
  article-title: Root mass distribution under conventional and conservation tillage
  publication-title: Can. J. Soil Sci.
– volume: 205
  start-page: 571
  year: 2019
  end-page: 585
  ident: bib61
  article-title: Root morphological traits of winter wheat under contrasting environments
  publication-title: J. Agron. Crop Sci.
– volume: 163
  start-page: 352
  year: 1989
  end-page: 360
  ident: bib88
  article-title: The effects of prolonged drought and nitrogen-fertilizer on root and shoot growth and water-uptake by winter-wheat
  publication-title: J. Agron. Crop Sci.
– year: 2018
  ident: bib37
  article-title: Mechanized Cultivation of Wheat on Raised Beds. Agricultural Research, Education, and Extension Organization
– volume: 380
  start-page: 211
  year: 2014
  end-page: 229
  ident: bib53
  article-title: Wheat root diversity and root functional characterization
  publication-title: Plant Soil
– volume: 107
  start-page: 786
  year: 2015
  end-page: 798
  ident: bib7
  article-title: Nonlinear regression models and applications in agricultural research
  publication-title: Agron. J.
– volume: 38
  start-page: 347
  year: 2011
  end-page: 354
  ident: bib57
  article-title: Large root systems: are they useful in adapting wheat to dry environments?
  publication-title: Funct. Plant Biol.
– year: 2006
  ident: bib11
  article-title: The Physiological and Genetic Bases of Water-Use Efficiency in Winter Wheat
– volume: 17
  start-page: 170040
  year: 2017
  ident: bib31
  article-title: Implementation and application of a root growth module in HYDRUS
  publication-title: Vadose Zone J.
– volume: 17
  start-page: 170154
  year: 2018
  ident: bib43
  article-title: Quantifying soil water and root dynamics using a coupled hydrogeophysical inversion
  publication-title: Vadose Zone J.
– start-page: 521
  year: 2002
  end-page: 552
  ident: bib80
  article-title: Respiratory patterns in roots in relation to their functioning
  publication-title: Plant roots: the hidden half
– volume: 102
  start-page: 154
  year: 2010
  end-page: 162
  ident: bib41
  article-title: A root-zone soil regime of wheat: physiological and growth responses to furrow irrigation in raised bed planting in northern China
  publication-title: Agron. J.
– start-page: 587pp
  year: 2000
  ident: bib55
  article-title: Auger sampling, ingrowth cores and pinboard methods
  publication-title: Root Methods: A Handbook
– volume: 24
  start-page: 351
  year: 2004
  end-page: 365
  ident: bib70
  article-title: Comparison of parameter estimation methods for crop models
  publication-title: Agronomie
– volume: 92
  start-page: 41
  year: 2007
  end-page: 47
  ident: bib87
  article-title: Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China
  publication-title: Agric. Water Manag.
– start-page: 705
  year: 2018
  end-page: 718
  ident: bib22
  article-title: The apparent paradox of complexity in ensemble modeling
  publication-title: Handbook of Statistical Analysis and Data Mining Applications
– volume: 55
  start-page: 493
  year: 2007
  end-page: 512
  ident: bib46
  article-title: Roots of the second green revolution
  publication-title: Aust. J. Bot.
– volume: 72
  start-page: 311
  year: 2002
  end-page: 328
  ident: bib67
  article-title: The global biogeography of roots
  publication-title: Ecol. Monogr.
– volume: 28
  start-page: 536
  year: 2012
  end-page: 543
  ident: bib35
  article-title: Permanent raised beds improved soil structure and yield of spring wheat in arid north-western China
  publication-title: Soil Use Manag.
– start-page: 568
  year: 2019
  ident: bib42
  article-title: Data Science
– volume: 7
  start-page: 1119
  year: 2008
  end-page: 1124
  ident: bib66
  article-title: The shallowest possible water extraction profile: a null model for global root distributions
  publication-title: Vadose Zone J.
– volume: 202
  start-page: 9
  year: 2018
  end-page: 18
  ident: bib77
  article-title: Potato canopy growth, yield and soil water dynamics under different irrigation systems
  publication-title: Agric. Water Manag.
– volume: 118
  start-page: 63
  year: 1991
  end-page: 68
  ident: bib79
  article-title: On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks
  publication-title: New Phytol.
– volume: 141
  start-page: 426
  year: 2007
  end-page: 442
  ident: bib56
  article-title: Specific root length as an indicator of environmental change
  publication-title: Plant Biosyst.
– volume: 71
  start-page: 41
  year: 1991
  end-page: 49
  ident: bib68
  article-title: Shoot and root dry weight and soil water in wheat, triticale and rve
  publication-title: Can. J. Plant Sci.
– volume: 33
  start-page: 106
  year: 2017
  end-page: 119
  ident: bib2
  article-title: Compatibility of root growth and tuber production of potato cultivars with dynamic and static water-saving irrigation managements
  publication-title: Soil Use Manag.
– year: 2012
  ident: bib14
  article-title: Roots and uptake of water and nutrients
  publication-title: Sustainable Food Production
– volume: 3
  start-page: 44
  year: 2019
  ident: bib52
  article-title: Mathematical description of rooting profiles of agricultural crops and its effect on transpiration prediction by a hydrological model
  publication-title: Soil Systems
– volume: 52
  start-page: 8260
  year: 2016
  end-page: 8276
  ident: bib75
  article-title: Global estimation of effective plant rooting depth: implications for hydrological modeling
  publication-title: Water Resour. Res.
– volume: 61
  start-page: 2131
  year: 2010
  end-page: 2143
  ident: bib19
  article-title: Root growth models: towards a new generation of continuous approaches
  publication-title: J. Exp. Bot.
– volume: 17
  start-page: 160125
  year: 2017
  ident: bib13
  article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation
  publication-title: Vadose Zone J.
– volume: 246
  start-page: 21
  year: 2017
  end-page: 29
  ident: bib17
  article-title: Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield
  publication-title: Agric. Ecosyst. Environ.
– volume: 17
  start-page: 829
  year: 1987
  end-page: 834
  ident: bib28
  article-title: Vertical root distributions of northern tree species in relation to successional status
  publication-title: Can. J. For. Res.
– start-page: 604
  year: 2009
  ident: 10.1016/j.rhisph.2020.100257_bib59
  article-title: Vigorous crop root systems: form and function for improving the capture of water and nutrients
– volume: 55
  start-page: 493
  year: 2007
  ident: 10.1016/j.rhisph.2020.100257_bib46
  article-title: Roots of the second green revolution
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT06118
– year: 2006
  ident: 10.1016/j.rhisph.2020.100257_bib11
– volume: 28
  start-page: 536
  year: 2012
  ident: 10.1016/j.rhisph.2020.100257_bib35
  article-title: Permanent raised beds improved soil structure and yield of spring wheat in arid north-western China
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2012.00445.x
– volume: 92
  start-page: 41
  year: 2007
  ident: 10.1016/j.rhisph.2020.100257_bib87
  article-title: Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2007.04.007
– year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib8
  article-title: Raised bed planting systems
– volume: 17
  start-page: 170040
  year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib31
  article-title: Implementation and application of a root growth module in HYDRUS
  publication-title: Vadose Zone J.
– volume: 205
  start-page: 571
  year: 2019
  ident: 10.1016/j.rhisph.2020.100257_bib61
  article-title: Root morphological traits of winter wheat under contrasting environments
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12360
– volume: 33
  start-page: 1047
  year: 2016
  ident: 10.1016/j.rhisph.2020.100257_bib73
  article-title: Incorporation of a dynamic root distribution into CLM4.5: evaluation of carbon and water fluxes over Amazon
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-016-5226-8
– volume: 70
  start-page: 54
  year: 2015
  ident: 10.1016/j.rhisph.2020.100257_bib34
  article-title: Permanent raised beds improved crop performance and water use on the North China Plain
  publication-title: J. Soil Water Conserv.
  doi: 10.2489/jswc.70.1.54
– volume: 42
  start-page: 189
  year: 1999
  ident: 10.1016/j.rhisph.2020.100257_bib64
  article-title: A comparison of soil–water distribution under ridge and bed cultivated potatoes
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(99)00031-1
– volume: 71
  start-page: 41
  year: 1991
  ident: 10.1016/j.rhisph.2020.100257_bib68
  article-title: Shoot and root dry weight and soil water in wheat, triticale and rve
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps91-005
– volume: 3
  start-page: 44
  year: 2019
  ident: 10.1016/j.rhisph.2020.100257_bib52
  article-title: Mathematical description of rooting profiles of agricultural crops and its effect on transpiration prediction by a hydrological model
  publication-title: Soil Systems
  doi: 10.3390/soilsystems3030044
– volume: 10
  start-page: 470
  year: 2000
  ident: 10.1016/j.rhisph.2020.100257_bib38
  article-title: Belowground consequences of vegetation change and their treatment in models
  publication-title: Ecol. Appl.
  doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2
– volume: 7
  start-page: 265
  year: 1983
  ident: 10.1016/j.rhisph.2020.100257_bib60
  article-title: Roots and drought resistance
  publication-title: Agric. Water Manag.
  doi: 10.1016/0378-3774(83)90089-6
– year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib37
– year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib62
– volume: 24
  start-page: 351
  year: 2004
  ident: 10.1016/j.rhisph.2020.100257_bib70
  article-title: Comparison of parameter estimation methods for crop models
  publication-title: Agronomie
  doi: 10.1051/agro:2004033
– volume: 269
  start-page: 45
  year: 2005
  ident: 10.1016/j.rhisph.2020.100257_bib48
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-1096-4
– volume: 65
  start-page: 1027
  year: 2001
  ident: 10.1016/j.rhisph.2020.100257_bib71
  article-title: Calibration of a two-dimensional root water uptake model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6541027x
– year: 2005
  ident: 10.1016/j.rhisph.2020.100257_bib26
  article-title: The effect of raised bed planting on irrigated wheat yield as influenced by variety and row spacing
– volume: 202
  start-page: 9
  year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib77
  article-title: Potato canopy growth, yield and soil water dynamics under different irrigation systems
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.02.009
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.rhisph.2020.100257_bib54
  article-title: River flow forecasting through conceptual models Part I—a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– start-page: 148
  year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib18
– volume: 3
  start-page: 271
  year: 2004
  ident: 10.1016/j.rhisph.2020.100257_bib78
  article-title: A generalized function of wheat's root length density distributions
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2004.2710
– volume: 189
  start-page: 68
  year: 2016
  ident: 10.1016/j.rhisph.2020.100257_bib24
  article-title: Root distribution by depth for temperate agricultural crops
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2016.02.013
– volume: 185
  start-page: 125
  year: 1996
  ident: 10.1016/j.rhisph.2020.100257_bib1
  article-title: Modelling the effect of varying soil water on root growth dynamics of annual crops
  publication-title: Plant Soil
  doi: 10.1007/BF02257569
– volume: 91
  start-page: 74
  year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib36
  article-title: Root growth in field-grown winter wheat: some effects of soil conditions, season and genotype
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.09.014
– volume: 118
  start-page: 63
  year: 1991
  ident: 10.1016/j.rhisph.2020.100257_bib79
  article-title: On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1991.tb00565.x
– volume: 17
  start-page: 170154
  year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib43
  article-title: Quantifying soil water and root dynamics using a coupled hydrogeophysical inversion
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2017.08.0154
– volume: 33
  start-page: 106
  year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib2
  article-title: Compatibility of root growth and tuber production of potato cultivars with dynamic and static water-saving irrigation managements
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12317
– volume: 17
  start-page: 2714
  year: 2004
  ident: 10.1016/j.rhisph.2020.100257_bib81
  article-title: Global datasets of rooting zone depth inferred from inverse methods
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2
– volume: 439
  start-page: 31
  year: 2019
  ident: 10.1016/j.rhisph.2020.100257_bib58
  article-title: Crop root system traits cannot be seen as a silver bullet delivering drought resistance
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3864-6
– volume: 291
  start-page: 39
  year: 2007
  ident: 10.1016/j.rhisph.2020.100257_bib86
  article-title: Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9172-6
– volume: 16
  start-page: 20190556
  year: 2019
  ident: 10.1016/j.rhisph.2020.100257_bib40
  article-title: A design principle of root length distribution of plants
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0556
– volume: 102
  start-page: 154
  year: 2010
  ident: 10.1016/j.rhisph.2020.100257_bib41
  article-title: A root-zone soil regime of wheat: physiological and growth responses to furrow irrigation in raised bed planting in northern China
  publication-title: Agron. J.
  doi: 10.2134/agronj2009.0288
– start-page: 568
  year: 2019
  ident: 10.1016/j.rhisph.2020.100257_bib42
– volume: 380
  start-page: 211
  year: 2014
  ident: 10.1016/j.rhisph.2020.100257_bib53
  article-title: Wheat root diversity and root functional characterization
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2082-0
– start-page: 587pp
  year: 2000
  ident: 10.1016/j.rhisph.2020.100257_bib55
  article-title: Auger sampling, ingrowth cores and pinboard methods
– volume: 210
  start-page: 304
  year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib5
  article-title: Specific root length, soil water status, and grain yields of irrigated and rainfed winter barley in the raised bed and flat planting systems
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.08.031
– volume: 21
  start-page: 2390
  year: 2007
  ident: 10.1016/j.rhisph.2020.100257_bib16
  article-title: Water dynamics in drip and overhead sprinkler irrigated potato hills and development of dry zones
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6751
– volume: 17
  start-page: 829
  year: 1987
  ident: 10.1016/j.rhisph.2020.100257_bib28
  article-title: Vertical root distributions of northern tree species in relation to successional status
  publication-title: Can. J. For. Res.
  doi: 10.1139/x87-131
– volume: 28
  start-page: 387
  year: 2010
  ident: 10.1016/j.rhisph.2020.100257_bib45
  article-title: Effect of irrigation methods on root development and profile soil water uptake in winter wheat
  publication-title: Irrigat. Sci.
  doi: 10.1007/s00271-009-0200-1
– year: 2020
  ident: 10.1016/j.rhisph.2020.100257_bib89
  article-title: Winter wheat root distribution with irrigation, planting methods, and nitrogen application
  publication-title: Nutrient Cycl. Agroecosyst
– start-page: 705
  year: 2018
  ident: 10.1016/j.rhisph.2020.100257_bib22
  article-title: The apparent paradox of complexity in ensemble modeling
– start-page: 284
  year: 2008
  ident: 10.1016/j.rhisph.2020.100257_bib21
– volume: 39
  start-page: 1662
  year: 2016
  ident: 10.1016/j.rhisph.2020.100257_bib29
  article-title: Deep roots and soil structure
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12684
– volume: 107
  start-page: 786
  year: 2015
  ident: 10.1016/j.rhisph.2020.100257_bib7
  article-title: Nonlinear regression models and applications in agricultural research
  publication-title: Agron. J.
  doi: 10.2134/agronj2012.0506
– year: 2012
  ident: 10.1016/j.rhisph.2020.100257_bib14
  article-title: Roots and uptake of water and nutrients
– volume: 76
  start-page: 23
  year: 1996
  ident: 10.1016/j.rhisph.2020.100257_bib20
  article-title: Root mass distribution under conventional and conservation tillage
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss96-004
– volume: 246
  start-page: 21
  year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib17
  article-title: Variation in specific root length among 23 wheat genotypes affects leaf δ13C and yield
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.05.012
– volume: 38
  start-page: 347
  year: 2011
  ident: 10.1016/j.rhisph.2020.100257_bib57
  article-title: Large root systems: are they useful in adapting wheat to dry environments?
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP11031
– start-page: 300
  year: 1998
  ident: 10.1016/j.rhisph.2020.100257_bib6
– volume: 98
  start-page: 1280
  year: 2011
  ident: 10.1016/j.rhisph.2020.100257_bib4
  article-title: Effects of irrigation strategies and soils on field grown potatoes: root distribution
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2011.03.013
– volume: 17
  start-page: 160125
  year: 2017
  ident: 10.1016/j.rhisph.2020.100257_bib13
  article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation
  publication-title: Vadose Zone J.
– volume: 33
  start-page: 823
  year: 2006
  ident: 10.1016/j.rhisph.2020.100257_bib49
  article-title: The role of root architectural traits in adaptation of wheat to water-limited environments
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP06055
– volume: 61
  start-page: 2131
  year: 2010
  ident: 10.1016/j.rhisph.2020.100257_bib19
  article-title: Root growth models: towards a new generation of continuous approaches
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp389
– volume: 286
  start-page: 1
  year: 2006
  ident: 10.1016/j.rhisph.2020.100257_bib65
  article-title: The mysterious root length
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9096-1
– volume: 7
  start-page: 1119
  year: 2008
  ident: 10.1016/j.rhisph.2020.100257_bib66
  article-title: The shallowest possible water extraction profile: a null model for global root distributions
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2007.0119
– volume: 11
  year: 1974
  ident: 10.1016/j.rhisph.2020.100257_bib30
  article-title: An empirical mathematical model to describe plant root systems
  publication-title: J. Appl. Ecol.
  doi: 10.2307/2402227
– year: 2005
  ident: 10.1016/j.rhisph.2020.100257_bib85
  article-title: Experiences with permanent bed planting systems CIMMYT, Mexico
– volume: 52
  start-page: 8260
  year: 2016
  ident: 10.1016/j.rhisph.2020.100257_bib75
  article-title: Global estimation of effective plant rooting depth: implications for hydrological modeling
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019392
– volume: 46
  start-page: 659
  year: 2008
  ident: 10.1016/j.rhisph.2020.100257_bib33
  article-title: Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR07229
– start-page: 337
  year: 2004
  ident: 10.1016/j.rhisph.2020.100257_bib84
  article-title: The raised-bed system of cultivation for irrigated production conditions
– volume: 215
  start-page: 7
  year: 1999
  ident: 10.1016/j.rhisph.2020.100257_bib74
  article-title: Modeling soil water movement with water uptake by roots
  publication-title: Plant Soil
  doi: 10.1023/A:1004702807951
– volume: 87
  start-page: 35
  year: 2004
  ident: 10.1016/j.rhisph.2020.100257_bib23
  article-title: Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2003.09.003
– volume: 72
  start-page: 311
  year: 2002
  ident: 10.1016/j.rhisph.2020.100257_bib67
  article-title: The global biogeography of roots
  publication-title: Ecol. Monogr.
  doi: 10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
– volume: 163
  start-page: 352
  year: 1989
  ident: 10.1016/j.rhisph.2020.100257_bib88
  article-title: The effects of prolonged drought and nitrogen-fertilizer on root and shoot growth and water-uptake by winter-wheat
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/j.1439-037X.1989.tb00778.x
– volume: 141
  start-page: 426
  year: 2007
  ident: 10.1016/j.rhisph.2020.100257_bib56
  article-title: Specific root length as an indicator of environmental change
  publication-title: Plant Biosyst.
  doi: 10.1080/11263500701626069
– start-page: 521
  year: 2002
  ident: 10.1016/j.rhisph.2020.100257_bib80
  article-title: Respiratory patterns in roots in relation to their functioning
SSID ssj0001763563
Score 2.1839747
Snippet In this study, we developed two new depth-decaying and depth-cumulative models for root length density and root mass density of winter barley. The performance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100257
SubjectTerms Hordeum vulgare L
irrigation rates
mass density
raised beds
Rhizosphere
Root growth model
Root mass density
soil water content
Specific root length
winter barley
Title Modeling winter barley root distribution in flat and raised bed planting systems subject to full, deficit and rainfed irrigation
URI https://dx.doi.org/10.1016/j.rhisph.2020.100257
https://www.proquest.com/docview/2498254042
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5RQSPlrVNk7bHMRxTcRcd7BaSJsHKaEfbId78083rx0QRBA-Ffr1SXpL3nd9D6FqErklCohwqjAAHJXFk4CqHBKBuGZNeDV_8OGezRXC_pMsemnR7YaCsspX9jUyvpXV7Z9Ryc7RO09ET5AzterMqjACkCN1BA5_EzE7twfjuYTb_CrXUIGyQawYSB2i6TXR1pVfxkpZrSEz4DSIpqKrfldQPcV3roOk-2muNRzxu_u8A9XR2iD6gnRlsKsdvgP1QYAkJ9HdsTeIKK8DFbVta4TTDZiUqLDKFC0gZKSztsV6Jul0EblCdS1xuJERncJVjiM7fYKUBZ2JLmBlLlRZFjc6RZ0doMb19nsyctq-CkxASV47nSZa4MqChiCQzbiBJ4sausaYKNcz3mFRUaUYTTweG2lMSa09r-1xFRmpCjlE_yzN9gnBEIyGMiUOahEEcGetqu8LXLNLWdBEkGiLSMZInLeg49L5Y8a667JU37OfAft6wf4icLdW6Ad344_2wGyP-bfJwqxf-oLzqhpTbdQXJEpHpfFNy65aC82xl2um_v36GduGqqX45R_2q2OgLa8NU8rKdo5-d9_G6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D3oRRcVvI3i0rF2atD2OoUzddnEDbyFpEqyMtrQd4s0_3bx-KIogeCiUpq-Ul-R95_cQuhKBa-KAKIcKI8BBiR3pu8ohPqhbxqRXwxdPZ2y88O-f6NMaGnVnYaCsspX9jUyvpXX7pN9ys58nSf8RcoZ2v1kVRgBShK6jDUCnoj20Mbx7GM--Qi01CBvkmoHEAZruEF1d6VU8J2UOiYlBg0gKqup3JfVDXNc66HYHbbfGIx42_7eL1nS6h96hnRkcKsevgP1QYAkJ9DdsTeIKK8DFbVta4STFZikqLFKFC0gZKSztlS9F3S4CN6jOJS5XEqIzuMowROevsdKAM_FJmBpLlRRFjc6RpftocXszH42dtq-CExMSVY7nSRa70qeBCCUzri9J7EausaYKNWzgMamo0ozGnvYNtbck0p7WdlyFRmpCDlAvzVJ9iHBIQyGMiQIaB34UGutqu2KgWait6SJIeIRIx0get6Dj0PtiybvqshfesJ8D-3nD_iPkfFLlDejGH-8H3Rzxb4uHW73wB-VlN6Xc7itIlohUZ6uSW7cUnGcr047__fULtDmeTyd8cjd7OEFbMNJUwpyiXlWs9Jm1Zyp53q7XDwi-9KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+winter+barley+root+distribution+in+flat+and+raised+bed+planting+systems+subject+to+full%2C+deficit+and+rainfed+irrigation&rft.jtitle=Rhizosphere&rft.au=Ahmadi%2C+Seyed+Hamid&rft.au=Sepaskhah%2C+Ali+Reza&rft.au=Zarei%2C+Mojgan&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=16&rft_id=info:doi/10.1016%2Fj.rhisph.2020.100257&rft.externalDocID=S2452219820301695
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon