Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages

Due to the increasing demand of Al 1 2 N 1 2 in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al 1 2 N 1 2 nanocages. Different systems are designed by hydrogen adsorption and e...

Full description

Saved in:
Bibliographic Details
Published inJournal of Theoretical and Computational Chemistry Vol. 19; no. 8; p. 2050031
Main Authors Hussain, Riaz, Imran, Muhammad, Mehboob, Muhammad Yasir, Ali, Muhammad, Khan, Muhammad Usman, Ayub, Khurshid, Yawer, Mirza Arfan, Saleem, Muhammad, Irfan, Ahmad
Format Journal Article
LanguageEnglish
Japanese
Published World Scientific Pub Co Pte Lt 01.12.2020
World Scientific Publishing Company
Subjects
Online AccessGet full text
ISSN0219-6336
1793-6888
DOI10.1142/s0219633620500315

Cover

Abstract Due to the increasing demand of Al 1 2 N 1 2 in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al 1 2 N 1 2 nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al 1 2 N 1 2 . Density functional theory at B3LYP functional with conjunction of 6-31G( d , p ) basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al 1 2 N 1 2 nanoclusters. The Q NBO analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H2-M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al 1 2 N 1 2 nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H2-M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices. NLO response along with electronic properties of metal encapsulated Al12N12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al12N12 nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials.
AbstractList Due to the increasing demand of Al 1 2 N 1 2 in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al 1 2 N 1 2 nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al 1 2 N 1 2 . Density functional theory at B3LYP functional with conjunction of 6-31G( d , p ) basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al 1 2 N 1 2 nanoclusters. The Q NBO analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H2-M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al 1 2 N 1 2 nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H2-M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices. NLO response along with electronic properties of metal encapsulated Al12N12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al12N12 nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials.
Due to the increasing demand of Al[Formula: see text]N[Formula: see text] in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al[Formula: see text]N[Formula: see text] nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al[Formula: see text]N[Formula: see text]. Density functional theory at B3LYP functional with conjunction of 6-31G([Formula: see text], [Formula: see text] basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. The [Formula: see text] analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H 2 -M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al[Formula: see text]N[Formula: see text] nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H 2 -M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices. NLO response along with electronic properties of metal encapsulated Al 12 N 12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al 12 N 12 nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials.
Author Ahmad Irfan
Muhammad Shabbir Ali
Mirza A. Yawer
Muhammad Yasir Mehboob
Riaz Hussain
Muhammad Imran
Muhammad Saleem
Muhammad Usman Khan
Khurshid Ayub
Author_xml – sequence: 1
  givenname: Riaz
  surname: Hussain
  fullname: Hussain, Riaz
– sequence: 2
  givenname: Muhammad
  surname: Imran
  fullname: Imran, Muhammad
– sequence: 3
  givenname: Muhammad Yasir
  surname: Mehboob
  fullname: Mehboob, Muhammad Yasir
– sequence: 4
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
– sequence: 5
  givenname: Riaz
  surname: Hussain
  fullname: Hussain, Riaz
– sequence: 6
  givenname: Muhammad Usman
  surname: Khan
  fullname: Khan, Muhammad Usman
– sequence: 7
  givenname: Khurshid
  surname: Ayub
  fullname: Ayub, Khurshid
– sequence: 8
  givenname: Mirza Arfan
  surname: Yawer
  fullname: Yawer, Mirza Arfan
– sequence: 9
  givenname: Muhammad
  surname: Saleem
  fullname: Saleem, Muhammad
– sequence: 10
  givenname: Ahmad
  surname: Irfan
  fullname: Irfan, Ahmad
BackLink https://cir.nii.ac.jp/crid/1871146593116594688$$DView record in CiNii
BookMark eNp9kctOxCAUhonRxPHyAO5YuNDEKrfSsjTGW5yMC3U9oXCqaIUG6u1JfF3pjHFhjJtDTg7fl8PPBlr1wQNCO5QcUirYUSKMKsm5ZKQkhNNyBU1opXgh67peRZNxXIzzdbSR0iPJvZBygj5P3_suRD244HFosbYpxH7RNfCgX12IBxg6MEMM3hns9fASAWtv8Wx6jSOkPvgEI_rwYWO4B790NGDxcfekO4efYdBdwntTd4BnesFe7WPwRvfppdPD4iZlM8qy3gej7yFtobU2Q7D9fW6iu7PT25OLYnp9fnlyPC0M56osSls2WhqhQVYKNDQVq3nbMNqWLRVcMWPyM62ylghgjVAtcCVtSYVoVJUdm6haek0MKUVo58YNizSGqF03p2Q-5ju_-Z1vJukvso_uWcePfxmyZN5C7GwyDvzgWmd-0L-Q3SXincu7jZXWVfbLUnFKcxX5i_kXiouZMw
CitedBy_id crossref_primary_10_1080_00268976_2023_2231571
crossref_primary_10_1142_S2737416521500186
crossref_primary_10_1016_j_rechem_2024_101382
crossref_primary_10_1002_bkcs_12238
crossref_primary_10_1002_poc_4313
crossref_primary_10_1007_s00894_024_05847_x
crossref_primary_10_1007_s11051_025_06219_z
crossref_primary_10_1007_s11082_021_02747_9
crossref_primary_10_1002_chem_202004299
crossref_primary_10_1016_j_optmat_2024_116023
crossref_primary_10_1016_j_comptc_2024_114784
crossref_primary_10_1016_j_molliq_2024_125064
crossref_primary_10_1021_acsomega_1c01473
crossref_primary_10_1021_acs_inorgchem_0c03730
crossref_primary_10_1016_j_molstruc_2023_136970
crossref_primary_10_1016_j_comptc_2021_113454
crossref_primary_10_1007_s10825_021_01838_w
crossref_primary_10_1007_s11224_024_02297_2
crossref_primary_10_1007_s11082_021_03162_w
crossref_primary_10_1016_j_comptc_2021_113335
crossref_primary_10_1016_j_comptc_2021_113555
crossref_primary_10_1016_j_jpcs_2022_110996
crossref_primary_10_1016_j_matchemphys_2024_129689
crossref_primary_10_1142_S2737416523500035
crossref_primary_10_1002_jctb_7530
crossref_primary_10_1016_j_ijleo_2021_166839
crossref_primary_10_1002_poc_4663
crossref_primary_10_1021_acsomega_3c00058
crossref_primary_10_1021_acs_energyfuels_1c01431
crossref_primary_10_1016_j_jmgm_2023_108455
crossref_primary_10_1007_s00894_021_04843_9
crossref_primary_10_1007_s11224_024_02365_7
crossref_primary_10_1142_S2737416521500411
crossref_primary_10_1016_j_jpcs_2021_110202
crossref_primary_10_1016_j_synthmet_2021_116800
crossref_primary_10_1002_ente_202001090
crossref_primary_10_1016_j_comptc_2021_113242
crossref_primary_10_1016_j_physb_2021_413465
crossref_primary_10_1021_acsomega_1c00850
crossref_primary_10_1016_j_ijhydene_2021_01_011
crossref_primary_10_1016_j_jpcs_2021_110508
crossref_primary_10_1021_acsaem_3c00587
crossref_primary_10_1007_s10853_020_05567_6
crossref_primary_10_1016_j_comptc_2020_113045
crossref_primary_10_1007_s00894_022_05116_9
crossref_primary_10_1016_j_physe_2022_115161
Cites_doi 10.1021/ja00096a076
10.1103/PhysRevLett.10.471
10.1021/ic00194a051
10.1088/1674-0068/25/06/671-675
10.1016/j.commatsci.2012.05.041
10.1021/ja0359963
10.1021/ja9032023
10.1142/9789814317665_0038
10.1007/s00894-011-1286-y
10.1021/ja8099079
10.1016/j.spmi.2014.07.007
10.1016/j.synthmet.2013.06.018
10.1126/science.269.5226.966
10.1039/D0RA01059F
10.1016/j.ijhydene.2012.07.081
10.1021/jp811484r
10.1021/acsomega.0c00507
10.1142/S0219633616500310
10.1142/S0219633616500607
10.1016/j.comptc.2017.03.018
10.1016/j.vacuum.2016.06.012
10.1016/j.molstruc.2020.128740
10.1021/acs.jpcc.6b04361
10.1007/s11224-014-0504-5
10.1002/slct.202000096
10.1016/j.jallcom.2016.02.139
10.1016/j.comptc.2020.112908
10.1007/s11051-005-9011-3
10.1039/c3ra40909k
10.1016/j.cattod.2006.09.022
10.1021/ja983494x
10.1016/j.tsf.2016.05.055
10.1039/C8NR03009J
10.1007/s11434-012-5437-z
10.1021/ja050601w
10.1021/acsomega.0c01686
10.1039/c3tc31183j
10.1002/jcc.21789
10.1142/S0219633615500261
10.1021/ja0273997
10.1016/j.apsusc.2015.12.001
10.1016/j.jmgm.2016.06.012
10.1021/jp027300i
10.1016/j.jallcom.2016.03.175
10.1016/j.chemphys.2011.10.014
10.1021/cr0501792
10.1016/j.jssc.2016.02.023
10.1021/ic4022917
10.1038/354056a0
10.1021/jp994129a
10.1016/j.matchemphys.2017.04.002
10.1016/j.molliq.2018.03.009
10.1002/slct.202001989
10.1007/s00894-020-04386-5
ContentType Journal Article
Copyright 2020, World Scientific Publishing Company
Copyright_xml – notice: 2020, World Scientific Publishing Company
DBID RYH
AAYXX
CITATION
DOI 10.1142/s0219633620500315
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1793-6888
ExternalDocumentID 10_1142_S0219633620500315
S0219633620500315
GroupedDBID .DC
0R~
4.4
5GY
ADMLS
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RWJ
RYH
CAG
COF
EJD
ESX
AAYXX
CITATION
ID FETCH-LOGICAL-c3395-5d5ba6c4ae679eaeb7283fb21f5f14392cc466d9dd04e2b49fe396d5144b97c33
ISSN 0219-6336
IngestDate Tue Jul 01 01:25:51 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Fri Aug 23 08:19:19 EDT 2024
Fri Jun 27 00:58:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords metals encapsulation
nonlinear optical properties
molecular electrostatic potential
Density functional theory
Al
N
electrophilicity
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3395-5d5ba6c4ae679eaeb7283fb21f5f14392cc466d9dd04e2b49fe396d5144b97c33
ORCID 0000-0003-0990-1860
0000-0003-1900-8136
0000-0003-4072-4997
0000-0001-6941-6934
0000-0003-4304-0451
ParticipantIDs worldscientific_primary_S0219633620500315
nii_cinii_1871146593116594688
crossref_citationtrail_10_1142_S0219633620500315
crossref_primary_10_1142_S0219633620500315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationTitle Journal of Theoretical and Computational Chemistry
PublicationYear 2020
Publisher World Scientific Pub Co Pte Lt
World Scientific Publishing Company
Publisher_xml – name: World Scientific Pub Co Pte Lt
– name: World Scientific Publishing Company
References Rad AS (S0219633620500315BIB004) 2016; 237
Wu H-S (S0219633620500315BIB020) 2003; 107
Zhang F (S0219633620500315BIB019) 2009; 113
Muhammad S (S0219633620500315BIB050) 2018; 10
S0219633620500315BIB048
Rad AS (S0219633620500315BIB035) 2017; 194
Chopra NG (S0219633620500315BIB010) 1995; 269
S0219633620500315BIB043
Muhammad S (S0219633620500315BIB038) 2009; 131
S0219633620500315BIB041
Pearson RG (S0219633620500315BIB046) 1984; 23
Beheshtian J (S0219633620500315BIB014) 2012; 18
Yu G (S0219633620500315BIB037) 2011; 32
Afzal Z (S0219633620500315BIB054) 2020; 26
Bahrami A (S0219633620500315BIB001) 2017; 1108
Hussain R (S0219633620500315BIB055) 2020; 5
Baei T (S0219633620500315BIB030) 2012; 25
Wu Q (S0219633620500315BIB009) 2003; 125
Rad AS (S0219633620500315BIB016) 2016; 612
Soltani A (S0219633620500315BIB018) 2015; 26
Hussain S (S0219633620500315BIB022) 2020; 5
Shokuhi Rad A (S0219633620500315BIB024) 2016; 131
Niu M (S0219633620500315BIB029) 2014; 53
Hussain S (S0219633620500315BIB021) 2020; 2020
Wang L-J (S0219633620500315BIB028) 2013; 3
Tahmasebi E (S0219633620500315BIB025) 2016; 363
Muhammad S (S0219633620500315BIB047) 2013; 1
Sun XH (S0219633620500315BIB011) 2002; 124
Strout DL (S0219633620500315BIB012) 2000; 104
Talla JA (S0219633620500315BIB006) 2012; 392
Moradi M (S0219633620500315BIB027) 2013; 177
Chen W (S0219633620500315BIB036) 2005; 127
Hussain S (S0219633620500315BIB023) 2020; 5
Ahmed M (S0219633620500315BIB052) 2020; 1220
Jiang Y (S0219633620500315BIB058) 2012; 57
Ockwig NW (S0219633620500315BIB033); 107
Sillar K (S0219633620500315BIB034) 2009; 131
Wu H (S0219633620500315BIB013) 2012; 37
Planeix JM (S0219633620500315BIB003) 1994; 116
Hussain S (S0219633620500315BIB042) 2020; 5
Zhao Q (S0219633620500315BIB008) 2016; 120
Shokuhi Rad A (S0219633620500315BIB015) 2016; 672
Rad AS (S0219633620500315BIB005) 2016; 678
Muhammad S (S0219633620500315BIB049) 2016; 68
Khan MU (S0219633620500315BIB057) 2020
Beheshtian J (S0219633620500315BIB017) 2012; 62
Mehboob MY (S0219633620500315BIB051) 2020; 1186
Hussain R (S0219633620500315BIB044) 2020; 10
Parr RG (S0219633620500315BIB045) 1999; 121
Bilal Ahmed Siddique M (S0219633620500315BIB053) 2020; 5
Schlapbach L (S0219633620500315BIB032) 2010
Mead CA (S0219633620500315BIB056) 1963; 10
Esrafili MD (S0219633620500315BIB026) 2014; 75
Qiang Y (S0219633620500315BIB002) 2006; 8
Satyapal S (S0219633620500315BIB031) 2007; 120
Iijima S (S0219633620500315BIB007) 1991; 354
Munsif S (S0219633620500315BIB039) 2018; 259
References_xml – volume: 116
  start-page: 7935
  issue: 17
  year: 1994
  ident: S0219633620500315BIB003
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00096a076
– volume: 10
  start-page: 471
  issue: 11
  year: 1963
  ident: S0219633620500315BIB056
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.10.471
– volume: 23
  start-page: 4675
  issue: 26
  year: 1984
  ident: S0219633620500315BIB046
  publication-title: Inorg Chem
  doi: 10.1021/ic00194a051
– volume: 25
  start-page: 671
  issue: 6
  year: 2012
  ident: S0219633620500315BIB030
  publication-title: Chin J Chem Phys
  doi: 10.1088/1674-0068/25/06/671-675
– volume: 62
  start-page: 71
  year: 2012
  ident: S0219633620500315BIB017
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.05.041
– volume: 125
  start-page: 10176
  issue: 34
  year: 2003
  ident: S0219633620500315BIB009
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0359963
– volume: 131
  start-page: 11833
  issue: 33
  year: 2009
  ident: S0219633620500315BIB038
  publication-title: J Am Chem Soc
  doi: 10.1021/ja9032023
– start-page: 265
  volume-title: Materials for Sustainable Energy
  year: 2010
  ident: S0219633620500315BIB032
  doi: 10.1142/9789814317665_0038
– volume: 18
  start-page: 2653
  issue: 6
  year: 2012
  ident: S0219633620500315BIB014
  publication-title: J Mol Model
  doi: 10.1007/s00894-011-1286-y
– volume: 131
  start-page: 4143
  issue: 11
  year: 2009
  ident: S0219633620500315BIB034
  publication-title: J Am Chem Soc
  doi: 10.1021/ja8099079
– volume: 75
  start-page: 17
  year: 2014
  ident: S0219633620500315BIB026
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2014.07.007
– volume: 177
  start-page: 94
  year: 2013
  ident: S0219633620500315BIB027
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2013.06.018
– volume: 269
  start-page: 966
  issue: 5226
  year: 1995
  ident: S0219633620500315BIB010
  publication-title: Science (80-.).
  doi: 10.1126/science.269.5226.966
– volume: 10
  start-page: 20595
  issue: 35
  year: 2020
  ident: S0219633620500315BIB044
  publication-title: RSC Adv.
  doi: 10.1039/D0RA01059F
– volume: 37
  start-page: 14336
  issue: 19
  year: 2012
  ident: S0219633620500315BIB013
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.081
– volume: 2020
  start-page: 1
  year: 2020
  ident: S0219633620500315BIB021
  publication-title: J Chem
– volume: 113
  start-page: 4053
  issue: 10
  year: 2009
  ident: S0219633620500315BIB019
  publication-title: J Phys Chem C
  doi: 10.1021/jp811484r
– volume: 5
  start-page: 7641
  issue: 13
  year: 2020
  ident: S0219633620500315BIB042
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00507
– year: 2020
  ident: S0219633620500315BIB057
  publication-title: Int J Quantum Chem
– ident: S0219633620500315BIB043
  doi: 10.1142/S0219633616500310
– ident: S0219633620500315BIB048
  doi: 10.1142/S0219633616500607
– volume: 1108
  start-page: 63
  year: 2017
  ident: S0219633620500315BIB001
  publication-title: Comput Theor Chem
  doi: 10.1016/j.comptc.2017.03.018
– volume: 131
  start-page: 135
  year: 2016
  ident: S0219633620500315BIB024
  publication-title: Vacuum,
  doi: 10.1016/j.vacuum.2016.06.012
– volume: 1220
  start-page: 128740
  year: 2020
  ident: S0219633620500315BIB052
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2020.128740
– volume: 120
  start-page: 17035
  issue: 30
  year: 2016
  ident: S0219633620500315BIB008
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b04361
– volume: 26
  start-page: 685
  issue: 3
  year: 2015
  ident: S0219633620500315BIB018
  publication-title: Struct Chem
  doi: 10.1007/s11224-014-0504-5
– volume: 5
  start-page: 5022
  issue: 17
  year: 2020
  ident: S0219633620500315BIB055
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202000096
– volume: 672
  start-page: 161
  year: 2016
  ident: S0219633620500315BIB015
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.02.139
– volume: 1186
  start-page: 112908
  year: 2020
  ident: S0219633620500315BIB051
  publication-title: Comput Theor Chem
  doi: 10.1016/j.comptc.2020.112908
– volume: 8
  start-page: 489
  issue: 3
  year: 2006
  ident: S0219633620500315BIB002
  publication-title: J Nanoparticle Res
  doi: 10.1007/s11051-005-9011-3
– volume: 3
  start-page: 13348
  issue: 32
  year: 2013
  ident: S0219633620500315BIB028
  publication-title: RSC Adv
  doi: 10.1039/c3ra40909k
– volume: 120
  start-page: 246
  issue: 3
  year: 2007
  ident: S0219633620500315BIB031
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2006.09.022
– volume: 121
  start-page: 1922
  issue: 5
  year: 1999
  ident: S0219633620500315BIB045
  publication-title: J Am Chem Soc
  doi: 10.1021/ja983494x
– volume: 612
  start-page: 179
  year: 2016
  ident: S0219633620500315BIB016
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.05.055
– volume: 10
  start-page: 16499
  issue: 35
  year: 2018
  ident: S0219633620500315BIB050
  publication-title: Nanoscale
  doi: 10.1039/C8NR03009J
– volume: 57
  start-page: 4448
  issue: 34
  year: 2012
  ident: S0219633620500315BIB058
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-012-5437-z
– volume: 127
  start-page: 10977
  issue: 31
  year: 2005
  ident: S0219633620500315BIB036
  publication-title: J Am Chem Soc
  doi: 10.1021/ja050601w
– volume: 5
  start-page: 15547
  issue: 25
  year: 2020
  ident: S0219633620500315BIB022
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01686
– volume: 1
  start-page: 5439
  issue: 35
  year: 2013
  ident: S0219633620500315BIB047
  publication-title: J Mater Chem C
  doi: 10.1039/c3tc31183j
– volume: 32
  start-page: 2005
  issue: 5
  year: 2011
  ident: S0219633620500315BIB037
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21789
– ident: S0219633620500315BIB041
  doi: 10.1142/S0219633615500261
– volume: 124
  start-page: 14464
  issue: 48
  year: 2002
  ident: S0219633620500315BIB011
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0273997
– volume: 363
  start-page: 197
  year: 2016
  ident: S0219633620500315BIB025
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.12.001
– volume: 68
  start-page: 95
  year: 2016
  ident: S0219633620500315BIB049
  publication-title: J Mol Graph Model
  doi: 10.1016/j.jmgm.2016.06.012
– volume: 107
  start-page: 204
  issue: 1
  year: 2003
  ident: S0219633620500315BIB020
  publication-title: J Phys Chem A
  doi: 10.1021/jp027300i
– volume: 678
  start-page: 317
  year: 2016
  ident: S0219633620500315BIB005
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2016.03.175
– volume: 392
  start-page: 71
  issue: 1
  year: 2012
  ident: S0219633620500315BIB006
  publication-title: Chem Phys
  doi: 10.1016/j.chemphys.2011.10.014
– volume: 5
  start-page: 7641
  issue: 13
  year: 2020
  ident: S0219633620500315BIB023
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00507
– volume: 107
  start-page: 4078
  issue: 10
  ident: S0219633620500315BIB033
  publication-title: Chem Rev
  doi: 10.1021/cr0501792
– volume: 237
  start-page: 204
  year: 2016
  ident: S0219633620500315BIB004
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2016.02.023
– volume: 53
  start-page: 349
  issue: 1
  year: 2014
  ident: S0219633620500315BIB029
  publication-title: Inorg Chem
  doi: 10.1021/ic4022917
– volume: 354
  start-page: 56
  issue: 6348
  year: 1991
  ident: S0219633620500315BIB007
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 104
  start-page: 3364
  issue: 15
  year: 2000
  ident: S0219633620500315BIB012
  publication-title: J Phys Chem A
  doi: 10.1021/jp994129a
– volume: 194
  start-page: 337
  year: 2017
  ident: S0219633620500315BIB035
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2017.04.002
– volume: 259
  start-page: 249
  year: 2018
  ident: S0219633620500315BIB039
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2018.03.009
– volume: 5
  start-page: 7358
  issue: 25
  year: 2020
  ident: S0219633620500315BIB053
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202001989
– volume: 26
  start-page: 137
  issue: 6
  year: 2020
  ident: S0219633620500315BIB054
  publication-title: J Mol Model
  doi: 10.1007/s00894-020-04386-5
SSID ssj0021466
Score 2.411578
Snippet Due to the increasing demand of Al 1 2 N 1 2 in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature...
Due to the increasing demand of Al[Formula: see text]N[Formula: see text] in optoelectronics and sensing materials, we intended to investigate the adsorption...
SourceID crossref
worldscientific
nii
SourceType Enrichment Source
Index Database
Publisher
StartPage 2050031
Title Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages
URI https://cir.nii.ac.jp/crid/1871146593116594688
http://www.worldscientific.com/doi/abs/10.1142/S0219633620500315
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QE4VDzFAkU-cKCkKYnz9DEqoEJ3F6Rupfa0smOHDewDZVMh-kf4Kfw9xnZe7Fa8LtbKsieJv2_HY3s8g9AzZaMSR8Q2I2Fs-yGJbCpibgvXkxF3U-npdD7DUXh85r87D857vR8dr6XLkh-mV9feK_kfVKEOcFW3ZP8B2UYoVMBvwBdKQBjKv8LYONA1Rh8Tq2VhVEB9-16NYCfTjQnjqQ8MRoP3VmEcZPW2wfSbKJbwJCOFgx2azD6Dka5yTKsQyyr1R270se5_ovYTYDAYLLNnrNTtXTJyCTxkARPkx8o5cdPwHXfuTipJJrFEvSl5VGega6kwZfM5E9bbedFSOZnqqiJrq4Z5ccWs5NC6YF9bn-Om-wVb5Spm0RTWFby72UHWHUeMg5HWetqTSu3VwVtaH0ppDcqO6gQ9bIeeVwXZNqodNJEdxiaJYKP7aVd5O4HScddPLD7RQbeI0lgw6ZumwRbaIVGk_AN2klfDwWmz1nerY_L6RaoDdRDzckPILybR1iLPb6FdHS931Xxox-YZ30a7FWY4Mcy7g3qf2F10o0HoHvreYSBeZrhlIK4ZeIBb_mHDPwyoY-Afrvmnutb8wzX_sOEfNvzDzwf5AR4x3fdkH3eZhyvm4YZ599HZm9fjo2O7SvVhp55HAzsQAWdh6jMZRlQyySMwezNO3CzIwKKnJE1hQAUVwvEl4T7NpEdDAda-z2kEMh6g7cVyIR8i7EbMIdyLVOw4nzGHxZH0XcpCwQLKArePnHq0J2kVB1-lY5lNzB19MjldB6iPXjRdvpggML9rvAcQgmhVunGkrv0H1FNhrqgP_Ouj_TVwG5kbsh79QdZjdLP9lzxB22VxKffASC7504qQPwEBqbfH
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+adsorption+behavior%2C+electronic+nature+and+NLO+response+of+hydrogen+adsorbed+Alkali+metals+%28Li%2C+Na+and+K%29+encapsulated+Al12N12+nanocages&rft.jtitle=Journal+of+Theoretical+and+Computational+Chemistry&rft.au=Muhammad+Imran&rft.au=Ahmad+Irfan&rft.au=Mirza+A.+Yawer&rft.au=Muhammad+Yasir+Mehboob&rft.date=2020-12-01&rft.pub=World+Scientific+Pub+Co+Pte+Lt&rft.issn=0219-6336&rft.eissn=1793-6888&rft.volume=19&rft.spage=2050031&rft_id=info:doi/10.1142%2Fs0219633620500315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6336&client=summon