Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages
Due to the increasing demand of Al 1 2 N 1 2 in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al 1 2 N 1 2 nanocages. Different systems are designed by hydrogen adsorption and e...
Saved in:
Published in | Journal of Theoretical and Computational Chemistry Vol. 19; no. 8; p. 2050031 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
World Scientific Pub Co Pte Lt
01.12.2020
World Scientific Publishing Company |
Subjects | |
Online Access | Get full text |
ISSN | 0219-6336 1793-6888 |
DOI | 10.1142/s0219633620500315 |
Cover
Abstract | Due to the increasing demand of Al
1
2
N
1
2
in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al
1
2
N
1
2
nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al
1
2
N
1
2
. Density functional theory at B3LYP functional with conjunction of 6-31G(
d
,
p
)
basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al
1
2
N
1
2
nanoclusters. The
Q
NBO
analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H2-M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al
1
2
N
1
2
nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H2-M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices.
NLO response along with electronic properties of metal encapsulated Al12N12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al12N12 nanocages.
Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials. |
---|---|
AbstractList | Due to the increasing demand of Al
1
2
N
1
2
in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al
1
2
N
1
2
nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al
1
2
N
1
2
. Density functional theory at B3LYP functional with conjunction of 6-31G(
d
,
p
)
basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al
1
2
N
1
2
nanoclusters. The
Q
NBO
analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H2-M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al
1
2
N
1
2
nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H2-M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices.
NLO response along with electronic properties of metal encapsulated Al12N12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al12N12 nanocages.
Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials. Due to the increasing demand of Al[Formula: see text]N[Formula: see text] in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature and NLO response of hydrogen and different metals decorated Al[Formula: see text]N[Formula: see text] nanocages. Different systems are designed by hydrogen adsorption and encapsulation of metals (Li, Na and K) in Al[Formula: see text]N[Formula: see text]. Density functional theory at B3LYP functional with conjunction of 6-31G([Formula: see text], [Formula: see text] basis set is utilized in order to gain optimized geometries. Different calculations including linear and first-order hyperpolarizability are conducted at same level of theory. Instead of chemiosorption, a phyisosorption phenomenon is seen in all hydrogen adsorbed metal encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. The [Formula: see text] analysis confirmed the charge separation in hydrogen adsorbed metal encapsulated nanocages. Molecular electrostatic potential (MEP) analysis cleared the different charge sites in all the systems. Similarly, frontier molecular orbitals analysis corroborated the charge densities shifting upon hydrogen adsorption on metal encapsulated AlN nanocages. HOMO–LUMO band gaps suggest effective use of H 2 -M-AlN in sensing materials. Global indices of reactivity also endorsed that all hydrogen adsorbed metal encapsulated systems are better materials than pure Al[Formula: see text]N[Formula: see text] nanocage for sensing applications. Lastly, linear and first hyperpolarizability of H 2 -M-AlN nanocages are found to be greater than M-AlN and pure AlN nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributors for the applications in hydrogen sensing and optoelectronic devices. NLO response along with electronic properties of metal encapsulated Al 12 N 12 nanocages were explored followed by hydrogen adsorbed metal encapsulated Al 12 N 12 nanocages. Results of these parameters recommend metal encapsulated nanocages as efficient contributor for possible applications in hydrogen sensors materials and in optoelectronic materials. |
Author | Ahmad Irfan Muhammad Shabbir Ali Mirza A. Yawer Muhammad Yasir Mehboob Riaz Hussain Muhammad Imran Muhammad Saleem Muhammad Usman Khan Khurshid Ayub |
Author_xml | – sequence: 1 givenname: Riaz surname: Hussain fullname: Hussain, Riaz – sequence: 2 givenname: Muhammad surname: Imran fullname: Imran, Muhammad – sequence: 3 givenname: Muhammad Yasir surname: Mehboob fullname: Mehboob, Muhammad Yasir – sequence: 4 givenname: Muhammad surname: Ali fullname: Ali, Muhammad – sequence: 5 givenname: Riaz surname: Hussain fullname: Hussain, Riaz – sequence: 6 givenname: Muhammad Usman surname: Khan fullname: Khan, Muhammad Usman – sequence: 7 givenname: Khurshid surname: Ayub fullname: Ayub, Khurshid – sequence: 8 givenname: Mirza Arfan surname: Yawer fullname: Yawer, Mirza Arfan – sequence: 9 givenname: Muhammad surname: Saleem fullname: Saleem, Muhammad – sequence: 10 givenname: Ahmad surname: Irfan fullname: Irfan, Ahmad |
BackLink | https://cir.nii.ac.jp/crid/1871146593116594688$$DView record in CiNii |
BookMark | eNp9kctOxCAUhonRxPHyAO5YuNDEKrfSsjTGW5yMC3U9oXCqaIUG6u1JfF3pjHFhjJtDTg7fl8PPBlr1wQNCO5QcUirYUSKMKsm5ZKQkhNNyBU1opXgh67peRZNxXIzzdbSR0iPJvZBygj5P3_suRD244HFosbYpxH7RNfCgX12IBxg6MEMM3hns9fASAWtv8Wx6jSOkPvgEI_rwYWO4B790NGDxcfekO4efYdBdwntTd4BnesFe7WPwRvfppdPD4iZlM8qy3gej7yFtobU2Q7D9fW6iu7PT25OLYnp9fnlyPC0M56osSls2WhqhQVYKNDQVq3nbMNqWLRVcMWPyM62ylghgjVAtcCVtSYVoVJUdm6haek0MKUVo58YNizSGqF03p2Q-5ju_-Z1vJukvso_uWcePfxmyZN5C7GwyDvzgWmd-0L-Q3SXincu7jZXWVfbLUnFKcxX5i_kXiouZMw |
CitedBy_id | crossref_primary_10_1080_00268976_2023_2231571 crossref_primary_10_1142_S2737416521500186 crossref_primary_10_1016_j_rechem_2024_101382 crossref_primary_10_1002_bkcs_12238 crossref_primary_10_1002_poc_4313 crossref_primary_10_1007_s00894_024_05847_x crossref_primary_10_1007_s11051_025_06219_z crossref_primary_10_1007_s11082_021_02747_9 crossref_primary_10_1002_chem_202004299 crossref_primary_10_1016_j_optmat_2024_116023 crossref_primary_10_1016_j_comptc_2024_114784 crossref_primary_10_1016_j_molliq_2024_125064 crossref_primary_10_1021_acsomega_1c01473 crossref_primary_10_1021_acs_inorgchem_0c03730 crossref_primary_10_1016_j_molstruc_2023_136970 crossref_primary_10_1016_j_comptc_2021_113454 crossref_primary_10_1007_s10825_021_01838_w crossref_primary_10_1007_s11224_024_02297_2 crossref_primary_10_1007_s11082_021_03162_w crossref_primary_10_1016_j_comptc_2021_113335 crossref_primary_10_1016_j_comptc_2021_113555 crossref_primary_10_1016_j_jpcs_2022_110996 crossref_primary_10_1016_j_matchemphys_2024_129689 crossref_primary_10_1142_S2737416523500035 crossref_primary_10_1002_jctb_7530 crossref_primary_10_1016_j_ijleo_2021_166839 crossref_primary_10_1002_poc_4663 crossref_primary_10_1021_acsomega_3c00058 crossref_primary_10_1021_acs_energyfuels_1c01431 crossref_primary_10_1016_j_jmgm_2023_108455 crossref_primary_10_1007_s00894_021_04843_9 crossref_primary_10_1007_s11224_024_02365_7 crossref_primary_10_1142_S2737416521500411 crossref_primary_10_1016_j_jpcs_2021_110202 crossref_primary_10_1016_j_synthmet_2021_116800 crossref_primary_10_1002_ente_202001090 crossref_primary_10_1016_j_comptc_2021_113242 crossref_primary_10_1016_j_physb_2021_413465 crossref_primary_10_1021_acsomega_1c00850 crossref_primary_10_1016_j_ijhydene_2021_01_011 crossref_primary_10_1016_j_jpcs_2021_110508 crossref_primary_10_1021_acsaem_3c00587 crossref_primary_10_1007_s10853_020_05567_6 crossref_primary_10_1016_j_comptc_2020_113045 crossref_primary_10_1007_s00894_022_05116_9 crossref_primary_10_1016_j_physe_2022_115161 |
Cites_doi | 10.1021/ja00096a076 10.1103/PhysRevLett.10.471 10.1021/ic00194a051 10.1088/1674-0068/25/06/671-675 10.1016/j.commatsci.2012.05.041 10.1021/ja0359963 10.1021/ja9032023 10.1142/9789814317665_0038 10.1007/s00894-011-1286-y 10.1021/ja8099079 10.1016/j.spmi.2014.07.007 10.1016/j.synthmet.2013.06.018 10.1126/science.269.5226.966 10.1039/D0RA01059F 10.1016/j.ijhydene.2012.07.081 10.1021/jp811484r 10.1021/acsomega.0c00507 10.1142/S0219633616500310 10.1142/S0219633616500607 10.1016/j.comptc.2017.03.018 10.1016/j.vacuum.2016.06.012 10.1016/j.molstruc.2020.128740 10.1021/acs.jpcc.6b04361 10.1007/s11224-014-0504-5 10.1002/slct.202000096 10.1016/j.jallcom.2016.02.139 10.1016/j.comptc.2020.112908 10.1007/s11051-005-9011-3 10.1039/c3ra40909k 10.1016/j.cattod.2006.09.022 10.1021/ja983494x 10.1016/j.tsf.2016.05.055 10.1039/C8NR03009J 10.1007/s11434-012-5437-z 10.1021/ja050601w 10.1021/acsomega.0c01686 10.1039/c3tc31183j 10.1002/jcc.21789 10.1142/S0219633615500261 10.1021/ja0273997 10.1016/j.apsusc.2015.12.001 10.1016/j.jmgm.2016.06.012 10.1021/jp027300i 10.1016/j.jallcom.2016.03.175 10.1016/j.chemphys.2011.10.014 10.1021/cr0501792 10.1016/j.jssc.2016.02.023 10.1021/ic4022917 10.1038/354056a0 10.1021/jp994129a 10.1016/j.matchemphys.2017.04.002 10.1016/j.molliq.2018.03.009 10.1002/slct.202001989 10.1007/s00894-020-04386-5 |
ContentType | Journal Article |
Copyright | 2020, World Scientific Publishing Company |
Copyright_xml | – notice: 2020, World Scientific Publishing Company |
DBID | RYH AAYXX CITATION |
DOI | 10.1142/s0219633620500315 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1793-6888 |
ExternalDocumentID | 10_1142_S0219633620500315 S0219633620500315 |
GroupedDBID | .DC 0R~ 4.4 5GY ADMLS ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RWJ RYH CAG COF EJD ESX AAYXX CITATION |
ID | FETCH-LOGICAL-c3395-5d5ba6c4ae679eaeb7283fb21f5f14392cc466d9dd04e2b49fe396d5144b97c33 |
ISSN | 0219-6336 |
IngestDate | Tue Jul 01 01:25:51 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Fri Aug 23 08:19:19 EDT 2024 Fri Jun 27 00:58:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | metals encapsulation nonlinear optical properties molecular electrostatic potential Density functional theory Al N electrophilicity |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3395-5d5ba6c4ae679eaeb7283fb21f5f14392cc466d9dd04e2b49fe396d5144b97c33 |
ORCID | 0000-0003-0990-1860 0000-0003-1900-8136 0000-0003-4072-4997 0000-0001-6941-6934 0000-0003-4304-0451 |
ParticipantIDs | worldscientific_primary_S0219633620500315 nii_cinii_1871146593116594688 crossref_citationtrail_10_1142_S0219633620500315 crossref_primary_10_1142_S0219633620500315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Theoretical and Computational Chemistry |
PublicationYear | 2020 |
Publisher | World Scientific Pub Co Pte Lt World Scientific Publishing Company |
Publisher_xml | – name: World Scientific Pub Co Pte Lt – name: World Scientific Publishing Company |
References | Rad AS (S0219633620500315BIB004) 2016; 237 Wu H-S (S0219633620500315BIB020) 2003; 107 Zhang F (S0219633620500315BIB019) 2009; 113 Muhammad S (S0219633620500315BIB050) 2018; 10 S0219633620500315BIB048 Rad AS (S0219633620500315BIB035) 2017; 194 Chopra NG (S0219633620500315BIB010) 1995; 269 S0219633620500315BIB043 Muhammad S (S0219633620500315BIB038) 2009; 131 S0219633620500315BIB041 Pearson RG (S0219633620500315BIB046) 1984; 23 Beheshtian J (S0219633620500315BIB014) 2012; 18 Yu G (S0219633620500315BIB037) 2011; 32 Afzal Z (S0219633620500315BIB054) 2020; 26 Bahrami A (S0219633620500315BIB001) 2017; 1108 Hussain R (S0219633620500315BIB055) 2020; 5 Baei T (S0219633620500315BIB030) 2012; 25 Wu Q (S0219633620500315BIB009) 2003; 125 Rad AS (S0219633620500315BIB016) 2016; 612 Soltani A (S0219633620500315BIB018) 2015; 26 Hussain S (S0219633620500315BIB022) 2020; 5 Shokuhi Rad A (S0219633620500315BIB024) 2016; 131 Niu M (S0219633620500315BIB029) 2014; 53 Hussain S (S0219633620500315BIB021) 2020; 2020 Wang L-J (S0219633620500315BIB028) 2013; 3 Tahmasebi E (S0219633620500315BIB025) 2016; 363 Muhammad S (S0219633620500315BIB047) 2013; 1 Sun XH (S0219633620500315BIB011) 2002; 124 Strout DL (S0219633620500315BIB012) 2000; 104 Talla JA (S0219633620500315BIB006) 2012; 392 Moradi M (S0219633620500315BIB027) 2013; 177 Chen W (S0219633620500315BIB036) 2005; 127 Hussain S (S0219633620500315BIB023) 2020; 5 Ahmed M (S0219633620500315BIB052) 2020; 1220 Jiang Y (S0219633620500315BIB058) 2012; 57 Ockwig NW (S0219633620500315BIB033); 107 Sillar K (S0219633620500315BIB034) 2009; 131 Wu H (S0219633620500315BIB013) 2012; 37 Planeix JM (S0219633620500315BIB003) 1994; 116 Hussain S (S0219633620500315BIB042) 2020; 5 Zhao Q (S0219633620500315BIB008) 2016; 120 Shokuhi Rad A (S0219633620500315BIB015) 2016; 672 Rad AS (S0219633620500315BIB005) 2016; 678 Muhammad S (S0219633620500315BIB049) 2016; 68 Khan MU (S0219633620500315BIB057) 2020 Beheshtian J (S0219633620500315BIB017) 2012; 62 Mehboob MY (S0219633620500315BIB051) 2020; 1186 Hussain R (S0219633620500315BIB044) 2020; 10 Parr RG (S0219633620500315BIB045) 1999; 121 Bilal Ahmed Siddique M (S0219633620500315BIB053) 2020; 5 Schlapbach L (S0219633620500315BIB032) 2010 Mead CA (S0219633620500315BIB056) 1963; 10 Esrafili MD (S0219633620500315BIB026) 2014; 75 Qiang Y (S0219633620500315BIB002) 2006; 8 Satyapal S (S0219633620500315BIB031) 2007; 120 Iijima S (S0219633620500315BIB007) 1991; 354 Munsif S (S0219633620500315BIB039) 2018; 259 |
References_xml | – volume: 116 start-page: 7935 issue: 17 year: 1994 ident: S0219633620500315BIB003 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00096a076 – volume: 10 start-page: 471 issue: 11 year: 1963 ident: S0219633620500315BIB056 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.10.471 – volume: 23 start-page: 4675 issue: 26 year: 1984 ident: S0219633620500315BIB046 publication-title: Inorg Chem doi: 10.1021/ic00194a051 – volume: 25 start-page: 671 issue: 6 year: 2012 ident: S0219633620500315BIB030 publication-title: Chin J Chem Phys doi: 10.1088/1674-0068/25/06/671-675 – volume: 62 start-page: 71 year: 2012 ident: S0219633620500315BIB017 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.05.041 – volume: 125 start-page: 10176 issue: 34 year: 2003 ident: S0219633620500315BIB009 publication-title: J Am Chem Soc doi: 10.1021/ja0359963 – volume: 131 start-page: 11833 issue: 33 year: 2009 ident: S0219633620500315BIB038 publication-title: J Am Chem Soc doi: 10.1021/ja9032023 – start-page: 265 volume-title: Materials for Sustainable Energy year: 2010 ident: S0219633620500315BIB032 doi: 10.1142/9789814317665_0038 – volume: 18 start-page: 2653 issue: 6 year: 2012 ident: S0219633620500315BIB014 publication-title: J Mol Model doi: 10.1007/s00894-011-1286-y – volume: 131 start-page: 4143 issue: 11 year: 2009 ident: S0219633620500315BIB034 publication-title: J Am Chem Soc doi: 10.1021/ja8099079 – volume: 75 start-page: 17 year: 2014 ident: S0219633620500315BIB026 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2014.07.007 – volume: 177 start-page: 94 year: 2013 ident: S0219633620500315BIB027 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2013.06.018 – volume: 269 start-page: 966 issue: 5226 year: 1995 ident: S0219633620500315BIB010 publication-title: Science (80-.). doi: 10.1126/science.269.5226.966 – volume: 10 start-page: 20595 issue: 35 year: 2020 ident: S0219633620500315BIB044 publication-title: RSC Adv. doi: 10.1039/D0RA01059F – volume: 37 start-page: 14336 issue: 19 year: 2012 ident: S0219633620500315BIB013 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.081 – volume: 2020 start-page: 1 year: 2020 ident: S0219633620500315BIB021 publication-title: J Chem – volume: 113 start-page: 4053 issue: 10 year: 2009 ident: S0219633620500315BIB019 publication-title: J Phys Chem C doi: 10.1021/jp811484r – volume: 5 start-page: 7641 issue: 13 year: 2020 ident: S0219633620500315BIB042 publication-title: ACS Omega doi: 10.1021/acsomega.0c00507 – year: 2020 ident: S0219633620500315BIB057 publication-title: Int J Quantum Chem – ident: S0219633620500315BIB043 doi: 10.1142/S0219633616500310 – ident: S0219633620500315BIB048 doi: 10.1142/S0219633616500607 – volume: 1108 start-page: 63 year: 2017 ident: S0219633620500315BIB001 publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2017.03.018 – volume: 131 start-page: 135 year: 2016 ident: S0219633620500315BIB024 publication-title: Vacuum, doi: 10.1016/j.vacuum.2016.06.012 – volume: 1220 start-page: 128740 year: 2020 ident: S0219633620500315BIB052 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2020.128740 – volume: 120 start-page: 17035 issue: 30 year: 2016 ident: S0219633620500315BIB008 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b04361 – volume: 26 start-page: 685 issue: 3 year: 2015 ident: S0219633620500315BIB018 publication-title: Struct Chem doi: 10.1007/s11224-014-0504-5 – volume: 5 start-page: 5022 issue: 17 year: 2020 ident: S0219633620500315BIB055 publication-title: ChemistrySelect doi: 10.1002/slct.202000096 – volume: 672 start-page: 161 year: 2016 ident: S0219633620500315BIB015 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.02.139 – volume: 1186 start-page: 112908 year: 2020 ident: S0219633620500315BIB051 publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2020.112908 – volume: 8 start-page: 489 issue: 3 year: 2006 ident: S0219633620500315BIB002 publication-title: J Nanoparticle Res doi: 10.1007/s11051-005-9011-3 – volume: 3 start-page: 13348 issue: 32 year: 2013 ident: S0219633620500315BIB028 publication-title: RSC Adv doi: 10.1039/c3ra40909k – volume: 120 start-page: 246 issue: 3 year: 2007 ident: S0219633620500315BIB031 publication-title: Catal Today doi: 10.1016/j.cattod.2006.09.022 – volume: 121 start-page: 1922 issue: 5 year: 1999 ident: S0219633620500315BIB045 publication-title: J Am Chem Soc doi: 10.1021/ja983494x – volume: 612 start-page: 179 year: 2016 ident: S0219633620500315BIB016 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.05.055 – volume: 10 start-page: 16499 issue: 35 year: 2018 ident: S0219633620500315BIB050 publication-title: Nanoscale doi: 10.1039/C8NR03009J – volume: 57 start-page: 4448 issue: 34 year: 2012 ident: S0219633620500315BIB058 publication-title: Chin Sci Bull doi: 10.1007/s11434-012-5437-z – volume: 127 start-page: 10977 issue: 31 year: 2005 ident: S0219633620500315BIB036 publication-title: J Am Chem Soc doi: 10.1021/ja050601w – volume: 5 start-page: 15547 issue: 25 year: 2020 ident: S0219633620500315BIB022 publication-title: ACS Omega doi: 10.1021/acsomega.0c01686 – volume: 1 start-page: 5439 issue: 35 year: 2013 ident: S0219633620500315BIB047 publication-title: J Mater Chem C doi: 10.1039/c3tc31183j – volume: 32 start-page: 2005 issue: 5 year: 2011 ident: S0219633620500315BIB037 publication-title: J Comput Chem doi: 10.1002/jcc.21789 – ident: S0219633620500315BIB041 doi: 10.1142/S0219633615500261 – volume: 124 start-page: 14464 issue: 48 year: 2002 ident: S0219633620500315BIB011 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0273997 – volume: 363 start-page: 197 year: 2016 ident: S0219633620500315BIB025 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.001 – volume: 68 start-page: 95 year: 2016 ident: S0219633620500315BIB049 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2016.06.012 – volume: 107 start-page: 204 issue: 1 year: 2003 ident: S0219633620500315BIB020 publication-title: J Phys Chem A doi: 10.1021/jp027300i – volume: 678 start-page: 317 year: 2016 ident: S0219633620500315BIB005 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2016.03.175 – volume: 392 start-page: 71 issue: 1 year: 2012 ident: S0219633620500315BIB006 publication-title: Chem Phys doi: 10.1016/j.chemphys.2011.10.014 – volume: 5 start-page: 7641 issue: 13 year: 2020 ident: S0219633620500315BIB023 publication-title: ACS Omega doi: 10.1021/acsomega.0c00507 – volume: 107 start-page: 4078 issue: 10 ident: S0219633620500315BIB033 publication-title: Chem Rev doi: 10.1021/cr0501792 – volume: 237 start-page: 204 year: 2016 ident: S0219633620500315BIB004 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2016.02.023 – volume: 53 start-page: 349 issue: 1 year: 2014 ident: S0219633620500315BIB029 publication-title: Inorg Chem doi: 10.1021/ic4022917 – volume: 354 start-page: 56 issue: 6348 year: 1991 ident: S0219633620500315BIB007 publication-title: Nature doi: 10.1038/354056a0 – volume: 104 start-page: 3364 issue: 15 year: 2000 ident: S0219633620500315BIB012 publication-title: J Phys Chem A doi: 10.1021/jp994129a – volume: 194 start-page: 337 year: 2017 ident: S0219633620500315BIB035 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2017.04.002 – volume: 259 start-page: 249 year: 2018 ident: S0219633620500315BIB039 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.03.009 – volume: 5 start-page: 7358 issue: 25 year: 2020 ident: S0219633620500315BIB053 publication-title: ChemistrySelect doi: 10.1002/slct.202001989 – volume: 26 start-page: 137 issue: 6 year: 2020 ident: S0219633620500315BIB054 publication-title: J Mol Model doi: 10.1007/s00894-020-04386-5 |
SSID | ssj0021466 |
Score | 2.411578 |
Snippet | Due to the increasing demand of Al
1
2
N
1
2
in optoelectronics and sensing materials, we intended to investigate the adsorption behavior, electronic nature... Due to the increasing demand of Al[Formula: see text]N[Formula: see text] in optoelectronics and sensing materials, we intended to investigate the adsorption... |
SourceID | crossref worldscientific nii |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2050031 |
Title | Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages |
URI | https://cir.nii.ac.jp/crid/1871146593116594688 http://www.worldscientific.com/doi/abs/10.1142/S0219633620500315 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QE4VDzFAkU-cKCkKYnz9DEqoEJ3F6Rupfa0smOHDewDZVMh-kf4Kfw9xnZe7Fa8LtbKsieJv2_HY3s8g9AzZaMSR8Q2I2Fs-yGJbCpibgvXkxF3U-npdD7DUXh85r87D857vR8dr6XLkh-mV9feK_kfVKEOcFW3ZP8B2UYoVMBvwBdKQBjKv8LYONA1Rh8Tq2VhVEB9-16NYCfTjQnjqQ8MRoP3VmEcZPW2wfSbKJbwJCOFgx2azD6Dka5yTKsQyyr1R270se5_ovYTYDAYLLNnrNTtXTJyCTxkARPkx8o5cdPwHXfuTipJJrFEvSl5VGega6kwZfM5E9bbedFSOZnqqiJrq4Z5ccWs5NC6YF9bn-Om-wVb5Spm0RTWFby72UHWHUeMg5HWetqTSu3VwVtaH0ppDcqO6gQ9bIeeVwXZNqodNJEdxiaJYKP7aVd5O4HScddPLD7RQbeI0lgw6ZumwRbaIVGk_AN2klfDwWmz1nerY_L6RaoDdRDzckPILybR1iLPb6FdHS931Xxox-YZ30a7FWY4Mcy7g3qf2F10o0HoHvreYSBeZrhlIK4ZeIBb_mHDPwyoY-Afrvmnutb8wzX_sOEfNvzDzwf5AR4x3fdkH3eZhyvm4YZ599HZm9fjo2O7SvVhp55HAzsQAWdh6jMZRlQyySMwezNO3CzIwKKnJE1hQAUVwvEl4T7NpEdDAda-z2kEMh6g7cVyIR8i7EbMIdyLVOw4nzGHxZH0XcpCwQLKArePnHq0J2kVB1-lY5lNzB19MjldB6iPXjRdvpggML9rvAcQgmhVunGkrv0H1FNhrqgP_Ouj_TVwG5kbsh79QdZjdLP9lzxB22VxKffASC7504qQPwEBqbfH |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+adsorption+behavior%2C+electronic+nature+and+NLO+response+of+hydrogen+adsorbed+Alkali+metals+%28Li%2C+Na+and+K%29+encapsulated+Al12N12+nanocages&rft.jtitle=Journal+of+Theoretical+and+Computational+Chemistry&rft.au=Muhammad+Imran&rft.au=Ahmad+Irfan&rft.au=Mirza+A.+Yawer&rft.au=Muhammad+Yasir+Mehboob&rft.date=2020-12-01&rft.pub=World+Scientific+Pub+Co+Pte+Lt&rft.issn=0219-6336&rft.eissn=1793-6888&rft.volume=19&rft.spage=2050031&rft_id=info:doi/10.1142%2Fs0219633620500315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6336&client=summon |