NN‐MLT Model Prediction for Low‐Latitude Region Based on Artificial Neural Network and Long‐Term SABER Observations

The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of reliable measurements makes continuous monitoring of these areas challenging. Therefore, the necessity for studies focused on the MLT regio...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 10; no. 6
Main Authors Lingerew, Chalachew, Jaya Prakash Raju, U., Guimarães Santos, Celso Augusto
Format Journal Article
LanguageEnglish
Published American Geophysical Union (AGU) 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of reliable measurements makes continuous monitoring of these areas challenging. Therefore, the necessity for studies focused on the MLT region cannot be overstated, as they are essential for developing effective models that meet the accuracy requirements of satellite‐based observations. The neural networks NN‐MLT model, developed using 15 years of Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry (SABER) observed temperature data spanning from January 2006 to December 2020, employs neural network techniques. The data set was split, with 90% used for training and the remaining 10% allocated for prediction. The model's validation was tested with two other partitions (80(20) and 70(30)). The 90(10) partition, exhibiting a high correlation coefficient (R), low standard deviation (σ), and low root mean square error (RMSE), demonstrated the model's good performance. As clearly shown from statistical metrics (R, RMSE, mean, and σ) at three specific altitude levels (60, 75, and 90 km), the NN‐MLT model's performance aligns closely with the empirical model (NRLMSISE2‐0) and SABER observations. The NN‐MLT model displays a high R (0.74) and low RMSE (4.35 K) at 60 km, indicating its effective performance compared to the other two heights of 75 and 90 km. The NN‐MLT model's spatiotemporal variability in MLT temperature prediction agrees well with the SABER data at all altitudes, particularly at 60 km. While the NN‐MLT model accurately captures the seasonal variations of MLT temperature, the analysis leads to the conclusion that it consistently outperforms the empirical model and aligns closely with observations. Plain Language Summary The middle atmosphere serves as a connection between the lower and upper atmospheres through wave dynamics. The mesosphere and lower thermosphere (MLT) region, often called the “ignosphere,” is challenging to study due to the scarcity of reliable and continuous measurements. In this paper, the first attempt to develop a low‐latitude NN‐MLT model based on neural network techniques is presented using 15 years of SABER observation data. The model effectively captures the spatiotemporal variations and fits well with the standard empirical model (NRLMSIS2‐0) and SABER observations. Key Points A neural networks‐mesosphere and lower thermosphere (NN‐MLT) model based on artificial NN is developed using Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry observations to predict MLT temperature variability The newly developed NN‐MLT model shows potential in accurately predicting MLT temperature variability over low latitudes The NN‐MLT model can significantly enhance the prediction capabilities for temperatures in the MLT
AbstractList Abstract The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of reliable measurements makes continuous monitoring of these areas challenging. Therefore, the necessity for studies focused on the MLT region cannot be overstated, as they are essential for developing effective models that meet the accuracy requirements of satellite‐based observations. The neural networks NN‐MLT model, developed using 15 years of Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry (SABER) observed temperature data spanning from January 2006 to December 2020, employs neural network techniques. The data set was split, with 90% used for training and the remaining 10% allocated for prediction. The model's validation was tested with two other partitions (80(20) and 70(30)). The 90(10) partition, exhibiting a high correlation coefficient ( R ), low standard deviation ( σ ), and low root mean square error (RMSE), demonstrated the model's good performance. As clearly shown from statistical metrics ( R , RMSE, mean, and σ ) at three specific altitude levels (60, 75, and 90 km), the NN‐MLT model's performance aligns closely with the empirical model (NRLMSISE2‐0) and SABER observations. The NN‐MLT model displays a high R (0.74) and low RMSE (4.35 K) at 60 km, indicating its effective performance compared to the other two heights of 75 and 90 km. The NN‐MLT model's spatiotemporal variability in MLT temperature prediction agrees well with the SABER data at all altitudes, particularly at 60 km. While the NN‐MLT model accurately captures the seasonal variations of MLT temperature, the analysis leads to the conclusion that it consistently outperforms the empirical model and aligns closely with observations. Plain Language Summary The middle atmosphere serves as a connection between the lower and upper atmospheres through wave dynamics. The mesosphere and lower thermosphere (MLT) region, often called the “ignosphere,” is challenging to study due to the scarcity of reliable and continuous measurements. In this paper, the first attempt to develop a low‐latitude NN‐MLT model based on neural network techniques is presented using 15 years of SABER observation data. The model effectively captures the spatiotemporal variations and fits well with the standard empirical model (NRLMSIS2‐0) and SABER observations. Key Points A neural networks‐mesosphere and lower thermosphere (NN‐MLT) model based on artificial NN is developed using Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry observations to predict MLT temperature variability The newly developed NN‐MLT model shows potential in accurately predicting MLT temperature variability over low latitudes The NN‐MLT model can significantly enhance the prediction capabilities for temperatures in the MLT
The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of reliable measurements makes continuous monitoring of these areas challenging. Therefore, the necessity for studies focused on the MLT region cannot be overstated, as they are essential for developing effective models that meet the accuracy requirements of satellite‐based observations. The neural networks NN‐MLT model, developed using 15 years of Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry (SABER) observed temperature data spanning from January 2006 to December 2020, employs neural network techniques. The data set was split, with 90% used for training and the remaining 10% allocated for prediction. The model's validation was tested with two other partitions (80(20) and 70(30)). The 90(10) partition, exhibiting a high correlation coefficient (R), low standard deviation (σ), and low root mean square error (RMSE), demonstrated the model's good performance. As clearly shown from statistical metrics (R, RMSE, mean, and σ) at three specific altitude levels (60, 75, and 90 km), the NN‐MLT model's performance aligns closely with the empirical model (NRLMSISE2‐0) and SABER observations. The NN‐MLT model displays a high R (0.74) and low RMSE (4.35 K) at 60 km, indicating its effective performance compared to the other two heights of 75 and 90 km. The NN‐MLT model's spatiotemporal variability in MLT temperature prediction agrees well with the SABER data at all altitudes, particularly at 60 km. While the NN‐MLT model accurately captures the seasonal variations of MLT temperature, the analysis leads to the conclusion that it consistently outperforms the empirical model and aligns closely with observations. Plain Language Summary The middle atmosphere serves as a connection between the lower and upper atmospheres through wave dynamics. The mesosphere and lower thermosphere (MLT) region, often called the “ignosphere,” is challenging to study due to the scarcity of reliable and continuous measurements. In this paper, the first attempt to develop a low‐latitude NN‐MLT model based on neural network techniques is presented using 15 years of SABER observation data. The model effectively captures the spatiotemporal variations and fits well with the standard empirical model (NRLMSIS2‐0) and SABER observations. Key Points A neural networks‐mesosphere and lower thermosphere (NN‐MLT) model based on artificial NN is developed using Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry observations to predict MLT temperature variability The newly developed NN‐MLT model shows potential in accurately predicting MLT temperature variability over low latitudes The NN‐MLT model can significantly enhance the prediction capabilities for temperatures in the MLT
Abstract The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of reliable measurements makes continuous monitoring of these areas challenging. Therefore, the necessity for studies focused on the MLT region cannot be overstated, as they are essential for developing effective models that meet the accuracy requirements of satellite‐based observations. The neural networks NN‐MLT model, developed using 15 years of Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics/satellite, equipped with Broadband Emission Radiometry (SABER) observed temperature data spanning from January 2006 to December 2020, employs neural network techniques. The data set was split, with 90% used for training and the remaining 10% allocated for prediction. The model's validation was tested with two other partitions (80(20) and 70(30)). The 90(10) partition, exhibiting a high correlation coefficient (R), low standard deviation (σ), and low root mean square error (RMSE), demonstrated the model's good performance. As clearly shown from statistical metrics (R, RMSE, mean, and σ) at three specific altitude levels (60, 75, and 90 km), the NN‐MLT model's performance aligns closely with the empirical model (NRLMSISE2‐0) and SABER observations. The NN‐MLT model displays a high R (0.74) and low RMSE (4.35 K) at 60 km, indicating its effective performance compared to the other two heights of 75 and 90 km. The NN‐MLT model's spatiotemporal variability in MLT temperature prediction agrees well with the SABER data at all altitudes, particularly at 60 km. While the NN‐MLT model accurately captures the seasonal variations of MLT temperature, the analysis leads to the conclusion that it consistently outperforms the empirical model and aligns closely with observations.
Author Guimarães Santos, Celso Augusto
Jaya Prakash Raju, U.
Lingerew, Chalachew
Author_xml – sequence: 1
  givenname: Chalachew
  orcidid: 0000-0002-0860-3688
  surname: Lingerew
  fullname: Lingerew, Chalachew
  email: chalachewlingerew@gmail.com
  organization: Bahir Dar University
– sequence: 2
  givenname: U.
  orcidid: 0000-0003-1949-7574
  surname: Jaya Prakash Raju
  fullname: Jaya Prakash Raju, U.
  organization: Bahir Dar University
– sequence: 3
  givenname: Celso Augusto
  orcidid: 0000-0001-7927-9718
  surname: Guimarães Santos
  fullname: Guimarães Santos, Celso Augusto
  organization: Federal University of Paraíba
BookMark eNp9UcFOAjEUbIwmInLzA_oBoq_ttmyPYFBJFjTAfdNtu6S4bE13lXDzE_xGv8QCxnjyNJP3ZiZ5by7Qae1ri9AVgRsCVN5SoGw8hEgZnKAOZYz1OaTJ6R9-jnpNswYAQrkAmnTQbjb7-vicZks89cZW-DlY43TrfI1LH3Dmt3Gdqda1b8biuV3tNyPVWIMjGYbWlU47VeGZfQsHaLc-vGBVm2iuV9G9tGGDF8PReI6fisaGd7WPby7RWamqxvZ-sIuW9-Pl3WM_e3qY3A2zvmZM0r4EI6guhWSa85JrzYFzkYACLRSkRFlmElJEhQBimZAFDATjshBGDArJumhyjDVerfPX4DYq7HKvXH4Y-LDKVbxCVzbnA8kSI5jSIBNVpmmRECMhEWlpFI9P7KLrY5YOvmmCLX_zCOT7EvK_JUQ5Pcq3rrK7f7X5eLGghMfJN9fkiqQ
Cites_doi 10.1029/2018SW001907
10.1029/2002ja009430
10.1029/90ja02125
10.1029/ja092ia05p04649
10.1029/2002RG000121
10.1016/j.asr.2022.06.051
10.1029/2000jd900514
10.1029/2012JD017455
10.1007/BF02478259
10.1038/323533a0
10.1016/S1364-6826(02)00293-6
10.1029/2008JD010013
10.1029/2021JD034719
10.21236/AD0241531
10.1002/int.4550080403
10.3847/1538-4357/ac8d07
10.1007/s40313-013-0071-9
10.1016/j.jastp.2014.08.010
10.1002/2017JA024795
10.1029/JA078i016p02977
10.1029/2001jd001366
10.1016/j.jastp.2007.09.002
10.1109/6.4520
10.1051/swsc/2015001
10.1029/ja082i016p02139
10.1029/2011JA016646
10.1016/j.jestch.2016.11.002
10.1186/1880-5981-66-103
10.1186/s40645-015-0035-8
10.1109/ICNN.1997.614194
10.1029/2021GL095226
10.1029/2020EA001321
10.1007/s11200007-0015-6
10.1162/neco.1992.4.3.415
10.1002/2016JA023564
10.3390/w13091294
10.1029/2007JD008546
ContentType Journal Article
Copyright 2023 The Authors.
Copyright_xml – notice: 2023 The Authors.
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1029/2023EA002930
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_57934d63ac094af88b41d90468fda523
10_1029_2023EA002930
ESS21502
Genre researchArticle
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3392-90d62cf693c55f5cc5055640a0c6a081ae3d41bcf6601e369b076359b6d67b93
IEDL.DBID DOA
ISSN 2333-5084
IngestDate Tue Oct 22 15:11:23 EDT 2024
Thu Sep 26 15:49:13 EDT 2024
Sat Aug 24 00:56:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3392-90d62cf693c55f5cc5055640a0c6a081ae3d41bcf6601e369b076359b6d67b93
ORCID 0000-0002-0860-3688
0000-0001-7927-9718
0000-0003-1949-7574
OpenAccessLink https://doaj.org/article/57934d63ac094af88b41d90468fda523
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_57934d63ac094af88b41d90468fda523
crossref_primary_10_1029_2023EA002930
wiley_primary_10_1029_2023EA002930_ESS21502
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2023
Publisher American Geophysical Union (AGU)
Publisher_xml – name: American Geophysical Union (AGU)
References 2011; 116
2015; 2
1993; 8
2017; 20
2021; 48
1943; 5
2015; 5
2022; 70
2013; 24
1987; 92
1973; 78
1991; 96
2009
1997
2006
2005
2022; 938
1992
1970
2007; 51
1997; 3
2014; 66
1977; 82
2001; 106
1999
2020; 7
2021; 13
2007; 112
1986; 323
2023
1988; 25
2002; 107
1960
2008; 113
2017; 122
2003; 41
2012; 117
2014; 120
2018; 16
2007; 69
2022; 127
2003; 65
1992; 4
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Blum A. (e_1_2_9_6_1) 1992
Burden F. (e_1_2_9_8_1) 2009
Berry M. J. (e_1_2_9_4_1) 1997
Haykin S. (e_1_2_9_17_1) 1999
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
Jacchia L. (e_1_2_9_23_1) 1970
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Demuth H. (e_1_2_9_10_1) 2006
Jie Z. (e_1_2_9_26_1) 2023
e_1_2_9_3_1
Loh H. C. (e_1_2_9_29_1) 2005
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 5
  start-page: 1
  issue: A1
  year: 2015
  end-page: 8
  article-title: The DTM‐2013 thermosphere model
  publication-title: Journal of Space Weather and Space Climate
– start-page: 96
  year: 1960
  end-page: 104
– volume: 112
  issue: D24
  year: 2007
  article-title: Global structure and long‐term variations of zonal mean temperature observed by TIMED/SABER
  publication-title: Journal of Geophysical Research
– volume: 938
  issue: 2
  year: 2022
  article-title: Spectral analysis of gravity waves in the Martian thermosphere during low solar activity based on MAVEN/NGIMS observations
  publication-title: The Astrophysical Journal
– year: 2005
– volume: 78
  start-page: 2977
  issue: 16
  year: 1973
  end-page: 3299
  article-title: Thermosphere wind effects on the distribution of helium and argon in the Earth's upper atmosphere
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 11
  year: 2022
  article-title: Observations of inertia gravity waves in the Western Pacific and their characteristic in the 2015/2016 Quasi‐biennial oscillation disruption
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 65
  start-page: 245
  issue: 2
  year: 2003
  end-page: 267
  article-title: Mesospheric temperature from UARS MLS: Retrieval and validation
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 107
  start-page: 1452
  issue: A12
  year: 2002
  end-page: 1468
  article-title: NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues
  publication-title: Journal of Geophysical Research
– start-page: 23
  year: 2009
  end-page: 42
– volume: 117
  start-page: 1
  issue: D7
  year: 2012
  end-page: 14
  article-title: TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes
  publication-title: Journal of Geophysical Research
– volume: 120
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Long‐term variabilities and tendencies in zonal mean TIMED–SABER ozone and temperature in the middle atmosphere at 10–15°N
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 16
  start-page: 1424
  issue: 9
  year: 2018
  end-page: 1436
  article-title: A Hybrid Regression Neural Network (HRNN) method for forecasting the solar activity
  publication-title: Space Weather
– volume: 24
  start-page: 764
  issue: 6
  year: 2013
  end-page: 772
  article-title: Improved structure detection for polynomial NARX models using a multi objective error reduction ratio
  publication-title: Journal of Control, Automation and Electrical Systems
– volume: 107
  start-page: 4389
  issue: D19
  year: 2002
  end-page: 4411
  article-title: Seasonal and longer‐term variations in middle atmosphere temperature from HALOE on UARS
  publication-title: Journal of Geophysical Research
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  article-title: Learning representations by back‐propagating errors
  publication-title: Nature
– year: 1992
– volume: 48
  start-page: 1
  issue: 18
  year: 2021
  end-page: 8
  article-title: Interaction between stratospheric kelvin waves and gravity waves in the easterly QBO phase
  publication-title: Geophysical Research Letters
– volume: 2
  start-page: 1
  year: 2015
  end-page: 13
  article-title: The dynamics of the mesosphere and lower thermosphere: A brief review
  publication-title: Progress in Earth and Planetary Science
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bulletin of Mathematical Biophysics
– volume: 20
  start-page: 795
  issue: 2
  year: 2017
  end-page: 804
  article-title: Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters
  publication-title: Engineering Science and Technology, an International Journal
– volume: 82
  start-page: 2139
  issue: 16
  year: 1977
  end-page: 2147
  article-title: A global thermosphere model based on mass spectrometer and incoherent scatter data MSIS, 1. N2 density and temperature
  publication-title: Journal of Geophysical Research
– volume: 122
  start-page: 4801
  issue: 4
  year: 2017
  end-page: 4818
  article-title: Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979–2010) extended CMD simulations and a comparison with the 14 year (2002–2015) TIMED/SABER observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 106
  start-page: 1551
  issue: D2
  year: 2001
  end-page: 1568
  article-title: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols
  publication-title: Journal of Geophysical Research
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  end-page: 447
  article-title: Bayesian interpolation
  publication-title: Neural Computation
– volume: 113
  start-page: 1
  issue: D17101
  year: 2008
  end-page: 27
  article-title: Assessment of the quality of the Version 1.07 temperature‐versus pressure profiles of the middle atmosphere from TIMED/SABER
  publication-title: Journal of Geophysical Research
– volume: 66
  start-page: 1
  issue: 103
  year: 2014
  end-page: 24
  article-title: Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its comparison with SABER
  publication-title: Earth Planets and Space
– volume: 51
  start-page: 279
  issue: 2
  year: 2007
  end-page: 292
  article-title: A neural network approach for regional vertical total electron content modelling
  publication-title: Studia Geophysica et Geodaetica
– volume: 122
  start-page: 11743
  issue: 11
  year: 2017
  end-page: 11755
  article-title: An Artificial Neural Network based Ionospheric Model to predict NmF2 and hmF2 using long‐term data set of FORMOSAT‐3/COSMIC radio occultation observations: Preliminary results
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 92
  start-page: 4649
  issue: A5
  year: 1987
  end-page: 4662
  article-title: MSIS‐86 thermosphere model
  publication-title: Journal of Geophysical Research
– volume: 3
  start-page: 1930
  year: 1997
  end-page: 1935
– volume: 8
  start-page: 453
  issue: 4
  year: 1993
  end-page: 507
  article-title: Adaptive neural networks and their application
  publication-title: International Journal of Intelligent Systems
– year: 2006
– volume: 7
  issue: 3
  year: 2020
  article-title: NRLMSIS 2.0: A whole atmosphere empirical model of temperature and neutral species densities
  publication-title: Earth and Space Science
– year: 1997
– year: 2023
– volume: 69
  start-page: 1842
  issue: 15
  year: 2007
  end-page: 1850
  article-title: Prediction of global positioning system total electron content using Neural Networks over South Africa
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 13
  issue: 9
  year: 2021
  article-title: Review of neural networks for air temperature forecasting
  publication-title: Water
– volume: 25
  start-page: 36
  issue: 3
  year: 1988
  end-page: 41
  article-title: Neurocomputing: Picking the human brain
  publication-title: IEEE Spectrum
– year: 1970
– volume: 116
  year: 2011
  article-title: Long‐term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences
  publication-title: Journal of Geophysical Research
– volume: 41
  issue: 4
  year: 2003
  article-title: Review of mesospheric temperature trends
  publication-title: Reviews of Geophysics
– volume: 96
  start-page: 1159
  issue: A2
  year: 1991
  end-page: 1172
  article-title: Extension of the MSIS Thermosphere Model into the middle and lower atmosphere
  publication-title: Journal of Geophysical Research
– volume: 70
  start-page: 2095
  issue: 7
  year: 2022
  end-page: 2111
  article-title: Long‐term temperature and ozone response to natural drivers in the mesospheric region using 16 years (2005–2020) of TIMED/SABER observation data at 5–150N
  publication-title: Advances in Space Research
– year: 1999
– ident: e_1_2_9_34_1
  doi: 10.1029/2018SW001907
– volume-title: Observation based climatology Martian atmospheric waves perturbation Datasets
  year: 2023
  ident: e_1_2_9_26_1
  contributor:
    fullname: Jie Z.
– ident: e_1_2_9_35_1
  doi: 10.1029/2002ja009430
– ident: e_1_2_9_21_1
  doi: 10.1029/90ja02125
– ident: e_1_2_9_20_1
  doi: 10.1029/ja092ia05p04649
– ident: e_1_2_9_3_1
  doi: 10.1029/2002RG000121
– volume-title: Neural network toolbox: For use with MatLab
  year: 2006
  ident: e_1_2_9_10_1
  contributor:
    fullname: Demuth H.
– ident: e_1_2_9_5_1
  doi: 10.1016/j.asr.2022.06.051
– ident: e_1_2_9_24_1
  doi: 10.1029/2000jd900514
– ident: e_1_2_9_15_1
  doi: 10.1029/2012JD017455
– volume-title: Neural networks: A comprehensive foundation
  year: 1999
  ident: e_1_2_9_17_1
  contributor:
    fullname: Haykin S.
– ident: e_1_2_9_32_1
  doi: 10.1007/BF02478259
– ident: e_1_2_9_39_1
  doi: 10.1038/323533a0
– ident: e_1_2_9_45_1
  doi: 10.1016/S1364-6826(02)00293-6
– ident: e_1_2_9_38_1
  doi: 10.1029/2008JD010013
– ident: e_1_2_9_18_1
  doi: 10.1029/2021JD034719
– ident: e_1_2_9_43_1
  doi: 10.21236/AD0241531
– ident: e_1_2_9_44_1
  doi: 10.1002/int.4550080403
– ident: e_1_2_9_25_1
  doi: 10.3847/1538-4357/ac8d07
– ident: e_1_2_9_31_1
  doi: 10.1007/s40313-013-0071-9
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jastp.2014.08.010
– ident: e_1_2_9_40_1
  doi: 10.1002/2017JA024795
– ident: e_1_2_9_36_1
  doi: 10.1029/JA078i016p02977
– ident: e_1_2_9_37_1
  doi: 10.1029/2001jd001366
– volume-title: Neural networks in C++: An object‐oriented framework for building connectionist systems
  year: 1992
  ident: e_1_2_9_6_1
  contributor:
    fullname: Blum A.
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jastp.2007.09.002
– ident: e_1_2_9_19_1
  doi: 10.1109/6.4520
– start-page: 23
  volume-title: Artificial neural networks: Methods and applications
  year: 2009
  ident: e_1_2_9_8_1
  contributor:
    fullname: Burden F.
– volume-title: Data mining techniques: For marketing, sales, and customer support
  year: 1997
  ident: e_1_2_9_4_1
  contributor:
    fullname: Berry M. J.
– ident: e_1_2_9_7_1
  doi: 10.1051/swsc/2015001
– ident: e_1_2_9_22_1
  doi: 10.1029/ja082i016p02139
– ident: e_1_2_9_2_1
  doi: 10.1029/2011JA016646
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jestch.2016.11.002
– volume-title: New static models of the thermosphere and exosphere with empirical temperature profiles, special report 313
  year: 1970
  ident: e_1_2_9_23_1
  contributor:
    fullname: Jacchia L.
– ident: e_1_2_9_14_1
  doi: 10.1186/1880-5981-66-103
– ident: e_1_2_9_42_1
  doi: 10.1186/s40645-015-0035-8
– ident: e_1_2_9_9_1
  doi: 10.1109/ICNN.1997.614194
– ident: e_1_2_9_27_1
  doi: 10.1029/2021GL095226
– ident: e_1_2_9_12_1
  doi: 10.1029/2020EA001321
– ident: e_1_2_9_28_1
  doi: 10.1007/s11200007-0015-6
– ident: e_1_2_9_30_1
  doi: 10.1162/neco.1992.4.3.415
– ident: e_1_2_9_13_1
  doi: 10.1002/2016JA023564
– volume-title: Neural network—Application of MatLab
  year: 2005
  ident: e_1_2_9_29_1
  contributor:
    fullname: Loh H. C.
– ident: e_1_2_9_41_1
  doi: 10.3390/w13091294
– ident: e_1_2_9_46_1
  doi: 10.1029/2007JD008546
SSID ssj0001256024
Score 2.2686272
Snippet The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The scarcity of...
Abstract The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The...
Abstract The low‐latitude mesosphere and lower thermosphere (MLT) regions are distinct and, highly turbulent transition zones in Earth's atmosphere. The...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms MLT
model performance
NN‐MLT
NRLMSIS2‐0
prediction
TIMED/SABER
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbyIT6wvctCTLO5udtPk2EqrSFtFK_S25NmLbKUq4s2f4G_0lziTXUt7ETztkk2yMHnMN5PJN4ScMimYgOGMdCJ1hDmsI2kdiwQ3sbdCOG_xvvNgyK8fs5txPq4dbngXpuKHmDvccGWE_RoXuNIvNdkAcmRi3u9uG0-VGJjsq0gag9z5aXa34GMBfR7y2qaMsQiwSFbHvkOri8UOlrRSIO9fBqtB2_Q2yUYNE2m7GtctsuLKbbJ2FdLwfuyQj-Hw-_Nr0B9RzGX2RO9meN6CMqYAQml_-g6f-zgT3qyj9w6DjmkHFJal8IK9VsQRFLk5wiMEg1NVWmhcTqD1CLZs-tDudO_prZ67bl92yajXHV1eR3UShcgwwD6RjC1PjeeSmTz3uTE50udksYoNV4AHlGM2SzTUANPMMS51jBx1UnPLW1qyPdIop6XbJ5Qbn7RUnjmv8SI6IBuVqFha7VyLeZE0ydmvDIvniiqjCEfcqSwWZd0kHRTwvA4SXIeC6WxS1OulyGHfyCxnyoD9qbwQOkusBGNeeKvAeG6S8zA8f_6pgDkMkCZOD_5V-5CsY3kVEHZEGq-zN3cM0ONVn4T59QMf5s-g
  priority: 102
  providerName: Wiley-Blackwell
Title NN‐MLT Model Prediction for Low‐Latitude Region Based on Artificial Neural Network and Long‐Term SABER Observations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023EA002930
https://doaj.org/article/57934d63ac094af88b41d90468fda523
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aELyIT6yPkoOeZCG72U2TYytVkVpLreBtydOLbKVWxJs_wd_oL3EmW6Ve9OJpl928mAmZ-ZLJN4QccSW5BHUmJlUmwRzWiXKeJ1JYFpyUPji873w1EBe3-eVdcbeQ6gtjwmp64FpwANgVz53g2gIQ0UFKk6dOAaqTwWlAUXH1ZWoBTNW7K2DJs3we6c4yhSCf9zp4CIUBzws2KFL1_3RNo205Wydrc6eQdurBbJAlX22SlfOYdPd1i7wOBh9v71f9McXMZQ90OMXTFZQoBZeT9icv8LuPen92no48hhjTLpgnR-EFW61pIigyccRHDP2munJQubqH2mNYoOlNp9sb0WvzvVH7tE3GZ73x6UUyT5mQWA6eTqKYE5kNQnFbFKGwtkCynJxpZoUG6689d3lqoAQAMc-FMgwZ6ZQRTrSN4jukUU0qv0uosCFt6yL3weC1c_BjdKqZcsb7Ng8ybZLjLxmWjzUxRhkPtDNVLsq6Sboo4O8ySGcdP4CSy7mSy7-U3CQnUT2_9lTCjAUHhmV7_9HlPlnFxuuosAPSmE2f_SH4HzPTIstZPmzFCfcJMPHWfA
link.rule.ids 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6hRKi9VECLmvLaA5wqq3bW3uweExQI4KQVdSrExdonF-SgQIS48RP4jfwSZtZuFC6VerJlz9rS7Oubx35DyCGTggnozkgnUkdYwzqS1rFIcBN7K4TzFs87jyd8NE3Pr7Krps4pnoWp-SGWDjecGWG9xgmODumGbQBJMrHw97CPYSUGNns7w5Bei7T7f6bX0xU3C2zpobRtlzEWARxJm_R3aPdj9RPvNqbA3_8er4YN52SDfGqQIu3XXbtJ1ly1RdZPQyXep8_kaTJ5fX4Z5wXFcma39NccQy6oZgo4lOazR3id42BYWEcvHeYd0wHsWZbCDX615o6gSM8RLiEfnKrKQuPqBloXsGrT3_3B8JL-1Evv7f0XUpwMi-NR1NRRiAwD-BPJ2PKu8Vwyk2U-MyZDBp00VrHhCiCBcsymiQYJsM4c41LHSFMnNbe8pyXbJq1qVrmvhHLjk57KUuc1nkUHcKMSFUurnesxL5IOOfqrw_KuZssoQ5S7K8tVXXfIABW8lEGO6_BgNr8pmylTZrB0pJYzZcAEVV4InSZWgj0vvFVgP3fI99A9__xTCcMYUE3c_fZf0gfkw6gY52V-NrnYIR9Rps4P2yWth_nC7QESedD7zWh7A4kM1No
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQK1Zc0PJYUZaHD7snFJHEjmsfW2h5lVKxReIW-ckFpaiAVtz4CfxGfgkzTqjKZSVOiZJxIo0f8814_A0hv5mSTEJ3JiZTJsEa1olyniVS2DQ4KX1weN75YihOrvnZTXHTBNzwLEzNDzELuOHMiOs1TvB7FxqyAeTIxLrfvQ7uKjFw2b9xQOLInZ_z0VyMBex5rGubM8YSwCK8yX2HVgfzH_hklSJ5_2ewGq1N_wdZaWAi7dT9ukoWfLVGlo5jGd7ndfI8HL69vF4MxhRrmd3R0RT3W1DHFEAoHUz-wesBjoQn5-mVx6Rj2gWD5Sjc4Fdr4giK3BzxEpPBqa4cNK5uofUYlmz6t9PtXdFLMwvdPmyQcb83PjxJmiIKiWWAfRKVOpHbIBSzRREKawukz-GpTq3QgAe0Z45nBiTANfNMKJMiR50ywom2UewnWawmld8kVNiQtXXBfTB4EB2Qjc50qpzxvs2CzFrkz4cOy_uaKqOMW9y5Kud13SJdVPBMBgmu44PJ9LZs5ktZwLrBnWDagv-pg5SGZ06BMy-D0-A8t8h-7J7__qmEMQyQJs23viS9R76Pjvrl4HR4_osso0idG7ZNFh-nT34HUMij2Y1D7R01ytI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NN%E2%80%90MLT+Model+Prediction+for+Low%E2%80%90Latitude+Region+Based+on+Artificial+Neural+Network+and+Long%E2%80%90Term+SABER+Observations&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Chalachew+Lingerew&rft.au=U.+Jaya+Prakash+Raju&rft.au=Celso+Augusto+Guimar%C3%A3es+Santos&rft.date=2023-06-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=2333-5084&rft.volume=10&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023EA002930&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57934d63ac094af88b41d90468fda523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon