Monotonic uplift behavior of anchored pier foundations in soil overlying rock
Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas. However, there are soil layers with a certain thickness on the rocks in these mountainous areas, and the utilization of those soil layers is a problem worthy of attention in foundation constru...
Saved in:
Published in | Journal of Zhejiang University. A. Science Vol. 24; no. 7; pp. 569 - 583 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hangzhou
Zhejiang University Press
01.07.2023
Springer Nature B.V College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China%College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China%Zhejiang Electric Power Design Institute Co.Ltd.,China Energy Engineering Group,Hangzhou 310012,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas. However, there are soil layers with a certain thickness on the rocks in these mountainous areas, and the utilization of those soil layers is a problem worthy of attention in foundation construction. Considering construction- and cost-related factors, traditional single-form foundations built on such sites often cannot provide sufficient resistance against uplift. Therefore, an anchored pier foundation composed of anchors and belled piers, specifically constructed for such conditions, can be invaluable in practice. This paper introduces an experimental and analytical study to investigate the uplift capacity and the uplift mobilization coefficients (UMCs) of the anchored pier foundation. In this study, three in-situ monotonic pullout tests were carried out to analyze the load–displacement characteristics, axial force distribution, load transfer mechanism, and failure mechanism. A hyperbolic model is used to fit the load–displacement curves and to reveal the asynchrony of the ultimate limit states (ULSs) of the anchor group and the belled pier. Based on the results, the uplift capacity can be calculated by the UMCs and the anchor group and pier uplift capacities. Finally, combined with the estimation of the deformation modulus of the soil and rock, the verification calculation of the uplift capacity and UMC was carried out on the test results from different anchored pier foundations. |
---|---|
AbstractList | Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas. However, there are soil layers with a certain thickness on the rocks in these mountainous areas, and the utilization of those soil layers is a problem worthy of attention in foundation construction. Considering construction- and cost-related factors, traditional single-form foundations built on such sites often cannot provide sufficient resistance against uplift. Therefore, an anchored pier foundation composed of anchors and belled piers, specifically constructed for such conditions, can be invaluable in practice. This paper introduces an experimental and analytical study to investigate the uplift capacity and the uplift mobilization coefficients (UMCs) of the anchored pier foundation. In this study, three in-situ monotonic pullout tests were carried out to analyze the load–displacement characteristics, axial force distribution, load transfer mechanism, and failure mechanism. A hyperbolic model is used to fit the load–displacement curves and to reveal the asynchrony of the ultimate limit states (ULSs) of the anchor group and the belled pier. Based on the results, the uplift capacity can be calculated by the UMCs and the anchor group and pier uplift capacities. Finally, combined with the estimation of the deformation modulus of the soil and rock, the verification calculation of the uplift capacity and UMC was carried out on the test results from different anchored pier foundations. |
Author | Cai, Yuanqiang Pan, Feng Tang, Chong Sun, Yizhou Sun, Honglei |
AuthorAffiliation | College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China%College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China%Zhejiang Electric Power Design Institute Co.Ltd.,China Energy Engineering Group,Hangzhou 310012,China |
AuthorAffiliation_xml | – name: College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China%College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China%Zhejiang Electric Power Design Institute Co.Ltd.,China Energy Engineering Group,Hangzhou 310012,China |
Author_xml | – sequence: 1 givenname: Yizhou orcidid: 0000-0002-2553-352X surname: Sun fullname: Sun, Yizhou organization: College of Civil Engineering and Architecture, Zhejiang University – sequence: 2 givenname: Honglei surname: Sun fullname: Sun, Honglei email: sunhonglei@zju.edu.cn organization: College of Civil Engineering, Zhejiang University of Technology – sequence: 3 givenname: Chong surname: Tang fullname: Tang, Chong organization: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology – sequence: 4 givenname: Yuanqiang surname: Cai fullname: Cai, Yuanqiang organization: College of Civil Engineering, Zhejiang University of Technology – sequence: 5 givenname: Feng surname: Pan fullname: Pan, Feng organization: Zhejiang Electric Power Design Institute Co. Ltd., China Energy Engineering Group |
BookMark | eNp1kL1PwzAQxS1UJKAwsltiYkjxR2KHESG-JCoWkNgi1z4Xh2AXOym0fz0pASEhWO5u-L27d28PjXzwgNAhJRMqOD2p112anDFGSJ6LLbRLS8EyKmUx6mcheVaI4nEH7aVUE1JIIuQumk6DD23wTuNu0Tjb4hk8qaULEQeLlddPIYLBCwcR29B5o1oXfMLO4xRcg8MSYrNyfo5j0M_7aNuqJsHBVx-jh8uL-_Pr7Pbu6ub87DbTnJdtZg0QpYlRotQchFS50QAEKBgQzJRMWK5BnUrKJVOlIcJKQ5QwOVWFmJV8jI6HvW_KW-XnVR266PuL1bo27--zChhhnEjS1zE6GthFDK8dpPYHZmXOijzPS9pTfKB0DClFsJV27eevbVSuqSipNhlXm4yr74x7VfZLtYjuRcXVv_xk4FPP-TnEHy9_Cz4A3U2RyQ |
CitedBy_id | crossref_primary_10_3390_buildings14123987 crossref_primary_10_3390_buildings14082580 |
Cites_doi | 10.1061/40803(187)3 10.1016/j.tust.2004.02.129 10.1002/nag.1610100105 10.1061/(ASCE)GT.1943-5606.0000547 10.1520/D2487-17E01 10.1520/D3689_D3689M-07R13E01 10.3969/j.issn.1000-7229.2012.03.002 10.1016/j.compgeo.2022.104635 10.4028/www.scientific.net/AMM.459.641 10.1139/t68-024 10.1109/TPAS.1979.319483 10.1520/D6032_D6032M-17 10.1680/jgeen.14.00154 10.1680/geng.12.00072 10.1139/cgj-2014-0075 10.1007/s10706-018-00782-0 10.3208/sandf.51.483 10.1061/(ASCE)GT.1943-5606.0000953 10.1002/nag.3290 10.1061/(ASCE)GM.1943-5622.0000484 10.1520/D5878-19 10.1016/j.oceaneng.2021.110483 10.1016/j.geomorph.2015.05.016 10.1061/(ASCE)GT.1943-5606.0002442 10.1016/j.enggeo.2008.06.002 10.1109/IEEESTD.2001.93372 10.1061/(ASCE)GT.1943-5606.0001263 10.1016/S0148-9062(99)00021-2 10.1061/(ASCE)GT.1943-5606.0001894 10.1007/s11440-022-01503-x 10.1201/9781315163871 |
ContentType | Journal Article |
Copyright | Zhejiang University Press 2023 Zhejiang University Press 2023. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Zhejiang University Press 2023 – notice: Zhejiang University Press 2023. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1631/jzus.A2200446 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
DocumentTitle_FL | 上覆土层岩石锚墩基础单调上拔承载特性研究 |
EISSN | 1862-1775 |
EndPage | 583 |
ExternalDocumentID | zjdxxb_e202307002 10_1631_jzus_A2200446 |
GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29L 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8UJ 92E 92I 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKDD AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG CAJEC CCEZO CEKLB CHBEP COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O9J P9T PF0 PT4 Q-- QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGP TR2 TSG TUC U1G U2A U5M UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 4A8 PSX |
ID | FETCH-LOGICAL-c338t-fde0ac0da68c3e67a4dcee0e1ede62d826f3cea971372a8d06f7d0a6d41a56b83 |
IEDL.DBID | U2A |
ISSN | 1673-565X |
IngestDate | Thu May 29 04:06:16 EDT 2025 Sun Jul 13 05:38:19 EDT 2025 Tue Jul 01 01:18:40 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 21 02:42:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Anchored pier foundation 扩底墩 岩石锚杆 上拔承载发挥系数 Rock anchor Belled pier 锚墩基础 Uplift capacity Uplift mobilization coefficient (UMC) 抗拔承载力 Uplift mobilization coefficient(UMC) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-fde0ac0da68c3e67a4dcee0e1ede62d826f3cea971372a8d06f7d0a6d41a56b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2553-352X |
PQID | 2842544481 |
PQPubID | 2043632 |
PageCount | 15 |
ParticipantIDs | wanfang_journals_zjdxxb_e202307002 proquest_journals_2842544481 crossref_citationtrail_10_1631_jzus_A2200446 crossref_primary_10_1631_jzus_A2200446 springer_journals_10_1631_jzus_A2200446 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hangzhou |
PublicationPlace_xml | – name: Hangzhou – name: Heidelberg |
PublicationSubtitle | Applied Physics & Engineering |
PublicationTitle | Journal of Zhejiang University. A. Science |
PublicationTitleAbbrev | J. Zhejiang Univ. Sci. A |
PublicationTitle_FL | Journal of Zhejiang University Science A:Applied Physics & Engineering |
PublicationYear | 2023 |
Publisher | Zhejiang University Press Springer Nature B.V College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China%College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China%Zhejiang Electric Power Design Institute Co.Ltd.,China Energy Engineering Group,Hangzhou 310012,China |
Publisher_xml | – name: Zhejiang University Press – name: Springer Nature B.V – name: College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China%College of Civil Engineering,Zhejiang University of Technology,Hangzhou 310014,China%State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China%Zhejiang Electric Power Design Institute Co.Ltd.,China Energy Engineering Group,Hangzhou 310012,China |
References | HiranyAKulhawyFHConduct and Interpretation of Load Tests on Drilled Shaft Foundations: Volume 1, Detailed Guidelines1988Palo Alto, USAElectric Power Research InstituteTechnical Report No. EPRI-EL-5915-Vol.1 IsmaelNFRadhakrishnaHSKlymTWUplift capacity of rock anchor groupsIEEE Transactions on Power Apparatus and Systems19799851653165810.1109/TPAS.1979.319483 KimHKChoNJA design method to incur ductile failure of rock anchors subjected to tensile loadsElectronic Journal of Geotechnical Engineering20121727372746 PachecoMPDanzigerFABPintoCPDesign of shallow foundations under tensile loading for transmission line towers: an overviewEngineering Geology20081013–422623510.1016/j.enggeo.2008.06.002 ZhangQQFengRFXuZHEvaluation of ultimate pullout capacity of anchor cables embedded in rock using a unified rupture shape modelGeotechnical and Geological Engineering20193742625263710.1007/s10706-018-00782-0 BSI (British Standards Institution), 2013. Execution of Special Geotechnical Works–Ground Anchors, BS EN 1537: 2013. BSI, UK. MeyerhofGGAdamsJIThe ultimate uplift capacity of foundationsCanadian Geotechnical Journal19685422524410.1139/t68-024 QianZZLuXLTongRMUplift load-movement response of bell pier foundations in Gobi gravelProceedings of the Institution of Civil Engineers-Geotechnical Engineering2014167438038910.1680/geng.12.00072 IEEE Institute of ElectricalElectronics EngineersIEEE Guide for Transmission Structure Foundation Design and Testing2001USAIEEEIEEE Std 691-2001 LiLCZhengMYLiuXNumerical analysis of the cyclic loading behavior of monopile and hybrid pile foundationComputers and Geotechnics202214410463510.1016/j.compgeo.2022.104635 ASTM American Society for TestingMaterialsStandard Test Methods for Deep Foundations Under Static Axial Tensile Load2013USAASTMASTM D3689/D3689M-07(2013)e1 Castelli F, Maugeri M, Motta E, 1991. Analisi non lineare del cedimento di un Palo Singolo. Rivista Italiana di Geotecnica, p.115–135 (in Italian). SunYZPanKTangCField experimental study on cyclic uplift behavior of anchored pier foundationsActa Geotechnica202217104419443410.1007/s11440-022-01503-x ASTM American Society for TestingMaterialsStandard Guides for Using Rock-Mass Classification Systems for Engineering Purposes2019USAASTMASTM D5878-19 MarchettiSCrappsDKFlat Dilatometer Manual1981Gainesville, Florida, USAGPE Inc FabrisCSchweigerHFPulkoBNumerical simulation of a ground anchor pullout test monitored with fiber optic sensorsJournal of Geotechnical and Geoenvironmental Engineering202114720402016310.1061/(ASCE)GT.1943-5606.0002442 KulhawyFHDiscussion of “instrumented static load test on rock-socketed micropile” by Hoyoung Seo, Monica Prezzi, and Rodrigo SalgadoJournal of Geotechnical and Geoenvironmental Engineering201514160701500210.1061/(ASCE)GT.1943-5606.0001263 HarrisDEMadabhushiGSPUplift capacity of an under-reamed pile foundationProceedings of the Institution of Civil Engineers-Geotechnical Engineering2015168652653810.1680/jgeen.14.00154 HondaTHiraiYSatoEUplift capacity of belled and multi-belled piles in dense sandSoils and Foundations201151348349610.3208/sandf.51.483 ChowYKAnalysis of vertically loaded pile groupsInternational Journal for Numerical and Analytical Methods in Geomechanics1986101597210.1002/nag.1610100105 WangGKasaliGSitarNStatic and dynamic axial response of drilled piers. I: field testsJournal of Geotechnical and Geoenvironmental Engineering2011137121133114210.1061/(ASCE)GT.1943-5606.0000547 JiaYZWangMQZhangJThe numerical simulation analysis of transmission lines new composite type foundationApplied Mechanics and Materials201445964164510.4028/www.scientific.net/AMM.459.641 ParkJQiuTKimYField and laboratory investigation of pullout resistance of steel anchors in rockJournal of Geotechnical and Geoenvironmental Engineering2013139122219222410.1061/(ASCE)GT.1943-5606.0000953 ASTM American Society for TestingMaterialsStandard Test Method for Determining Rock Quality Designation (RQD) of Rock Core2017USAASTMASTM D6032/D6032M-17 ZhangYPJiangGSWuWBAnalytical solution for distributed torsional low strain integrity test for pipe pileInternational Journal for Numerical and Analytical Methods in Geomechanics2022461476710.1002/nag.3290 CaiYEsakiTJiangYJAn analytical model to predict axial load in grouted rock bolt for soft rock tunnellingTunnelling and Underground Space Technology200419660761810.1016/j.tust.2004.02.129 Chin FK, 1970. Estimation of the ultimate load of piles from tests not carried to failure. Proceedings of the 2nd Southeast Asian Conference on Soil Engineering, p.81–92. RandolphMFA Theoretical Study of the Performance of Piles1978Cambridge, UKUniversity of Cambridge ChengYFLuXLDingSJExperimental and computational research on the uplift of composite foundation of belled pier and rock anchor in transmission line engineeringElectric Power Construction2012333610 MaTHLiCJLuZMRainfall intensity - duration thresholds for the initiation of landslides in Zhejiang Province, ChinaGeomorphology201524519320610.1016/j.geomorph.2015.05.016 DasBMShallow Foundations: Bearing Capacity and Settlement20173rd EditionBoca Raton, USACRC Press10.1201/9781315163871 TangCPhoonKKStatistics of model factors and consideration in reliability-based design of axially loaded helical pilesJournal of Geotechnical and Geoenvironmental Engineering201814480401805010.1061/(ASCE)GT.1943-5606.0001894 ASTM American Society for TestingMaterialsStandard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)2017USAASTMASTM D2487-17e1 MaSQNemcikJAzizNNumerical modeling of fully grouted rockbolts reaching free-end slipInternational Journal of Geomechanics20161610401502010.1061/(ASCE)GM.1943-5622.0000484 Kulhawy FH, Hirany A, 1989. Interpretation of load tests on drilled shafts—part 2: axial uplift. Foundation Engineering: Current Principles and Practices, p.1150–1159. QianZZLuXLHanXInterpretation of uplift load tests on belled piers in Gobi gravelCanadian Geotechnical Journal201552799299810.1139/cgj-2014-0075 WuWBYangZJLiuXHorizontal dynamic response of pile in unsaturated soil considering its construction disturbance effectOcean Engineering202224511048310.1016/j.oceaneng.2021.110483 SerranoAOlallaCTensile resistance of rock anchorsInternational Journal of Rock Mechanics and Mining Sciences199936444947410.1016/S0148-9062(99)00021-2 Phoon KK, 2006. Modeling and simulation of stochastic data. GeoCongress 2006, p.1–17. https://doi.org/10.1061/40803(187)3 ASTM American Society for TestingMaterials (510_CR1) 2013 DE Harris (510_CR13) 2015; 168 T Honda (510_CR15) 2011; 51 NF Ismael (510_CR17) 1979; 98 510_CR21 ZZ Qian (510_CR31) 2015; 52 TH Ma (510_CR24) 2015; 245 GG Meyerhof (510_CR26) 1968; 5 A Serrano (510_CR33) 1999; 36 ASTM American Society for TestingMaterials (510_CR4) 2019 SQ Ma (510_CR23) 2016; 16 S Marchetti (510_CR25) 1981 BM Das (510_CR11) 2017 510_CR5 J Park (510_CR28) 2013; 139 YP Zhang (510_CR39) 2022; 46 C Fabris (510_CR12) 2021; 147 510_CR7 MP Pacheco (510_CR27) 2008; 101 510_CR9 WB Wu (510_CR37) 2022; 245 ASTM American Society for TestingMaterials (510_CR2) 2017 YK Chow (510_CR10) 1986; 10 Y Cai (510_CR6) 2004; 19 HK Kim (510_CR19) 2012; 17 LC Li (510_CR22) 2022; 144 YZ Sun (510_CR34) 2022; 17 QQ Zhang (510_CR38) 2019; 37 A Hirany (510_CR14) 1988 ASTM American Society for TestingMaterials (510_CR3) 2017 510_CR29 MF Randolph (510_CR32) 1978 IEEE Institute of ElectricalElectronics Engineers (510_CR16) 2001 ZZ Qian (510_CR30) 2014; 167 YZ Jia (510_CR18) 2014; 459 C Tang (510_CR35) 2018; 144 G Wang (510_CR36) 2011; 137 YF Cheng (510_CR8) 2012; 33 FH Kulhawy (510_CR20) 2015; 141 |
References_xml | – reference: ASTM American Society for TestingMaterialsStandard Test Method for Determining Rock Quality Designation (RQD) of Rock Core2017USAASTMASTM D6032/D6032M-17 – reference: MaSQNemcikJAzizNNumerical modeling of fully grouted rockbolts reaching free-end slipInternational Journal of Geomechanics20161610401502010.1061/(ASCE)GM.1943-5622.0000484 – reference: FabrisCSchweigerHFPulkoBNumerical simulation of a ground anchor pullout test monitored with fiber optic sensorsJournal of Geotechnical and Geoenvironmental Engineering202114720402016310.1061/(ASCE)GT.1943-5606.0002442 – reference: ParkJQiuTKimYField and laboratory investigation of pullout resistance of steel anchors in rockJournal of Geotechnical and Geoenvironmental Engineering2013139122219222410.1061/(ASCE)GT.1943-5606.0000953 – reference: WangGKasaliGSitarNStatic and dynamic axial response of drilled piers. I: field testsJournal of Geotechnical and Geoenvironmental Engineering2011137121133114210.1061/(ASCE)GT.1943-5606.0000547 – reference: IsmaelNFRadhakrishnaHSKlymTWUplift capacity of rock anchor groupsIEEE Transactions on Power Apparatus and Systems19799851653165810.1109/TPAS.1979.319483 – reference: PachecoMPDanzigerFABPintoCPDesign of shallow foundations under tensile loading for transmission line towers: an overviewEngineering Geology20081013–422623510.1016/j.enggeo.2008.06.002 – reference: MeyerhofGGAdamsJIThe ultimate uplift capacity of foundationsCanadian Geotechnical Journal19685422524410.1139/t68-024 – reference: ASTM American Society for TestingMaterialsStandard Test Methods for Deep Foundations Under Static Axial Tensile Load2013USAASTMASTM D3689/D3689M-07(2013)e1 – reference: HiranyAKulhawyFHConduct and Interpretation of Load Tests on Drilled Shaft Foundations: Volume 1, Detailed Guidelines1988Palo Alto, USAElectric Power Research InstituteTechnical Report No. EPRI-EL-5915-Vol.1 – reference: Phoon KK, 2006. Modeling and simulation of stochastic data. GeoCongress 2006, p.1–17. https://doi.org/10.1061/40803(187)3 – reference: ASTM American Society for TestingMaterialsStandard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)2017USAASTMASTM D2487-17e1 – reference: RandolphMFA Theoretical Study of the Performance of Piles1978Cambridge, UKUniversity of Cambridge – reference: SerranoAOlallaCTensile resistance of rock anchorsInternational Journal of Rock Mechanics and Mining Sciences199936444947410.1016/S0148-9062(99)00021-2 – reference: ZhangQQFengRFXuZHEvaluation of ultimate pullout capacity of anchor cables embedded in rock using a unified rupture shape modelGeotechnical and Geological Engineering20193742625263710.1007/s10706-018-00782-0 – reference: JiaYZWangMQZhangJThe numerical simulation analysis of transmission lines new composite type foundationApplied Mechanics and Materials201445964164510.4028/www.scientific.net/AMM.459.641 – reference: ZhangYPJiangGSWuWBAnalytical solution for distributed torsional low strain integrity test for pipe pileInternational Journal for Numerical and Analytical Methods in Geomechanics2022461476710.1002/nag.3290 – reference: IEEE Institute of ElectricalElectronics EngineersIEEE Guide for Transmission Structure Foundation Design and Testing2001USAIEEEIEEE Std 691-2001 – reference: DasBMShallow Foundations: Bearing Capacity and Settlement20173rd EditionBoca Raton, USACRC Press10.1201/9781315163871 – reference: Chin FK, 1970. Estimation of the ultimate load of piles from tests not carried to failure. Proceedings of the 2nd Southeast Asian Conference on Soil Engineering, p.81–92. – reference: MaTHLiCJLuZMRainfall intensity - duration thresholds for the initiation of landslides in Zhejiang Province, ChinaGeomorphology201524519320610.1016/j.geomorph.2015.05.016 – reference: MarchettiSCrappsDKFlat Dilatometer Manual1981Gainesville, Florida, USAGPE Inc – reference: ChengYFLuXLDingSJExperimental and computational research on the uplift of composite foundation of belled pier and rock anchor in transmission line engineeringElectric Power Construction2012333610 – reference: KulhawyFHDiscussion of “instrumented static load test on rock-socketed micropile” by Hoyoung Seo, Monica Prezzi, and Rodrigo SalgadoJournal of Geotechnical and Geoenvironmental Engineering201514160701500210.1061/(ASCE)GT.1943-5606.0001263 – reference: TangCPhoonKKStatistics of model factors and consideration in reliability-based design of axially loaded helical pilesJournal of Geotechnical and Geoenvironmental Engineering201814480401805010.1061/(ASCE)GT.1943-5606.0001894 – reference: ASTM American Society for TestingMaterialsStandard Guides for Using Rock-Mass Classification Systems for Engineering Purposes2019USAASTMASTM D5878-19 – reference: CaiYEsakiTJiangYJAn analytical model to predict axial load in grouted rock bolt for soft rock tunnellingTunnelling and Underground Space Technology200419660761810.1016/j.tust.2004.02.129 – reference: SunYZPanKTangCField experimental study on cyclic uplift behavior of anchored pier foundationsActa Geotechnica202217104419443410.1007/s11440-022-01503-x – reference: ChowYKAnalysis of vertically loaded pile groupsInternational Journal for Numerical and Analytical Methods in Geomechanics1986101597210.1002/nag.1610100105 – reference: QianZZLuXLHanXInterpretation of uplift load tests on belled piers in Gobi gravelCanadian Geotechnical Journal201552799299810.1139/cgj-2014-0075 – reference: WuWBYangZJLiuXHorizontal dynamic response of pile in unsaturated soil considering its construction disturbance effectOcean Engineering202224511048310.1016/j.oceaneng.2021.110483 – reference: HarrisDEMadabhushiGSPUplift capacity of an under-reamed pile foundationProceedings of the Institution of Civil Engineers-Geotechnical Engineering2015168652653810.1680/jgeen.14.00154 – reference: KimHKChoNJA design method to incur ductile failure of rock anchors subjected to tensile loadsElectronic Journal of Geotechnical Engineering20121727372746 – reference: QianZZLuXLTongRMUplift load-movement response of bell pier foundations in Gobi gravelProceedings of the Institution of Civil Engineers-Geotechnical Engineering2014167438038910.1680/geng.12.00072 – reference: LiLCZhengMYLiuXNumerical analysis of the cyclic loading behavior of monopile and hybrid pile foundationComputers and Geotechnics202214410463510.1016/j.compgeo.2022.104635 – reference: Castelli F, Maugeri M, Motta E, 1991. Analisi non lineare del cedimento di un Palo Singolo. Rivista Italiana di Geotecnica, p.115–135 (in Italian). – reference: Kulhawy FH, Hirany A, 1989. Interpretation of load tests on drilled shafts—part 2: axial uplift. Foundation Engineering: Current Principles and Practices, p.1150–1159. – reference: BSI (British Standards Institution), 2013. Execution of Special Geotechnical Works–Ground Anchors, BS EN 1537: 2013. BSI, UK. – reference: HondaTHiraiYSatoEUplift capacity of belled and multi-belled piles in dense sandSoils and Foundations201151348349610.3208/sandf.51.483 – ident: 510_CR29 doi: 10.1061/40803(187)3 – volume: 19 start-page: 607 issue: 6 year: 2004 ident: 510_CR6 publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2004.02.129 – volume: 10 start-page: 59 issue: 1 year: 1986 ident: 510_CR10 publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.1610100105 – volume: 137 start-page: 1133 issue: 12 year: 2011 ident: 510_CR36 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)GT.1943-5606.0000547 – volume-title: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) year: 2017 ident: 510_CR2 doi: 10.1520/D2487-17E01 – ident: 510_CR21 – volume-title: Standard Test Methods for Deep Foundations Under Static Axial Tensile Load year: 2013 ident: 510_CR1 doi: 10.1520/D3689_D3689M-07R13E01 – volume: 33 start-page: 6 issue: 3 year: 2012 ident: 510_CR8 publication-title: Electric Power Construction doi: 10.3969/j.issn.1000-7229.2012.03.002 – volume: 144 start-page: 104635 year: 2022 ident: 510_CR22 publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2022.104635 – ident: 510_CR7 – volume: 459 start-page: 641 year: 2014 ident: 510_CR18 publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.459.641 – ident: 510_CR5 – ident: 510_CR9 – volume: 5 start-page: 225 issue: 4 year: 1968 ident: 510_CR26 publication-title: Canadian Geotechnical Journal doi: 10.1139/t68-024 – volume: 98 start-page: 1653 issue: 5 year: 1979 ident: 510_CR17 publication-title: IEEE Transactions on Power Apparatus and Systems doi: 10.1109/TPAS.1979.319483 – volume-title: A Theoretical Study of the Performance of Piles year: 1978 ident: 510_CR32 – volume-title: Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core year: 2017 ident: 510_CR3 doi: 10.1520/D6032_D6032M-17 – volume: 168 start-page: 526 issue: 6 year: 2015 ident: 510_CR13 publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering doi: 10.1680/jgeen.14.00154 – volume: 167 start-page: 380 issue: 4 year: 2014 ident: 510_CR30 publication-title: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering doi: 10.1680/geng.12.00072 – volume: 52 start-page: 992 issue: 7 year: 2015 ident: 510_CR31 publication-title: Canadian Geotechnical Journal doi: 10.1139/cgj-2014-0075 – volume: 37 start-page: 2625 issue: 4 year: 2019 ident: 510_CR38 publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-018-00782-0 – volume-title: Flat Dilatometer Manual year: 1981 ident: 510_CR25 – volume: 51 start-page: 483 issue: 3 year: 2011 ident: 510_CR15 publication-title: Soils and Foundations doi: 10.3208/sandf.51.483 – volume: 139 start-page: 2219 issue: 12 year: 2013 ident: 510_CR28 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)GT.1943-5606.0000953 – volume: 46 start-page: 47 issue: 1 year: 2022 ident: 510_CR39 publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.3290 – volume: 17 start-page: 2737 year: 2012 ident: 510_CR19 publication-title: Electronic Journal of Geotechnical Engineering – volume: 16 start-page: 04015020 issue: 1 year: 2016 ident: 510_CR23 publication-title: International Journal of Geomechanics doi: 10.1061/(ASCE)GM.1943-5622.0000484 – volume-title: Conduct and Interpretation of Load Tests on Drilled Shaft Foundations: Volume 1, Detailed Guidelines year: 1988 ident: 510_CR14 – volume-title: Standard Guides for Using Rock-Mass Classification Systems for Engineering Purposes year: 2019 ident: 510_CR4 doi: 10.1520/D5878-19 – volume: 245 start-page: 110483 year: 2022 ident: 510_CR37 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.110483 – volume: 245 start-page: 193 year: 2015 ident: 510_CR24 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.05.016 – volume: 147 start-page: 04020163 issue: 2 year: 2021 ident: 510_CR12 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)GT.1943-5606.0002442 – volume: 101 start-page: 226 issue: 3–4 year: 2008 ident: 510_CR27 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2008.06.002 – volume-title: IEEE Guide for Transmission Structure Foundation Design and Testing year: 2001 ident: 510_CR16 doi: 10.1109/IEEESTD.2001.93372 – volume: 141 start-page: 07015002 issue: 6 year: 2015 ident: 510_CR20 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)GT.1943-5606.0001263 – volume: 36 start-page: 449 issue: 4 year: 1999 ident: 510_CR33 publication-title: International Journal of Rock Mechanics and Mining Sciences doi: 10.1016/S0148-9062(99)00021-2 – volume: 144 start-page: 04018050 issue: 8 year: 2018 ident: 510_CR35 publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)GT.1943-5606.0001894 – volume: 17 start-page: 4419 issue: 10 year: 2022 ident: 510_CR34 publication-title: Acta Geotechnica doi: 10.1007/s11440-022-01503-x – volume-title: Shallow Foundations: Bearing Capacity and Settlement year: 2017 ident: 510_CR11 doi: 10.1201/9781315163871 |
SSID | ssj0057067 |
Score | 2.3023086 |
Snippet | Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas. However, there are soil layers with a certain... Rock-embedded foundations with good uplift and bearing capacity are often used in mountains or hilly areas.However,there are soil layers with a certain... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 569 |
SubjectTerms | Axial forces Bearing capacity Civil Engineering Classical and Continuum Physics Embedded foundations Engineering Failure mechanisms Force distribution Industrial Chemistry/Chemical Engineering Limit states Load distribution Load transfer Mechanical Engineering Modulus of deformation Mountain regions Mountainous areas Mountains Piers Pull out tests Research Article Rocks Soil layers Uplift Uplift resistance |
Title | Monotonic uplift behavior of anchored pier foundations in soil overlying rock |
URI | https://link.springer.com/article/10.1631/jzus.A2200446 https://www.proquest.com/docview/2842544481 https://d.wanfangdata.com.cn/periodical/zjdxxb-e202307002 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xuMBhxVN0echaIR4SgdixnfRYVnQRCE5UKqfI8YOFrRJEUgnx6xmnSQtCSHvKIbYPMx7PfJqZbwD2E2uF7HJPdMsRoGSUBok0JhBhZCNmhFZ1bc7Nrbwc8KuhGM7BWdsLU1e7tynJ-qX2Zi0jevb0Ni5Pe4zVKch5WBQetuMFHrBe-_SKOKxHxlIZRwFGKsOGVPPL9s9OaBZZTpOhdQtP7lT-8MHb9FfgRxMmkt5Er6swZ_M1WP5AHrgGq41ZluSo4Y4-XocbtNGi8nS3ZIzhpatI24dPCkdQw3-LF2vIMzpD4qYTlUrymJOyeBwRX9A58p1PBB3bvw0Y9C_ufl8GzcSEQCPUrAJnbKh0aJRMdGRlrLhBJxhaao2VzCCUcJG2qovINGYqMaF0sQmVNJwqIbMk2oSFvMjtFhCmqY55lwuuMajLTOIoo1qYOOmazMWqAyetCFPd0In7qRaj1MMKlHjqJZ62Eu_AwXT584RH47uFO60-0sacypT5ZCFHJEk7cNjqaPb7m4N-NSqcLXx7Mq-vWWr9zHh860L287-P24Ylv2tSqbsDC9XL2O5iPFJle7DY65-f3_rvn_vri736Tr4Daf7f2A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOFQ2gBkpZIcRDwo13vd51jlFFFCDpqZFys9b7gITIjmpHqvrrO-vYSSpUqWev9zCzM_ONZuYbgE-JtbHoc090yzFBySgNEmFMEIeRjZiJtap7cyaXYjTlv2bx7AB67SxM3e3eliRrT-3NWkS0t7hdl-cDxuoS5BN4ijgg8T1cUzZoXW8sw3plLBUyChCpzBpSzf9-vx-EdshyWwytR3hyp_I_e9Fm-BKOGphIBhu9HsOBzTvwYo88sAPHjVmW5GvDHf3tFUzQRovK092SNcJLV5F2Dp8UjqCG_xbX1pAVBkPithuVSjLPSVnMl8Q3dC795BPBwPbvNUyHP64uRkGzMSHQmGpWgTM2VDo0SiQ6skIqbjAIhpZaYwUzmEq4SFvVx8xUMpWYUDhpQiUMpyoWWRK9gcO8yO0JEKaplrzPY64R1GUmcZRRHRuZ9E3mpOrC91aEqW7oxP1Wi2Xq0wqUeOolnrYS78Ln7fHVhkfjoYOnrT7SxpzKlPliIcdMknbhS6uj3ecHLvrYqHB38HZhbm6y1Pqd8ejrQvb20dd9gGejq8k4Hf-8_P0OnvsbNl27p3BYXa_te8QmVXZWv8c7Fc7fuw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB-shdI-FD9aeta2i4htodHsZrPJ4dOhHmqr9KEH9xY2O7uteiSHyYH413c2l9xZROhzJvMws_PFzPwGYDe1NlZ96YFuJRUoOedBqhCDOIxsJDA2upnNubhUpyN5Po7HK3DY7cI00-5dS3K-0-BRmor6YIquMXEV8YPr-1m1PxCiaUc-g-fkibl_0iMx6NxwnITN-ViukiigrGXcAmw--v3fgLTMMheN0Wadp3C6-P0g8gzX4HWbMrLBXMfrsGKLDXj1AEhwA9ZbE63YlxZH-usmXJC9lrWHvmUzSjVdzbqdfFY6Rtr-U95aZFMKjMwtritV7KpgVXk1YX64c-K3oBgFuZs3MBqe_Do6DdrrCYGhsrMOHNpQmxC1Sk1kVaIlUkAMLbdolUAqK1xkrO5TlZoInWKoXIKhVii5jlWeRm9htSgL-w6YMNwksi9jaSjByzF1XHATY5L2MXeJ7sG3ToSZaaHF_YWLSeZLDJJ45iWedRLvwd6CfDrH1HiKcLvTR9aaVpUJ3ziUVFXyHnzudLT8_ASjnVaFS8L7a7y7yzPr78eT3wvF1n-z-wQvfh4Psx9nl9_fw0vPYD7Auw2r9e3MfqA0pc4_Ns_xL7qO4_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monotonic+uplift+behavior+of+anchored+pier+foundations+in+soil+overlying+rock&rft.jtitle=Journal+of+Zhejiang+University.+A.+Science&rft.au=Sun%2C+Yizhou&rft.au=Sun%2C+Honglei&rft.au=Tang%2C+Chong&rft.au=Cai%2C+Yuanqiang&rft.date=2023-07-01&rft.pub=Zhejiang+University+Press&rft.issn=1673-565X&rft.eissn=1862-1775&rft.volume=24&rft.issue=7&rft.spage=569&rft.epage=583&rft_id=info:doi/10.1631%2Fjzus.A2200446&rft.externalDocID=10_1631_jzus_A2200446 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb-e%2Fzjdxxb-e.jpg |