Beta ridge regression estimators: simulation and application

The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum lik...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 52; no. 9; pp. 4280 - 4292
Main Authors Abonazel, Mohamed R., Taha, Ibrahim M.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.09.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum likelihood (ML) method is very sensitive to high inter-correlation among the explanatory variables. Therefore, this paper proposes some ridge estimators for the beta regression model to remedy the problem of instability of the traditional ML method and increase the efficiency of estimation. The performance of ridge estimators is compared to the ML estimator through the mean squared error (MSE) and the mean absolute error (MAE) criteria by conducting a Monte-Carlo simulation study and through an empirical application. According to the simulation and application results, the proposed estimators outperform the ML estimator in terms of MSE and MAE.
AbstractList The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum likelihood (ML) method is very sensitive to high inter-correlation among the explanatory variables. Therefore, this paper proposes some ridge estimators for the beta regression model to remedy the problem of instability of the traditional ML method and increase the efficiency of estimation. The performance of ridge estimators is compared to the ML estimator through the mean squared error (MSE) and the mean absolute error (MAE) criteria by conducting a Monte-Carlo simulation study and through an empirical application. According to the simulation and application results, the proposed estimators outperform the ML estimator in terms of MSE and MAE.
Author Taha, Ibrahim M.
Abonazel, Mohamed R.
Author_xml – sequence: 1
  givenname: Mohamed R.
  orcidid: 0000-0001-6010-001X
  surname: Abonazel
  fullname: Abonazel, Mohamed R.
  organization: Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University
– sequence: 2
  givenname: Ibrahim M.
  surname: Taha
  fullname: Taha, Ibrahim M.
  organization: Department of Mathematics, Statistics, and Insurance, Sadat Academy for Management Sciences, Tanta Branch
BookMark eNqFUMtOwzAQtFCRaAufgBSJc8pu7DgOcAAqXlIlLnC2HMepXKVxsV2h_j1JCxcOcFrtaGZ2ZyZk1LnOEHKOMEMQcAmUI5QoZhlkOMOSAy3oERljTrOUIcMRGQ-cdCCdkEkIKwCggokxubk3USXe1kuTeLP0JgTrusSEaNcqOh-ukmDX21bFAVZdnajNprV6v5-S40a1wZx9zyl5f3x4mz-ni9enl_ndItWUipg2NWtUxmrKTNYDuYKq5qLMKq5ZjUUFUAij60pzgaXWptJK66LhaAB0wQo6JRcH3413H9v-N7lyW9_1J2UmCsw5B8SelR9Y2rsQvGnkxvch_E4iyKEo-VOUHIqS30X1uutfOm3jPl_0yrb_qm8Pats1zq_Vp_NtLaPatc43XnXaBkn_tvgCuhSDcA
CitedBy_id crossref_primary_10_1016_j_sciaf_2023_e01553
crossref_primary_10_3389_fams_2022_775068
crossref_primary_10_3390_axioms12060526
crossref_primary_10_1002_cpe_7045
crossref_primary_10_1007_s00180_022_01213_8
crossref_primary_10_1016_j_sciaf_2023_e02006
crossref_primary_10_1002_cpe_7005
crossref_primary_10_1080_00949655_2024_2427892
crossref_primary_10_37394_23207_2021_18_135
crossref_primary_10_15672_hujms_1145607
crossref_primary_10_15672_hujms_1122207
crossref_primary_10_3389_fams_2022_880086
crossref_primary_10_1155_2024_6694880
crossref_primary_10_1002_cpe_6979
crossref_primary_10_1080_00949655_2024_2396001
crossref_primary_10_37394_232026_2023_5_19
crossref_primary_10_1002_cpe_6779
crossref_primary_10_1080_00949655_2022_2032059
crossref_primary_10_1080_03610918_2023_2286436
crossref_primary_10_3390_axioms13010046
crossref_primary_10_1002_cpe_6685
crossref_primary_10_1080_03610918_2023_2201413
crossref_primary_10_1038_s41598_024_62627_6
crossref_primary_10_1371_journal_pone_0302221
crossref_primary_10_1080_00949655_2023_2166046
crossref_primary_10_3389_fams_2023_956963
crossref_primary_10_1038_s41591_023_02495_1
crossref_primary_10_1016_j_jrras_2024_100905
crossref_primary_10_1007_s10182_022_00466_4
crossref_primary_10_1016_j_est_2022_105359
crossref_primary_10_3389_fams_2021_780322
Cites_doi 10.18187/pjsor.v12i2.1188
10.1080/01621459.1977.10480625
10.1080/03610920600762905
10.1080/00401706.1970.10488635
10.1007/s00362-017-0899-3
10.1080/03610918.2014.977918
10.1080/03610926.2010.549281
10.1080/03610918.2020.1752720
10.1080/03610926.2018.1481977
10.30931/jetas.321165
10.1080/03610920701469152
10.6339/JDS.201601_14(1).0003
10.1016/j.csda.2009.08.017
10.1201/9780203751220
10.1002/9781118644478
10.14419/ijamr.v8i2.29932
10.3390/make1010026
10.1080/00401706.1976.10489474
10.1080/02664763.2012.752448
10.1080/03610918208812264
10.1080/02664763.2021.1889998
10.1080/03610928408828664
10.1016/j.econmod.2011.02.030
10.18637/jss.v034.i02
10.1007/s13571-018-0171-4
10.1007/s00362-017-0971-z
10.1016/j.jaubas.2013.03.005
10.1081/SAC-120017499
10.1080/03610918.2021.1934023
10.1080/00401706.1970.10488634
10.1080/02664760701834931
10.1080/0266476042000214501
10.1016/j.econmod.2011.09.009
10.1037/1082-989X.11.1.54
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1960373
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 4292
ExternalDocumentID 10_1080_03610918_2021_1960373
1960373
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
K1G
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-fd4fa24d34e23385a0bd6892b6c4d17b0078ecdbc6819ccebcacc7f61e00c7473
ISSN 0361-0918
IngestDate Wed Aug 13 09:38:13 EDT 2025
Tue Jul 01 02:09:42 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed Dec 25 09:03:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-fd4fa24d34e23385a0bd6892b6c4d17b0078ecdbc6819ccebcacc7f61e00c7473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6010-001X
PQID 2871566011
PQPubID 186203
PageCount 13
ParticipantIDs crossref_primary_10_1080_03610918_2021_1960373
proquest_journals_2871566011
informaworld_taylorfrancis_310_1080_03610918_2021_1960373
crossref_citationtrail_10_1080_03610918_2021_1960373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Rady E. A. (e_1_3_1_39_1) 2018
Dorugade A. V. (e_1_3_1_15_1) 2010; 4
e_1_3_1_44_1
e_1_3_1_45_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_46_1
e_1_3_1_9_1
e_1_3_1_8_1
e_1_3_1_20_1
e_1_3_1_21_1
e_1_3_1_43_1
e_1_3_1_5_1
e_1_3_1_4_1
e_1_3_1_7_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_28_1
Abonazel M. R. (e_1_3_1_2_1) 2018; 4
Algamal Z. Y. (e_1_3_1_6_1) 2019; 48
Saleh A. M. E. (e_1_3_1_42_1) 2019
Pasha G. R. (e_1_3_1_38_1) 2004; 15
Göktaş A. (e_1_3_1_23_1) 2016; 29
Rady E. A. (e_1_3_1_41_1) 2019
e_1_3_1_10_1
e_1_3_1_33_1
e_1_3_1_34_1
e_1_3_1_35_1
Rady E. A. (e_1_3_1_40_1) 2019
e_1_3_1_36_1
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_30_1
e_1_3_1_12_1
e_1_3_1_31_1
e_1_3_1_11_1
e_1_3_1_32_1
e_1_3_1_18_1
Hoerl A. E. (e_1_3_1_29_1) 1975; 4
e_1_3_1_17_1
e_1_3_1_16_1
Abonazel M. R. (e_1_3_1_3_1) 2019; 10
Frisch R. (e_1_3_1_22_1) 1934
e_1_3_1_37_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_12_1
  doi: 10.18187/pjsor.v12i2.1188
– ident: e_1_3_1_25_1
  doi: 10.1080/01621459.1977.10480625
– ident: e_1_3_1_8_1
  doi: 10.1080/03610920600762905
– volume: 15
  start-page: 97
  issue: 1
  year: 2004
  ident: e_1_3_1_38_1
  article-title: Application of ridge regression to multicollinear data
  publication-title: Journal of Research (Science)
– ident: e_1_3_1_28_1
  doi: 10.1080/00401706.1970.10488635
– ident: e_1_3_1_37_1
  doi: 10.1007/s00362-017-0899-3
– ident: e_1_3_1_11_1
  doi: 10.1080/03610918.2014.977918
– ident: e_1_3_1_46_1
  doi: 10.1080/03610926.2010.549281
– ident: e_1_3_1_17_1
– ident: e_1_3_1_32_1
  doi: 10.1080/03610918.2020.1752720
– volume: 4
  start-page: 447
  issue: 9
  year: 2010
  ident: e_1_3_1_15_1
  article-title: Alternative method for choosing ridge parameter for regression
  publication-title: Applied Mathematical Sciences
– volume: 48
  start-page: 3836
  issue: 15
  year: 2019
  ident: e_1_3_1_6_1
  article-title: Performance of ridge estimator in inverse Gaussian regression model
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610926.2018.1481977
– volume: 4
  start-page: 105
  issue: 2
  year: 1975
  ident: e_1_3_1_29_1
  article-title: Ridge regression: Some simulations
  publication-title: Communications in Statistics-Theory and Methods
– volume-title: Statistical confluence analysis by means of complete regression systems
  year: 1934
  ident: e_1_3_1_22_1
– ident: e_1_3_1_5_1
  doi: 10.30931/jetas.321165
– ident: e_1_3_1_7_1
  doi: 10.1080/03610920701469152
– ident: e_1_3_1_10_1
  doi: 10.6339/JDS.201601_14(1).0003
– ident: e_1_3_1_44_1
  doi: 10.1016/j.csda.2009.08.017
– ident: e_1_3_1_24_1
  doi: 10.1201/9780203751220
– volume-title: Theory of Ridge Regression Estimation with Applications
  year: 2019
  ident: e_1_3_1_42_1
  doi: 10.1002/9781118644478
– ident: e_1_3_1_16_1
  doi: 10.14419/ijamr.v8i2.29932
– ident: e_1_3_1_18_1
  doi: 10.3390/make1010026
– ident: e_1_3_1_26_1
  doi: 10.1080/00401706.1976.10489474
– ident: e_1_3_1_31_1
  doi: 10.1080/02664763.2012.752448
– ident: e_1_3_1_36_1
  doi: 10.1080/03610918208812264
– ident: e_1_3_1_33_1
  doi: 10.1080/02664763.2021.1889998
– ident: e_1_3_1_43_1
  doi: 10.1080/03610928408828664
– volume-title: The 54Annual Conference on Statistics, Computer Science, and Operation Research
  year: 2019
  ident: e_1_3_1_41_1
– ident: e_1_3_1_35_1
  doi: 10.1016/j.econmod.2011.02.030
– volume: 10
  start-page: 53
  issue: 7
  year: 2019
  ident: e_1_3_1_3_1
  article-title: New ridge estimators of SUR model when the errors are serially correlated
  publication-title: International Journal of Mathematical Archive
– year: 2019
  ident: e_1_3_1_40_1
  article-title: A new biased estimator for zero-inflated count regression models
  publication-title: Journal of Modern Applied Statistical Methods
– ident: e_1_3_1_13_1
  doi: 10.18637/jss.v034.i02
– ident: e_1_3_1_4_1
  doi: 10.1007/s13571-018-0171-4
– volume-title: The 53Annual Conference on Statistics, Computer Science, and Operation Research
  year: 2018
  ident: e_1_3_1_39_1
– ident: e_1_3_1_9_1
  doi: 10.1007/s00362-017-0971-z
– ident: e_1_3_1_14_1
  doi: 10.1016/j.jaubas.2013.03.005
– ident: e_1_3_1_30_1
  doi: 10.1081/SAC-120017499
– volume: 29
  start-page: 201
  issue: 1
  year: 2016
  ident: e_1_3_1_23_1
  article-title: Two new ridge parameters and a guide for selecting an appropriate ridge parameter in linear regression
  publication-title: Gazi University Journal of Science
– volume: 4
  start-page: 18
  issue: 1
  year: 2018
  ident: e_1_3_1_2_1
  article-title: A practical guide for creating Monte-Carlo simulation studies using R
  publication-title: International Journal of Mathematics and Computational Science
– ident: e_1_3_1_20_1
  doi: 10.1080/03610918.2021.1934023
– ident: e_1_3_1_27_1
  doi: 10.1080/00401706.1970.10488634
– ident: e_1_3_1_19_1
  doi: 10.1080/02664760701834931
– ident: e_1_3_1_21_1
  doi: 10.1080/0266476042000214501
– ident: e_1_3_1_34_1
  doi: 10.1016/j.econmod.2011.09.009
– ident: e_1_3_1_45_1
  doi: 10.1037/1082-989X.11.1.54
SSID ssj0003848
Score 2.4826543
Snippet The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4280
SubjectTerms Beta regression model
Empirical analysis
Fisher scoring
Maximum likelihood
Maximum likelihood estimators
Mean absolute error
Mean squared error
Monte Carlo simulation
Multicollinearity
Regression models
Ridge regression
Title Beta ridge regression estimators: simulation and application
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1960373
https://www.proquest.com/docview/2871566011
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9RAFJ8gXPAgsmJE0czBW9Om89Fpa7yA0aDJchBIuDUz0ymQuIth64W_3jcf_ZKNiJdmM0kn3b5f39e893sIvQePVpW5hthEChnzTOoYvFYVC03qhpqiII2rtjgRx-f820V2MWSVXHdJqxJ9t7av5H-kCmsgV9sl-wjJ9pvCAvwG-cIVJAzXf5LxkWll5Duubs2lr2hdRpY3Y2FjaVfttrpehAldnpd1OLAe-6WTPhFXIms7jTyJcxKdTvfQbhLE5Aj_UIFHf-dP_Oc3VxJsbPQ9GdIC_ljpK4TmV9eLaJ6Mkw2UuWqqcf6RCQJrQWWaTmfSmBPPX9Up1YyOwFOONCSAIx1ZWzsta60mD6WPzNLBE1uDR0kC2iJlfvLJlDn7D4vW1xmSjgA1bFPZbaqwzRO0RSG2sGMvWHrSm29WuJFr_T_t2r4sIfu6p5k4NBO623vm3fksZ8_RsxBs4EOPnF20YZYztNMN8sBBr8_Q03lP3ruaoe3TXvQv0EeLMewwhgeM4QFjH_CAMAzowCOE7aHzL5_PPh3HYeJGrBkr2ripeSMprxk3FBYymapaFCVVQvOa5Mo6lEbXSgtwJLW2hXRa540gJk01BKbsJdpc3izNK4SNVJaZqcllyXleS0ksD6yAcCTLU7DA-4h3r63SgY7eTkX5Uf1VaPso6W_76flYHrqhHMukal0irPFTayr2wL0HnQCr8NmvKptigBgI7OLrxz7LG7Q9fFQHaLO9_WXegk_bqncOg78BoSKWFg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RPKgHUdSIovbgdbgfXceMFzUSVOAECbem7TpjFDRsXPzr7dsPAhrDgeuWt3Rd-_V73dfvAVwZRivDQJncRDBhUV8oy7BWaTHlRLGrWy0nztQWfdYZ0ueRP1o4C4OySsyh49woIsNqnNy4GV1K4q4N6qKfJSqzXKdpxpDtBd4mbPkhC7CKgWf352jstbIKWhhiYUx5iue_xyytT0vupX_QOluC2lVQZeNz5cl7c5bKpvr-5eu43tvtw17BUMldPqQOYENPalAtqz-QAgxqsNubO74mNdhB1pqbPh_C7b1OBcmOgpGpfs2lthOChh5jTPKTG5K8jYvCYcS0lCz8Rz-CYftx8NCxijINljL5bWrFEY2FSyOPatdc8IUtI9YKXckUjZxAIgvRKpKKGfahFKqvlApi5mjbViab8Y6hMvmc6BMgWki084kDEVIaREI4aB7KDIf1A9vAdh1o-XG4KjzMsZTGB3dKq9Oi8zh2Hi86rw7NedhXbuKxKiBc_PI8zXZP4rzUCfdWxDbKYcILPEg45qWGOBswPV3j0Zew3Rn0urz71H85gx1zy8vkbm4DKul0ps8NP0rlRTYBfgAY1f93
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcKBQQhQI-cE3J4jot4sJWla3iQCVulu3YCEFL1aQXvh5P4lQsQhx6jTSW40ye3yTPbwCOLKOVnVjZ2kQw4dGWUJ5lrdJjKkhMqNvtwORqiz7rDejNU6tUE6ZOVok1tCmMInKsxpd7nJhSEXdsQRftLFGYFQZNm0J-FEeLsMTQPBxPcfj9GRhH7byBFoZ4GFMe4vlrmG_b0zfz0l9gne9A3SrIcu6F8OS1Oc1kU338sHWc6-bWYc3xU3JWJNQGLOhRDapl7wfioKAGq_czv9e0BivIWQvL5004PdeZIPlBMDLRz4XQdkTQzmOIJX56QtKXoWsbRuxEyZe_6Fsw6F49XvQ816TBU7a6zTyTUCNCmkRUh_ZCS_gyYe1OKJmiSRBL5CBaJVIxyz2UQu2VUrFhgfZ9ZWuZaBsqo_eR3gGihUQzHxOLDqVxIkSA1qHMMthW7FvQrgMtnw1XzsEcG2m88aA0OnWLx3HxuFu8OjRnYePCwuO_gM7XB8-z_NuJKRqd8Oif2EaZJdyhQcqxKrW02ULp7hxDH8Lyw2WX3133b_dgBdve51q3sAGVbDLV-5YcZfIgT_9P5If-Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta+ridge+regression+estimators%3A+simulation+and+application&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Abonazel%2C+Mohamed+R.&rft.au=Taha%2C+Ibrahim+M.&rft.date=2023-09-02&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=9&rft.spage=4280&rft.epage=4292&rft_id=info:doi/10.1080%2F03610918.2021.1960373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2021_1960373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon