Beta ridge regression estimators: simulation and application
The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum lik...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 52; no. 9; pp. 4280 - 4292 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.09.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum likelihood (ML) method is very sensitive to high inter-correlation among the explanatory variables. Therefore, this paper proposes some ridge estimators for the beta regression model to remedy the problem of instability of the traditional ML method and increase the efficiency of estimation. The performance of ridge estimators is compared to the ML estimator through the mean squared error (MSE) and the mean absolute error (MAE) criteria by conducting a Monte-Carlo simulation study and through an empirical application. According to the simulation and application results, the proposed estimators outperform the ML estimator in terms of MSE and MAE. |
---|---|
AbstractList | The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when analyzing these kinds of data that has not been investigated for this model is the multicollinearity problem. It is well known that the maximum likelihood (ML) method is very sensitive to high inter-correlation among the explanatory variables. Therefore, this paper proposes some ridge estimators for the beta regression model to remedy the problem of instability of the traditional ML method and increase the efficiency of estimation. The performance of ridge estimators is compared to the ML estimator through the mean squared error (MSE) and the mean absolute error (MAE) criteria by conducting a Monte-Carlo simulation study and through an empirical application. According to the simulation and application results, the proposed estimators outperform the ML estimator in terms of MSE and MAE. |
Author | Taha, Ibrahim M. Abonazel, Mohamed R. |
Author_xml | – sequence: 1 givenname: Mohamed R. orcidid: 0000-0001-6010-001X surname: Abonazel fullname: Abonazel, Mohamed R. organization: Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University – sequence: 2 givenname: Ibrahim M. surname: Taha fullname: Taha, Ibrahim M. organization: Department of Mathematics, Statistics, and Insurance, Sadat Academy for Management Sciences, Tanta Branch |
BookMark | eNqFUMtOwzAQtFCRaAufgBSJc8pu7DgOcAAqXlIlLnC2HMepXKVxsV2h_j1JCxcOcFrtaGZ2ZyZk1LnOEHKOMEMQcAmUI5QoZhlkOMOSAy3oERljTrOUIcMRGQ-cdCCdkEkIKwCggokxubk3USXe1kuTeLP0JgTrusSEaNcqOh-ukmDX21bFAVZdnajNprV6v5-S40a1wZx9zyl5f3x4mz-ni9enl_ndItWUipg2NWtUxmrKTNYDuYKq5qLMKq5ZjUUFUAij60pzgaXWptJK66LhaAB0wQo6JRcH3413H9v-N7lyW9_1J2UmCsw5B8SelR9Y2rsQvGnkxvch_E4iyKEo-VOUHIqS30X1uutfOm3jPl_0yrb_qm8Pats1zq_Vp_NtLaPatc43XnXaBkn_tvgCuhSDcA |
CitedBy_id | crossref_primary_10_1016_j_sciaf_2023_e01553 crossref_primary_10_3389_fams_2022_775068 crossref_primary_10_3390_axioms12060526 crossref_primary_10_1002_cpe_7045 crossref_primary_10_1007_s00180_022_01213_8 crossref_primary_10_1016_j_sciaf_2023_e02006 crossref_primary_10_1002_cpe_7005 crossref_primary_10_1080_00949655_2024_2427892 crossref_primary_10_37394_23207_2021_18_135 crossref_primary_10_15672_hujms_1145607 crossref_primary_10_15672_hujms_1122207 crossref_primary_10_3389_fams_2022_880086 crossref_primary_10_1155_2024_6694880 crossref_primary_10_1002_cpe_6979 crossref_primary_10_1080_00949655_2024_2396001 crossref_primary_10_37394_232026_2023_5_19 crossref_primary_10_1002_cpe_6779 crossref_primary_10_1080_00949655_2022_2032059 crossref_primary_10_1080_03610918_2023_2286436 crossref_primary_10_3390_axioms13010046 crossref_primary_10_1002_cpe_6685 crossref_primary_10_1080_03610918_2023_2201413 crossref_primary_10_1038_s41598_024_62627_6 crossref_primary_10_1371_journal_pone_0302221 crossref_primary_10_1080_00949655_2023_2166046 crossref_primary_10_3389_fams_2023_956963 crossref_primary_10_1038_s41591_023_02495_1 crossref_primary_10_1016_j_jrras_2024_100905 crossref_primary_10_1007_s10182_022_00466_4 crossref_primary_10_1016_j_est_2022_105359 crossref_primary_10_3389_fams_2021_780322 |
Cites_doi | 10.18187/pjsor.v12i2.1188 10.1080/01621459.1977.10480625 10.1080/03610920600762905 10.1080/00401706.1970.10488635 10.1007/s00362-017-0899-3 10.1080/03610918.2014.977918 10.1080/03610926.2010.549281 10.1080/03610918.2020.1752720 10.1080/03610926.2018.1481977 10.30931/jetas.321165 10.1080/03610920701469152 10.6339/JDS.201601_14(1).0003 10.1016/j.csda.2009.08.017 10.1201/9780203751220 10.1002/9781118644478 10.14419/ijamr.v8i2.29932 10.3390/make1010026 10.1080/00401706.1976.10489474 10.1080/02664763.2012.752448 10.1080/03610918208812264 10.1080/02664763.2021.1889998 10.1080/03610928408828664 10.1016/j.econmod.2011.02.030 10.18637/jss.v034.i02 10.1007/s13571-018-0171-4 10.1007/s00362-017-0971-z 10.1016/j.jaubas.2013.03.005 10.1081/SAC-120017499 10.1080/03610918.2021.1934023 10.1080/00401706.1970.10488634 10.1080/02664760701834931 10.1080/0266476042000214501 10.1016/j.econmod.2011.09.009 10.1037/1082-989X.11.1.54 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2021.1960373 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 4292 |
ExternalDocumentID | 10_1080_03610918_2021_1960373 1960373 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION K1G 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-fd4fa24d34e23385a0bd6892b6c4d17b0078ecdbc6819ccebcacc7f61e00c7473 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 09:38:13 EDT 2025 Tue Jul 01 02:09:42 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed Dec 25 09:03:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-fd4fa24d34e23385a0bd6892b6c4d17b0078ecdbc6819ccebcacc7f61e00c7473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6010-001X |
PQID | 2871566011 |
PQPubID | 186203 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1080_03610918_2021_1960373 proquest_journals_2871566011 informaworld_taylorfrancis_310_1080_03610918_2021_1960373 crossref_citationtrail_10_1080_03610918_2021_1960373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-02 |
PublicationDateYYYYMMDD | 2023-09-02 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Rady E. A. (e_1_3_1_39_1) 2018 Dorugade A. V. (e_1_3_1_15_1) 2010; 4 e_1_3_1_44_1 e_1_3_1_45_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_46_1 e_1_3_1_9_1 e_1_3_1_8_1 e_1_3_1_20_1 e_1_3_1_21_1 e_1_3_1_43_1 e_1_3_1_5_1 e_1_3_1_4_1 e_1_3_1_7_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_28_1 Abonazel M. R. (e_1_3_1_2_1) 2018; 4 Algamal Z. Y. (e_1_3_1_6_1) 2019; 48 Saleh A. M. E. (e_1_3_1_42_1) 2019 Pasha G. R. (e_1_3_1_38_1) 2004; 15 Göktaş A. (e_1_3_1_23_1) 2016; 29 Rady E. A. (e_1_3_1_41_1) 2019 e_1_3_1_10_1 e_1_3_1_33_1 e_1_3_1_34_1 e_1_3_1_35_1 Rady E. A. (e_1_3_1_40_1) 2019 e_1_3_1_36_1 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_31_1 e_1_3_1_11_1 e_1_3_1_32_1 e_1_3_1_18_1 Hoerl A. E. (e_1_3_1_29_1) 1975; 4 e_1_3_1_17_1 e_1_3_1_16_1 Abonazel M. R. (e_1_3_1_3_1) 2019; 10 Frisch R. (e_1_3_1_22_1) 1934 e_1_3_1_37_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_12_1 doi: 10.18187/pjsor.v12i2.1188 – ident: e_1_3_1_25_1 doi: 10.1080/01621459.1977.10480625 – ident: e_1_3_1_8_1 doi: 10.1080/03610920600762905 – volume: 15 start-page: 97 issue: 1 year: 2004 ident: e_1_3_1_38_1 article-title: Application of ridge regression to multicollinear data publication-title: Journal of Research (Science) – ident: e_1_3_1_28_1 doi: 10.1080/00401706.1970.10488635 – ident: e_1_3_1_37_1 doi: 10.1007/s00362-017-0899-3 – ident: e_1_3_1_11_1 doi: 10.1080/03610918.2014.977918 – ident: e_1_3_1_46_1 doi: 10.1080/03610926.2010.549281 – ident: e_1_3_1_17_1 – ident: e_1_3_1_32_1 doi: 10.1080/03610918.2020.1752720 – volume: 4 start-page: 447 issue: 9 year: 2010 ident: e_1_3_1_15_1 article-title: Alternative method for choosing ridge parameter for regression publication-title: Applied Mathematical Sciences – volume: 48 start-page: 3836 issue: 15 year: 2019 ident: e_1_3_1_6_1 article-title: Performance of ridge estimator in inverse Gaussian regression model publication-title: Communications in Statistics-Theory and Methods doi: 10.1080/03610926.2018.1481977 – volume: 4 start-page: 105 issue: 2 year: 1975 ident: e_1_3_1_29_1 article-title: Ridge regression: Some simulations publication-title: Communications in Statistics-Theory and Methods – volume-title: Statistical confluence analysis by means of complete regression systems year: 1934 ident: e_1_3_1_22_1 – ident: e_1_3_1_5_1 doi: 10.30931/jetas.321165 – ident: e_1_3_1_7_1 doi: 10.1080/03610920701469152 – ident: e_1_3_1_10_1 doi: 10.6339/JDS.201601_14(1).0003 – ident: e_1_3_1_44_1 doi: 10.1016/j.csda.2009.08.017 – ident: e_1_3_1_24_1 doi: 10.1201/9780203751220 – volume-title: Theory of Ridge Regression Estimation with Applications year: 2019 ident: e_1_3_1_42_1 doi: 10.1002/9781118644478 – ident: e_1_3_1_16_1 doi: 10.14419/ijamr.v8i2.29932 – ident: e_1_3_1_18_1 doi: 10.3390/make1010026 – ident: e_1_3_1_26_1 doi: 10.1080/00401706.1976.10489474 – ident: e_1_3_1_31_1 doi: 10.1080/02664763.2012.752448 – ident: e_1_3_1_36_1 doi: 10.1080/03610918208812264 – ident: e_1_3_1_33_1 doi: 10.1080/02664763.2021.1889998 – ident: e_1_3_1_43_1 doi: 10.1080/03610928408828664 – volume-title: The 54Annual Conference on Statistics, Computer Science, and Operation Research year: 2019 ident: e_1_3_1_41_1 – ident: e_1_3_1_35_1 doi: 10.1016/j.econmod.2011.02.030 – volume: 10 start-page: 53 issue: 7 year: 2019 ident: e_1_3_1_3_1 article-title: New ridge estimators of SUR model when the errors are serially correlated publication-title: International Journal of Mathematical Archive – year: 2019 ident: e_1_3_1_40_1 article-title: A new biased estimator for zero-inflated count regression models publication-title: Journal of Modern Applied Statistical Methods – ident: e_1_3_1_13_1 doi: 10.18637/jss.v034.i02 – ident: e_1_3_1_4_1 doi: 10.1007/s13571-018-0171-4 – volume-title: The 53Annual Conference on Statistics, Computer Science, and Operation Research year: 2018 ident: e_1_3_1_39_1 – ident: e_1_3_1_9_1 doi: 10.1007/s00362-017-0971-z – ident: e_1_3_1_14_1 doi: 10.1016/j.jaubas.2013.03.005 – ident: e_1_3_1_30_1 doi: 10.1081/SAC-120017499 – volume: 29 start-page: 201 issue: 1 year: 2016 ident: e_1_3_1_23_1 article-title: Two new ridge parameters and a guide for selecting an appropriate ridge parameter in linear regression publication-title: Gazi University Journal of Science – volume: 4 start-page: 18 issue: 1 year: 2018 ident: e_1_3_1_2_1 article-title: A practical guide for creating Monte-Carlo simulation studies using R publication-title: International Journal of Mathematics and Computational Science – ident: e_1_3_1_20_1 doi: 10.1080/03610918.2021.1934023 – ident: e_1_3_1_27_1 doi: 10.1080/00401706.1970.10488634 – ident: e_1_3_1_19_1 doi: 10.1080/02664760701834931 – ident: e_1_3_1_21_1 doi: 10.1080/0266476042000214501 – ident: e_1_3_1_34_1 doi: 10.1016/j.econmod.2011.09.009 – ident: e_1_3_1_45_1 doi: 10.1037/1082-989X.11.1.54 |
SSID | ssj0003848 |
Score | 2.4826543 |
Snippet | The beta regression model is commonly used when analyzing data that come in the form of rates or percentages. However, a problem that may encounter when... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4280 |
SubjectTerms | Beta regression model Empirical analysis Fisher scoring Maximum likelihood Maximum likelihood estimators Mean absolute error Mean squared error Monte Carlo simulation Multicollinearity Regression models Ridge regression |
Title | Beta ridge regression estimators: simulation and application |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1960373 https://www.proquest.com/docview/2871566011 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9RAFJ8gXPAgsmJE0czBW9Om89Fpa7yA0aDJchBIuDUz0ymQuIth64W_3jcf_ZKNiJdmM0kn3b5f39e893sIvQePVpW5hthEChnzTOoYvFYVC03qhpqiII2rtjgRx-f820V2MWSVXHdJqxJ9t7av5H-kCmsgV9sl-wjJ9pvCAvwG-cIVJAzXf5LxkWll5Duubs2lr2hdRpY3Y2FjaVfttrpehAldnpd1OLAe-6WTPhFXIms7jTyJcxKdTvfQbhLE5Aj_UIFHf-dP_Oc3VxJsbPQ9GdIC_ljpK4TmV9eLaJ6Mkw2UuWqqcf6RCQJrQWWaTmfSmBPPX9Up1YyOwFOONCSAIx1ZWzsta60mD6WPzNLBE1uDR0kC2iJlfvLJlDn7D4vW1xmSjgA1bFPZbaqwzRO0RSG2sGMvWHrSm29WuJFr_T_t2r4sIfu6p5k4NBO623vm3fksZ8_RsxBs4EOPnF20YZYztNMN8sBBr8_Q03lP3ruaoe3TXvQv0EeLMewwhgeM4QFjH_CAMAzowCOE7aHzL5_PPh3HYeJGrBkr2ripeSMprxk3FBYymapaFCVVQvOa5Mo6lEbXSgtwJLW2hXRa540gJk01BKbsJdpc3izNK4SNVJaZqcllyXleS0ksD6yAcCTLU7DA-4h3r63SgY7eTkX5Uf1VaPso6W_76flYHrqhHMukal0irPFTayr2wL0HnQCr8NmvKptigBgI7OLrxz7LG7Q9fFQHaLO9_WXegk_bqncOg78BoSKWFg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5RPKgHUdSIovbgdbgfXceMFzUSVOAECbem7TpjFDRsXPzr7dsPAhrDgeuWt3Rd-_V73dfvAVwZRivDQJncRDBhUV8oy7BWaTHlRLGrWy0nztQWfdYZ0ueRP1o4C4OySsyh49woIsNqnNy4GV1K4q4N6qKfJSqzXKdpxpDtBd4mbPkhC7CKgWf352jstbIKWhhiYUx5iue_xyytT0vupX_QOluC2lVQZeNz5cl7c5bKpvr-5eu43tvtw17BUMldPqQOYENPalAtqz-QAgxqsNubO74mNdhB1pqbPh_C7b1OBcmOgpGpfs2lthOChh5jTPKTG5K8jYvCYcS0lCz8Rz-CYftx8NCxijINljL5bWrFEY2FSyOPatdc8IUtI9YKXckUjZxAIgvRKpKKGfahFKqvlApi5mjbViab8Y6hMvmc6BMgWki084kDEVIaREI4aB7KDIf1A9vAdh1o-XG4KjzMsZTGB3dKq9Oi8zh2Hi86rw7NedhXbuKxKiBc_PI8zXZP4rzUCfdWxDbKYcILPEg45qWGOBswPV3j0Zew3Rn0urz71H85gx1zy8vkbm4DKul0ps8NP0rlRTYBfgAY1f93 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcKBQQhQI-cE3J4jot4sJWla3iQCVulu3YCEFL1aQXvh5P4lQsQhx6jTSW40ye3yTPbwCOLKOVnVjZ2kQw4dGWUJ5lrdJjKkhMqNvtwORqiz7rDejNU6tUE6ZOVok1tCmMInKsxpd7nJhSEXdsQRftLFGYFQZNm0J-FEeLsMTQPBxPcfj9GRhH7byBFoZ4GFMe4vlrmG_b0zfz0l9gne9A3SrIcu6F8OS1Oc1kU338sHWc6-bWYc3xU3JWJNQGLOhRDapl7wfioKAGq_czv9e0BivIWQvL5004PdeZIPlBMDLRz4XQdkTQzmOIJX56QtKXoWsbRuxEyZe_6Fsw6F49XvQ816TBU7a6zTyTUCNCmkRUh_ZCS_gyYe1OKJmiSRBL5CBaJVIxyz2UQu2VUrFhgfZ9ZWuZaBsqo_eR3gGihUQzHxOLDqVxIkSA1qHMMthW7FvQrgMtnw1XzsEcG2m88aA0OnWLx3HxuFu8OjRnYePCwuO_gM7XB8-z_NuJKRqd8Oif2EaZJdyhQcqxKrW02ULp7hxDH8Lyw2WX3133b_dgBdve51q3sAGVbDLV-5YcZfIgT_9P5If-Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beta+ridge+regression+estimators%3A+simulation+and+application&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Abonazel%2C+Mohamed+R.&rft.au=Taha%2C+Ibrahim+M.&rft.date=2023-09-02&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=9&rft.spage=4280&rft.epage=4292&rft_id=info:doi/10.1080%2F03610918.2021.1960373&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2021_1960373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |