Nonlinear Response Characteristics of Undersea Shield Tunnel Subjected to Strong Earthquake Motions
Ensuring the safety of undersea shield tunnels constructed in soft marine deposits that are subject to strong seismic motion represents a major engineering challenge. An example of one such undersea shield tunnel is the 2.70 km-long subsea highway tunnel crossing under the Gulf of Suai in the Rongji...
Saved in:
Published in | Journal of earthquake engineering : JEE Vol. 24; no. 3; pp. 351 - 380 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.03.2020
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ensuring the safety of undersea shield tunnels constructed in soft marine deposits that are subject to strong seismic motion represents a major engineering challenge. An example of one such undersea shield tunnel is the 2.70 km-long subsea highway tunnel crossing under the Gulf of Suai in the Rongjiang River Estuary in Shantou, China. Using the generalized response displacement method, the authors developed a nonlinear seismic response analysis of the segmental lining for the 2.7 km-long Suai tunnel. In the proposed longitudinal seismic response analysis, the engineering geology characteristics and nonlinear dynamic behavior of the Suai seabed soil, the nonuniform mesh layout of the free-field site, the artificial boundary conditions and nonuniform seismic input, simulation model, and the parameters of soil-tunnel interaction systems, are considered in detail. Special emphasis is given to the irregular unloading-reloading rules for the stress-strain hysteresis loop, the seismic input at artificial boundary nodes, and the spatial incoherency of ground motions in the seabed site. The opening width at the ring intersegment under simultaneous actions of longitudinal, transversal, and vertical seismic motions is critical for seismic safety. The proposed methodology was deemed conservative, as demonstrated by a comparison with dynamic transient analysis using the three-dimensional finite element method. The results of this pilot study should be of use in the construction of future long subsea shield tunnels in the high seismic intensity region. |
---|---|
AbstractList | Ensuring the safety of undersea shield tunnels constructed in soft marine deposits that are subject to strong seismic motion represents a major engineering challenge. An example of one such undersea shield tunnel is the 2.70 km-long subsea highway tunnel crossing under the Gulf of Suai in the Rongjiang River Estuary in Shantou, China. Using the generalized response displacement method, the authors developed a nonlinear seismic response analysis of the segmental lining for the 2.7 km-long Suai tunnel. In the proposed longitudinal seismic response analysis, the engineering geology characteristics and nonlinear dynamic behavior of the Suai seabed soil, the nonuniform mesh layout of the free-field site, the artificial boundary conditions and nonuniform seismic input, simulation model, and the parameters of soil-tunnel interaction systems, are considered in detail. Special emphasis is given to the irregular unloading-reloading rules for the stress-strain hysteresis loop, the seismic input at artificial boundary nodes, and the spatial incoherency of ground motions in the seabed site. The opening width at the ring intersegment under simultaneous actions of longitudinal, transversal, and vertical seismic motions is critical for seismic safety. The proposed methodology was deemed conservative, as demonstrated by a comparison with dynamic transient analysis using the three-dimensional finite element method. The results of this pilot study should be of use in the construction of future long subsea shield tunnels in the high seismic intensity region. Ensuring the safety of undersea shield tunnels constructed in soft marine deposits that are subject to strong seismic motion represents a major engineering challenge. An example of one such undersea shield tunnel is the 2.70 km-long subsea highway tunnel crossing under the Gulf of Suai in the Rongjiang River Estuary in Shantou, China. Using the generalized response displacement method, the authors developed a nonlinear seismic response analysis of the segmental lining for the 2.7 km-long Suai tunnel. In the proposed longitudinal seismic response analysis, the engineering geology characteristics and nonlinear dynamic behavior of the Suai seabed soil, the nonuniform mesh layout of the free-field site, the artificial boundary conditions and nonuniform seismic input, simulation model, and the parameters of soil-tunnel interaction systems, are considered in detail. Special emphasis is given to the irregular unloading-reloading rules for the stress-strain hysteresis loop, the seismic input at artificial boundary nodes, and the spatial incoherency of ground motions in the seabed site. The opening width at the ring intersegment under simultaneous actions of longitudinal, transversal, and vertical seismic motions is critical for seismic safety. The proposed methodology was deemed conservative, as demonstrated by a comparison with dynamic transient analysis using the three-dimensional finite element method. The results of this pilot study should be of use in the construction of future long subsea shield tunnels in the high seismic intensity region. |
Author | Chen, Weiyun Ruan, Bin Du, Xiuli Khoshnevisan, Sara Chen, Guoxing Zhuang, Haiyang Zhao, Kai Juang, Charng Hsein |
Author_xml | – sequence: 1 givenname: Guoxing surname: Chen fullname: Chen, Guoxing email: gxc6307@163.com organization: Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province – sequence: 2 givenname: Bin surname: Ruan fullname: Ruan, Bin organization: Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province – sequence: 3 givenname: Kai surname: Zhao fullname: Zhao, Kai organization: Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province – sequence: 4 givenname: Weiyun surname: Chen fullname: Chen, Weiyun organization: Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province – sequence: 5 givenname: Haiyang surname: Zhuang fullname: Zhuang, Haiyang organization: Civil Engineering & Earthquake Disaster Prevention Center of Jiangsu Province – sequence: 6 givenname: Xiuli surname: Du fullname: Du, Xiuli organization: Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology – sequence: 7 givenname: Sara surname: Khoshnevisan fullname: Khoshnevisan, Sara organization: Civil and Environmental Engineering Department, Clarkson University – sequence: 8 givenname: Charng Hsein orcidid: 0000-0003-2181-8947 surname: Juang fullname: Juang, Charng Hsein organization: Glenn Department of Civil Engineering, Clemson University |
BookMark | eNqFkF1rFDEUhoO0YFv9CULA69kmk8lMgjfKUj-gKnRb8C5kkhM36zTZnmSQ_vvOsvXGC4XAycXzvIfznpOTlBMQ8oazFWeKXXLRi7br9aplXK14J0XH-xfkjEupG8XUj5PlvzDNAXpJzkvZMca7QfRnxH3LaYoJLNIbKPucCtD11qJ1FTCWGl2hOdC75AELWLrZRpg8vZ1Tgolu5nEHC-lpzXRTMaef9Mpi3T7M9hfQr7nGJfEVOQ12KvD6eV6Qu49Xt-vPzfX3T1_WH64bJ4SqTfAd67UI2nGpBwhOObs8Jx2To9Nej95LMYbAh1Fy3fpx9JwFqYbRtQBCXJC3x9w95ocZSjW7PGNaVppWyHZQnVb9Qskj5TCXghDMHuO9xUfDmTn0af70aQ59muc-F-_dX56L1R4OrGjj9F_7_dGOKWS8t78zTt5U-zhlDGiTi8WIf0c8AfPwksQ |
CitedBy_id | crossref_primary_10_1016_j_tust_2023_105015 crossref_primary_10_1002_gj_4937 crossref_primary_10_1080_13632469_2023_2173491 crossref_primary_10_1080_13632469_2022_2074917 crossref_primary_10_1016_j_soildyn_2024_108701 crossref_primary_10_3390_jmse9050526 crossref_primary_10_1016_j_soildyn_2025_109246 crossref_primary_10_1016_j_soildyn_2023_108079 crossref_primary_10_1155_2021_8441325 crossref_primary_10_3390_jmse10101525 crossref_primary_10_3390_buildings12122138 crossref_primary_10_1016_j_tust_2025_106535 crossref_primary_10_1016_j_tust_2024_106032 crossref_primary_10_1007_s12665_021_10055_4 crossref_primary_10_1016_j_oceaneng_2024_117595 crossref_primary_10_1016_j_undsp_2021_07_007 crossref_primary_10_21595_jve_2024_23884 crossref_primary_10_1016_j_tust_2023_105163 crossref_primary_10_1002_nag_3245 crossref_primary_10_1016_j_enganabound_2020_02_007 crossref_primary_10_1016_j_soildyn_2022_107550 crossref_primary_10_1155_2020_8813303 crossref_primary_10_1002_nag_3526 crossref_primary_10_1002_eqe_3962 crossref_primary_10_1007_s10706_020_01576_z crossref_primary_10_1002_eqe_3414 crossref_primary_10_1016_j_tust_2023_105119 crossref_primary_10_3390_su141912825 crossref_primary_10_1016_j_oceaneng_2025_120717 crossref_primary_10_1016_j_tust_2019_103036 crossref_primary_10_1016_j_tust_2021_104066 crossref_primary_10_1016_j_tust_2022_104781 crossref_primary_10_3390_su15064992 crossref_primary_10_1016_j_soildyn_2024_108579 crossref_primary_10_1016_j_compgeo_2024_106684 crossref_primary_10_1016_j_soildyn_2024_108853 crossref_primary_10_1088_1742_6596_2006_1_012051 crossref_primary_10_1016_j_compgeo_2021_104342 crossref_primary_10_1016_j_tust_2023_105423 crossref_primary_10_1016_j_soildyn_2022_107608 crossref_primary_10_3390_app12136362 crossref_primary_10_1016_j_tust_2025_106432 crossref_primary_10_1016_j_istruc_2025_108207 crossref_primary_10_3390_su142416512 crossref_primary_10_1016_j_oceaneng_2021_108924 crossref_primary_10_1155_2020_8867026 crossref_primary_10_3390_app11188611 crossref_primary_10_1007_s10518_022_01483_z crossref_primary_10_1080_13632469_2022_2141371 crossref_primary_10_1080_13632469_2020_1815610 |
Cites_doi | 10.1360/04ye0362 10.1007/s10518-016-9973-9 10.1785/0120140085 10.1061/(ASCE)0733-9410(1996)122:1(39) 10.1061/AJGEB6.0000820 10.1002/tal.v2:3 10.1061/JSFEAQ.0001885 10.1016/S0886-7798(01)00051-7 10.3208/sandf.36.Special_283 10.1016/j.tust.2014.02.005 10.1093/oso/9780198562245.001.0001 10.1016/S0013-7952(01)00061-8 10.1016/S0045-7825(99)00114-0 10.1007/s10518-014-9698-6 10.1785/BSSA0060020055 10.1016/j.tust.2005.02.004 10.1002/(ISSN)1096-9845 10.1002/eqe.v40.3 10.1016/S0267-7261(00)00029-4 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis Group, LLC 2018 2018 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2018 Taylor & Francis Group, LLC 2018 – notice: 2018 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1080/13632469.2018.1453416 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Geology |
EISSN | 1559-808X |
EndPage | 380 |
ExternalDocumentID | 10_1080_13632469_2018_1453416 1453416 |
Genre | Note |
GrantInformation_xml | – fundername: the Natural Science Foundation of China grantid: 51438004,51608267 – fundername: the Major Research Plan Integration Project of the Natural Science Foundation of China grantid: 91215301 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWJ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI TASJS |
ID | FETCH-LOGICAL-c338t-fd40693f9c1597efc8ca8cac5c05bc9d9bdd53bff17b5192dbbd10f587bc2ee33 |
ISSN | 1363-2469 |
IngestDate | Wed Aug 13 11:10:43 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 04:15:01 EDT 2025 Wed Dec 25 09:08:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-fd40693f9c1597efc8ca8cac5c05bc9d9bdd53bff17b5192dbbd10f587bc2ee33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2181-8947 |
PQID | 2352784986 |
PQPubID | 53172 |
PageCount | 30 |
ParticipantIDs | crossref_primary_10_1080_13632469_2018_1453416 crossref_citationtrail_10_1080_13632469_2018_1453416 informaworld_taylorfrancis_310_1080_13632469_2018_1453416 proquest_journals_2352784986 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-03 |
PublicationDateYYYYMMDD | 2020-03-03 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of earthquake engineering : JEE |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Kramer S. L. (CIT0021) 1996 Wood H. O. (CIT0038) 1916; 6 Martin P. P. (CIT0028) 1982; 108 CIT0012 CIT0034 Clough R. (CIT0007) 1993 CNS GB50267-97 (CIT0009) 1997 CIT0014 CIT0013 CIT0035 CIT0016 Zhang X. (CIT0041) 2016; 48 CIT0015 CIT0037 CIT0017 Kuhlemeyer R. L. (CIT0022) 1973; 99 Ishihara K. (CIT0018) 1996 Zerva A. (CIT0040) 2002; 55 CNS GB50909-2014 (CIT0010) 2014 CIT0020 CIT0001 CIT0023 CNS GB17741-2005 (CIT0008) 2005 Owen G. N. (CIT0030) 1981 Power M. (CIT0032) 1998 Anastasopoulos I. (CIT0002) 2007; 133 Liu J. (CIT0025) 2006; 28 Zhao D. (CIT0042) 2017; 39 Dassault Systèmes Simulia Incorporation (DSSI) (CIT0011) 2010 Pyke R. M. (CIT0033) 1979; 105 Arias A. (CIT0003) 1970 CIT0005 CIT0027 CIT0026 CIT0006 Trifunac M. D. (CIT0036) 1975; 65 Chen G. (CIT0004) 2011; 33 |
References_xml | – ident: CIT0026 doi: 10.1360/04ye0362 – ident: CIT0001 doi: 10.1007/s10518-016-9973-9 – volume-title: Code for Seismic Design of Nuclear Power Plants year: 1997 ident: CIT0009 – ident: CIT0005 doi: 10.1785/0120140085 – ident: CIT0012 doi: 10.1061/(ASCE)0733-9410(1996)122:1(39) – volume: 105 start-page: 715 issue: 6 year: 1979 ident: CIT0033 publication-title: Journal of the Geotechnical Engineering Division, ASCE doi: 10.1061/AJGEB6.0000820 – ident: CIT0034 doi: 10.1002/tal.v2:3 – volume-title: Code for Seismic Design of Urban Rail Transit Structures year: 2014 ident: CIT0010 – volume-title: Earthquake Engineering of Large Underground Structures year: 1981 ident: CIT0030 – volume: 99 start-page: 421 issue: 5 year: 1973 ident: CIT0022 publication-title: Journal of Soil Mechanics & Foundations Div, ASCE doi: 10.1061/JSFEAQ.0001885 – volume: 33 start-page: 112 issue: 11 year: 2011 ident: CIT0004 publication-title: Journal of the China Railway Society – ident: CIT0015 doi: 10.1016/S0886-7798(01)00051-7 – volume-title: Geotechnical Earthquake Engineering year: 1996 ident: CIT0021 – ident: CIT0017 doi: 10.3208/sandf.36.Special_283 – volume: 39 start-page: 888 issue: 5 year: 2017 ident: CIT0042 publication-title: Chinese Journal of Geotechnical Engineering – volume: 48 start-page: 1126 issue: 5 year: 2016 ident: CIT0041 publication-title: Chinese Journal of Theoretical and Applied Mechanics – ident: CIT0006 doi: 10.1016/j.tust.2014.02.005 – volume-title: Evaluation of Seismic Safety for Engineering Sites year: 2005 ident: CIT0008 – ident: CIT0016 – volume-title: Soil Behaviour in Earthquake Geotechnics year: 1996 ident: CIT0018 doi: 10.1093/oso/9780198562245.001.0001 – ident: CIT0013 doi: 10.1016/S0013-7952(01)00061-8 – volume-title: Abaqus Analysis User’s Manual, Version 6.10 year: 2010 ident: CIT0011 – ident: CIT0035 doi: 10.1016/S0045-7825(99)00114-0 – volume: 55 start-page: 271 issue: 3 year: 2002 ident: CIT0040 publication-title: Asme – ident: CIT0027 doi: 10.1007/s10518-014-9698-6 – volume: 6 start-page: 55 issue: 2 year: 1916 ident: CIT0038 publication-title: Bulletin of the Seismological Society of America doi: 10.1785/BSSA0060020055 – volume: 65 start-page: 581 issue: 3 year: 1975 ident: CIT0036 publication-title: Bulletin of the Seismological Society of America – ident: CIT0014 doi: 10.1016/j.tust.2005.02.004 – ident: CIT0037 doi: 10.1002/(ISSN)1096-9845 – volume: 108 start-page: 935 issue: 7 year: 1982 ident: CIT0028 publication-title: Journal of Geotechnical Engineering, ASCE – volume: 28 start-page: 1070 issue: 9 year: 2006 ident: CIT0025 publication-title: Chinese Journal of Geotechnical Engineering – volume-title: Dynamics of Structures year: 1993 ident: CIT0007 – ident: CIT0023 doi: 10.1002/eqe.v40.3 – start-page: 438 volume-title: Seismic Design for Nuclear Power Plants year: 1970 ident: CIT0003 – ident: CIT0020 doi: 10.1016/S0267-7261(00)00029-4 – volume: 133 start-page: 1067 issue: 9 year: 2007 ident: CIT0002 publication-title: Asce – volume-title: Summary and Evaluation of Procedures for the Seismic Design of Tunnels year: 1998 ident: CIT0032 |
SSID | ssj0014736 |
Score | 2.4885056 |
Snippet | Ensuring the safety of undersea shield tunnels constructed in soft marine deposits that are subject to strong seismic motion represents a major engineering... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 351 |
SubjectTerms | Boundary conditions Computer simulation Dynamical systems Earthquakes Engineering geology Estuaries Estuarine dynamics Finite element method Fluvial deposits Geology Ground motion Hysteresis loops Interaction parameters Longitudinal Seismic Response Analysis Multi-Directional Earthquake Excitation Nonlinear analysis Nonlinear dynamics Nonlinear Response Ocean floor Offshore engineering Response analysis Rivers Safety Seismic activity Seismic analysis Seismic response Soil Soil dynamics Soil-Structure Interaction Soils Subsea Shield Tunnel Three dimensional analysis Transient analysis Tunnel construction Tunnels Undersea Unloading |
Title | Nonlinear Response Characteristics of Undersea Shield Tunnel Subjected to Strong Earthquake Motions |
URI | https://www.tandfonline.com/doi/abs/10.1080/13632469.2018.1453416 https://www.proquest.com/docview/2352784986 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaG6QUOFatoKcgHbihDEtuJcywwMKpEL0zVqpcodmw6Ak2gJBLwK_jJvBc7S2cqlUUaRaMkjiO_L2_zWwh5LkrGIlGIQBUyDHhkkkAJywMtE2WKpDBKo2vg_XGyOOFHZ-JsMvk1ilpqajXTP6_NK_kXqsI5oCtmyf4FZfuHwgn4D_SFI1AYjn9E42NX56K4RC88hrqadvt8XIAZdMG2tRFmRGLfa4ycaTC2BVkG-mBA4QT18wN6xD--mMMkF1-b4hN-7IMrb1t5NcONZqho2PoXjuaj5AbH1N411fdORLZR9c7r-mrVI_P8oqhccMdqc_CpWf1o1mPvBJiiGJ7FejwttxqFjHgtbiHH3HVqmRnPf9ErGbbdhnsG7ZKsPRDZiNsyX6vWCW7mWkJtyQQXRImz4WQYzSdBPggQ3xs1uJ1R5K7cIjsxGB7xlOwcLt6cn_Y7Uzxt2072L99lhcnw5bVTXNF3rlTD3ZL-rUqzvEt2PTnpoQPWPTIx6_vkzqhC5QOie4jRDmJ0A2K0srSDGHUQow5itIcYrSvqIEYHiFEPsYfk5O18-XoR-L4cgWZM1oEtMV2a2UyDLpwaq6Uu4KeFDoXSWZmpshRMWRulCgyEuFSqjEIrZKp0bAxjj8h0Xa3NY0I1izNVxCYymnGuU1AerTY8sZqF3ERsj_Bu9XLti9Zj75TPeeRr23aLnuOi537R98isH_bFVW25aUA2Jk1et7i1DrI5u2HsQUfH3DOHb3kMhk0qeSaT_f949BNye_ioDsi0vmzMU1CCa_XM4_I3l8muOQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa69rD1sHYvNF0fOvTqzLIeto9DkSBrmxzWBMhNsChpBVoka-Nc-usr-hEkK4YcCvhKQaZJiqLJ7yPkQlrOmSxkZIosjgRzKjLSiwgyZVyhCmcASwPDkRpMxNVUTtdmYbCtEu_QvgaKqGI1OjcWo9uWuB-MI8i4wjkTlgVflyEUq3dkT-YqRRYDHo9WfxJEWtEEokiEMu0Uz_-W2TifNtBLX0Xr6gjqHxBoN193ntx3l6XpwvM_uI5ve7tD8rHJUOnP2qQ-kR03-0z213ALvxAY1SsXT_R33WPr6OUm8jOde1pxKgVXoki4_WDpeIlNNTTEKiz-OEvLOb3FUvwf2gsWfPe4LO4dHVa8QouvZNLvjS8HUcPWEEG45paRtzhEy30OIUNKnYcMivCAhFgayG1urJXceM9SE9LGxBpjWexllhpInOP8G9mdzWfuiFDgSW6KxDEHXAhIQ0rhwQnlgcfCMd4hov1GGhooc2TUeNCsQTxtdahRh7rRYYd0V2J_ayyPbQL5ugHosiqi-JrxRPMtsiettegmLCx0EtLdNBN5po7fsPQ5eT8YD2_0za_R9XfyIcEKAHbF8ROyWz4t3WlIk0pzVvnBC4NsBXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELWgSBU9FGiLaCnUB66brtcfu3tEpVGAJkKQSL1Z67ENUqMkbXYv_fX17EeUgFAOkfY61q7tGY9n37xHyCdpOWeykJEpsjgSzKnISC8iyJRxhSqcASwNDEdqMBHfbmWHJly2sEq8Q_uGKKKO1ejcC-s7RNwl48gxrrDNhGXB1WWIxOo5eaGQPBy7OOLR6keCSGuVQDSJ0KZr4vnfMBvH0wZ56T_Buj6B-q-I6d69AZ7c9arS9ODxL1rHnT7uNTls81P6udlQb8gzNzsiB2ushccERs3AxQP92SBsHb3a5H2mc09rRaXgSBTltqeWjiuE1NAQqbD04ywt5_QXFuJ_0-uwf__cV8Wdo8NaVWh5Qib96_HVIGq1GiIIl9wy8hZbaLnPIeRHqfOQQREekBBLA7nNjbWSG-9ZakLSmFhjLIu9zFIDiXOcvyV7s_nMvSMUeJKbInHMARcC0pBQeHBCeeCxcIyfEtEtkYaWyBz1NKaatXyn3RxqnEPdzuEp6a3MFg2TxzaDfH39dVmXUHyjd6L5FtvzbrPoNigsdRKS3TQTeabOdhj6guz_-NLXN19H39-Tlwle_xESx8_JXvlQuQ8hRyrNx9oLngBBJwQY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Response+Characteristics+of+Undersea+Shield+Tunnel+Subjected+to+Strong+Earthquake+Motions&rft.jtitle=Journal+of+earthquake+engineering+%3A+JEE&rft.au=Chen%2C+Guoxing&rft.au=Ruan%2C+Bin&rft.au=Zhao%2C+Kai&rft.au=Chen%2C+Weiyun&rft.date=2020-03-03&rft.pub=Taylor+%26+Francis&rft.issn=1363-2469&rft.eissn=1559-808X&rft.volume=24&rft.issue=3&rft.spage=351&rft.epage=380&rft_id=info:doi/10.1080%2F13632469.2018.1453416&rft.externalDocID=1453416 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1363-2469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1363-2469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1363-2469&client=summon |