Weak convergence of inertial proximal algorithms with self adaptive stepsize for solving multivalued variational inequalities
In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms...
Saved in:
Published in | Optimization Vol. 73; no. 4; pp. 995 - 1023 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.04.2024
Taylor & Francis LLC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic
$ O(\frac {1}{k}) $
O
(
1
k
)
convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature. |
---|---|
AbstractList | In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic
$ O(\frac {1}{k}) $
O
(
1
k
)
convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature. In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic O(1k) convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature. |
Author | Anh, P. N. Hien, N. D. Thang, T. V. Thach, H. T. C. |
Author_xml | – sequence: 1 givenname: T. V. surname: Thang fullname: Thang, T. V. organization: Electric Power University – sequence: 2 givenname: N. D. surname: Hien fullname: Hien, N. D. email: nguyenduchien@dtu.edu.vn organization: Duy Tan University – sequence: 3 givenname: H. T. C. surname: Thach fullname: Thach, H. T. C. organization: University of Transport Technology – sequence: 4 givenname: P. N. surname: Anh fullname: Anh, P. N. organization: Posts and Telecommunications Institute of Technology |
BookMark | eNqFUMtuFDEQtFCQsgl8QiRLOc_i13rGygUUEUCKxAXE0Wpm2osTr72xPZsEiX_Hy4ZLDnDqVndVqapOyFFMEQk542zJ2cDeMCElN1ItBRNiKbhcGa1fkAVnwnTKqNURWewx3R50TE5KuWFMcC3Ugvz6hnBLxxR3mNcYR6TJUR8xVw-BbnN68Ju2QFin7OuPTaH3bdCCwVGYYFv9DmmpuC3-J1KXMi0p7Hxc080c2hPCjBPdQfZQfYpNqonfzRB89VhekZcOQsHXT_OUfL16_-XyY3f9-cOny3fX3SjlUDs3sX5q5hmYtvRKK9ACJo2cfzft7OTYa2e0VKpHMQxG9aAauneDNoxzeUrOD7ot0N2MpdqbNOfmpljJeiFWUrChoVYH1JhTKRmd3eaWPj9azuy-afu3abtv2j413XgXz3ijr3_i1gw-_Jf99sD2sdW3gfuUw2QrPIaUXYY4-mby3xK_AS6pmug |
CitedBy_id | crossref_primary_10_1007_s10957_024_02555_7 crossref_primary_10_1007_s40314_024_02896_z crossref_primary_10_1080_02331934_2024_2358408 |
Cites_doi | 10.1080/02331934.2019.1604706 10.1007/s11067-019-09485-2 10.1016/j.camwa.2010.08.021 10.1007/978-3-642-25707-0-1 10.1090/S0002-9947-1965-0180884-9 10.1016/j.na.2009.10.009 10.1007/s10957-011-9825-3 10.1137/S1052623403427859 10.1007/0-387-23639-2_6 10.1007/s12190-019-01303-9 10.1137/S0363012998338806 10.1007/s11075-017-0283-3 10.1007/s11075-020-00968-9 10.1007/s11075-019-00755-1 10.1016/0041-5553(64)90137-5 10.1007/s11075-021-01119-4 10.1007/s10107-019-01412-0 10.1007/s11784-017-0472-7 10.1007/s40306-013-0023-2 10.1016/j.amc.2013.12.039 10.1007/978-94-011-2178-1 10.1007/s00245-019-09584-z 10.1007/0-387-34221-4_11 10.1016/j.jmaa.2004.12.023 10.1017/CBO9780511526152 10.1007/s10898-017-0506-0 10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J 10.1007/s11067-011-9166-7 10.1007/s40306-015-0165-5 10.1002/mma.6118 10.1007/978-1-4419-9467-7 10.1007/BF02190064 10.1007/s40314-019-0955-9 10.1007/s10957-007-9230-0 10.1186/s13660-020-2286-1 10.1007/s11075-018-0504-4 10.1007/s40314-020-01215-6 10.1007/s10957-004-0926-0 |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1080/02331934.2022.2135966 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1029-4945 |
EndPage | 1023 |
ExternalDocumentID | 10_1080_02331934_2022_2135966 2135966 |
Genre | Research Article |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-fd07d1930a907d7464a62ad6e11b9930f3c76f963447e288947a430a7f8690113 |
ISSN | 0233-1934 |
IngestDate | Wed Aug 13 06:32:12 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 03:52:14 EDT 2025 Wed Dec 25 09:05:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-fd07d1930a907d7464a62ad6e11b9930f3c76f963447e288947a430a7f8690113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3072253208 |
PQPubID | 27961 |
PageCount | 29 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02331934_2022_2135966 proquest_journals_3072253208 crossref_primary_10_1080_02331934_2022_2135966 crossref_citationtrail_10_1080_02331934_2022_2135966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis LLC |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
References | e_1_3_3_30_1 Anh PN (e_1_3_3_32_1) 2009; 34 e_1_3_3_18_1 e_1_3_3_17_1 Goebel K (e_1_3_3_41_1) 1984 Ogbuisi FU (e_1_3_3_39_1) 2021; 4 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 Anh PN (e_1_3_3_23_1) 2010; 11 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 Hieu D. (e_1_3_3_21_1) 2021; 3 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_40_1 Shehu Y (e_1_3_3_26_1) 2021; 5 e_1_3_3_6_1 e_1_3_3_8_1 Konnov IV. (e_1_3_3_7_1) 2000 Facchinei F (e_1_3_3_9_1) 2003 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_47_1 e_1_3_3_3_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – volume: 11 start-page: 491 year: 2010 ident: e_1_3_3_23_1 article-title: An interior proximal cutting hyperplane method for multivalued variational inequalities publication-title: J Nonlinear Convex Anal – ident: e_1_3_3_38_1 doi: 10.1080/02331934.2019.1604706 – ident: e_1_3_3_3_1 doi: 10.1007/s11067-019-09485-2 – volume-title: Combined relaxation methods for variational inequalities year: 2000 ident: e_1_3_3_7_1 – ident: e_1_3_3_37_1 doi: 10.1016/j.camwa.2010.08.021 – ident: e_1_3_3_24_1 doi: 10.1007/978-3-642-25707-0-1 – ident: e_1_3_3_6_1 doi: 10.1090/S0002-9947-1965-0180884-9 – ident: e_1_3_3_11_1 doi: 10.1016/j.na.2009.10.009 – ident: e_1_3_3_29_1 doi: 10.1007/s10957-011-9825-3 – ident: e_1_3_3_42_1 doi: 10.1137/S1052623403427859 – ident: e_1_3_3_35_1 doi: 10.1007/0-387-23639-2_6 – ident: e_1_3_3_36_1 doi: 10.1007/s12190-019-01303-9 – ident: e_1_3_3_45_1 doi: 10.1137/S0363012998338806 – ident: e_1_3_3_19_1 doi: 10.1007/s11075-017-0283-3 – ident: e_1_3_3_33_1 doi: 10.1007/s11075-020-00968-9 – volume: 4 start-page: 2021 year: 2021 ident: e_1_3_3_39_1 article-title: On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems publication-title: J Nonlinear Funct Anal – ident: e_1_3_3_4_1 doi: 10.1007/s11075-019-00755-1 – ident: e_1_3_3_14_1 doi: 10.1016/0041-5553(64)90137-5 – volume: 3 start-page: 215 year: 2021 ident: e_1_3_3_21_1 article-title: Convergence of relaxed inertial methods for equilibrium problems publication-title: J Appl Numer Optim – ident: e_1_3_3_34_1 doi: 10.1007/s11075-021-01119-4 – ident: e_1_3_3_16_1 doi: 10.1007/s10107-019-01412-0 – ident: e_1_3_3_20_1 doi: 10.1007/s11784-017-0472-7 – ident: e_1_3_3_28_1 doi: 10.1007/s40306-013-0023-2 – ident: e_1_3_3_27_1 doi: 10.1016/j.amc.2013.12.039 – ident: e_1_3_3_12_1 doi: 10.1007/978-94-011-2178-1 – ident: e_1_3_3_17_1 doi: 10.1007/s00245-019-09584-z – ident: e_1_3_3_25_1 doi: 10.1007/0-387-34221-4_11 – ident: e_1_3_3_46_1 doi: 10.1016/j.jmaa.2004.12.023 – ident: e_1_3_3_8_1 doi: 10.1017/CBO9780511526152 – ident: e_1_3_3_18_1 doi: 10.1007/s10898-017-0506-0 – ident: e_1_3_3_10_1 doi: 10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J – ident: e_1_3_3_13_1 doi: 10.1007/s11067-011-9166-7 – volume-title: Uniform convexity, hyperbolic geometry, and nonexpansive mappings year: 1984 ident: e_1_3_3_41_1 – ident: e_1_3_3_30_1 doi: 10.1007/s40306-015-0165-5 – ident: e_1_3_3_31_1 doi: 10.1002/mma.6118 – ident: e_1_3_3_43_1 doi: 10.1007/978-1-4419-9467-7 – ident: e_1_3_3_40_1 doi: 10.1007/BF02190064 – volume: 34 start-page: 67 year: 2009 ident: e_1_3_3_32_1 article-title: Generalized projection method for non-Lipschitz multivalued monotone variational inequalities publication-title: Acta Math Vietnam – ident: e_1_3_3_47_1 doi: 10.1007/s40314-019-0955-9 – volume-title: Finite-dimensional variational inequalities and complementary problems year: 2003 ident: e_1_3_3_9_1 – ident: e_1_3_3_15_1 doi: 10.1007/s10957-007-9230-0 – ident: e_1_3_3_22_1 doi: 10.1186/s13660-020-2286-1 – ident: e_1_3_3_5_1 doi: 10.1007/s11075-018-0504-4 – ident: e_1_3_3_2_1 doi: 10.1007/s40314-020-01215-6 – volume: 5 start-page: 881 year: 2021 ident: e_1_3_3_26_1 article-title: Weak and linear convergence of a generalized proximal point algorithm with alternating inertial steps for a monotone inclusion problem publication-title: J Nonlinear Var Anal – ident: e_1_3_3_44_1 doi: 10.1007/s10957-004-0926-0 |
SSID | ssj0021624 |
Score | 2.3788817 |
Snippet | In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 995 |
SubjectTerms | Adaptive algorithms Convergence Hilbert space inertial technique Lipschitz continuous monotone Multivalued variational inequality problems Operators (mathematics) proximal operator self adaptive stepsize |
Title | Weak convergence of inertial proximal algorithms with self adaptive stepsize for solving multivalued variational inequalities |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2135966 https://www.proquest.com/docview/3072253208 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdoKcgHblWixPbGyXHVglZIwGVLKy5R4tiwYl_apghV4ufwP5mJ7awLK0q5RFFiT7yZL_Z4duYbQl4JLhvOuYpSsB0iYVQe5YYn8OEJppWWWghMcH73Ppucirfno_PB4GcQtXTZ1rG62plX8j9ahWugV8ySvYVme6FwAc5Bv3AEDcPxn3R8pquvNm58Yzk1O_4HjJTG_KrN6vtsgVQA88-rzaz9snCZbBd6jv_9V-suagi0vL6YXVnubxhu52DowgyRBxzM0W-wm_YeQxBuszB96KEzaz-ArIXL6NyGmjhX9DQ--hhvXdzaZXgdncRBU1uRahJj6-P-xnhpvT4xtA_9E8yGtYQuS8Z5BGaidRtoO81i0I0oLJGkn4dtSROHNxFMqoUtw-nWZ-Sa2Dn3u2BJeBw-Dbb-jMUs5aMi28G1_dsa2Ecmpp4y1YkpUUzpxNwhewx2I2xI9saTk09n_c4-zbrqyf1P9aliSOK-azzXjKBrFLl_mASdnTN9QO67DQodW7Q9JAO9fETuBbSVj8kPxB0NcEdXhnrcUY87usUdRdxRxB31uKMedxRGRR3uaIA7GuCOhrh7Qk7fvJ4eTyJXxiNSnOdtZJpENvAKkqqAEykyUWWsajKdpjVYx4nhSmYGFgIhpGZ5XghZCWgtTVctLeVPyXC5WupnhMLbG0lT5Y1WqUibpAYM8VHFa41ME7naJ8K_11I5jnsstTIv_6rXfRL33daW5OWmDkWotLLtvGvGlsIp-Q19D72GSzeXQJcEYIU1WvKD247lObm7_ewOybDdXOoXYCi39UsH019eZLQg |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HIADb8SbHLh2NE3WdEeEQOO1E4jdqjQPmPbUVjgg8d-x0xYNENqBUyu1jhrXdmzL_kzIqeDScM51wMB3CITTSZA4HoLiichqK60Q2OB834qbj-KmXW9P9cJgWSXG0K4AivC2GpUbk9FVSdwZnDMgORxTIlFUixivg9M-TxbhInGKAQ9bX0EXi_1gWyQJkKbq4vlrmW_n0zf00l_W2h9BV2tEVx9fVJ50a695VtPvP3Ad_7e7dbJaeqj0vBCpDTJnB5tkZQq3cIt8PFnVpb5g3fduWjp0FLsIwVz0KH5fpw83qvc8HHfyl_6EYrqXTmzPUWXUCE0sBfEaTTrvlsLeKWgAZjaor29EAHJr6BuE8WWqEhcv2j8hsN8mj1eXDxfNoJzjEGgIgPPAmVAa2FGoIBI3UsRCxZEysWUsA_codFzL2IElEELaKEkaQioBb0vnx2UxvkMWBsOB3SUUmFGXTiXGaiaYCTPRAH9P8cwi1ECi94io_l6qS5BznLXRS1mFhVpyN0XupiV390jti2xUoHzMImhMi0aa-_SKK2ahpHwG7WElR2lpMIAklGBZeRQm-_9Y-oQsNR_u79K769btAVmGR0WVUXRIFvLxqz0CByrPjr2GfAJUKwxw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SAgOvBHjmQPXjqbJmu6IgInnxAEEtyrNAybGNm2FAxL_HTtt0QZCHLhVah0lru3Ylv2ZkAPBpeGc64CB7xAIp5MgcTwExROR1VZaIbDB-bodn92Ji4dGVU04KssqMYZ2BVCEt9Wo3APjqoq4Q7hmQHA4ZkSiqB4x3gCffZrMxggejl0cYfsr5mKxn2uLJAHSVE08vy0zcT1NgJf-MNb-Bmotkazae1F48lx_zbO6fv8G6_ivwy2TxdI_pUeFQK2QKdtbJQtjqIVr5OPeqmfqy9V956alfUexhxCMRZfi9jov8KC6j_1hJ396GVFM9tKR7TqqjBqggaUgXINR591SODoF-ce8BvXVjQg_bg19gyC-TFTi4kXzJ4T16-SudXp7fBaUUxwCDeFvHjgTSgMnChXE4UaKWKg4Uia2jGXgHIWOaxk7sANCSBslSVNIJeBr6fywLMY3yEyv37ObhAIzGtKpxFjNBDNhJprg7SmeWQQaSHSNiOrnpbqEOMdJG92UVUioJXdT5G5acrdG6l9kgwLj4y-C5rhkpLlPrrhiEkrK_6DdqcQoLc0FkIQS7CqPwmTrH0vvk7mbk1Z6dd6-3Cbz8KYoMYp2yEw-fLW74D3l2Z7Xj0_yuAsU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+convergence+of+inertial+proximal+algorithms+with+self+adaptive+stepsize+for+solving+multivalued+variational+inequalities&rft.jtitle=Optimization&rft.au=Thang%2C+T.+V.&rft.au=Hien%2C+N.+D.&rft.au=Thach%2C+H.+T.+C.&rft.au=Anh%2C+P.+N.&rft.date=2024-04-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=4&rft.spage=995&rft.epage=1023&rft_id=info:doi/10.1080%2F02331934.2022.2135966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2135966 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |