Weak convergence of inertial proximal algorithms with self adaptive stepsize for solving multivalued variational inequalities

In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms...

Full description

Saved in:
Bibliographic Details
Published inOptimization Vol. 73; no. 4; pp. 995 - 1023
Main Authors Thang, T. V., Hien, N. D., Thach, H. T. C., Anh, P. N.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.04.2024
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic $ O(\frac {1}{k}) $ O ( 1 k ) convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature.
AbstractList In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic $ O(\frac {1}{k}) $ O ( 1 k ) convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature.
In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using self-adaptive and inertial techniques via proximal operators, we establish the weak convergence of the iteration sequences generated by these algorithms when the multivalued cost mappings associated with the problems are monotone and Lipschitz continuous. Moreover, we present the nonasymptotic O(1k) convergence rate of the proposed algorithms. We also provide some numerical examples to illustrate the accuracy and efficiency of our algorithms by comparing with other recent algorithms in the literature.
Author Anh, P. N.
Hien, N. D.
Thang, T. V.
Thach, H. T. C.
Author_xml – sequence: 1
  givenname: T. V.
  surname: Thang
  fullname: Thang, T. V.
  organization: Electric Power University
– sequence: 2
  givenname: N. D.
  surname: Hien
  fullname: Hien, N. D.
  email: nguyenduchien@dtu.edu.vn
  organization: Duy Tan University
– sequence: 3
  givenname: H. T. C.
  surname: Thach
  fullname: Thach, H. T. C.
  organization: University of Transport Technology
– sequence: 4
  givenname: P. N.
  surname: Anh
  fullname: Anh, P. N.
  organization: Posts and Telecommunications Institute of Technology
BookMark eNqFUMtuFDEQtFCQsgl8QiRLOc_i13rGygUUEUCKxAXE0Wpm2osTr72xPZsEiX_Hy4ZLDnDqVndVqapOyFFMEQk542zJ2cDeMCElN1ItBRNiKbhcGa1fkAVnwnTKqNURWewx3R50TE5KuWFMcC3Ugvz6hnBLxxR3mNcYR6TJUR8xVw-BbnN68Ju2QFin7OuPTaH3bdCCwVGYYFv9DmmpuC3-J1KXMi0p7Hxc080c2hPCjBPdQfZQfYpNqonfzRB89VhekZcOQsHXT_OUfL16_-XyY3f9-cOny3fX3SjlUDs3sX5q5hmYtvRKK9ACJo2cfzft7OTYa2e0VKpHMQxG9aAauneDNoxzeUrOD7ot0N2MpdqbNOfmpljJeiFWUrChoVYH1JhTKRmd3eaWPj9azuy-afu3abtv2j413XgXz3ijr3_i1gw-_Jf99sD2sdW3gfuUw2QrPIaUXYY4-mby3xK_AS6pmug
CitedBy_id crossref_primary_10_1007_s10957_024_02555_7
crossref_primary_10_1007_s40314_024_02896_z
crossref_primary_10_1080_02331934_2024_2358408
Cites_doi 10.1080/02331934.2019.1604706
10.1007/s11067-019-09485-2
10.1016/j.camwa.2010.08.021
10.1007/978-3-642-25707-0-1
10.1090/S0002-9947-1965-0180884-9
10.1016/j.na.2009.10.009
10.1007/s10957-011-9825-3
10.1137/S1052623403427859
10.1007/0-387-23639-2_6
10.1007/s12190-019-01303-9
10.1137/S0363012998338806
10.1007/s11075-017-0283-3
10.1007/s11075-020-00968-9
10.1007/s11075-019-00755-1
10.1016/0041-5553(64)90137-5
10.1007/s11075-021-01119-4
10.1007/s10107-019-01412-0
10.1007/s11784-017-0472-7
10.1007/s40306-013-0023-2
10.1016/j.amc.2013.12.039
10.1007/978-94-011-2178-1
10.1007/s00245-019-09584-z
10.1007/0-387-34221-4_11
10.1016/j.jmaa.2004.12.023
10.1017/CBO9780511526152
10.1007/s10898-017-0506-0
10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J
10.1007/s11067-011-9166-7
10.1007/s40306-015-0165-5
10.1002/mma.6118
10.1007/978-1-4419-9467-7
10.1007/BF02190064
10.1007/s40314-019-0955-9
10.1007/s10957-007-9230-0
10.1186/s13660-020-2286-1
10.1007/s11075-018-0504-4
10.1007/s40314-020-01215-6
10.1007/s10957-004-0926-0
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/02331934.2022.2135966
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4945
EndPage 1023
ExternalDocumentID 10_1080_02331934_2022_2135966
2135966
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-fd07d1930a907d7464a62ad6e11b9930f3c76f963447e288947a430a7f8690113
ISSN 0233-1934
IngestDate Wed Aug 13 06:32:12 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 03:52:14 EDT 2025
Wed Dec 25 09:05:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-fd07d1930a907d7464a62ad6e11b9930f3c76f963447e288947a430a7f8690113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3072253208
PQPubID 27961
PageCount 29
ParticipantIDs informaworld_taylorfrancis_310_1080_02331934_2022_2135966
proquest_journals_3072253208
crossref_primary_10_1080_02331934_2022_2135966
crossref_citationtrail_10_1080_02331934_2022_2135966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Optimization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_3_30_1
Anh PN (e_1_3_3_32_1) 2009; 34
e_1_3_3_18_1
e_1_3_3_17_1
Goebel K (e_1_3_3_41_1) 1984
Ogbuisi FU (e_1_3_3_39_1) 2021; 4
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
Anh PN (e_1_3_3_23_1) 2010; 11
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
Hieu D. (e_1_3_3_21_1) 2021; 3
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_40_1
Shehu Y (e_1_3_3_26_1) 2021; 5
e_1_3_3_6_1
e_1_3_3_8_1
Konnov IV. (e_1_3_3_7_1) 2000
Facchinei F (e_1_3_3_9_1) 2003
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_47_1
e_1_3_3_3_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – volume: 11
  start-page: 491
  year: 2010
  ident: e_1_3_3_23_1
  article-title: An interior proximal cutting hyperplane method for multivalued variational inequalities
  publication-title: J Nonlinear Convex Anal
– ident: e_1_3_3_38_1
  doi: 10.1080/02331934.2019.1604706
– ident: e_1_3_3_3_1
  doi: 10.1007/s11067-019-09485-2
– volume-title: Combined relaxation methods for variational inequalities
  year: 2000
  ident: e_1_3_3_7_1
– ident: e_1_3_3_37_1
  doi: 10.1016/j.camwa.2010.08.021
– ident: e_1_3_3_24_1
  doi: 10.1007/978-3-642-25707-0-1
– ident: e_1_3_3_6_1
  doi: 10.1090/S0002-9947-1965-0180884-9
– ident: e_1_3_3_11_1
  doi: 10.1016/j.na.2009.10.009
– ident: e_1_3_3_29_1
  doi: 10.1007/s10957-011-9825-3
– ident: e_1_3_3_42_1
  doi: 10.1137/S1052623403427859
– ident: e_1_3_3_35_1
  doi: 10.1007/0-387-23639-2_6
– ident: e_1_3_3_36_1
  doi: 10.1007/s12190-019-01303-9
– ident: e_1_3_3_45_1
  doi: 10.1137/S0363012998338806
– ident: e_1_3_3_19_1
  doi: 10.1007/s11075-017-0283-3
– ident: e_1_3_3_33_1
  doi: 10.1007/s11075-020-00968-9
– volume: 4
  start-page: 2021
  year: 2021
  ident: e_1_3_3_39_1
  article-title: On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems
  publication-title: J Nonlinear Funct Anal
– ident: e_1_3_3_4_1
  doi: 10.1007/s11075-019-00755-1
– ident: e_1_3_3_14_1
  doi: 10.1016/0041-5553(64)90137-5
– volume: 3
  start-page: 215
  year: 2021
  ident: e_1_3_3_21_1
  article-title: Convergence of relaxed inertial methods for equilibrium problems
  publication-title: J Appl Numer Optim
– ident: e_1_3_3_34_1
  doi: 10.1007/s11075-021-01119-4
– ident: e_1_3_3_16_1
  doi: 10.1007/s10107-019-01412-0
– ident: e_1_3_3_20_1
  doi: 10.1007/s11784-017-0472-7
– ident: e_1_3_3_28_1
  doi: 10.1007/s40306-013-0023-2
– ident: e_1_3_3_27_1
  doi: 10.1016/j.amc.2013.12.039
– ident: e_1_3_3_12_1
  doi: 10.1007/978-94-011-2178-1
– ident: e_1_3_3_17_1
  doi: 10.1007/s00245-019-09584-z
– ident: e_1_3_3_25_1
  doi: 10.1007/0-387-34221-4_11
– ident: e_1_3_3_46_1
  doi: 10.1016/j.jmaa.2004.12.023
– ident: e_1_3_3_8_1
  doi: 10.1017/CBO9780511526152
– ident: e_1_3_3_18_1
  doi: 10.1007/s10898-017-0506-0
– ident: e_1_3_3_10_1
  doi: 10.1002/(SICI)1521-4001(199806)78:6<427::AID-ZAMM427>3.0.CO;2-J
– ident: e_1_3_3_13_1
  doi: 10.1007/s11067-011-9166-7
– volume-title: Uniform convexity, hyperbolic geometry, and nonexpansive mappings
  year: 1984
  ident: e_1_3_3_41_1
– ident: e_1_3_3_30_1
  doi: 10.1007/s40306-015-0165-5
– ident: e_1_3_3_31_1
  doi: 10.1002/mma.6118
– ident: e_1_3_3_43_1
  doi: 10.1007/978-1-4419-9467-7
– ident: e_1_3_3_40_1
  doi: 10.1007/BF02190064
– volume: 34
  start-page: 67
  year: 2009
  ident: e_1_3_3_32_1
  article-title: Generalized projection method for non-Lipschitz multivalued monotone variational inequalities
  publication-title: Acta Math Vietnam
– ident: e_1_3_3_47_1
  doi: 10.1007/s40314-019-0955-9
– volume-title: Finite-dimensional variational inequalities and complementary problems
  year: 2003
  ident: e_1_3_3_9_1
– ident: e_1_3_3_15_1
  doi: 10.1007/s10957-007-9230-0
– ident: e_1_3_3_22_1
  doi: 10.1186/s13660-020-2286-1
– ident: e_1_3_3_5_1
  doi: 10.1007/s11075-018-0504-4
– ident: e_1_3_3_2_1
  doi: 10.1007/s40314-020-01215-6
– volume: 5
  start-page: 881
  year: 2021
  ident: e_1_3_3_26_1
  article-title: Weak and linear convergence of a generalized proximal point algorithm with alternating inertial steps for a monotone inclusion problem
  publication-title: J Nonlinear Var Anal
– ident: e_1_3_3_44_1
  doi: 10.1007/s10957-004-0926-0
SSID ssj0021624
Score 2.3788817
Snippet In this work, we introduce an inertial proximal algorithm for solving multivalued variational inequality problems in a real Hilbert space. By using...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 995
SubjectTerms Adaptive algorithms
Convergence
Hilbert space
inertial technique
Lipschitz continuous
monotone
Multivalued variational inequality problems
Operators (mathematics)
proximal operator
self adaptive stepsize
Title Weak convergence of inertial proximal algorithms with self adaptive stepsize for solving multivalued variational inequalities
URI https://www.tandfonline.com/doi/abs/10.1080/02331934.2022.2135966
https://www.proquest.com/docview/3072253208
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKdoKcgHblWixPbGyXHVglZIwGVLKy5R4tiwYl_apghV4ufwP5mJ7awLK0q5RFFiT7yZL_Z4duYbQl4JLhvOuYpSsB0iYVQe5YYn8OEJppWWWghMcH73Ppucirfno_PB4GcQtXTZ1rG62plX8j9ahWugV8ySvYVme6FwAc5Bv3AEDcPxn3R8pquvNm58Yzk1O_4HjJTG_KrN6vtsgVQA88-rzaz9snCZbBd6jv_9V-suagi0vL6YXVnubxhu52DowgyRBxzM0W-wm_YeQxBuszB96KEzaz-ArIXL6NyGmjhX9DQ--hhvXdzaZXgdncRBU1uRahJj6-P-xnhpvT4xtA_9E8yGtYQuS8Z5BGaidRtoO81i0I0oLJGkn4dtSROHNxFMqoUtw-nWZ-Sa2Dn3u2BJeBw-Dbb-jMUs5aMi28G1_dsa2Ecmpp4y1YkpUUzpxNwhewx2I2xI9saTk09n_c4-zbrqyf1P9aliSOK-azzXjKBrFLl_mASdnTN9QO67DQodW7Q9JAO9fETuBbSVj8kPxB0NcEdXhnrcUY87usUdRdxRxB31uKMedxRGRR3uaIA7GuCOhrh7Qk7fvJ4eTyJXxiNSnOdtZJpENvAKkqqAEykyUWWsajKdpjVYx4nhSmYGFgIhpGZ5XghZCWgtTVctLeVPyXC5WupnhMLbG0lT5Y1WqUibpAYM8VHFa41ME7naJ8K_11I5jnsstTIv_6rXfRL33daW5OWmDkWotLLtvGvGlsIp-Q19D72GSzeXQJcEYIU1WvKD247lObm7_ewOybDdXOoXYCi39UsH019eZLQg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HIADb8SbHLh2NE3WdEeEQOO1E4jdqjQPmPbUVjgg8d-x0xYNENqBUyu1jhrXdmzL_kzIqeDScM51wMB3CITTSZA4HoLiichqK60Q2OB834qbj-KmXW9P9cJgWSXG0K4AivC2GpUbk9FVSdwZnDMgORxTIlFUixivg9M-TxbhInGKAQ9bX0EXi_1gWyQJkKbq4vlrmW_n0zf00l_W2h9BV2tEVx9fVJ50a695VtPvP3Ad_7e7dbJaeqj0vBCpDTJnB5tkZQq3cIt8PFnVpb5g3fduWjp0FLsIwVz0KH5fpw83qvc8HHfyl_6EYrqXTmzPUWXUCE0sBfEaTTrvlsLeKWgAZjaor29EAHJr6BuE8WWqEhcv2j8hsN8mj1eXDxfNoJzjEGgIgPPAmVAa2FGoIBI3UsRCxZEysWUsA_codFzL2IElEELaKEkaQioBb0vnx2UxvkMWBsOB3SUUmFGXTiXGaiaYCTPRAH9P8cwi1ECi94io_l6qS5BznLXRS1mFhVpyN0XupiV390jti2xUoHzMImhMi0aa-_SKK2ahpHwG7WElR2lpMIAklGBZeRQm-_9Y-oQsNR_u79K769btAVmGR0WVUXRIFvLxqz0CByrPjr2GfAJUKwxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SAgOvBHjmQPXjqbJmu6IgInnxAEEtyrNAybGNm2FAxL_HTtt0QZCHLhVah0lru3Ylv2ZkAPBpeGc64CB7xAIp5MgcTwExROR1VZaIbDB-bodn92Ji4dGVU04KssqMYZ2BVCEt9Wo3APjqoq4Q7hmQHA4ZkSiqB4x3gCffZrMxggejl0cYfsr5mKxn2uLJAHSVE08vy0zcT1NgJf-MNb-Bmotkazae1F48lx_zbO6fv8G6_ivwy2TxdI_pUeFQK2QKdtbJQtjqIVr5OPeqmfqy9V956alfUexhxCMRZfi9jov8KC6j_1hJ396GVFM9tKR7TqqjBqggaUgXINR591SODoF-ce8BvXVjQg_bg19gyC-TFTi4kXzJ4T16-SudXp7fBaUUxwCDeFvHjgTSgMnChXE4UaKWKg4Uia2jGXgHIWOaxk7sANCSBslSVNIJeBr6fywLMY3yEyv37ObhAIzGtKpxFjNBDNhJprg7SmeWQQaSHSNiOrnpbqEOMdJG92UVUioJXdT5G5acrdG6l9kgwLj4y-C5rhkpLlPrrhiEkrK_6DdqcQoLc0FkIQS7CqPwmTrH0vvk7mbk1Z6dd6-3Cbz8KYoMYp2yEw-fLW74D3l2Z7Xj0_yuAsU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+convergence+of+inertial+proximal+algorithms+with+self+adaptive+stepsize+for+solving+multivalued+variational+inequalities&rft.jtitle=Optimization&rft.au=Thang%2C+T.+V.&rft.au=Hien%2C+N.+D.&rft.au=Thach%2C+H.+T.+C.&rft.au=Anh%2C+P.+N.&rft.date=2024-04-02&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=73&rft.issue=4&rft.spage=995&rft.epage=1023&rft_id=info:doi/10.1080%2F02331934.2022.2135966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02331934_2022_2135966
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon