The Cox-Aalen model for doubly censored data
Double censored data often arise in medical and epidemiological studies when observations are subject to both left censoring and right censoring. In this article, based on doubly censored data, we consider maximum likelihood estimation for the Cox-Aalen model with fixed covariates. By treating left...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 51; no. 23; pp. 8075 - 8092 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
06.10.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0926 1532-415X |
DOI | 10.1080/03610926.2021.1887241 |
Cover
Loading…
Abstract | Double censored data often arise in medical and epidemiological studies when observations are subject to both left censoring and right censoring. In this article, based on doubly censored data, we consider maximum likelihood estimation for the Cox-Aalen model with fixed covariates. By treating left censored observations as missing, we propose expectation-maximization (EM) algorithms for obtaining the maximum likelihood estimators (MLE) of the regression coefficients for the Cox-Aalen model. We establish the asymptotic properties of the MLE. Simulation studies show that MLE via the EM algorithms performs well. |
---|---|
AbstractList | Double censored data often arise in medical and epidemiological studies when observations are subject to both left censoring and right censoring. In this article, based on doubly censored data, we consider maximum likelihood estimation for the Cox-Aalen model with fixed covariates. By treating left censored observations as missing, we propose expectation-maximization (EM) algorithms for obtaining the maximum likelihood estimators (MLE) of the regression coefficients for the Cox-Aalen model. We establish the asymptotic properties of the MLE. Simulation studies show that MLE via the EM algorithms performs well. |
Author | Shen, Pao-sheng |
Author_xml | – sequence: 1 givenname: Pao-sheng orcidid: 0000-0001-6050-8648 surname: Shen fullname: Shen, Pao-sheng organization: Department of Statistics, Tunghai University |
BookMark | eNqFkMtKAzEUhoNUsK0-gjDg1qm5TCYpbizFGxTcVHAXTnPBKdOkJinat3eG1o0LXZ3F-b__cL4RGvjgLUKXBE8IlvgGs5rgKa0nFFMyIVIKWpETNCSc0bIi_G2Ahn2m7ENnaJTSGmPChWRDdL18t8U8fJUzaK0vNsHYtnAhFibsVu2-0NanEK0pDGQ4R6cO2mQvjnOMXh_ul_OncvHy-DyfLUrNmMylA-uYxlo4a3RFDIGaSm6EteCA6RoElWQqDBXYTEXlbLfgfKUlcLKqRcXG6OrQu43hY2dTVuuwi747qaig3a9M1qxL8UNKx5BStE5tY7OBuFcEq16M-hGjejHqKKbjbn9xusmQm-BzhKb9l7470I3vNG3gM8TWqAz7NkQXwesmKfZ3xTcJsXzW |
CitedBy_id | crossref_primary_10_15672_hujms_1373691 crossref_primary_10_1007_s42081_023_00234_x |
Cites_doi | 10.1111/sjos.12113 10.1007/978-1-4612-5098-2 10.1111/j.1467-9469.2005.00457.x 10.1007/978-1-4757-2545-2 10.1080/03610926.2017.1390135 10.1093/biomet/91.2.277 10.1080/03610926.2019.1662046 10.1111/j.0006-341x.2003.00119.x 10.1080/03610926.2014.930908 10.1080/01621459.1989.10478873 10.1214/aos/1176347506 10.1214/aos/1176349140 10.1016/j.jmva.2010.01.010 10.1080/03610918.2019.1583343 10.1214/15-AOS1406 10.1111/sjos.12319 10.1214/aos/1176324462 10.1214/aos/1032181177 10.1093/biomet/89.3.659 10.1214/aos/1030741089 10.1090/conm/080/999011 10.1002/sim.4780080803 10.1016/j.spl.2004.10.014 10.1038/242247a0 10.1080/02331888.2019.1633327 10.1080/03610918.2012.721910 10.1093/biomet/asw013 10.1080/02331888.2018.1510933 10.1080/01621459.1991.10475010 10.1080/01621459.1974.10480146 10.1214/aos/1176350608 10.1111/1467-9469.00065 10.1002/sim.3018 10.1093/biomet/52.3-4.650 10.1016/j.csda.2012.06.001 10.1214/aos/1032298293 10.1111/j.2517-6161.1972.tb00899.x 10.1080/02664760903563635 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610926.2021.1887241 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 8092 |
ExternalDocumentID | 10_1080_03610926_2021_1887241 1887241 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-faef3c0c7fedc41d1a6285d7eeafa3c6a728197d270d974feeea55bc8a51b6743 |
ISSN | 0361-0926 |
IngestDate | Wed Aug 13 03:56:35 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Tue Jul 01 00:46:51 EDT 2025 Wed Dec 25 09:05:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-faef3c0c7fedc41d1a6285d7eeafa3c6a728197d270d974feeea55bc8a51b6743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6050-8648 |
PQID | 2721093863 |
PQPubID | 186202 |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610926_2021_1887241 crossref_citationtrail_10_1080_03610926_2021_1887241 proquest_journals_2721093863 crossref_primary_10_1080_03610926_2021_1887241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-06 |
PublicationDateYYYYMMDD | 2022-10-06 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0050 CIT0052 CIT0010 CIT0031 Peto R. Z. (CIT0033) 1973; 22 CIT0053 CIT0012 CIT0011 CIT0014 CIT0036 CIT0013 CIT0038 CIT0037 Bickel P. J. (CIT0005) 1993 CIT0017 CIT0039 CIT0019 Martinussen T. (CIT0025) 2001; 29 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0023 CIT0045 CIT0022 CIT0044 Aalen O. O. (CIT0001) 1980; 2 CIT0047 CIT0002 CIT0024 CIT0046 CIT0027 CIT0049 CIT0004 CIT0026 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1111/sjos.12113 – ident: CIT0004 doi: 10.1007/978-1-4612-5098-2 – ident: CIT0013 doi: 10.1111/j.1467-9469.2005.00457.x – volume-title: Efficient and adaptive estimation for semiparametric models year: 1993 ident: CIT0005 – ident: CIT0047 doi: 10.1007/978-1-4757-2545-2 – ident: CIT0043 doi: 10.1080/03610926.2017.1390135 – ident: CIT0007 doi: 10.1093/biomet/91.2.277 – ident: CIT0011 doi: 10.1080/03610926.2019.1662046 – ident: CIT0037 doi: 10.1111/j.0006-341x.2003.00119.x – ident: CIT0040 doi: 10.1080/03610926.2014.930908 – ident: CIT0048 doi: 10.1080/01621459.1989.10478873 – ident: CIT0008 doi: 10.1214/aos/1176347506 – volume: 2 start-page: 1 volume-title: Lecture notes on mathematical statistics and probability year: 1980 ident: CIT0001 – ident: CIT0017 doi: 10.1214/aos/1176349140 – ident: CIT0020 doi: 10.1016/j.jmva.2010.01.010 – ident: CIT0042 doi: 10.1080/03610918.2019.1583343 – ident: CIT0045 doi: 10.1214/15-AOS1406 – ident: CIT0024 doi: 10.1111/sjos.12319 – ident: CIT0027 doi: 10.1214/aos/1176324462 – ident: CIT0050 doi: 10.1214/aos/1032181177 – ident: CIT0010 doi: 10.1093/biomet/89.3.659 – ident: CIT0052 doi: 10.1214/aos/1030741089 – ident: CIT0026 doi: 10.1090/conm/080/999011 – ident: CIT0002 doi: 10.1002/sim.4780080803 – ident: CIT0022 doi: 10.1016/j.spl.2004.10.014 – ident: CIT0023 doi: 10.1038/242247a0 – ident: CIT0044 doi: 10.1080/02331888.2019.1633327 – ident: CIT0039 doi: 10.1080/03610918.2012.721910 – ident: CIT0049 doi: 10.1093/biomet/asw013 – ident: CIT0041 doi: 10.1080/02331888.2018.1510933 – volume: 29 start-page: 59 year: 2001 ident: CIT0025 publication-title: Scandinavian Journal of Statistics – ident: CIT0019 doi: 10.1080/01621459.1991.10475010 – ident: CIT0046 doi: 10.1080/01621459.1974.10480146 – ident: CIT0009 doi: 10.1214/aos/1176350608 – ident: CIT0036 doi: 10.1111/1467-9469.00065 – ident: CIT0053 doi: 10.1002/sim.3018 – ident: CIT0014 doi: 10.1093/biomet/52.3-4.650 – ident: CIT0021 doi: 10.1016/j.csda.2012.06.001 – ident: CIT0031 doi: 10.1214/aos/1032298293 – ident: CIT0012 doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 22 start-page: 86 year: 1973 ident: CIT0033 publication-title: Journal of the Royal Statistical Society: Series. C – ident: CIT0038 doi: 10.1080/02664760903563635 |
SSID | ssj0015783 |
Score | 2.2963095 |
Snippet | Double censored data often arise in medical and epidemiological studies when observations are subject to both left censoring and right censoring. In this... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8075 |
SubjectTerms | additive hazard model Algorithms Asymptotic properties Censored data (mathematics) EM algorithm Left censoring Maximum likelihood estimation Maximum likelihood estimators MLE Regression coefficients |
Title | The Cox-Aalen model for doubly censored data |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2021.1887241 https://www.proquest.com/docview/2721093863 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKvcChaikIWlrl0Bv1KrbjOHtECIQq2FYiK-3N8qc4oE3VDVLbX99x7ISsFhXaS7RK4o3iNx574nlvEPokuNC51wIrSjQutBV4qjTHhSOCGGu87-qQXc_Ky3nxZcEXfaHxxC5p9cT8fpRX8j-owjnANbBk_wHZ4U_hBPwGfOEICMPx2RifNT_xKXj5ZSxq06UN2uZe3_06MRCiNiG_PBHQHiQJxqyQLiE28IqiZPMk0fW7XYVYX3pYdn9TDV7duqDhfZsoZOmDAcSaYbu7HCCuN2p3jBKIIo-K4HxKk0B17xYphql-MfabSSg22gdlIy8YBI7HM2oey91teOuU3siC5DsN-SKUTAh4PRq1sNbVsWdf5cX86krW54t6C72kEBaEihUsnw27RuB9Yjns9AY9YytoqT_2kLW1yJpS7cbM3C036tfoVYoTstMI-hv0wi330O71ILK72kM7NwNob9FnQC0bbCHrbCGDJ2XRFrLeFrJgC_tofnFen13iVAkDG8aqFnvlPDO5Ed5ZUxBLVGC-WuGc8oqZUomwHyosFbmFANE7uMC5NpXiRAeayQHaXjZLd4gyuIc7Y6sSRmNhuYXwUle6qnRuOaxlp0eo6PtEmiQTH6qV3EnSq8mmrpShK2XqyiM0GZp9jzopTzWYjjtctp1Z-miRkj3R9rhHR6bhuJJU0CCNVpXs3d8vv0c7D8PiGG23P-7dB1hZtvpjZ05_ACj1cGA |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGSgDjwKiUCADIwlxEsfJWCGqAm2nVupmxa-FKkFtKgG_nnMeVQtCHTonZ8WXO_vOvvs-hO4podzVnNqJh7kdcEntOOHEDhSmWEihdcFDNhyF_UnwOiXTtV4YU1ZpcmhdAkUUa7VxbnMYXZfEPcKqi93YMxUGHnYw-Ilnetf3SRxSw2Lgu6PVTQJYZEmRHELaDDJ1F89_w2zsTxvopX9W62IL6h0jUX98WXny7ixz7ojvX7iOu83uBB1VEarVLU3qFO2ptIUOhyt410ULNU2IWiI8n6EHsDTrKfu0u7DXpFZBrWPBfCyZLfnsyxKQKGdzJS1TjHqOJr3n8VPfrjgYbAHJa27rRGlfuIJqJUWAJU5Mz6WkSiU68UWYUHMTR6VHXQmpiVbwgBAuooRgbhocLlAjzVJ1iSx4hyghoxDsIJBEQmLDIx5F3JUEoqi4jYJa80xUAOWGJ2PGcI1jWmmGGc2wSjNt5KzEPkqEjm0C8fpvZXlxNKJLHhPmb5Ht1DbAKmdfMA-yaDf2o9C_2mHoO3TQHw8HbPAyertGTc-0WZhChbCDGvl8qW4g-Mn5bWHdPyB784s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkVAZeBQQhQIZGEmIkzhOxqpQlUcrBiqxWfFroUqqNpWAX885j4qCUIfOyVnJ5WzfF3_3HULXlFDuak7txMPcDrikdpxwYgcKUyyk0LroQzYchYNx8PhGajbhvKJVGgytS6GIYq02k3sqdc2Iu4VFF7uxZwgGHnYwTBPPlK5vh0Y83FRxuKPlQQIEZNkhOQTUDDZ1Ec9_w6xsTyvipX8W62IH6u8jXj97STx5dxY5d8TXL1nHjV7uAO1V-anVLQPqEG2ptIV2h0tx13kLNU2CWuo7H6EbiDOrl33YXdhpUqtorGPB61gyW_DJpyUAJmczJS1DRT1G4_79a29gVx0YbAHQNbd1orQvXEG1kiLAEiem4lJSpRKd-CJMqDmHo9KjrgRgohVcIISLKCGYm_KGE9RIs1SdIgvuIUrIKIQoCCSRAGt4xKOIu5JADhW3UVA7nolKntx0yZgwXKuYVp5hxjOs8kwbOUuzaanPsc4g_vlVWV78GNFlFxPmr7Ht1CHAqqk-Zx5gaDf2o9A_22DoK7Tzctdnzw-jp3PU9EyNhWEphB3UyGcLdQGZT84vi9j-BhoP8i8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cox-Aalen+model+for+doubly+censored+data&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Pao-sheng+Shen&rft.date=2022-10-06&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=51&rft.issue=23&rft.spage=8075&rft.epage=8092&rft_id=info:doi/10.1080%2F03610926.2021.1887241&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |