Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead

Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 38; pp. 58037 - 58052
Main Authors Jiang, Yi, Zhao, Xingqing, Zhou, Yucheng, Ding, Congcong
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L −1 and 61.98 U mL −1 , and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase ( R  = 0.832**, P  < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb 5 (PO 4 ) 3 X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO 4 3− concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
AbstractList Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L and 61.98 U mL , and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb (PO ) X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L-1 and 61.98 U mL-1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43- concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L-1 and 61.98 U mL-1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43- concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L −1 and 61.98 U mL −1 , and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase ( R  = 0.832**, P  < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb 5 (PO 4 ) 3 X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO 4 3− concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L⁻¹ and 61.98 U mL⁻¹, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb₅(PO₄)₃X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO₄³⁻ concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L−1 and 61.98 U mL−1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43− concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.
Author Ding, Congcong
Jiang, Yi
Zhou, Yucheng
Zhao, Xingqing
Author_xml – sequence: 1
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
  organization: School of Environmental and Safety Engineering, Changzhou University
– sequence: 2
  givenname: Xingqing
  surname: Zhao
  fullname: Zhao, Xingqing
  email: zhaoxq@cczu.edu.cn
  organization: School of Environmental and Safety Engineering, Changzhou University
– sequence: 3
  givenname: Yucheng
  surname: Zhou
  fullname: Zhou, Yucheng
  organization: School of Environmental and Safety Engineering, Changzhou University
– sequence: 4
  givenname: Congcong
  surname: Ding
  fullname: Ding, Congcong
  organization: School of Environmental and Safety Engineering, Changzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35362889$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtv3SAYhlGVqjk56R_oUCF1yeKUm8GMVZRLpUhZmhlxuMREtnEBD6dDf3s5cdJKGdIJgZ7nBb73BBxNcXIAfMLoHCMkvmaMacsbREiDpeSo2b8DG8wxawST8ghskGSswZSxY3CS8yNCBEkiPoBj2lJOuk5uwO9L750pMHpYegfnPua518XBHIdlF4bwS5cQJ6gnC8cwuaT_HuV93T6EXIKBozO9nkIeD0F3pk9xp01JywjzfA4rfAhPbnQ2rHLFBqftKXjv9ZDdx-d1C-6vLn9c3DS3d9ffL77dNobSrjReso4KK61k3hLptOgwE856S1vHsWxbLIUnGDHdSs66jltvCLEYG05bg-gWnK25c4o_F5eLGkM2bhj05OKSFRG4o0QIJv6PcsYFFm0VtuDLK_QxLmmqH6mBqCVISHm4-_MztezqANScwqjTXr2UUIFuBUyKOSfnlQnlaUwl6TAojNShb7X2rWrf6qlvta8qeaW-pL8p0VXKFZ4eXPr37DesP6VOvgg
CitedBy_id crossref_primary_10_1016_j_bgtech_2023_100039
crossref_primary_10_1515_opag_2022_0328
crossref_primary_10_1016_j_jenvman_2023_119082
crossref_primary_10_1016_j_seppur_2024_129460
crossref_primary_10_1007_s11356_023_30383_1
crossref_primary_10_1016_j_scitotenv_2022_160649
crossref_primary_10_1016_j_bgtech_2025_100165
crossref_primary_10_1016_j_ecoenv_2025_117706
crossref_primary_10_1016_j_envpol_2024_123618
crossref_primary_10_1016_j_seppur_2023_125660
crossref_primary_10_1016_j_jenvman_2025_124894
crossref_primary_10_3389_fpls_2023_1324056
crossref_primary_10_1093_jambio_lxae156
Cites_doi 10.1016/j.sjbs.2015.11.007
10.1016/j.soilbio.2007.06.017
10.1080/01490451.2019.1695023
10.1016/j.jhazmat.2021.125800
10.1016/j.biortech.2020.124330
10.1021/la049043+
10.1016/j.jhazmat.2010.09.075
10.1016/j.apsoil.2017.12.024
10.1002/hyp.5597
10.1007/s00284-006-0340-y
10.1016/j.biortech.2015.07.029
10.1016/j.gca.2011.07.006
10.2134/jeq2001.3041214x
10.1016/j.jes.2015.12.010
10.1002/jobm.201000192
10.1016/S1002-0160(12)60056-3
10.1007/s11356-020-08538-1
10.1016/j.ibiod.2020.104941
10.1016/j.soilbio.2008.10.034
10.1016/j.soilbio.2006.09.003
10.1021/es025972g
10.30638/eemj.2011.239
10.1111/1462-2920.12416
10.1007/s10295-006-0108-1
10.1021/es991271g
10.1016/j.molstruc.2017.06.111
10.1016/j.jclepro.2017.06.195
10.1016/j.ecoenv.2018.03.001
10.1016/j.scitotenv.2021.146190
10.1016/0883-2927(95)00084-4
10.1016/j.jhazmat.2015.05.019
10.1016/j.biortech.2015.02.084
10.1007/s11356-017-9832-5
10.1007/s10311-007-0133-y
10.1002/jpln.201500047
10.1016/j.scitotenv.2017.08.095
10.1039/C8MT00061A
10.1080/01490450903060780
10.1016/j.apsoil.2015.08.003
10.1128/AEM.02756-09
10.1016/j.jes.2014.07.015
10.1016/S0009-2541(00)00213-8
10.1016/j.jhazmat.2018.06.032
10.1016/j.chemgeo.2014.08.011
10.1016/j.chemosphere.2019.02.140
10.1016/j.marpolbul.2004.11.012
10.1016/j.chemosphere.2017.11.100
10.1016/j.eti.2017.11.001
10.1016/j.envpol.2020.114051
10.1007/s11356-016-6335-8
10.1016/j.procbio.2004.09.003
10.1023/A:1020612600726
10.1099/mic.0.070284-0
10.1021/es304310k
10.1016/S0304-4203(03)00073-2
10.1016/j.jenvman.2018.10.012
10.1016/j.ymben.2004.10.003
10.1016/j.biortech.2017.09.092
10.1002/etc.5620131103
10.1111/lam.12026
10.1016/j.jhazmat.2015.09.023
10.1007/s13369-013-0820-x
10.1016/j.jenvman.2019.05.091
10.1016/j.chemosphere.2018.04.181
10.1016/S0734-9750(99)00014-2
10.1007/s00253-016-7327-9
10.1007/s11783-018-1006-2
10.1016/j.jhazmat.2020.123249
10.1016/j.fuel.2009.02.021
10.1099/13500872-145-6-1491
10.1016/j.jhazmat.2010.11.004
10.1016/j.ecoenv.2019.110009
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-022-19960-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 58052
ExternalDocumentID 35362889
10_1007_s11356_022_19960_y
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
L.-
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c338t-f94837d9d94fd29ea78147edfd35e61955197f2104a5964886dfc22d11c635c03
IEDL.DBID 7X7
ISSN 0944-1344
1614-7499
IngestDate Fri Jul 11 03:56:40 EDT 2025
Mon Jul 21 11:56:08 EDT 2025
Fri Jul 25 22:55:20 EDT 2025
Wed Feb 19 02:26:53 EST 2025
Tue Jul 01 02:31:11 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Fri Feb 21 02:45:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Biomineralization
EPS
Environmental remediation
Lead removal mechanism
Phosphate-solubilization mechanism
Language English
License 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-f94837d9d94fd29ea78147edfd35e61955197f2104a5964886dfc22d11c635c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35362889
PQID 2705207990
PQPubID 54208
PageCount 16
ParticipantIDs proquest_miscellaneous_2718327747
proquest_miscellaneous_2646717518
proquest_journals_2705207990
pubmed_primary_35362889
crossref_citationtrail_10_1007_s11356_022_19960_y
crossref_primary_10_1007_s11356_022_19960_y
springer_journals_10_1007_s11356_022_19960_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References NaikMMKhanolkarDSDubeySKLead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphateLett Appl Microbiol201356991041:CAS:528:DC%2BC3sXosVCqug%3D%3D10.1111/lam.12026
HashemAAbd-AllahEFAlqarawiAAEgamberdievaDBioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungiSaudi J Biol Sci20162339471:CAS:528:DC%2BC2MXhvVyqu73P10.1016/j.sjbs.2015.11.007
YuXJiangJPhosphate microbial mineralization removes nickel ions from electroplating wastewaterJ Environ Manage20192454474531:CAS:528:DC%2BB3cXls12lurg%3D10.1016/j.jenvman.2019.05.091
BeazleyMJMartinezRJSobeckyPAWebbSMTaillefertMNonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditionsGeomicrobiol J2009264314411:CAS:528:DC%2BD1MXhtFCgsb3O10.1080/01490450903060780
WalpolaBCYoonMHIn vitro solubilization of inorganic phosphates by phosphate solubilizing microorganismsAfr J Microbiol Res20134454458
EdrisGAlhamedYAlzahraniABiosorption of cadmium and lead from aqueous solutions by chlorella vulgaris biomass: equilibrium and kinetic studyArab J Sci Eng201339879310.1007/s13369-013-0820-x1:CAS:528:DC%2BC2cXovFyktA%3D%3D
WeiDWangBFNgoHHGuoWSHanFWangXDDuBWeiQRole of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludgeBioresour Technol201518514201:CAS:528:DC%2BC2MXjslOkurw%3D10.1016/j.biortech.2015.02.084
ChenZPanXChenHGuanXLinZBiomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12–2 isolated from lead-zinc mine tailingsJ Hazard Mater201530153153710.1016/j.jhazmat.2015.09.0231:CAS:528:DC%2BC2MXhs1Cgsb%2FP
JaroslawieckaAPiotrowska-SegetZLead resistance in micro-organismsMicrobiology201416012251:CAS:528:DC%2BC2cXis1egsL0%3D10.1099/mic.0.070284-0
KaradumanABAcMYPatZAmorosoMJCuozzoSALead(II) biosorption by a metal tolerant strereptomyces strainEnviron Eng Manag J201110176117711:CAS:528:DC%2BC38XhtlOgsLw%3D10.30638/eemj.2011.239
Freire-NordiCSVieiraANascimentoORThe metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR studyProcess Biochem200540221522241:CAS:528:DC%2BD2MXhsVOhtLk%3D10.1016/j.procbio.2004.09.003
ParkJHChonHTCharacterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mineEnviron Sci Pollut Res Int20162311814118221:CAS:528:DC%2BC28XktVertrY%3D10.1007/s11356-016-6335-8
MitraSPramanikKSarkarAGhoshPKSorenTMaitiTKBioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stressEcotox Environ Safe20181561831961:CAS:528:DC%2BC1cXltFWjt7o%3D10.1016/j.ecoenv.2018.03.001
MiretzkyPFernandez-CirelliAPhosphates for Pb immobilization in soils: a reviewEnviron Chem Lett200861211331:CAS:528:DC%2BD1cXotV2htrY%3D10.1007/s10311-007-0133-y
ChandwadkarPMisraHSAcharyaCUranium biomineralization induced by a metal tolerant serratia strain under acid, alkaline and irradiated conditionsMetallomics2018101071108810.1039/C8MT00061A
PérezESulbaránMBallMMYarzábalLAIsolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan regionSoil Biol Biochem2007392905291410.1016/j.soilbio.2007.06.0171:CAS:528:DC%2BD2sXpt1Cgt78%3D
WangYZChenXWhalenJKCaoYHQuanZLuCYShiYKinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soilsJ Plant Nutr Soil Sc201517845555661:CAS:528:DC%2BC2MXhtVGmu7jP10.1002/jpln.201500047
ZhangKXueYXuHYaoYLead removal by phosphate solubilizing bacteria isolated from soil through biomineralizationChemosphere20192242722791:CAS:528:DC%2BC1MXjvFWisrw%3D10.1016/j.chemosphere.2019.02.140
SharmaAShuklaPA comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26Bioresour Technol202032012433010.1016/j.biortech.2020.1243301:CAS:528:DC%2BB3cXisVertb3F
ZhangKZhangDWuXXueYContinuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortiumJ Hazard Mater20214161258001:CAS:528:DC%2BB3MXotFehs7Y%3D10.1016/j.jhazmat.2021.125800
Kwaśniak-KominekMManeckiMMatusikJLempartMCarbonate substitution in lead hydroxyapatite Pb5(PO4)3OHJ Mol Struct2017114759460210.1016/j.molstruc.2017.06.1111:CAS:528:DC%2BC2sXhtFClsr%2FL
Chai B, Wu Y, Liu P et al (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine[J]. J Basic Microbiol 51(1):5–14
OburgerEKirkGWenzelWWPuschenreiterMJonesDLInteractive effects of organic acids in the rhizosphereSoil Biol Biochem2009414494571:CAS:528:DC%2BD1MXit1Omtr8%3D10.1016/j.soilbio.2008.10.034
Yuan Z, Yi H, Wang T, et al (2017) Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ Sci Pollut R 1–8
LuoDGengRWangWDingZFanQTrichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studiesJ Hazard Mater202040112324910.1016/j.jhazmat.2020.1232491:CAS:528:DC%2BB3cXhtlWmt7bK
LinWHuangZLiXLiuMChengYBio-remediation of acephate–Pb(II) compound contaminants by Bacillus subtilis FZUL-33J Environ Sci20164594991:CAS:528:DC%2BB3cXmt12isLo%3D10.1016/j.jes.2015.12.010
Luduea LM, Anzuay MS, Angelini JG et al (2018) Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol 126:107–112
LiangXCsetenyiLGaDdG.M., Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substratesAppl Microbiol Biot2016100514151511:CAS:528:DC%2BC28Xit1OhtLs%3D10.1007/s00253-016-7327-9
TanoueYEChemical characterization of protein-like fluorophores in dom in relation to aromatic amino acidsMar Chem20038225527110.1016/S0304-4203(03)00073-21:CAS:528:DC%2BD3sXmtFamu78%3D
TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage201823118919710.1016/j.jenvman.2018.10.0121:CAS:528:DC%2BC1cXhvFOrsLbF
ZhaoXSunYHuangJWangHTangDEffects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areasEnviron Sci Pollut R20202720215202261:CAS:528:DC%2BB3cXmtFygu74%3D10.1007/s11356-020-08538-1
ShiLWeiDNgoHHGuoWSDuBWeiQApplication of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodologyBioresource Technol20151942973041:CAS:528:DC%2BC2MXhtFOktLzO10.1016/j.biortech.2015.07.029
ZhuJLiMWhelanMPhosphorus activators contribute to legacy phosphorus availability in agricultural soils: A reviewSci Total Environ20186125225371:CAS:528:DC%2BC2sXhsVansb7I10.1016/j.scitotenv.2017.08.095
ZhangJSongHChenZLiuSSWeiYLBiomineralization mechanism of U(VI) induced by Bacillus cereus 12–2: The role of functional groups and enzymesChemosphere20182066826921:CAS:528:DC%2BC1cXpvVKgtLY%3D10.1016/j.chemosphere.2018.04.181
BeazleyMJMartinezRJWebbSMSobeckyPATaillefertMThe effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soilsGeochim Cosmochim Ac201175564856631:CAS:528:DC%2BC3MXhtFWltLvK10.1016/j.gca.2011.07.006
ChoudharySSarPUranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine wasteJ Hazard Mater20111863363431:CAS:528:DC%2BC3MXhsFarurY%3D10.1016/j.jhazmat.2010.11.004
JiangWSaxenaASongBWardBBeveridgeTJMyneniSElucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopyLangmuir20042011433114421:CAS:528:DC%2BD2cXpslemsL0%3D10.1021/la049043
LinHBennettGNSanKYMetabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yieldMetab Eng200571161271:CAS:528:DC%2BD2MXisVCmu7c%3D10.1016/j.ymben.2004.10.003
PanXChenZChenFChengYLinZGuanXThe mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strainsJ Hazard Mater20152973133191:CAS:528:DC%2BC2MXosFChsro%3D10.1016/j.jhazmat.2015.05.019
Zhao XQ, Tang D, Jiang Y (2021) Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium. Sci Total Environ 777
CarmenBRobertoDImprovement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of sinorhizobium melilotiAppl Environ Microb201076144626463210.1128/AEM.02756-091:CAS:528:DC%2BC3cXhtVahsrfI
IyerAModyKJhaBBiosorption of heavy metals by a marine bacteriumMar Pollut Bull2005503403431:CAS:528:DC%2BD2MXitF2ns7g%3D10.1016/j.marpolbul.2004.11.012
WeiYQZhaoYShiMZCaoZYLuQYangTXFanYYWeiZMEffect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculationBioresour Technol20182471901991:CAS:528:DC%2BC2sXhsFOis7vJ10.1016/j.biortech.2017.09.092
KazySKDasSKSarPLanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterizationJ Ind Miicrobiol Biot2006337737831:CAS:528:DC%2BD28Xnt1aisLk%3D10.1007/s10295-006-0108-1
LiuZLiYCZhangSFuYFanXPatelJSZhangMCharacterization of phosphate-solubilizing bacteria isolated from calcareous soilsAppl Soil Ecol20159621722410.1016/j.apsoil.2015.08.003
PossoESMarinaSRojasCCOrganic acids production by rhizosphere microorganisms isolated from a typic melanudands and its effects on the inorganic phosphates solubilizationActa Agronómica20176656148
DoshiHRayAKothariILBiosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studiesCurr Microbiol2007542132181:CAS:528:DC%2BD2sXhslWhsrY%3D10.1007/s00284-006-0340-y
BeheraBCYadavHSinghSKMishraRRSethiBKDuttaSKThatoiHNPhosphate solubilization and acid phosphatase ac
K Gururajan (19960_CR19) 2018; 9
S Miriam (19960_CR44) 2014; 17
19960_CR74
M Kwaśniak-Kominek (19960_CR33) 2017; 1147
X Pan (19960_CR49) 2015; 297
A Sharma (19960_CR57) 2020; 320
19960_CR79
G Edris (19960_CR16) 2013; 39
C Qu (19960_CR54) 2018; 193
BC Behera (19960_CR7) 2017; 15
RJ Leveille (19960_CR34) 2000; 169
ML Merroun (19960_CR42) 2003; 16
YQ Wei (19960_CR70) 2018; 247
S Choudhary (19960_CR13) 2011; 186
R Hilda (19960_CR23) 1999; 17
J Kelly (19960_CR32) 1996; 11
M Biswajita (19960_CR8) 2020; 30
X Zhao (19960_CR78) 2020; 27
19960_CR80
19960_CR1
P Miretzky (19960_CR43) 2008; 6
19960_CR40
H Lin (19960_CR36) 2005; 7
E Pérez (19960_CR51) 2007; 39
I Beech (19960_CR6) 1999; 145
YE Tanoue (19960_CR61) 2003; 82
J Bai (19960_CR3) 2014; 26
SK Kazy (19960_CR31) 2006; 33
MJ Beazley (19960_CR5) 2011; 75
SS Subhashini (19960_CR60) 2013; 34
D Wei (19960_CR69) 2015; 185
ES Posso (19960_CR52) 2017; 66
X Qian (19960_CR53) 2017; 164
M Xia (19960_CR71) 2020; 150
CS Freire-Nordi (19960_CR17) 2005; 40
Y Hu (19960_CR24) 2013; 47
E Soco (19960_CR59) 2009; 88
B Andy (19960_CR2) 2004; 18
P Chandwadkar (19960_CR11) 2018; 10
19960_CR10
A Jaroslawiecka (19960_CR26) 2014; 160
D Helm (19960_CR21) 1991; 137
L Jiang (19960_CR28) 2020; 191
D Luo (19960_CR41) 2020; 401
Z Chen (19960_CR12) 2015; 301
W Jiang (19960_CR27) 2004; 20
J Zhu (19960_CR82) 2018; 612
19960_CR18
X Liang (19960_CR35) 2016; 100
MJ Beazley (19960_CR4) 2009; 26
F Pagnanelli (19960_CR48) 2000; 34
L Zhen (19960_CR81) 2018; 357
A Hashem (19960_CR20) 2016; 23
J Ren (19960_CR55) 2018; 12
S Mitra (19960_CR45) 2018; 156
AB Karaduman (19960_CR30) 2011; 10
E Oburger (19960_CR47) 2009; 41
HP Jin (19960_CR29) 2011; 185
ZD Teng (19960_CR64) 2019; 231
MM Naik (19960_CR46) 2013; 56
YJ Rhee (19960_CR56) 2014; 16
K Zhang (19960_CR76) 2019; 224
19960_CR22
AS Templeton (19960_CR62) 2003; 37
19960_CR68
J Zhang (19960_CR75) 2018; 206
H Do (19960_CR14) 2020; 260
H Doshi (19960_CR15) 2007; 54
W Lin (19960_CR37) 2016; 45
JH Park (19960_CR50) 2016; 23
ME Losi (19960_CR39) 2010; 13
X Yu (19960_CR73) 2019; 245
Z Liu (19960_CR38) 2015; 96
L Shi (19960_CR58) 2015; 194
A Iyer (19960_CR25) 2005; 50
PX Yang (19960_CR72) 2012; 22
BC Walpola (19960_CR66) 2013; 4
ZD Teng (19960_CR63) 2018; 231
J Tourney (19960_CR65) 2014; 386
B Carmen (19960_CR9) 2010; 76
YZ Wang (19960_CR67) 2015; 178
K Zhang (19960_CR77) 2021; 416
References_xml – reference: Gaur M (2016) Phosphate solubilizing bacteria as biofertilizer and its applications. World J Microbiol Biotechnol 33:9
– reference: ZhangKZhangDWuXXueYContinuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortiumJ Hazard Mater20214161258001:CAS:528:DC%2BB3MXotFehs7Y%3D10.1016/j.jhazmat.2021.125800
– reference: DoHCheCZhaoZWangYLiMZhangXZhaoXExtracellular polymeric substance from Rahnella sp LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization processEnviron Pollut20202601140511:CAS:528:DC%2BB3cXktlyku7c%3D10.1016/j.envpol.2020.114051
– reference: BiswajitaMNabinKDAbantiPBibhuPPApplication of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: A mini-reviewMater Today20203022147853
– reference: ZhenLMuSDuanXTianDYangMGuoJWangSHuSInduced biotransformation of lead (II) by Enterobacter sp. in SO4-PO4-Cl solutionJ Hazard Mater201835749149710.1016/j.jhazmat.2018.06.0321:CAS:528:DC%2BC1cXhtF2ju7fK
– reference: TourneyJBryneTNThe role of bacterial extracellular polymeric substances in geomicrobiologyChem Geol20143861151321:CAS:528:DC%2BC2cXhsVakur7M10.1016/j.chemgeo.2014.08.011
– reference: JinHPBolanNMegharajMNaiduRIsolation of phosphate solubilizing bacteria and their potential for lead immobilization in soilJ Hazard Mater201118582983610.1016/j.jhazmat.2010.09.0751:CAS:528:DC%2BC3cXhsFCks7nO
– reference: BeheraBCYadavHSinghSKMishraRRSethiBKDuttaSKThatoiHNPhosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, IndiaJ Genet2017151691781:STN:280:DC%2BB3cjhvVKjtw%3D%3D
– reference: MiriamSMartaRJoséMGValérieDCLHelenaSVolkerMMannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stressEnviron Microbiol2014173711719
– reference: PossoESMarinaSRojasCCOrganic acids production by rhizosphere microorganisms isolated from a typic melanudands and its effects on the inorganic phosphates solubilizationActa Agronómica20176656148
– reference: AndyBRogerIProtein-like fluorescence intensity as a possible tool for determining river water qualityHydrol Process2004182927294510.1002/hyp.5597
– reference: LiangXCsetenyiLGaDdG.M., Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substratesAppl Microbiol Biot2016100514151511:CAS:528:DC%2BC28Xit1OhtLs%3D10.1007/s00253-016-7327-9
– reference: PanXChenZChenFChengYLinZGuanXThe mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strainsJ Hazard Mater20152973133191:CAS:528:DC%2BC2MXosFChsro%3D10.1016/j.jhazmat.2015.05.019
– reference: SubhashiniSSVelanMKaliappanSBiosorption of lead by kluyveromyces marxianus immobilized in alginate beadsJ Environ Biol201334831
– reference: JiangLLiuXYinHLiangYLiuHMiaoBPengQMengDWangSYangJGuoZThe utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini reviewEcotox Environ Safe20201911100091:CAS:528:DC%2BC1MXitlSqtL7L10.1016/j.ecoenv.2019.110009
– reference: ParkJHChonHTCharacterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mineEnviron Sci Pollut Res Int20162311814118221:CAS:528:DC%2BC28XktVertrY%3D10.1007/s11356-016-6335-8
– reference: BeazleyMJMartinezRJSobeckyPAWebbSMTaillefertMNonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditionsGeomicrobiol J2009264314411:CAS:528:DC%2BD1MXhtFCgsb3O10.1080/01490450903060780
– reference: DoshiHRayAKothariILBiosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studiesCurr Microbiol2007542132181:CAS:528:DC%2BD2sXhslWhsrY%3D10.1007/s00284-006-0340-y
– reference: XiaMBaoPPengTLiuAShenLYuRLiuYLiJWuXHuangCChenMQiuGZengWExploration of potential jarosite biomineralization mechanism based on extracellular polymeric substances of Purpureocillium lilacinum Y3Int Biodeter Biodegr20201501049411:CAS:528:DC%2BB3cXlvFOrtbg%3D10.1016/j.ibiod.2020.104941
– reference: Kwaśniak-KominekMManeckiMMatusikJLempartMCarbonate substitution in lead hydroxyapatite Pb5(PO4)3OHJ Mol Struct2017114759460210.1016/j.molstruc.2017.06.1111:CAS:528:DC%2BC2sXhtFClsr%2FL
– reference: TempletonASTrainorTPSpormannAMNewvilleMSuttonSRDohnalkovaAGorbyYBrownGEJrSorption versus biomineralization of Pb(II) within Burkholderia cepacia BiofilmsEnviron Sci Technol2003373003071:CAS:528:DC%2BD38XptlWqs7s%3D10.1021/es025972g
– reference: OburgerEKirkGWenzelWWPuschenreiterMJonesDLInteractive effects of organic acids in the rhizosphereSoil Biol Biochem2009414494571:CAS:528:DC%2BD1MXit1Omtr8%3D10.1016/j.soilbio.2008.10.034
– reference: ShiLWeiDNgoHHGuoWSDuBWeiQApplication of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodologyBioresource Technol20151942973041:CAS:528:DC%2BC2MXhtFOktLzO10.1016/j.biortech.2015.07.029
– reference: ZhaoXSunYHuangJWangHTangDEffects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areasEnviron Sci Pollut R20202720215202261:CAS:528:DC%2BB3cXmtFygu74%3D10.1007/s11356-020-08538-1
– reference: HashemAAbd-AllahEFAlqarawiAAEgamberdievaDBioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungiSaudi J Biol Sci20162339471:CAS:528:DC%2BC2MXhvVyqu73P10.1016/j.sjbs.2015.11.007
– reference: Luduea LM, Anzuay MS, Angelini JG et al (2018) Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol 126:107–112
– reference: MiretzkyPFernandez-CirelliAPhosphates for Pb immobilization in soils: a reviewEnviron Chem Lett200861211331:CAS:528:DC%2BD1cXotV2htrY%3D10.1007/s10311-007-0133-y
– reference: NaikMMKhanolkarDSDubeySKLead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphateLett Appl Microbiol201356991041:CAS:528:DC%2BC3sXosVCqug%3D%3D10.1111/lam.12026
– reference: TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage201823118919710.1016/j.jenvman.2018.10.0121:CAS:528:DC%2BC1cXhvFOrsLbF
– reference: LeveilleRJFyfeWSLongstaffeFJGeomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea cavesChem Geol20001693393551:CAS:528:DC%2BD3cXls1Crtb4%3D10.1016/S0009-2541(00)00213-8
– reference: LuoDGengRWangWDingZFanQTrichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studiesJ Hazard Mater202040112324910.1016/j.jhazmat.2020.1232491:CAS:528:DC%2BB3cXhtlWmt7bK
– reference: PagnanelliFPapiniMPTrifoniMVegliòFBiosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modelingEnviron Sci Technol200034277327781:CAS:528:DC%2BD3cXjslaiu74%3D10.1021/es991271g
– reference: Zhao Y, Han Z, Yan H, Zhao H, Tucker ME (2019) Intracellular and extracellular biomineralization Induced by Klebsiella pneumoniae LH1 Isolated from dolomites. Geomicrobiol J.
– reference: BaiJYangXHDuRYChenYMWangSZQiuRLBiosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soilJ Environ Sci2014262056206410.1016/j.jes.2014.07.015
– reference: Yuan Z, Yi H, Wang T, et al (2017) Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ Sci Pollut R 1–8
– reference: PérezESulbaránMBallMMYarzábalLAIsolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan regionSoil Biol Biochem2007392905291410.1016/j.soilbio.2007.06.0171:CAS:528:DC%2BD2sXpt1Cgt78%3D
– reference: TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage20192311891971:CAS:528:DC%2BC1cXhvFOrsLbF10.1016/j.jenvman.2018.10.012
– reference: SharmaAShuklaPA comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26Bioresour Technol202032012433010.1016/j.biortech.2020.1243301:CAS:528:DC%2BB3cXisVertb3F
– reference: MerrounMLGeipelGNicolaiRHeiseKHSelenska-PobellSComplexation of uranium (VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopyBiometals2003163313391:CAS:528:DC%2BD3sXhvFSgtLo%3D10.1023/A:1020612600726
– reference: KaradumanABAcMYPatZAmorosoMJCuozzoSALead(II) biosorption by a metal tolerant strereptomyces strainEnviron Eng Manag J201110176117711:CAS:528:DC%2BC38XhtlOgsLw%3D10.30638/eemj.2011.239
– reference: YangPXLiMChenMHJia-QinXIFengHEDuanCQMing-HeMOFangDHDuanYQYangFXPhosphate solubilizing ability and phylogenetic diversity of bacteria from p-rich soils around dianchi lake drainage area of ChinaPedosphere2012227077161:CAS:528:DC%2BC38Xhs1emtbfM10.1016/S1002-0160(12)60056-3
– reference: YuXJiangJPhosphate microbial mineralization removes nickel ions from electroplating wastewaterJ Environ Manage20192454474531:CAS:528:DC%2BB3cXls12lurg%3D10.1016/j.jenvman.2019.05.091
– reference: LiuZLiYCZhangSFuYFanXPatelJSZhangMCharacterization of phosphate-solubilizing bacteria isolated from calcareous soilsAppl Soil Ecol20159621722410.1016/j.apsoil.2015.08.003
– reference: ZhangJSongHChenZLiuSSWeiYLBiomineralization mechanism of U(VI) induced by Bacillus cereus 12–2: The role of functional groups and enzymesChemosphere20182066826921:CAS:528:DC%2BC1cXpvVKgtLY%3D10.1016/j.chemosphere.2018.04.181
– reference: Freire-NordiCSVieiraANascimentoORThe metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR studyProcess Biochem200540221522241:CAS:528:DC%2BD2MXhsVOhtLk%3D10.1016/j.procbio.2004.09.003
– reference: ChoudharySSarPUranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine wasteJ Hazard Mater20111863363431:CAS:528:DC%2BC3MXhsFarurY%3D10.1016/j.jhazmat.2010.11.004
– reference: Wang J, Liu X, Zhao F, Lv C, Gao Z (2013) Optimization of culture conditions for phosphate-solubilizing bacteria Bacillus megaterium in submerged fermentation. Sci Bull
– reference: LinHBennettGNSanKYMetabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yieldMetab Eng200571161271:CAS:528:DC%2BD2MXisVCmu7c%3D10.1016/j.ymben.2004.10.003
– reference: EdrisGAlhamedYAlzahraniABiosorption of cadmium and lead from aqueous solutions by chlorella vulgaris biomass: equilibrium and kinetic studyArab J Sci Eng201339879310.1007/s13369-013-0820-x1:CAS:528:DC%2BC2cXovFyktA%3D%3D
– reference: BeechIHanjagsitLKalajiMNealALZinkevichVChemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous cultureMicrobiology19991456149114971:CAS:528:DyaK1MXktFWmsr8%3D10.1099/13500872-145-6-1491
– reference: QuCMaMChenWCaiPYuXFengXHuangQModeling of Cd adsorption to goethite-bacteria compositesChemosphere20181939439501:CAS:528:DC%2BC2sXhvVygsbrL10.1016/j.chemosphere.2017.11.100
– reference: HelmDLabischinskiHSchallehnGNaumannDClassification and identification of bacteria by Fourier-transform infrared spectroscopyJ Gen Microbiol199113769791:CAS:528:DyaK3MXhtFOqurg%3D
– reference: ZhuJLiMWhelanMPhosphorus activators contribute to legacy phosphorus availability in agricultural soils: A reviewSci Total Environ20186125225371:CAS:528:DC%2BC2sXhsVansb7I10.1016/j.scitotenv.2017.08.095
– reference: JaroslawieckaAPiotrowska-SegetZLead resistance in micro-organismsMicrobiology201416012251:CAS:528:DC%2BC2cXis1egsL0%3D10.1099/mic.0.070284-0
– reference: Achal V, Savant V V, Reddy MS (2007) Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubingensis [J]. Soil Biol Biochem 39(2):695–699
– reference: GururajanKBelurPDScreening and selection of indigenous metal tolerant fungal isolates for heavy metal removal[J]Environ Technol Inno20189919910.1016/j.eti.2017.11.001
– reference: MitraSPramanikKSarkarAGhoshPKSorenTMaitiTKBioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stressEcotox Environ Safe20181561831961:CAS:528:DC%2BC1cXltFWjt7o%3D10.1016/j.ecoenv.2018.03.001
– reference: KellyJThorntonISimpsonPRUrban Geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of BritainAppl Geochem1996113633701:CAS:528:DyaK28Xjs1Knur0%3D10.1016/0883-2927(95)00084-4
– reference: ZhangKXueYXuHYaoYLead removal by phosphate solubilizing bacteria isolated from soil through biomineralizationChemosphere20192242722791:CAS:528:DC%2BC1MXjvFWisrw%3D10.1016/j.chemosphere.2019.02.140
– reference: TanoueYEChemical characterization of protein-like fluorophores in dom in relation to aromatic amino acidsMar Chem20038225527110.1016/S0304-4203(03)00073-21:CAS:528:DC%2BD3sXmtFamu78%3D
– reference: JiangWSaxenaASongBWardBBeveridgeTJMyneniSElucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopyLangmuir20042011433114421:CAS:528:DC%2BD2cXpslemsL0%3D10.1021/la049043+
– reference: QianXFangCHuangMAchalVCharacterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soilJ Clean Prod20171641982081:CAS:528:DC%2BC2sXhtFakt7bI10.1016/j.jclepro.2017.06.195
– reference: RheeYJHillierSPendlowskiHGaddGMPyromorphite formation in a fungal biofilm community growing on lead metalEnviron Microbiol201416144114511:CAS:528:DC%2BC2cXmvVyrsro%3D10.1111/1462-2920.12416
– reference: LinWHuangZLiXLiuMChengYBio-remediation of acephate–Pb(II) compound contaminants by Bacillus subtilis FZUL-33J Environ Sci20164594991:CAS:528:DC%2BB3cXmt12isLo%3D10.1016/j.jes.2015.12.010
– reference: WalpolaBCYoonMHIn vitro solubilization of inorganic phosphates by phosphate solubilizing microorganismsAfr J Microbiol Res20134454458
– reference: KazySKDasSKSarPLanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterizationJ Ind Miicrobiol Biot2006337737831:CAS:528:DC%2BD28Xnt1aisLk%3D10.1007/s10295-006-0108-1
– reference: IyerAModyKJhaBBiosorption of heavy metals by a marine bacteriumMar Pollut Bull2005503403431:CAS:528:DC%2BD2MXitF2ns7g%3D10.1016/j.marpolbul.2004.11.012
– reference: WeiDWangBFNgoHHGuoWSHanFWangXDDuBWeiQRole of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludgeBioresour Technol201518514201:CAS:528:DC%2BC2MXjslOkurw%3D10.1016/j.biortech.2015.02.084
– reference: Zhao XQ, Tang D, Jiang Y (2021) Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium. Sci Total Environ 777
– reference: Chai B, Wu Y, Liu P et al (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine[J]. J Basic Microbiol 51(1):5–14
– reference: ChandwadkarPMisraHSAcharyaCUranium biomineralization induced by a metal tolerant serratia strain under acid, alkaline and irradiated conditionsMetallomics2018101071108810.1039/C8MT00061A
– reference: HildaRReynaldoFPhosphate solubilizing bacteria and their role in plant growth promotionBiotechnol Adv19991731933910.1016/S0734-9750(99)00014-2
– reference: WangYZChenXWhalenJKCaoYHQuanZLuCYShiYKinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soilsJ Plant Nutr Soil Sc201517845555661:CAS:528:DC%2BC2MXhtVGmu7jP10.1002/jpln.201500047
– reference: BeazleyMJMartinezRJWebbSMSobeckyPATaillefertMThe effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soilsGeochim Cosmochim Ac201175564856631:CAS:528:DC%2BC3MXhtFWltLvK10.1016/j.gca.2011.07.006
– reference: CarmenBRobertoDImprovement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of sinorhizobium melilotiAppl Environ Microb201076144626463210.1128/AEM.02756-091:CAS:528:DC%2BC3cXhtVahsrfI
– reference: ChenZPanXChenHGuanXLinZBiomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12–2 isolated from lead-zinc mine tailingsJ Hazard Mater201530153153710.1016/j.jhazmat.2015.09.0231:CAS:528:DC%2BC2MXhs1Cgsb%2FP
– reference: HuYChengHApplication of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale regionEnviron Sci Technol201347375237601:CAS:528:DC%2BC3sXktVOiu78%3D10.1021/es304310k
– reference: RenJZhangZWangMGuoGDuPLiFPhosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmiumFront Env Sci Eng20181221010.1007/s11783-018-1006-21:CAS:528:DC%2BC2sXhslGqsLfL
– reference: SocoEKalembkiewiczJInvestigations on Cr mobility from coal fly ashFuel200988151315191:CAS:528:DC%2BD1MXls1Cisrw%3D10.1016/j.fuel.2009.02.021
– reference: Hettiarachchi GM, Pierzynski GM, MD, R. (2001) In situ stabilization of soil lead using phosphorus and manganese oxide. J Environ Qual 30, 1214.
– reference: WeiYQZhaoYShiMZCaoZYLuQYangTXFanYYWeiZMEffect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculationBioresour Technol20182471901991:CAS:528:DC%2BC2sXhsFOis7vJ10.1016/j.biortech.2017.09.092
– reference: LosiMEAmrheinCFrankenbergerWTFactors affecting chemical and biological reduction of hexavalent chromium in soilEnviron Toxicol Chem2010131727173510.1002/etc.5620131103
– volume: 30
  start-page: 2214
  year: 2020
  ident: 19960_CR8
  publication-title: Mater Today
– volume: 23
  start-page: 39
  year: 2016
  ident: 19960_CR20
  publication-title: Saudi J Biol Sci
  doi: 10.1016/j.sjbs.2015.11.007
– volume: 39
  start-page: 2905
  year: 2007
  ident: 19960_CR51
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.06.017
– ident: 19960_CR79
  doi: 10.1080/01490451.2019.1695023
– volume: 416
  start-page: 125800
  year: 2021
  ident: 19960_CR77
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2021.125800
– volume: 320
  start-page: 124330
  year: 2020
  ident: 19960_CR57
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124330
– volume: 20
  start-page: 11433
  year: 2004
  ident: 19960_CR27
  publication-title: Langmuir
  doi: 10.1021/la049043+
– volume: 185
  start-page: 829
  year: 2011
  ident: 19960_CR29
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.09.075
– ident: 19960_CR40
  doi: 10.1016/j.apsoil.2017.12.024
– volume: 18
  start-page: 2927
  year: 2004
  ident: 19960_CR2
  publication-title: Hydrol Process
  doi: 10.1002/hyp.5597
– volume: 54
  start-page: 213
  year: 2007
  ident: 19960_CR15
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-006-0340-y
– volume: 194
  start-page: 297
  year: 2015
  ident: 19960_CR58
  publication-title: Bioresource Technol
  doi: 10.1016/j.biortech.2015.07.029
– volume: 75
  start-page: 5648
  year: 2011
  ident: 19960_CR5
  publication-title: Geochim Cosmochim Ac
  doi: 10.1016/j.gca.2011.07.006
– volume: 4
  start-page: 454
  year: 2013
  ident: 19960_CR66
  publication-title: Afr J Microbiol Res
– ident: 19960_CR22
  doi: 10.2134/jeq2001.3041214x
– volume: 45
  start-page: 94
  year: 2016
  ident: 19960_CR37
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2015.12.010
– ident: 19960_CR10
  doi: 10.1002/jobm.201000192
– volume: 22
  start-page: 707
  year: 2012
  ident: 19960_CR72
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(12)60056-3
– volume: 27
  start-page: 20215
  year: 2020
  ident: 19960_CR78
  publication-title: Environ Sci Pollut R
  doi: 10.1007/s11356-020-08538-1
– volume: 150
  start-page: 104941
  year: 2020
  ident: 19960_CR71
  publication-title: Int Biodeter Biodegr
  doi: 10.1016/j.ibiod.2020.104941
– volume: 66
  start-page: 56148
  year: 2017
  ident: 19960_CR52
  publication-title: Acta Agronómica
– volume: 41
  start-page: 449
  year: 2009
  ident: 19960_CR47
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2008.10.034
– ident: 19960_CR1
  doi: 10.1016/j.soilbio.2006.09.003
– volume: 37
  start-page: 300
  year: 2003
  ident: 19960_CR62
  publication-title: Environ Sci Technol
  doi: 10.1021/es025972g
– volume: 10
  start-page: 1761
  year: 2011
  ident: 19960_CR30
  publication-title: Environ Eng Manag J
  doi: 10.30638/eemj.2011.239
– volume: 16
  start-page: 1441
  year: 2014
  ident: 19960_CR56
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12416
– ident: 19960_CR68
– volume: 33
  start-page: 773
  year: 2006
  ident: 19960_CR31
  publication-title: J Ind Miicrobiol Biot
  doi: 10.1007/s10295-006-0108-1
– volume: 34
  start-page: 2773
  year: 2000
  ident: 19960_CR48
  publication-title: Environ Sci Technol
  doi: 10.1021/es991271g
– volume: 1147
  start-page: 594
  year: 2017
  ident: 19960_CR33
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2017.06.111
– volume: 164
  start-page: 198
  year: 2017
  ident: 19960_CR53
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.06.195
– volume: 156
  start-page: 183
  year: 2018
  ident: 19960_CR45
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2018.03.001
– ident: 19960_CR80
  doi: 10.1016/j.scitotenv.2021.146190
– volume: 34
  start-page: 831
  year: 2013
  ident: 19960_CR60
  publication-title: J Environ Biol
– volume: 11
  start-page: 363
  year: 1996
  ident: 19960_CR32
  publication-title: Appl Geochem
  doi: 10.1016/0883-2927(95)00084-4
– volume: 15
  start-page: 169
  year: 2017
  ident: 19960_CR7
  publication-title: J Genet
– volume: 297
  start-page: 313
  year: 2015
  ident: 19960_CR49
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2015.05.019
– volume: 185
  start-page: 14
  year: 2015
  ident: 19960_CR69
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2015.02.084
– ident: 19960_CR74
  doi: 10.1007/s11356-017-9832-5
– volume: 6
  start-page: 121
  year: 2008
  ident: 19960_CR43
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-007-0133-y
– volume: 178
  start-page: 555
  issue: 4
  year: 2015
  ident: 19960_CR67
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/jpln.201500047
– volume: 612
  start-page: 522
  year: 2018
  ident: 19960_CR82
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.08.095
– volume: 10
  start-page: 1071
  year: 2018
  ident: 19960_CR11
  publication-title: Metallomics
  doi: 10.1039/C8MT00061A
– volume: 26
  start-page: 431
  year: 2009
  ident: 19960_CR4
  publication-title: Geomicrobiol J
  doi: 10.1080/01490450903060780
– volume: 96
  start-page: 217
  year: 2015
  ident: 19960_CR38
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2015.08.003
– volume: 76
  start-page: 4626
  issue: 14
  year: 2010
  ident: 19960_CR9
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.02756-09
– volume: 26
  start-page: 2056
  year: 2014
  ident: 19960_CR3
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2014.07.015
– volume: 169
  start-page: 339
  year: 2000
  ident: 19960_CR34
  publication-title: Chem Geol
  doi: 10.1016/S0009-2541(00)00213-8
– volume: 357
  start-page: 491
  year: 2018
  ident: 19960_CR81
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.06.032
– volume: 386
  start-page: 115
  year: 2014
  ident: 19960_CR65
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2014.08.011
– volume: 224
  start-page: 272
  year: 2019
  ident: 19960_CR76
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.140
– volume: 50
  start-page: 340
  year: 2005
  ident: 19960_CR25
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2004.11.012
– volume: 193
  start-page: 943
  year: 2018
  ident: 19960_CR54
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.11.100
– volume: 9
  start-page: 91
  year: 2018
  ident: 19960_CR19
  publication-title: Environ Technol Inno
  doi: 10.1016/j.eti.2017.11.001
– volume: 260
  start-page: 114051
  year: 2020
  ident: 19960_CR14
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2020.114051
– volume: 23
  start-page: 11814
  year: 2016
  ident: 19960_CR50
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-016-6335-8
– volume: 40
  start-page: 2215
  year: 2005
  ident: 19960_CR17
  publication-title: Process Biochem
  doi: 10.1016/j.procbio.2004.09.003
– volume: 16
  start-page: 331
  year: 2003
  ident: 19960_CR42
  publication-title: Biometals
  doi: 10.1023/A:1020612600726
– volume: 160
  start-page: 12
  year: 2014
  ident: 19960_CR26
  publication-title: Microbiology
  doi: 10.1099/mic.0.070284-0
– volume: 47
  start-page: 3752
  year: 2013
  ident: 19960_CR24
  publication-title: Environ Sci Technol
  doi: 10.1021/es304310k
– volume: 82
  start-page: 255
  year: 2003
  ident: 19960_CR61
  publication-title: Mar Chem
  doi: 10.1016/S0304-4203(03)00073-2
– volume: 231
  start-page: 189
  year: 2018
  ident: 19960_CR63
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2018.10.012
– volume: 7
  start-page: 116
  year: 2005
  ident: 19960_CR36
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2004.10.003
– volume: 247
  start-page: 190
  year: 2018
  ident: 19960_CR70
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2017.09.092
– volume: 13
  start-page: 1727
  year: 2010
  ident: 19960_CR39
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.5620131103
– volume: 56
  start-page: 99
  year: 2013
  ident: 19960_CR46
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12026
– volume: 301
  start-page: 531
  year: 2015
  ident: 19960_CR12
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2015.09.023
– volume: 39
  start-page: 87
  year: 2013
  ident: 19960_CR16
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-013-0820-x
– ident: 19960_CR18
– volume: 245
  start-page: 447
  year: 2019
  ident: 19960_CR73
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2019.05.091
– volume: 206
  start-page: 682
  year: 2018
  ident: 19960_CR75
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.04.181
– volume: 17
  start-page: 319
  year: 1999
  ident: 19960_CR23
  publication-title: Biotechnol Adv
  doi: 10.1016/S0734-9750(99)00014-2
– volume: 100
  start-page: 5141
  year: 2016
  ident: 19960_CR35
  publication-title: Appl Microbiol Biot
  doi: 10.1007/s00253-016-7327-9
– volume: 12
  start-page: 10
  issue: 2
  year: 2018
  ident: 19960_CR55
  publication-title: Front Env Sci Eng
  doi: 10.1007/s11783-018-1006-2
– volume: 401
  start-page: 123249
  year: 2020
  ident: 19960_CR41
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123249
– volume: 231
  start-page: 189
  year: 2019
  ident: 19960_CR64
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2018.10.012
– volume: 88
  start-page: 1513
  year: 2009
  ident: 19960_CR59
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.02.021
– volume: 145
  start-page: 1491
  issue: 6
  year: 1999
  ident: 19960_CR6
  publication-title: Microbiology
  doi: 10.1099/13500872-145-6-1491
– volume: 17
  start-page: 711
  issue: 3
  year: 2014
  ident: 19960_CR44
  publication-title: Environ Microbiol
– volume: 186
  start-page: 336
  year: 2011
  ident: 19960_CR13
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2010.11.004
– volume: 137
  start-page: 69
  year: 1991
  ident: 19960_CR21
  publication-title: J Gen Microbiol
– volume: 191
  start-page: 110009
  year: 2020
  ident: 19960_CR28
  publication-title: Ecotox Environ Safe
  doi: 10.1016/j.ecoenv.2019.110009
SSID ssj0020927
Score 2.406278
Snippet Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 58037
SubjectTerms Acetic acid
Acid phosphatase
Acids
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bacteria
batteries
Bioremediation
Catalysis
catalytic activity
Cations
Cell culture
Cell surface
Cell walls
Chelates
Chemical precipitation
China
Crystallization
culture media
Dissolution
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Extracellular polymers
Lead
Metal concentrations
Metal ions
Mineralization
Nucleation
Ochrobactrum
Organic acids
Phosphatase
Phosphate
Phosphates
phosphorus
polluted soils
pollution
polymers
Research Article
Soil contamination
Soil pollution
solubility
Solubilization
soluble phosphates
synergism
Synergistic effect
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS_RADA8-Ll7Ex-f31RcjePsc6UynHecoooigXlzwVtp5sILbXex62It_u0kfu4gP8NpJh6FJJkmTXwJwnNoyDsEIjrY84SpTBS-FKjnKi1PSChECAZxv77Lrgbp5TB87UFjdV7v3Kcnmpl6A3USSUsGspOKILOazZVhNKXZHKR7I83mYFZt2UKtRiotEqQ4q8_UeH83RJx_zU360MTtXG7De-YvsvGXwJiz5agt2LhfwNFzs9LPehre2GTEbB4aOHZsMx_VkiN4kIwmjMtgWdMmKyrHRU9Nwun9UzwgF2LRtZiNPeOCnekQb3dvhCyq9nb68jlg9OWVITJvTj0XXMpbInlFY_sDg6vLh4pp3Exa4xdB0yoOhhvLOOKOCk8YX1ABLexdcknoMrVKCtQaMClWRmgx1PXPBSumEsOio2DjZgZVqXPl_wGys3VnindOxV7rEKER6Z0t9pqzTRSEjEP2Hzm3XfpymYDzni8bJxJwcmZM3zMlnEfyfvzNpm2_8SL3f8y_vFLHOpaZCH402N4Kj-TKqEOVFisqPX5EmQ2shKP_0A42muw99ZR3B31Y25kdK0oSGNpsITnphWRzg-_Pu_o58D9YkCW5TfLgPK8h1f4AO0bQ8bOT_HdI0A4I
  priority: 102
  providerName: Springer Nature
Title Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead
URI https://link.springer.com/article/10.1007/s11356-022-19960-y
https://www.ncbi.nlm.nih.gov/pubmed/35362889
https://www.proquest.com/docview/2705207990
https://www.proquest.com/docview/2646717518
https://www.proquest.com/docview/2718327747
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBvAqhpTISNzDEjhOvT2iptq1AFIRYaTlFiR_aSt0kbbaHvfDbmUmcjVDVvSSSPbGszIw9Y898Q8i71JSx95oz2MsTJjNZsJLLkoG8WCkM595jgvP3i-x8Lr8u0kU4cGtDWOWwJnYLta0NnpF_EgojNhQsnp-ba4ZVo_B2NZTQeEj2EboMQ7rUYnS4Yt2XbNVSMp5IGZJm-tQ5nqQYfisw1CKL2eb_jemOtXnnprTbgE6fkMfBcqTTntVPyQNXPSMHszFRDTqDprbPyd8elpjWnoKJR5tl3TZLsCspyhoGxPbpl7SoLF1ddtDTQ1O7wXzADsCZrhxmBl-2Kxzoh1negPqb9c3tirbNRwrEODgeMdqexUh2BWLzgsxPZ79PzlmotcAMOKlr5jVCy1tttfRWaFcgFJZy1tskdeBkpZjg6sE_lEWqM9D6zHojhOXcgMli4uSA7FV15V4RamJlJ4mzVsVOqhL8EeGsKdVEGquKQkSEDz86NwGIHOthXOUjhDIyJwfm5B1z8k1E3m-_aXoYjp3URwP_8qCSbT4KUETebrtBmfCGpKhcfQs0GewbHG-idtAoXAXBalYRednLxnZKSZpg-WYdkQ-DsIwTuH--r3fP95A8EiioXdjhEdkDLrs3YAqty-NO3uE5OeHHZH969ufbDN5fZhc_f0HrXEz_Aef8Cus
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxKtgKLBIcIIF73rtrQ8I8UiV0jYg1Eq9ufY-lEpNbOpUKBd-Er-RGT8SoYrcerXHq5Xn8zy8880AvIxNEXqfCo6-POIqUTkvhCo44sUqaYTwngjOh-NkdKy-nsQnG_Cn58JQWWVvExtDbUtD_8jfSU0VGxqN54fqJ6epUXS62o_QaGGx7xa_MGWr3-99Qf2-knJ3ePR5xLupAtxgOjbnPqUm6ja1qfJWpi6npk_aWW-j2GE6EROV02MmpPI4TRDfifVGSiuEQedswgjXvQGbKsJUZgCbn4bj7z-WKV6YtkNiU6W4iJTqaDotWU9EMRX8SiruSEK--NcVXolvr5zNNi5v9w7c7mJV9rEF113YcLN7sDVcUePwZmcb6vvwu22EzErPMKhk1aSsqwlGsozQTSW4LeGT5TPLpmdNs-v-Ur0gBmLTMppNHXGRz-opLfTNTC7Q4Jj5xeWU1dVbhsK0OP3UtC2oSOwcgfoAjq9FD1swmJUz9wiYCbXdiZy1OnRKF5gBSWdNoXeUsTrPZQCif9GZ6Vqf0wSO82zVtJmUk6FyskY52SKA18tnqrbxx1rp7V5_WWcE6mwF2QBeLG_j50tnMvnMlZcok6CnEnT2tUZGk93FOF0H8LDFxnJLURzRwOg0gDc9WFYb-P9-H6_f73O4OTo6PMgO9sb7T-CWJNA2RY_bMECNu6cYiM2LZx36GZxe9wf3F0-LQtw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuiFdpoICR4ASmsePEzQEhRLtqKRQOVNpbSPzQVuomodkK7YUfxq9jJo-NUMXeet1MLGvn8zzi-WYAXsamCL1PBUdfHnGVqJwXQhUc8WKVNEJ4TwTnLyfJ4an6NI2nG_Bn4MJQWeVgE1tDbStD38h3paaKDY3Gc9f3ZRHf9ifv65-cJkjRTeswTqODyLFb_sL0rXl3tI-6fiXl5OD7x0PeTxjgBlOzBfcpNVS3qU2VtzJ1OTWA0s56G8UOU4uYaJ0esyKVx2mCWE-sN1JaIQw6ahNGuO4NuKmjWNAZ09Mx2QvTblxsqhQXkVI9Yaej7YkoptJfSWUeSciX_zrFK5HulVva1vlN7sKdPmplHzqY3YMNV96HrYORJIcPeyvRPIDfXUtkVnmG4SWrZ1VTzzCmZYRzKsbtqJ8sLy2bn7Vtr4efmiVxEdvm0WzuiJV81sxpoa9mdoGmxywuLuesqd8yFKbF6fOm7eBFYucI2Ydwei1a2ILNsirdNjATarsXOWt16JQuMBeSzppC7yljdZ7LAMTwR2emb4JOszjOs7F9MyknQ-VkrXKyZQCvV-_UXQuQtdI7g_6y3hw02QjeAF6sHuNBptuZvHTVJcok6LME3YKtkdFkgTFi1wE86rCx2lIURzQ6Og3gzQCWcQP_3-_j9ft9DrfwmGWfj06On8BtSZhtqx93YBMV7p5iRLYonrXQZ_Djus_aX-ZuRaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+phosphate+solubilization+and+mineralization+synergistic+mechanism+of+Ochrobactrum+sp.+on+the+remediation+of+lead&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Jiang%2C+Yi&rft.au=Zhao%2C+Xingqing&rft.au=Zhou%2C+Yucheng&rft.au=Ding%2C+Congcong&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=38&rft.spage=58037&rft.epage=58052&rft_id=info:doi/10.1007%2Fs11356-022-19960-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon