Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead
Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from...
Saved in:
Published in | Environmental science and pollution research international Vol. 29; no. 38; pp. 58037 - 58052 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain
Ochrobactrum
sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L
−1
and 61.98 U mL
−1
, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (
R
= 0.832**,
P
< 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb
5
(PO
4
)
3
X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO
4
3−
concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. |
---|---|
AbstractList | Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L
and 61.98 U mL
, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb
(PO
)
X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO
concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L-1 and 61.98 U mL-1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43- concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization.Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L-1 and 61.98 U mL-1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43- concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L −1 and 61.98 U mL −1 , and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase ( R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb 5 (PO 4 ) 3 X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO 4 3− concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L⁻¹ and 61.98 U mL⁻¹, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb₅(PO₄)₃X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO₄³⁻ concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable lead (Pb(II)) minerals and reducing the migration of Pb(II) in the environment. In this study, a Pb-tolerant strain Ochrobactrum sp. J023 from a contaminated soil around a battery factory in Jiangsu Province, China, was screened for experiments to investigate the phosphate solubilization and mineralization mechanism of this strain. The organic acids and the acid phosphatase produced by the bacteria have a synergistic effect on phosphate dissolution. When the pH of the culture medium decreased to the lowest 4.55, the amount of soluble phosphate and the activity of acid phosphatase reached the maximum 161.29 mg L−1 and 61.98 U mL−1, and there was a significant correlation between the concentration of soluble phosphate and the activity of acid phosphatase (R = 0.832**, P < 0.05). It was found that acetic acid played the most important role in the secreted organic acids. During the mineralization reaction, the extracellular polymeric substances (EPS) chelates part of the Pb(II) on the surface of the cell wall, preventing the metal Pb from penetrating into the cell, thus providing protection to the strain. Meanwhile, due to the nucleation sites provided by cell surface groups (carboxyl and phosphate groups), a large number of metal ions are absorbed to promote the formation of crystallization. The final mineralized product of Pb(II) by strain J023 was pyroxite (Pb5(PO4)3X, where X = Cl, OH). The mechanism of phosphate dissolution and mineralization proposed by us is that the organic acids and acid phosphatases secreted by phosphate-solubilizing bacteria promote the increase of PO43− concentration in the solution, the complexation of metal cations and cell surface groups will induce the formation of mineralized precipitation under the catalysis of enzyme. Therefore, it is a promising strategy for bioremediation of lead pollution by screening functional strains with strong abilities of phosphate solubility and mineralization. |
Author | Ding, Congcong Jiang, Yi Zhou, Yucheng Zhao, Xingqing |
Author_xml | – sequence: 1 givenname: Yi surname: Jiang fullname: Jiang, Yi organization: School of Environmental and Safety Engineering, Changzhou University – sequence: 2 givenname: Xingqing surname: Zhao fullname: Zhao, Xingqing email: zhaoxq@cczu.edu.cn organization: School of Environmental and Safety Engineering, Changzhou University – sequence: 3 givenname: Yucheng surname: Zhou fullname: Zhou, Yucheng organization: School of Environmental and Safety Engineering, Changzhou University – sequence: 4 givenname: Congcong surname: Ding fullname: Ding, Congcong organization: School of Environmental and Safety Engineering, Changzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35362889$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtv3SAYhlGVqjk56R_oUCF1yeKUm8GMVZRLpUhZmhlxuMREtnEBD6dDf3s5cdJKGdIJgZ7nBb73BBxNcXIAfMLoHCMkvmaMacsbREiDpeSo2b8DG8wxawST8ghskGSswZSxY3CS8yNCBEkiPoBj2lJOuk5uwO9L750pMHpYegfnPua518XBHIdlF4bwS5cQJ6gnC8cwuaT_HuV93T6EXIKBozO9nkIeD0F3pk9xp01JywjzfA4rfAhPbnQ2rHLFBqftKXjv9ZDdx-d1C-6vLn9c3DS3d9ffL77dNobSrjReso4KK61k3hLptOgwE856S1vHsWxbLIUnGDHdSs66jltvCLEYG05bg-gWnK25c4o_F5eLGkM2bhj05OKSFRG4o0QIJv6PcsYFFm0VtuDLK_QxLmmqH6mBqCVISHm4-_MztezqANScwqjTXr2UUIFuBUyKOSfnlQnlaUwl6TAojNShb7X2rWrf6qlvta8qeaW-pL8p0VXKFZ4eXPr37DesP6VOvgg |
CitedBy_id | crossref_primary_10_1016_j_bgtech_2023_100039 crossref_primary_10_1515_opag_2022_0328 crossref_primary_10_1016_j_jenvman_2023_119082 crossref_primary_10_1016_j_seppur_2024_129460 crossref_primary_10_1007_s11356_023_30383_1 crossref_primary_10_1016_j_scitotenv_2022_160649 crossref_primary_10_1016_j_bgtech_2025_100165 crossref_primary_10_1016_j_ecoenv_2025_117706 crossref_primary_10_1016_j_envpol_2024_123618 crossref_primary_10_1016_j_seppur_2023_125660 crossref_primary_10_1016_j_jenvman_2025_124894 crossref_primary_10_3389_fpls_2023_1324056 crossref_primary_10_1093_jambio_lxae156 |
Cites_doi | 10.1016/j.sjbs.2015.11.007 10.1016/j.soilbio.2007.06.017 10.1080/01490451.2019.1695023 10.1016/j.jhazmat.2021.125800 10.1016/j.biortech.2020.124330 10.1021/la049043+ 10.1016/j.jhazmat.2010.09.075 10.1016/j.apsoil.2017.12.024 10.1002/hyp.5597 10.1007/s00284-006-0340-y 10.1016/j.biortech.2015.07.029 10.1016/j.gca.2011.07.006 10.2134/jeq2001.3041214x 10.1016/j.jes.2015.12.010 10.1002/jobm.201000192 10.1016/S1002-0160(12)60056-3 10.1007/s11356-020-08538-1 10.1016/j.ibiod.2020.104941 10.1016/j.soilbio.2008.10.034 10.1016/j.soilbio.2006.09.003 10.1021/es025972g 10.30638/eemj.2011.239 10.1111/1462-2920.12416 10.1007/s10295-006-0108-1 10.1021/es991271g 10.1016/j.molstruc.2017.06.111 10.1016/j.jclepro.2017.06.195 10.1016/j.ecoenv.2018.03.001 10.1016/j.scitotenv.2021.146190 10.1016/0883-2927(95)00084-4 10.1016/j.jhazmat.2015.05.019 10.1016/j.biortech.2015.02.084 10.1007/s11356-017-9832-5 10.1007/s10311-007-0133-y 10.1002/jpln.201500047 10.1016/j.scitotenv.2017.08.095 10.1039/C8MT00061A 10.1080/01490450903060780 10.1016/j.apsoil.2015.08.003 10.1128/AEM.02756-09 10.1016/j.jes.2014.07.015 10.1016/S0009-2541(00)00213-8 10.1016/j.jhazmat.2018.06.032 10.1016/j.chemgeo.2014.08.011 10.1016/j.chemosphere.2019.02.140 10.1016/j.marpolbul.2004.11.012 10.1016/j.chemosphere.2017.11.100 10.1016/j.eti.2017.11.001 10.1016/j.envpol.2020.114051 10.1007/s11356-016-6335-8 10.1016/j.procbio.2004.09.003 10.1023/A:1020612600726 10.1099/mic.0.070284-0 10.1021/es304310k 10.1016/S0304-4203(03)00073-2 10.1016/j.jenvman.2018.10.012 10.1016/j.ymben.2004.10.003 10.1016/j.biortech.2017.09.092 10.1002/etc.5620131103 10.1111/lam.12026 10.1016/j.jhazmat.2015.09.023 10.1007/s13369-013-0820-x 10.1016/j.jenvman.2019.05.091 10.1016/j.chemosphere.2018.04.181 10.1016/S0734-9750(99)00014-2 10.1007/s00253-016-7327-9 10.1007/s11783-018-1006-2 10.1016/j.jhazmat.2020.123249 10.1016/j.fuel.2009.02.021 10.1099/13500872-145-6-1491 10.1016/j.jhazmat.2010.11.004 10.1016/j.ecoenv.2019.110009 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11356-022-19960-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 58052 |
ExternalDocumentID | 35362889 10_1007_s11356_022_19960_y |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. L.- M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c338t-f94837d9d94fd29ea78147edfd35e61955197f2104a5964886dfc22d11c635c03 |
IEDL.DBID | 7X7 |
ISSN | 0944-1344 1614-7499 |
IngestDate | Fri Jul 11 03:56:40 EDT 2025 Mon Jul 21 11:56:08 EDT 2025 Fri Jul 25 22:55:20 EDT 2025 Wed Feb 19 02:26:53 EST 2025 Tue Jul 01 02:31:11 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Fri Feb 21 02:45:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | Biomineralization EPS Environmental remediation Lead removal mechanism Phosphate-solubilization mechanism |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-f94837d9d94fd29ea78147edfd35e61955197f2104a5964886dfc22d11c635c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 35362889 |
PQID | 2705207990 |
PQPubID | 54208 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2718327747 proquest_miscellaneous_2646717518 proquest_journals_2705207990 pubmed_primary_35362889 crossref_citationtrail_10_1007_s11356_022_19960_y crossref_primary_10_1007_s11356_022_19960_y springer_journals_10_1007_s11356_022_19960_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | NaikMMKhanolkarDSDubeySKLead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphateLett Appl Microbiol201356991041:CAS:528:DC%2BC3sXosVCqug%3D%3D10.1111/lam.12026 HashemAAbd-AllahEFAlqarawiAAEgamberdievaDBioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungiSaudi J Biol Sci20162339471:CAS:528:DC%2BC2MXhvVyqu73P10.1016/j.sjbs.2015.11.007 YuXJiangJPhosphate microbial mineralization removes nickel ions from electroplating wastewaterJ Environ Manage20192454474531:CAS:528:DC%2BB3cXls12lurg%3D10.1016/j.jenvman.2019.05.091 BeazleyMJMartinezRJSobeckyPAWebbSMTaillefertMNonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditionsGeomicrobiol J2009264314411:CAS:528:DC%2BD1MXhtFCgsb3O10.1080/01490450903060780 WalpolaBCYoonMHIn vitro solubilization of inorganic phosphates by phosphate solubilizing microorganismsAfr J Microbiol Res20134454458 EdrisGAlhamedYAlzahraniABiosorption of cadmium and lead from aqueous solutions by chlorella vulgaris biomass: equilibrium and kinetic studyArab J Sci Eng201339879310.1007/s13369-013-0820-x1:CAS:528:DC%2BC2cXovFyktA%3D%3D WeiDWangBFNgoHHGuoWSHanFWangXDDuBWeiQRole of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludgeBioresour Technol201518514201:CAS:528:DC%2BC2MXjslOkurw%3D10.1016/j.biortech.2015.02.084 ChenZPanXChenHGuanXLinZBiomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12–2 isolated from lead-zinc mine tailingsJ Hazard Mater201530153153710.1016/j.jhazmat.2015.09.0231:CAS:528:DC%2BC2MXhs1Cgsb%2FP JaroslawieckaAPiotrowska-SegetZLead resistance in micro-organismsMicrobiology201416012251:CAS:528:DC%2BC2cXis1egsL0%3D10.1099/mic.0.070284-0 KaradumanABAcMYPatZAmorosoMJCuozzoSALead(II) biosorption by a metal tolerant strereptomyces strainEnviron Eng Manag J201110176117711:CAS:528:DC%2BC38XhtlOgsLw%3D10.30638/eemj.2011.239 Freire-NordiCSVieiraANascimentoORThe metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR studyProcess Biochem200540221522241:CAS:528:DC%2BD2MXhsVOhtLk%3D10.1016/j.procbio.2004.09.003 ParkJHChonHTCharacterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mineEnviron Sci Pollut Res Int20162311814118221:CAS:528:DC%2BC28XktVertrY%3D10.1007/s11356-016-6335-8 MitraSPramanikKSarkarAGhoshPKSorenTMaitiTKBioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stressEcotox Environ Safe20181561831961:CAS:528:DC%2BC1cXltFWjt7o%3D10.1016/j.ecoenv.2018.03.001 MiretzkyPFernandez-CirelliAPhosphates for Pb immobilization in soils: a reviewEnviron Chem Lett200861211331:CAS:528:DC%2BD1cXotV2htrY%3D10.1007/s10311-007-0133-y ChandwadkarPMisraHSAcharyaCUranium biomineralization induced by a metal tolerant serratia strain under acid, alkaline and irradiated conditionsMetallomics2018101071108810.1039/C8MT00061A PérezESulbaránMBallMMYarzábalLAIsolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan regionSoil Biol Biochem2007392905291410.1016/j.soilbio.2007.06.0171:CAS:528:DC%2BD2sXpt1Cgt78%3D WangYZChenXWhalenJKCaoYHQuanZLuCYShiYKinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soilsJ Plant Nutr Soil Sc201517845555661:CAS:528:DC%2BC2MXhtVGmu7jP10.1002/jpln.201500047 ZhangKXueYXuHYaoYLead removal by phosphate solubilizing bacteria isolated from soil through biomineralizationChemosphere20192242722791:CAS:528:DC%2BC1MXjvFWisrw%3D10.1016/j.chemosphere.2019.02.140 SharmaAShuklaPA comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26Bioresour Technol202032012433010.1016/j.biortech.2020.1243301:CAS:528:DC%2BB3cXisVertb3F ZhangKZhangDWuXXueYContinuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortiumJ Hazard Mater20214161258001:CAS:528:DC%2BB3MXotFehs7Y%3D10.1016/j.jhazmat.2021.125800 Kwaśniak-KominekMManeckiMMatusikJLempartMCarbonate substitution in lead hydroxyapatite Pb5(PO4)3OHJ Mol Struct2017114759460210.1016/j.molstruc.2017.06.1111:CAS:528:DC%2BC2sXhtFClsr%2FL Chai B, Wu Y, Liu P et al (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine[J]. J Basic Microbiol 51(1):5–14 OburgerEKirkGWenzelWWPuschenreiterMJonesDLInteractive effects of organic acids in the rhizosphereSoil Biol Biochem2009414494571:CAS:528:DC%2BD1MXit1Omtr8%3D10.1016/j.soilbio.2008.10.034 Yuan Z, Yi H, Wang T, et al (2017) Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ Sci Pollut R 1–8 LuoDGengRWangWDingZFanQTrichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studiesJ Hazard Mater202040112324910.1016/j.jhazmat.2020.1232491:CAS:528:DC%2BB3cXhtlWmt7bK LinWHuangZLiXLiuMChengYBio-remediation of acephate–Pb(II) compound contaminants by Bacillus subtilis FZUL-33J Environ Sci20164594991:CAS:528:DC%2BB3cXmt12isLo%3D10.1016/j.jes.2015.12.010 Luduea LM, Anzuay MS, Angelini JG et al (2018) Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol 126:107–112 LiangXCsetenyiLGaDdG.M., Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substratesAppl Microbiol Biot2016100514151511:CAS:528:DC%2BC28Xit1OhtLs%3D10.1007/s00253-016-7327-9 TanoueYEChemical characterization of protein-like fluorophores in dom in relation to aromatic amino acidsMar Chem20038225527110.1016/S0304-4203(03)00073-21:CAS:528:DC%2BD3sXmtFamu78%3D TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage201823118919710.1016/j.jenvman.2018.10.0121:CAS:528:DC%2BC1cXhvFOrsLbF ZhaoXSunYHuangJWangHTangDEffects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areasEnviron Sci Pollut R20202720215202261:CAS:528:DC%2BB3cXmtFygu74%3D10.1007/s11356-020-08538-1 ShiLWeiDNgoHHGuoWSDuBWeiQApplication of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodologyBioresource Technol20151942973041:CAS:528:DC%2BC2MXhtFOktLzO10.1016/j.biortech.2015.07.029 ZhuJLiMWhelanMPhosphorus activators contribute to legacy phosphorus availability in agricultural soils: A reviewSci Total Environ20186125225371:CAS:528:DC%2BC2sXhsVansb7I10.1016/j.scitotenv.2017.08.095 ZhangJSongHChenZLiuSSWeiYLBiomineralization mechanism of U(VI) induced by Bacillus cereus 12–2: The role of functional groups and enzymesChemosphere20182066826921:CAS:528:DC%2BC1cXpvVKgtLY%3D10.1016/j.chemosphere.2018.04.181 BeazleyMJMartinezRJWebbSMSobeckyPATaillefertMThe effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soilsGeochim Cosmochim Ac201175564856631:CAS:528:DC%2BC3MXhtFWltLvK10.1016/j.gca.2011.07.006 ChoudharySSarPUranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine wasteJ Hazard Mater20111863363431:CAS:528:DC%2BC3MXhsFarurY%3D10.1016/j.jhazmat.2010.11.004 JiangWSaxenaASongBWardBBeveridgeTJMyneniSElucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopyLangmuir20042011433114421:CAS:528:DC%2BD2cXpslemsL0%3D10.1021/la049043 LinHBennettGNSanKYMetabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yieldMetab Eng200571161271:CAS:528:DC%2BD2MXisVCmu7c%3D10.1016/j.ymben.2004.10.003 PanXChenZChenFChengYLinZGuanXThe mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strainsJ Hazard Mater20152973133191:CAS:528:DC%2BC2MXosFChsro%3D10.1016/j.jhazmat.2015.05.019 Zhao XQ, Tang D, Jiang Y (2021) Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium. Sci Total Environ 777 CarmenBRobertoDImprovement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of sinorhizobium melilotiAppl Environ Microb201076144626463210.1128/AEM.02756-091:CAS:528:DC%2BC3cXhtVahsrfI IyerAModyKJhaBBiosorption of heavy metals by a marine bacteriumMar Pollut Bull2005503403431:CAS:528:DC%2BD2MXitF2ns7g%3D10.1016/j.marpolbul.2004.11.012 WeiYQZhaoYShiMZCaoZYLuQYangTXFanYYWeiZMEffect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculationBioresour Technol20182471901991:CAS:528:DC%2BC2sXhsFOis7vJ10.1016/j.biortech.2017.09.092 KazySKDasSKSarPLanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterizationJ Ind Miicrobiol Biot2006337737831:CAS:528:DC%2BD28Xnt1aisLk%3D10.1007/s10295-006-0108-1 LiuZLiYCZhangSFuYFanXPatelJSZhangMCharacterization of phosphate-solubilizing bacteria isolated from calcareous soilsAppl Soil Ecol20159621722410.1016/j.apsoil.2015.08.003 PossoESMarinaSRojasCCOrganic acids production by rhizosphere microorganisms isolated from a typic melanudands and its effects on the inorganic phosphates solubilizationActa Agronómica20176656148 DoshiHRayAKothariILBiosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studiesCurr Microbiol2007542132181:CAS:528:DC%2BD2sXhslWhsrY%3D10.1007/s00284-006-0340-y BeheraBCYadavHSinghSKMishraRRSethiBKDuttaSKThatoiHNPhosphate solubilization and acid phosphatase ac K Gururajan (19960_CR19) 2018; 9 S Miriam (19960_CR44) 2014; 17 19960_CR74 M Kwaśniak-Kominek (19960_CR33) 2017; 1147 X Pan (19960_CR49) 2015; 297 A Sharma (19960_CR57) 2020; 320 19960_CR79 G Edris (19960_CR16) 2013; 39 C Qu (19960_CR54) 2018; 193 BC Behera (19960_CR7) 2017; 15 RJ Leveille (19960_CR34) 2000; 169 ML Merroun (19960_CR42) 2003; 16 YQ Wei (19960_CR70) 2018; 247 S Choudhary (19960_CR13) 2011; 186 R Hilda (19960_CR23) 1999; 17 J Kelly (19960_CR32) 1996; 11 M Biswajita (19960_CR8) 2020; 30 X Zhao (19960_CR78) 2020; 27 19960_CR80 19960_CR1 P Miretzky (19960_CR43) 2008; 6 19960_CR40 H Lin (19960_CR36) 2005; 7 E Pérez (19960_CR51) 2007; 39 I Beech (19960_CR6) 1999; 145 YE Tanoue (19960_CR61) 2003; 82 J Bai (19960_CR3) 2014; 26 SK Kazy (19960_CR31) 2006; 33 MJ Beazley (19960_CR5) 2011; 75 SS Subhashini (19960_CR60) 2013; 34 D Wei (19960_CR69) 2015; 185 ES Posso (19960_CR52) 2017; 66 X Qian (19960_CR53) 2017; 164 M Xia (19960_CR71) 2020; 150 CS Freire-Nordi (19960_CR17) 2005; 40 Y Hu (19960_CR24) 2013; 47 E Soco (19960_CR59) 2009; 88 B Andy (19960_CR2) 2004; 18 P Chandwadkar (19960_CR11) 2018; 10 19960_CR10 A Jaroslawiecka (19960_CR26) 2014; 160 D Helm (19960_CR21) 1991; 137 L Jiang (19960_CR28) 2020; 191 D Luo (19960_CR41) 2020; 401 Z Chen (19960_CR12) 2015; 301 W Jiang (19960_CR27) 2004; 20 J Zhu (19960_CR82) 2018; 612 19960_CR18 X Liang (19960_CR35) 2016; 100 MJ Beazley (19960_CR4) 2009; 26 F Pagnanelli (19960_CR48) 2000; 34 L Zhen (19960_CR81) 2018; 357 A Hashem (19960_CR20) 2016; 23 J Ren (19960_CR55) 2018; 12 S Mitra (19960_CR45) 2018; 156 AB Karaduman (19960_CR30) 2011; 10 E Oburger (19960_CR47) 2009; 41 HP Jin (19960_CR29) 2011; 185 ZD Teng (19960_CR64) 2019; 231 MM Naik (19960_CR46) 2013; 56 YJ Rhee (19960_CR56) 2014; 16 K Zhang (19960_CR76) 2019; 224 19960_CR22 AS Templeton (19960_CR62) 2003; 37 19960_CR68 J Zhang (19960_CR75) 2018; 206 H Do (19960_CR14) 2020; 260 H Doshi (19960_CR15) 2007; 54 W Lin (19960_CR37) 2016; 45 JH Park (19960_CR50) 2016; 23 ME Losi (19960_CR39) 2010; 13 X Yu (19960_CR73) 2019; 245 Z Liu (19960_CR38) 2015; 96 L Shi (19960_CR58) 2015; 194 A Iyer (19960_CR25) 2005; 50 PX Yang (19960_CR72) 2012; 22 BC Walpola (19960_CR66) 2013; 4 ZD Teng (19960_CR63) 2018; 231 J Tourney (19960_CR65) 2014; 386 B Carmen (19960_CR9) 2010; 76 YZ Wang (19960_CR67) 2015; 178 K Zhang (19960_CR77) 2021; 416 |
References_xml | – reference: Gaur M (2016) Phosphate solubilizing bacteria as biofertilizer and its applications. World J Microbiol Biotechnol 33:9 – reference: ZhangKZhangDWuXXueYContinuous and efficient immobilization of heavy metals by phosphate-mineralized bacterial consortiumJ Hazard Mater20214161258001:CAS:528:DC%2BB3MXotFehs7Y%3D10.1016/j.jhazmat.2021.125800 – reference: DoHCheCZhaoZWangYLiMZhangXZhaoXExtracellular polymeric substance from Rahnella sp LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization processEnviron Pollut20202601140511:CAS:528:DC%2BB3cXktlyku7c%3D10.1016/j.envpol.2020.114051 – reference: BiswajitaMNabinKDAbantiPBibhuPPApplication of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: A mini-reviewMater Today20203022147853 – reference: ZhenLMuSDuanXTianDYangMGuoJWangSHuSInduced biotransformation of lead (II) by Enterobacter sp. in SO4-PO4-Cl solutionJ Hazard Mater201835749149710.1016/j.jhazmat.2018.06.0321:CAS:528:DC%2BC1cXhtF2ju7fK – reference: TourneyJBryneTNThe role of bacterial extracellular polymeric substances in geomicrobiologyChem Geol20143861151321:CAS:528:DC%2BC2cXhsVakur7M10.1016/j.chemgeo.2014.08.011 – reference: JinHPBolanNMegharajMNaiduRIsolation of phosphate solubilizing bacteria and their potential for lead immobilization in soilJ Hazard Mater201118582983610.1016/j.jhazmat.2010.09.0751:CAS:528:DC%2BC3cXhsFCks7nO – reference: BeheraBCYadavHSinghSKMishraRRSethiBKDuttaSKThatoiHNPhosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, IndiaJ Genet2017151691781:STN:280:DC%2BB3cjhvVKjtw%3D%3D – reference: MiriamSMartaRJoséMGValérieDCLHelenaSVolkerMMannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stressEnviron Microbiol2014173711719 – reference: PossoESMarinaSRojasCCOrganic acids production by rhizosphere microorganisms isolated from a typic melanudands and its effects on the inorganic phosphates solubilizationActa Agronómica20176656148 – reference: AndyBRogerIProtein-like fluorescence intensity as a possible tool for determining river water qualityHydrol Process2004182927294510.1002/hyp.5597 – reference: LiangXCsetenyiLGaDdG.M., Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substratesAppl Microbiol Biot2016100514151511:CAS:528:DC%2BC28Xit1OhtLs%3D10.1007/s00253-016-7327-9 – reference: PanXChenZChenFChengYLinZGuanXThe mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strainsJ Hazard Mater20152973133191:CAS:528:DC%2BC2MXosFChsro%3D10.1016/j.jhazmat.2015.05.019 – reference: SubhashiniSSVelanMKaliappanSBiosorption of lead by kluyveromyces marxianus immobilized in alginate beadsJ Environ Biol201334831 – reference: JiangLLiuXYinHLiangYLiuHMiaoBPengQMengDWangSYangJGuoZThe utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini reviewEcotox Environ Safe20201911100091:CAS:528:DC%2BC1MXitlSqtL7L10.1016/j.ecoenv.2019.110009 – reference: ParkJHChonHTCharacterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mineEnviron Sci Pollut Res Int20162311814118221:CAS:528:DC%2BC28XktVertrY%3D10.1007/s11356-016-6335-8 – reference: BeazleyMJMartinezRJSobeckyPAWebbSMTaillefertMNonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditionsGeomicrobiol J2009264314411:CAS:528:DC%2BD1MXhtFCgsb3O10.1080/01490450903060780 – reference: DoshiHRayAKothariILBiosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studiesCurr Microbiol2007542132181:CAS:528:DC%2BD2sXhslWhsrY%3D10.1007/s00284-006-0340-y – reference: XiaMBaoPPengTLiuAShenLYuRLiuYLiJWuXHuangCChenMQiuGZengWExploration of potential jarosite biomineralization mechanism based on extracellular polymeric substances of Purpureocillium lilacinum Y3Int Biodeter Biodegr20201501049411:CAS:528:DC%2BB3cXlvFOrtbg%3D10.1016/j.ibiod.2020.104941 – reference: Kwaśniak-KominekMManeckiMMatusikJLempartMCarbonate substitution in lead hydroxyapatite Pb5(PO4)3OHJ Mol Struct2017114759460210.1016/j.molstruc.2017.06.1111:CAS:528:DC%2BC2sXhtFClsr%2FL – reference: TempletonASTrainorTPSpormannAMNewvilleMSuttonSRDohnalkovaAGorbyYBrownGEJrSorption versus biomineralization of Pb(II) within Burkholderia cepacia BiofilmsEnviron Sci Technol2003373003071:CAS:528:DC%2BD38XptlWqs7s%3D10.1021/es025972g – reference: OburgerEKirkGWenzelWWPuschenreiterMJonesDLInteractive effects of organic acids in the rhizosphereSoil Biol Biochem2009414494571:CAS:528:DC%2BD1MXit1Omtr8%3D10.1016/j.soilbio.2008.10.034 – reference: ShiLWeiDNgoHHGuoWSDuBWeiQApplication of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodologyBioresource Technol20151942973041:CAS:528:DC%2BC2MXhtFOktLzO10.1016/j.biortech.2015.07.029 – reference: ZhaoXSunYHuangJWangHTangDEffects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areasEnviron Sci Pollut R20202720215202261:CAS:528:DC%2BB3cXmtFygu74%3D10.1007/s11356-020-08538-1 – reference: HashemAAbd-AllahEFAlqarawiAAEgamberdievaDBioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungiSaudi J Biol Sci20162339471:CAS:528:DC%2BC2MXhvVyqu73P10.1016/j.sjbs.2015.11.007 – reference: Luduea LM, Anzuay MS, Angelini JG et al (2018) Strain Serratia sp. S119: A potential biofertilizer for peanut and maize and a model bacterium to study phosphate solubilization mechanisms[J]. Appl Soil Ecol 126:107–112 – reference: MiretzkyPFernandez-CirelliAPhosphates for Pb immobilization in soils: a reviewEnviron Chem Lett200861211331:CAS:528:DC%2BD1cXotV2htrY%3D10.1007/s10311-007-0133-y – reference: NaikMMKhanolkarDSDubeySKLead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb2+ as lead phosphateLett Appl Microbiol201356991041:CAS:528:DC%2BC3sXosVCqug%3D%3D10.1111/lam.12026 – reference: TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage201823118919710.1016/j.jenvman.2018.10.0121:CAS:528:DC%2BC1cXhvFOrsLbF – reference: LeveilleRJFyfeWSLongstaffeFJGeomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea cavesChem Geol20001693393551:CAS:528:DC%2BD3cXls1Crtb4%3D10.1016/S0009-2541(00)00213-8 – reference: LuoDGengRWangWDingZFanQTrichoderma viride involvement in the sorption of Pb(II) on muscovite, biotite and phlogopite: Batch and spectroscopic studiesJ Hazard Mater202040112324910.1016/j.jhazmat.2020.1232491:CAS:528:DC%2BB3cXhtlWmt7bK – reference: PagnanelliFPapiniMPTrifoniMVegliòFBiosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modelingEnviron Sci Technol200034277327781:CAS:528:DC%2BD3cXjslaiu74%3D10.1021/es991271g – reference: Zhao Y, Han Z, Yan H, Zhao H, Tucker ME (2019) Intracellular and extracellular biomineralization Induced by Klebsiella pneumoniae LH1 Isolated from dolomites. Geomicrobiol J. – reference: BaiJYangXHDuRYChenYMWangSZQiuRLBiosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soilJ Environ Sci2014262056206410.1016/j.jes.2014.07.015 – reference: Yuan Z, Yi H, Wang T, et al (2017) Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environ Sci Pollut R 1–8 – reference: PérezESulbaránMBallMMYarzábalLAIsolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan regionSoil Biol Biochem2007392905291410.1016/j.soilbio.2007.06.0171:CAS:528:DC%2BD2sXpt1Cgt78%3D – reference: TengZDShaoWZhangKYHuoYQLiMCharacterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilizationJ Environ Manage20192311891971:CAS:528:DC%2BC1cXhvFOrsLbF10.1016/j.jenvman.2018.10.012 – reference: SharmaAShuklaPA comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26Bioresour Technol202032012433010.1016/j.biortech.2020.1243301:CAS:528:DC%2BB3cXisVertb3F – reference: MerrounMLGeipelGNicolaiRHeiseKHSelenska-PobellSComplexation of uranium (VI) by three eco-types of Acidithiobacillus ferrooxidans studied using time-resolved laser-induced fluorescence spectroscopy and infrared spectroscopyBiometals2003163313391:CAS:528:DC%2BD3sXhvFSgtLo%3D10.1023/A:1020612600726 – reference: KaradumanABAcMYPatZAmorosoMJCuozzoSALead(II) biosorption by a metal tolerant strereptomyces strainEnviron Eng Manag J201110176117711:CAS:528:DC%2BC38XhtlOgsLw%3D10.30638/eemj.2011.239 – reference: YangPXLiMChenMHJia-QinXIFengHEDuanCQMing-HeMOFangDHDuanYQYangFXPhosphate solubilizing ability and phylogenetic diversity of bacteria from p-rich soils around dianchi lake drainage area of ChinaPedosphere2012227077161:CAS:528:DC%2BC38Xhs1emtbfM10.1016/S1002-0160(12)60056-3 – reference: YuXJiangJPhosphate microbial mineralization removes nickel ions from electroplating wastewaterJ Environ Manage20192454474531:CAS:528:DC%2BB3cXls12lurg%3D10.1016/j.jenvman.2019.05.091 – reference: LiuZLiYCZhangSFuYFanXPatelJSZhangMCharacterization of phosphate-solubilizing bacteria isolated from calcareous soilsAppl Soil Ecol20159621722410.1016/j.apsoil.2015.08.003 – reference: ZhangJSongHChenZLiuSSWeiYLBiomineralization mechanism of U(VI) induced by Bacillus cereus 12–2: The role of functional groups and enzymesChemosphere20182066826921:CAS:528:DC%2BC1cXpvVKgtLY%3D10.1016/j.chemosphere.2018.04.181 – reference: Freire-NordiCSVieiraANascimentoORThe metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR studyProcess Biochem200540221522241:CAS:528:DC%2BD2MXhsVOhtLk%3D10.1016/j.procbio.2004.09.003 – reference: ChoudharySSarPUranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine wasteJ Hazard Mater20111863363431:CAS:528:DC%2BC3MXhsFarurY%3D10.1016/j.jhazmat.2010.11.004 – reference: Wang J, Liu X, Zhao F, Lv C, Gao Z (2013) Optimization of culture conditions for phosphate-solubilizing bacteria Bacillus megaterium in submerged fermentation. Sci Bull – reference: LinHBennettGNSanKYMetabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yieldMetab Eng200571161271:CAS:528:DC%2BD2MXisVCmu7c%3D10.1016/j.ymben.2004.10.003 – reference: EdrisGAlhamedYAlzahraniABiosorption of cadmium and lead from aqueous solutions by chlorella vulgaris biomass: equilibrium and kinetic studyArab J Sci Eng201339879310.1007/s13369-013-0820-x1:CAS:528:DC%2BC2cXovFyktA%3D%3D – reference: BeechIHanjagsitLKalajiMNealALZinkevichVChemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB 2021 in continuous cultureMicrobiology19991456149114971:CAS:528:DyaK1MXktFWmsr8%3D10.1099/13500872-145-6-1491 – reference: QuCMaMChenWCaiPYuXFengXHuangQModeling of Cd adsorption to goethite-bacteria compositesChemosphere20181939439501:CAS:528:DC%2BC2sXhvVygsbrL10.1016/j.chemosphere.2017.11.100 – reference: HelmDLabischinskiHSchallehnGNaumannDClassification and identification of bacteria by Fourier-transform infrared spectroscopyJ Gen Microbiol199113769791:CAS:528:DyaK3MXhtFOqurg%3D – reference: ZhuJLiMWhelanMPhosphorus activators contribute to legacy phosphorus availability in agricultural soils: A reviewSci Total Environ20186125225371:CAS:528:DC%2BC2sXhsVansb7I10.1016/j.scitotenv.2017.08.095 – reference: JaroslawieckaAPiotrowska-SegetZLead resistance in micro-organismsMicrobiology201416012251:CAS:528:DC%2BC2cXis1egsL0%3D10.1099/mic.0.070284-0 – reference: Achal V, Savant V V, Reddy MS (2007) Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubingensis [J]. Soil Biol Biochem 39(2):695–699 – reference: GururajanKBelurPDScreening and selection of indigenous metal tolerant fungal isolates for heavy metal removal[J]Environ Technol Inno20189919910.1016/j.eti.2017.11.001 – reference: MitraSPramanikKSarkarAGhoshPKSorenTMaitiTKBioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stressEcotox Environ Safe20181561831961:CAS:528:DC%2BC1cXltFWjt7o%3D10.1016/j.ecoenv.2018.03.001 – reference: KellyJThorntonISimpsonPRUrban Geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of BritainAppl Geochem1996113633701:CAS:528:DyaK28Xjs1Knur0%3D10.1016/0883-2927(95)00084-4 – reference: ZhangKXueYXuHYaoYLead removal by phosphate solubilizing bacteria isolated from soil through biomineralizationChemosphere20192242722791:CAS:528:DC%2BC1MXjvFWisrw%3D10.1016/j.chemosphere.2019.02.140 – reference: TanoueYEChemical characterization of protein-like fluorophores in dom in relation to aromatic amino acidsMar Chem20038225527110.1016/S0304-4203(03)00073-21:CAS:528:DC%2BD3sXmtFamu78%3D – reference: JiangWSaxenaASongBWardBBeveridgeTJMyneniSElucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopyLangmuir20042011433114421:CAS:528:DC%2BD2cXpslemsL0%3D10.1021/la049043+ – reference: QianXFangCHuangMAchalVCharacterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soilJ Clean Prod20171641982081:CAS:528:DC%2BC2sXhtFakt7bI10.1016/j.jclepro.2017.06.195 – reference: RheeYJHillierSPendlowskiHGaddGMPyromorphite formation in a fungal biofilm community growing on lead metalEnviron Microbiol201416144114511:CAS:528:DC%2BC2cXmvVyrsro%3D10.1111/1462-2920.12416 – reference: LinWHuangZLiXLiuMChengYBio-remediation of acephate–Pb(II) compound contaminants by Bacillus subtilis FZUL-33J Environ Sci20164594991:CAS:528:DC%2BB3cXmt12isLo%3D10.1016/j.jes.2015.12.010 – reference: WalpolaBCYoonMHIn vitro solubilization of inorganic phosphates by phosphate solubilizing microorganismsAfr J Microbiol Res20134454458 – reference: KazySKDasSKSarPLanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterizationJ Ind Miicrobiol Biot2006337737831:CAS:528:DC%2BD28Xnt1aisLk%3D10.1007/s10295-006-0108-1 – reference: IyerAModyKJhaBBiosorption of heavy metals by a marine bacteriumMar Pollut Bull2005503403431:CAS:528:DC%2BD2MXitF2ns7g%3D10.1016/j.marpolbul.2004.11.012 – reference: WeiDWangBFNgoHHGuoWSHanFWangXDDuBWeiQRole of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludgeBioresour Technol201518514201:CAS:528:DC%2BC2MXjslOkurw%3D10.1016/j.biortech.2015.02.084 – reference: Zhao XQ, Tang D, Jiang Y (2021) Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium. Sci Total Environ 777 – reference: Chai B, Wu Y, Liu P et al (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine[J]. J Basic Microbiol 51(1):5–14 – reference: ChandwadkarPMisraHSAcharyaCUranium biomineralization induced by a metal tolerant serratia strain under acid, alkaline and irradiated conditionsMetallomics2018101071108810.1039/C8MT00061A – reference: HildaRReynaldoFPhosphate solubilizing bacteria and their role in plant growth promotionBiotechnol Adv19991731933910.1016/S0734-9750(99)00014-2 – reference: WangYZChenXWhalenJKCaoYHQuanZLuCYShiYKinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soilsJ Plant Nutr Soil Sc201517845555661:CAS:528:DC%2BC2MXhtVGmu7jP10.1002/jpln.201500047 – reference: BeazleyMJMartinezRJWebbSMSobeckyPATaillefertMThe effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soilsGeochim Cosmochim Ac201175564856631:CAS:528:DC%2BC3MXhtFWltLvK10.1016/j.gca.2011.07.006 – reference: CarmenBRobertoDImprovement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of sinorhizobium melilotiAppl Environ Microb201076144626463210.1128/AEM.02756-091:CAS:528:DC%2BC3cXhtVahsrfI – reference: ChenZPanXChenHGuanXLinZBiomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12–2 isolated from lead-zinc mine tailingsJ Hazard Mater201530153153710.1016/j.jhazmat.2015.09.0231:CAS:528:DC%2BC2MXhs1Cgsb%2FP – reference: HuYChengHApplication of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale regionEnviron Sci Technol201347375237601:CAS:528:DC%2BC3sXktVOiu78%3D10.1021/es304310k – reference: RenJZhangZWangMGuoGDuPLiFPhosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmiumFront Env Sci Eng20181221010.1007/s11783-018-1006-21:CAS:528:DC%2BC2sXhslGqsLfL – reference: SocoEKalembkiewiczJInvestigations on Cr mobility from coal fly ashFuel200988151315191:CAS:528:DC%2BD1MXls1Cisrw%3D10.1016/j.fuel.2009.02.021 – reference: Hettiarachchi GM, Pierzynski GM, MD, R. (2001) In situ stabilization of soil lead using phosphorus and manganese oxide. J Environ Qual 30, 1214. – reference: WeiYQZhaoYShiMZCaoZYLuQYangTXFanYYWeiZMEffect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculationBioresour Technol20182471901991:CAS:528:DC%2BC2sXhsFOis7vJ10.1016/j.biortech.2017.09.092 – reference: LosiMEAmrheinCFrankenbergerWTFactors affecting chemical and biological reduction of hexavalent chromium in soilEnviron Toxicol Chem2010131727173510.1002/etc.5620131103 – volume: 30 start-page: 2214 year: 2020 ident: 19960_CR8 publication-title: Mater Today – volume: 23 start-page: 39 year: 2016 ident: 19960_CR20 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2015.11.007 – volume: 39 start-page: 2905 year: 2007 ident: 19960_CR51 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2007.06.017 – ident: 19960_CR79 doi: 10.1080/01490451.2019.1695023 – volume: 416 start-page: 125800 year: 2021 ident: 19960_CR77 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.125800 – volume: 320 start-page: 124330 year: 2020 ident: 19960_CR57 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.124330 – volume: 20 start-page: 11433 year: 2004 ident: 19960_CR27 publication-title: Langmuir doi: 10.1021/la049043+ – volume: 185 start-page: 829 year: 2011 ident: 19960_CR29 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2010.09.075 – ident: 19960_CR40 doi: 10.1016/j.apsoil.2017.12.024 – volume: 18 start-page: 2927 year: 2004 ident: 19960_CR2 publication-title: Hydrol Process doi: 10.1002/hyp.5597 – volume: 54 start-page: 213 year: 2007 ident: 19960_CR15 publication-title: Curr Microbiol doi: 10.1007/s00284-006-0340-y – volume: 194 start-page: 297 year: 2015 ident: 19960_CR58 publication-title: Bioresource Technol doi: 10.1016/j.biortech.2015.07.029 – volume: 75 start-page: 5648 year: 2011 ident: 19960_CR5 publication-title: Geochim Cosmochim Ac doi: 10.1016/j.gca.2011.07.006 – volume: 4 start-page: 454 year: 2013 ident: 19960_CR66 publication-title: Afr J Microbiol Res – ident: 19960_CR22 doi: 10.2134/jeq2001.3041214x – volume: 45 start-page: 94 year: 2016 ident: 19960_CR37 publication-title: J Environ Sci doi: 10.1016/j.jes.2015.12.010 – ident: 19960_CR10 doi: 10.1002/jobm.201000192 – volume: 22 start-page: 707 year: 2012 ident: 19960_CR72 publication-title: Pedosphere doi: 10.1016/S1002-0160(12)60056-3 – volume: 27 start-page: 20215 year: 2020 ident: 19960_CR78 publication-title: Environ Sci Pollut R doi: 10.1007/s11356-020-08538-1 – volume: 150 start-page: 104941 year: 2020 ident: 19960_CR71 publication-title: Int Biodeter Biodegr doi: 10.1016/j.ibiod.2020.104941 – volume: 66 start-page: 56148 year: 2017 ident: 19960_CR52 publication-title: Acta Agronómica – volume: 41 start-page: 449 year: 2009 ident: 19960_CR47 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2008.10.034 – ident: 19960_CR1 doi: 10.1016/j.soilbio.2006.09.003 – volume: 37 start-page: 300 year: 2003 ident: 19960_CR62 publication-title: Environ Sci Technol doi: 10.1021/es025972g – volume: 10 start-page: 1761 year: 2011 ident: 19960_CR30 publication-title: Environ Eng Manag J doi: 10.30638/eemj.2011.239 – volume: 16 start-page: 1441 year: 2014 ident: 19960_CR56 publication-title: Environ Microbiol doi: 10.1111/1462-2920.12416 – ident: 19960_CR68 – volume: 33 start-page: 773 year: 2006 ident: 19960_CR31 publication-title: J Ind Miicrobiol Biot doi: 10.1007/s10295-006-0108-1 – volume: 34 start-page: 2773 year: 2000 ident: 19960_CR48 publication-title: Environ Sci Technol doi: 10.1021/es991271g – volume: 1147 start-page: 594 year: 2017 ident: 19960_CR33 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2017.06.111 – volume: 164 start-page: 198 year: 2017 ident: 19960_CR53 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.06.195 – volume: 156 start-page: 183 year: 2018 ident: 19960_CR45 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2018.03.001 – ident: 19960_CR80 doi: 10.1016/j.scitotenv.2021.146190 – volume: 34 start-page: 831 year: 2013 ident: 19960_CR60 publication-title: J Environ Biol – volume: 11 start-page: 363 year: 1996 ident: 19960_CR32 publication-title: Appl Geochem doi: 10.1016/0883-2927(95)00084-4 – volume: 15 start-page: 169 year: 2017 ident: 19960_CR7 publication-title: J Genet – volume: 297 start-page: 313 year: 2015 ident: 19960_CR49 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.05.019 – volume: 185 start-page: 14 year: 2015 ident: 19960_CR69 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.02.084 – ident: 19960_CR74 doi: 10.1007/s11356-017-9832-5 – volume: 6 start-page: 121 year: 2008 ident: 19960_CR43 publication-title: Environ Chem Lett doi: 10.1007/s10311-007-0133-y – volume: 178 start-page: 555 issue: 4 year: 2015 ident: 19960_CR67 publication-title: J Plant Nutr Soil Sc doi: 10.1002/jpln.201500047 – volume: 612 start-page: 522 year: 2018 ident: 19960_CR82 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.08.095 – volume: 10 start-page: 1071 year: 2018 ident: 19960_CR11 publication-title: Metallomics doi: 10.1039/C8MT00061A – volume: 26 start-page: 431 year: 2009 ident: 19960_CR4 publication-title: Geomicrobiol J doi: 10.1080/01490450903060780 – volume: 96 start-page: 217 year: 2015 ident: 19960_CR38 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2015.08.003 – volume: 76 start-page: 4626 issue: 14 year: 2010 ident: 19960_CR9 publication-title: Appl Environ Microb doi: 10.1128/AEM.02756-09 – volume: 26 start-page: 2056 year: 2014 ident: 19960_CR3 publication-title: J Environ Sci doi: 10.1016/j.jes.2014.07.015 – volume: 169 start-page: 339 year: 2000 ident: 19960_CR34 publication-title: Chem Geol doi: 10.1016/S0009-2541(00)00213-8 – volume: 357 start-page: 491 year: 2018 ident: 19960_CR81 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.06.032 – volume: 386 start-page: 115 year: 2014 ident: 19960_CR65 publication-title: Chem Geol doi: 10.1016/j.chemgeo.2014.08.011 – volume: 224 start-page: 272 year: 2019 ident: 19960_CR76 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.140 – volume: 50 start-page: 340 year: 2005 ident: 19960_CR25 publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2004.11.012 – volume: 193 start-page: 943 year: 2018 ident: 19960_CR54 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.11.100 – volume: 9 start-page: 91 year: 2018 ident: 19960_CR19 publication-title: Environ Technol Inno doi: 10.1016/j.eti.2017.11.001 – volume: 260 start-page: 114051 year: 2020 ident: 19960_CR14 publication-title: Environ Pollut doi: 10.1016/j.envpol.2020.114051 – volume: 23 start-page: 11814 year: 2016 ident: 19960_CR50 publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-016-6335-8 – volume: 40 start-page: 2215 year: 2005 ident: 19960_CR17 publication-title: Process Biochem doi: 10.1016/j.procbio.2004.09.003 – volume: 16 start-page: 331 year: 2003 ident: 19960_CR42 publication-title: Biometals doi: 10.1023/A:1020612600726 – volume: 160 start-page: 12 year: 2014 ident: 19960_CR26 publication-title: Microbiology doi: 10.1099/mic.0.070284-0 – volume: 47 start-page: 3752 year: 2013 ident: 19960_CR24 publication-title: Environ Sci Technol doi: 10.1021/es304310k – volume: 82 start-page: 255 year: 2003 ident: 19960_CR61 publication-title: Mar Chem doi: 10.1016/S0304-4203(03)00073-2 – volume: 231 start-page: 189 year: 2018 ident: 19960_CR63 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2018.10.012 – volume: 7 start-page: 116 year: 2005 ident: 19960_CR36 publication-title: Metab Eng doi: 10.1016/j.ymben.2004.10.003 – volume: 247 start-page: 190 year: 2018 ident: 19960_CR70 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.09.092 – volume: 13 start-page: 1727 year: 2010 ident: 19960_CR39 publication-title: Environ Toxicol Chem doi: 10.1002/etc.5620131103 – volume: 56 start-page: 99 year: 2013 ident: 19960_CR46 publication-title: Lett Appl Microbiol doi: 10.1111/lam.12026 – volume: 301 start-page: 531 year: 2015 ident: 19960_CR12 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.09.023 – volume: 39 start-page: 87 year: 2013 ident: 19960_CR16 publication-title: Arab J Sci Eng doi: 10.1007/s13369-013-0820-x – ident: 19960_CR18 – volume: 245 start-page: 447 year: 2019 ident: 19960_CR73 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.05.091 – volume: 206 start-page: 682 year: 2018 ident: 19960_CR75 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.181 – volume: 17 start-page: 319 year: 1999 ident: 19960_CR23 publication-title: Biotechnol Adv doi: 10.1016/S0734-9750(99)00014-2 – volume: 100 start-page: 5141 year: 2016 ident: 19960_CR35 publication-title: Appl Microbiol Biot doi: 10.1007/s00253-016-7327-9 – volume: 12 start-page: 10 issue: 2 year: 2018 ident: 19960_CR55 publication-title: Front Env Sci Eng doi: 10.1007/s11783-018-1006-2 – volume: 401 start-page: 123249 year: 2020 ident: 19960_CR41 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123249 – volume: 231 start-page: 189 year: 2019 ident: 19960_CR64 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2018.10.012 – volume: 88 start-page: 1513 year: 2009 ident: 19960_CR59 publication-title: Fuel doi: 10.1016/j.fuel.2009.02.021 – volume: 145 start-page: 1491 issue: 6 year: 1999 ident: 19960_CR6 publication-title: Microbiology doi: 10.1099/13500872-145-6-1491 – volume: 17 start-page: 711 issue: 3 year: 2014 ident: 19960_CR44 publication-title: Environ Microbiol – volume: 186 start-page: 336 year: 2011 ident: 19960_CR13 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2010.11.004 – volume: 137 start-page: 69 year: 1991 ident: 19960_CR21 publication-title: J Gen Microbiol – volume: 191 start-page: 110009 year: 2020 ident: 19960_CR28 publication-title: Ecotox Environ Safe doi: 10.1016/j.ecoenv.2019.110009 |
SSID | ssj0020927 |
Score | 2.406278 |
Snippet | Phosphate-solubilizing bacteria (PSB) promotes the formation of mineralized precipitation through phosphorous dissolution and mineralization, forming stable... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 58037 |
SubjectTerms | Acetic acid Acid phosphatase Acids Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bacteria batteries Bioremediation Catalysis catalytic activity Cations Cell culture Cell surface Cell walls Chelates Chemical precipitation China Crystallization culture media Dissolution Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Extracellular polymers Lead Metal concentrations Metal ions Mineralization Nucleation Ochrobactrum Organic acids Phosphatase Phosphate Phosphates phosphorus polluted soils pollution polymers Research Article Soil contamination Soil pollution solubility Solubilization soluble phosphates synergism Synergistic effect Waste Water Technology Water Management Water Pollution Control |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS_RADA8-Ll7Ex-f31RcjePsc6UynHecoooigXlzwVtp5sILbXex62It_u0kfu4gP8NpJh6FJJkmTXwJwnNoyDsEIjrY84SpTBS-FKjnKi1PSChECAZxv77Lrgbp5TB87UFjdV7v3Kcnmpl6A3USSUsGspOKILOazZVhNKXZHKR7I83mYFZt2UKtRiotEqQ4q8_UeH83RJx_zU360MTtXG7De-YvsvGXwJiz5agt2LhfwNFzs9LPehre2GTEbB4aOHZsMx_VkiN4kIwmjMtgWdMmKyrHRU9Nwun9UzwgF2LRtZiNPeOCnekQb3dvhCyq9nb68jlg9OWVITJvTj0XXMpbInlFY_sDg6vLh4pp3Exa4xdB0yoOhhvLOOKOCk8YX1ABLexdcknoMrVKCtQaMClWRmgx1PXPBSumEsOio2DjZgZVqXPl_wGys3VnindOxV7rEKER6Z0t9pqzTRSEjEP2Hzm3XfpymYDzni8bJxJwcmZM3zMlnEfyfvzNpm2_8SL3f8y_vFLHOpaZCH402N4Kj-TKqEOVFisqPX5EmQ2shKP_0A42muw99ZR3B31Y25kdK0oSGNpsITnphWRzg-_Pu_o58D9YkCW5TfLgPK8h1f4AO0bQ8bOT_HdI0A4I priority: 102 providerName: Springer Nature |
Title | Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead |
URI | https://link.springer.com/article/10.1007/s11356-022-19960-y https://www.ncbi.nlm.nih.gov/pubmed/35362889 https://www.proquest.com/docview/2705207990 https://www.proquest.com/docview/2646717518 https://www.proquest.com/docview/2718327747 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBvAqhpTISNzDEjhOvT2iptq1AFIRYaTlFiR_aSt0kbbaHvfDbmUmcjVDVvSSSPbGszIw9Y898Q8i71JSx95oz2MsTJjNZsJLLkoG8WCkM595jgvP3i-x8Lr8u0kU4cGtDWOWwJnYLta0NnpF_EgojNhQsnp-ba4ZVo_B2NZTQeEj2EboMQ7rUYnS4Yt2XbNVSMp5IGZJm-tQ5nqQYfisw1CKL2eb_jemOtXnnprTbgE6fkMfBcqTTntVPyQNXPSMHszFRDTqDprbPyd8elpjWnoKJR5tl3TZLsCspyhoGxPbpl7SoLF1ddtDTQ1O7wXzADsCZrhxmBl-2Kxzoh1negPqb9c3tirbNRwrEODgeMdqexUh2BWLzgsxPZ79PzlmotcAMOKlr5jVCy1tttfRWaFcgFJZy1tskdeBkpZjg6sE_lEWqM9D6zHojhOXcgMli4uSA7FV15V4RamJlJ4mzVsVOqhL8EeGsKdVEGquKQkSEDz86NwGIHOthXOUjhDIyJwfm5B1z8k1E3m-_aXoYjp3URwP_8qCSbT4KUETebrtBmfCGpKhcfQs0GewbHG-idtAoXAXBalYRednLxnZKSZpg-WYdkQ-DsIwTuH--r3fP95A8EiioXdjhEdkDLrs3YAqty-NO3uE5OeHHZH969ufbDN5fZhc_f0HrXEz_Aef8Cus |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxKtgKLBIcIIF73rtrQ8I8UiV0jYg1Eq9ufY-lEpNbOpUKBd-Er-RGT8SoYrcerXHq5Xn8zy8880AvIxNEXqfCo6-POIqUTkvhCo44sUqaYTwngjOh-NkdKy-nsQnG_Cn58JQWWVvExtDbUtD_8jfSU0VGxqN54fqJ6epUXS62o_QaGGx7xa_MGWr3-99Qf2-knJ3ePR5xLupAtxgOjbnPqUm6ja1qfJWpi6npk_aWW-j2GE6EROV02MmpPI4TRDfifVGSiuEQedswgjXvQGbKsJUZgCbn4bj7z-WKV6YtkNiU6W4iJTqaDotWU9EMRX8SiruSEK--NcVXolvr5zNNi5v9w7c7mJV9rEF113YcLN7sDVcUePwZmcb6vvwu22EzErPMKhk1aSsqwlGsozQTSW4LeGT5TPLpmdNs-v-Ur0gBmLTMppNHXGRz-opLfTNTC7Q4Jj5xeWU1dVbhsK0OP3UtC2oSOwcgfoAjq9FD1swmJUz9wiYCbXdiZy1OnRKF5gBSWdNoXeUsTrPZQCif9GZ6Vqf0wSO82zVtJmUk6FyskY52SKA18tnqrbxx1rp7V5_WWcE6mwF2QBeLG_j50tnMvnMlZcok6CnEnT2tUZGk93FOF0H8LDFxnJLURzRwOg0gDc9WFYb-P9-H6_f73O4OTo6PMgO9sb7T-CWJNA2RY_bMECNu6cYiM2LZx36GZxe9wf3F0-LQtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuiFdpoICR4ASmsePEzQEhRLtqKRQOVNpbSPzQVuomodkK7YUfxq9jJo-NUMXeet1MLGvn8zzi-WYAXsamCL1PBUdfHnGVqJwXQhUc8WKVNEJ4TwTnLyfJ4an6NI2nG_Bn4MJQWeVgE1tDbStD38h3paaKDY3Gc9f3ZRHf9ifv65-cJkjRTeswTqODyLFb_sL0rXl3tI-6fiXl5OD7x0PeTxjgBlOzBfcpNVS3qU2VtzJ1OTWA0s56G8UOU4uYaJ0esyKVx2mCWE-sN1JaIQw6ahNGuO4NuKmjWNAZ09Mx2QvTblxsqhQXkVI9Yaej7YkoptJfSWUeSciX_zrFK5HulVva1vlN7sKdPmplHzqY3YMNV96HrYORJIcPeyvRPIDfXUtkVnmG4SWrZ1VTzzCmZYRzKsbtqJ8sLy2bn7Vtr4efmiVxEdvm0WzuiJV81sxpoa9mdoGmxywuLuesqd8yFKbF6fOm7eBFYucI2Ydwei1a2ILNsirdNjATarsXOWt16JQuMBeSzppC7yljdZ7LAMTwR2emb4JOszjOs7F9MyknQ-VkrXKyZQCvV-_UXQuQtdI7g_6y3hw02QjeAF6sHuNBptuZvHTVJcok6LME3YKtkdFkgTFi1wE86rCx2lIURzQ6Og3gzQCWcQP_3-_j9ft9DrfwmGWfj06On8BtSZhtqx93YBMV7p5iRLYonrXQZ_Djus_aX-ZuRaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+phosphate+solubilization+and+mineralization+synergistic+mechanism+of+Ochrobactrum+sp.+on+the+remediation+of+lead&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Jiang%2C+Yi&rft.au=Zhao%2C+Xingqing&rft.au=Zhou%2C+Yucheng&rft.au=Ding%2C+Congcong&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=29&rft.issue=38&rft.spage=58037&rft.epage=58052&rft_id=info:doi/10.1007%2Fs11356-022-19960-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |