Zero Magnetic Field Plateau Phase Transition in Higher Chern Number Quantum Anomalous Hall Insulators

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (Q...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 128; no. 21; p. 216801
Main Authors Zhao, Yi-Fan, Zhang, Ruoxi, Zhou, Ling-Jie, Mei, Ruobing, Yan, Zi-Jie, Chan, Moses H W, Liu, Chao-Xing, Chang, Cui-Zu
Format Journal Article
LanguageEnglish
Published United States 27.05.2022
Online AccessGet more information

Cover

Loading…
Abstract The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.
AbstractList The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.
Author Zhao, Yi-Fan
Zhang, Ruoxi
Mei, Ruobing
Yan, Zi-Jie
Chan, Moses H W
Liu, Chao-Xing
Zhou, Ling-Jie
Chang, Cui-Zu
Author_xml – sequence: 1
  givenname: Yi-Fan
  surname: Zhao
  fullname: Zhao, Yi-Fan
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 2
  givenname: Ruoxi
  surname: Zhang
  fullname: Zhang, Ruoxi
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 3
  givenname: Ling-Jie
  surname: Zhou
  fullname: Zhou, Ling-Jie
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 4
  givenname: Ruobing
  surname: Mei
  fullname: Mei, Ruobing
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 5
  givenname: Zi-Jie
  surname: Yan
  fullname: Yan, Zi-Jie
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 6
  givenname: Moses H W
  surname: Chan
  fullname: Chan, Moses H W
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 7
  givenname: Chao-Xing
  surname: Liu
  fullname: Liu, Chao-Xing
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
– sequence: 8
  givenname: Cui-Zu
  surname: Chang
  fullname: Chang, Cui-Zu
  organization: Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35687436$$D View this record in MEDLINE/PubMed
BookMark eNo1j11LwzAYhYMo7kP_wsgf6MzbtEl3OYZzg6lV5o03I23ebJE2HU0i7N9bUG_Ow7l5OGdCrl3nkJAZsDkA4w_l6eLf8XuHIcwhLeYpiILBFRkDk4tEAmQjMvH-izEGqShuyYjnopAZF2OCn9h39FkdHQZb07XFRtOyUQFVpOVJeaT7Xjlvg-0ctY5u7PGEPV0N4ehLbKuhvEXlQmzp0nWtarro6UY1Dd06HwdT1_s7cmNU4_H-j1PysX7crzbJ7vVpu1rukprzIiRGyAXUuTBMKhRVrVUlMgFgcsPYsBe1FLnhQlYqY6YAA6xmGrhepDkvuE6nZPbrPceqRX0497ZV_eXw_zf9ATCRWxQ
CitedBy_id crossref_primary_10_1103_PhysRevB_109_235105
crossref_primary_10_1038_s41467_023_36488_y
crossref_primary_10_3390_nano13192655
crossref_primary_10_1103_RevModPhys_95_011002
crossref_primary_10_1103_PhysRevB_107_155114
crossref_primary_10_1103_PhysRevLett_130_086201
crossref_primary_10_1021_acs_nanolett_4c01313
crossref_primary_10_1063_5_0100989
crossref_primary_10_1103_PhysRevB_106_245425
crossref_primary_10_1038_s41467_023_43474_x
crossref_primary_10_1103_PhysRevB_108_115302
crossref_primary_10_1126_sciadv_ado4756
crossref_primary_10_1038_s41563_023_01694_y
crossref_primary_10_1002_adma_202310249
crossref_primary_10_1021_acs_nanolett_2c03827
crossref_primary_10_1103_PhysRevB_106_235405
crossref_primary_10_1007_s11433_023_2115_7
crossref_primary_10_1021_acs_nanolett_2c04871
crossref_primary_10_1103_PhysRevB_107_085151
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.128.216801
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 35687436
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c338t-f6791c56f07ae6bcdab64611f5f00743ed765f367ba40f81f10c0d13d925383d2
IngestDate Wed Oct 16 00:41:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-f6791c56f07ae6bcdab64611f5f00743ed765f367ba40f81f10c0d13d925383d2
OpenAccessLink https://www.osti.gov/servlets/purl/1980285
PMID 35687436
ParticipantIDs pubmed_primary_35687436
PublicationCentury 2000
PublicationDate 2022-05-27
PublicationDateYYYYMMDD 2022-05-27
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2022
SSID ssj0001268
Score 2.5611923
Snippet The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It...
SourceID pubmed
SourceType Index Database
StartPage 216801
Title Zero Magnetic Field Plateau Phase Transition in Higher Chern Number Quantum Anomalous Hall Insulators
URI https://www.ncbi.nlm.nih.gov/pubmed/35687436
Volume 128
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBbpxkZexu73oYe9BWWWZUvyYykLWWGhlBa6vhRfpMbQ2GVNxtiP2G_eOZJsh7ZjlxdjJFs4_j6fW845IuR9XOVcGi6YLlXKktIIlgF1mCxkkglrVF65bp8LOT9O9k_Sk9Ho51bW0mZdTMsft9aV_A-qMAa4YpXsPyDbLwoDcA74whEQhuNfYXxqvraTz_l5g5WIkxkmo-EuRIDbZnKwBP3ke5fXXUJjSOrYW-L2Zwu3FwhmdYLaWU12m3aVX2BC7Bz_rf6EOerokF9tm68HHaqh4uXCFQP1ZvnpMneR1y81mw2s62PSh5v2ez2MtpsQFDhn-_WQgmvqcG3RadUQlAB_NsLKNq9TvCCNVMYU9wWivaSN9RalfGV0Lzil9lGNmzI9wt4S-AMPzTcscprCOtObNwA2lyuHtEilBstI_nn2Wq_tbmqH7CiNUnOBsZ9xF7GTOtSYwyN9uP2BxuR-t8g1R8UZLEcPyYPgadBdT5tHZGSax-SeR_DqCTFIHtqRhzry0EAe6shDB_LQuqGePNSRh3ry0EAe2pOHInnoQJ6n5Hj28WhvzsKeG6wUQq-ZlSrjZSptpHIji7LK4aOVnNvUOmvTVEqmVkhV5ElkNbc8KqOKiyqLQXWKKn5G7jRtY14QWuWmBIe0VAUY5WlU4MWJiZVNdGoykb0kz_37Obv0jVXOujf36rczr8l4oNsbctfCl2zeglm4Lt45tH4B1Vljhw
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero+Magnetic+Field+Plateau+Phase+Transition+in+Higher+Chern+Number+Quantum+Anomalous+Hall+Insulators&rft.jtitle=Physical+review+letters&rft.au=Zhao%2C+Yi-Fan&rft.au=Zhang%2C+Ruoxi&rft.au=Zhou%2C+Ling-Jie&rft.au=Mei%2C+Ruobing&rft.date=2022-05-27&rft.eissn=1079-7114&rft.volume=128&rft.issue=21&rft.spage=216801&rft_id=info:doi/10.1103%2FPhysRevLett.128.216801&rft_id=info%3Apmid%2F35687436&rft_id=info%3Apmid%2F35687436&rft.externalDocID=35687436