Deep Adversarial Domain Adaptation With Few-Shot Learning for Motor-Imagery Brain-Computer Interface
Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a...
Saved in:
Published in | IEEE access Vol. 10; pp. 57255 - 57265 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a large number of recordings may alleviate this issue, it is often impractical and not user-friendly. This study proposes the integration of deep domain adaptation with few-shot learning to address the challenge by leveraging the knowledge from multiple source subjects to enhance the performance of a single target subject. The framework incorporated 3 modules: a feature extractor, domain discriminator, and classifier. The feature extractor utilized the available labeled samples with supervised contrastive loss to map the discriminate features onto a deep representation space, where the features from the same class were more similar than those from different classes. The domain discriminator was used to reduce domain drift, through adversarial training. The classifier predicted the user motor intention, based on EEG features. The framework was extensively evaluated through the BCI Competition IV Datasets 2a and 2b. The results of this study indicate that the framework is capable of enhancing the BCI performance and potentially decreases the calibration effort compared to the traditional approach, but the major limitation of this method is that it requires meticulous selection of source subjects. |
---|---|
AbstractList | Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a large number of recordings may alleviate this issue, it is often impractical and not user-friendly. This study proposes the integration of deep domain adaptation with few-shot learning to address the challenge by leveraging the knowledge from multiple source subjects to enhance the performance of a single target subject. The framework incorporated 3 modules: a feature extractor, domain discriminator, and classifier. The feature extractor utilized the available labeled samples with supervised contrastive loss to map the discriminate features onto a deep representation space, where the features from the same class were more similar than those from different classes. The domain discriminator was used to reduce domain drift, through adversarial training. The classifier predicted the user motor intention, based on EEG features. The framework was extensively evaluated through the BCI Competition IV Datasets 2a and 2b. The results of this study indicate that the framework is capable of enhancing the BCI performance and potentially decreases the calibration effort compared to the traditional approach, but the major limitation of this method is that it requires meticulous selection of source subjects. |
Author | Phunruangsakao, Chatrin Achanccaray, David Hayashibe, Mitsuhiro |
Author_xml | – sequence: 1 givenname: Chatrin orcidid: 0000-0002-2448-8464 surname: Phunruangsakao fullname: Phunruangsakao, Chatrin email: phunruangsakao.chatrin.p8@dc.tohoku.ac.jp organization: Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan – sequence: 2 givenname: David surname: Achanccaray fullname: Achanccaray, David organization: Hiroshi Ishiguro Laboratory, Presence Media Research Group, Advanced Telecommunications Research Institute International, Kyoto, Japan – sequence: 3 givenname: Mitsuhiro surname: Hayashibe fullname: Hayashibe, Mitsuhiro organization: Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan |
BookMark | eNqFUU1rGzEUFCWFpml-QS6CntfV11rS0d0krcElB7f0KCTtkyNjr7ZaOSX_vko3hNJLBE96DG_miZn36GxIAyB0RcmCUqI_rbruZrtdMMLYglOpKCFv0DmjS93wli_P_unfoctp2pN6VIVaeY76a4ARr_oHyJPN0R7wdTraOFTIjsWWmAb8M5Z7fAu_m-19KngDNg9x2OGQMv6WSsrN-mh3kB_x51yZTZeO46lAxuuh3sF6-IDeBnuY4PL5vUA_bm--d1-bzd2XdbfaNJ5zVRqAtuW1IEBonRW9khIocMK0koS5JXUuKCc1UKupbakTSllFpCeSK9D8Aq1n3T7ZvRlzPNr8aJKN5i-Q8s7YXKI_gBEs9IpC63sPwkunOPDgg6tWuWqiq1ofZ60xp18nmIrZp1Me6vcNW0pBZCu0qFN8nvI5TVOG8LKVEvOUjpnTMU_pmOd0Kkv_x_Jx9rpUBw-vcK9mbgSAl21aKiYE5X8AFaifUA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107122 crossref_primary_10_1109_TNSRE_2023_3241846 crossref_primary_10_3390_computers12070145 crossref_primary_10_1016_j_bspc_2023_105786 crossref_primary_10_1016_j_bspc_2023_105359 crossref_primary_10_3389_fnbot_2024_1343249 crossref_primary_10_1016_j_bspc_2023_105154 crossref_primary_10_1109_ACCESS_2024_3421569 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_3389_fnhum_2022_1032724 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1016_j_neunet_2024_106497 crossref_primary_10_3389_fnins_2025_1543508 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_1109_TIM_2024_3420350 crossref_primary_10_1109_JSEN_2022_3223338 crossref_primary_10_1109_TNSRE_2024_3522168 |
Cites_doi | 10.1002/hbm.23730 10.1016/j.patcog.2017.10.003 10.1088/1741-2552/aace8c 10.3389/fnins.2012.00039 10.1109/TNNLS.2018.2789927 10.1371/journal.pone.0246769 10.1109/IJCNN48605.2020.9206884 10.1109/TNSRE.2007.906956 10.1016/j.neunet.2009.06.003 10.1109/TKDE.2009.191 10.3389/fnins.2012.00055 10.1109/THMS.2016.2608931 10.1007/s00500-015-1937-5 10.1109/TBME.2013.2253608 10.1088/1741-2560/13/2/026001 10.3389/fnins.2020.595084 10.1109/TMRB.2020.3025364 10.1007/s11517-018-1875-3 10.1371/journal.pone.0221909 10.1109/BCI51272.2021.9385322 10.1109/NER.2017.8008420 10.1088/1741-2560/14/1/016003 10.1371/journal.pone.0002967 10.1109/IWW-BCI.2019.8737340 10.1109/SMC.2017.8122608 10.3390/s21051613 10.1109/CVPR.2017.316 10.1109/TBME.2019.2913914 10.1038/nature14539 10.1016/j.eswa.2018.08.031 10.1186/s40537-021-00419-9 10.1088/1741-2552/abc902 10.3389/fncom.2019.00087 10.1109/ICCV.2017.304 10.3389/fnhum.2015.00308 10.1109/TNSRE.2020.3023761 10.1109/TBME.2010.2082539 10.1109/TNNLS.2020.3010780 10.1109/LSP.2009.2022557 10.1109/MCI.2015.2501545 10.1016/j.mayocp.2011.12.008 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3178100 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 57265 |
ExternalDocumentID | oai_doaj_org_article_42fd81e5cdce4c7b83e3fcfb216b317b 10_1109_ACCESS_2022_3178100 9782441 |
Genre | orig-research |
GrantInformation_xml | – fundername: JSPS Grant-in-Aid for Scientific Research on Innovative Areas Hyper-Adaptability Project grantid: 22H04764 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c338t-ee553e55efef5ba4d877e1e30298702b61bbf8b79e1a91a51b488a807c0738e93 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:50 EDT 2025 Mon Jun 30 02:35:29 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Tue Jul 01 04:21:11 EDT 2025 Wed Aug 27 02:24:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-ee553e55efef5ba4d877e1e30298702b61bbf8b79e1a91a51b488a807c0738e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2448-8464 |
OpenAccessLink | https://doaj.org/article/42fd81e5cdce4c7b83e3fcfb216b317b |
PQID | 2674075494 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2674075494 doaj_primary_oai_doaj_org_article_42fd81e5cdce4c7b83e3fcfb216b317b ieee_primary_9782441 crossref_citationtrail_10_1109_ACCESS_2022_3178100 crossref_primary_10_1109_ACCESS_2022_3178100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref17 ref19 ref18 Arjovsky (ref43) 2017 Lucic (ref51) Ganin (ref14) 2014 ref46 ref45 ref48 Luo (ref44) ref47 ref41 Motiian (ref16) ref49 ref8 ref7 ref9 ref4 ref3 ref6 Khosla (ref22) 2020 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 van der Maaten (ref50) 2008; 9 ref38 Goodfellow (ref42) Bashivan (ref27) 2016 Willett (ref5) 2020; 593 ref24 ref23 ref26 ref25 ref20 ref21 ref28 ref29 |
References_xml | – ident: ref24 doi: 10.1002/hbm.23730 – ident: ref45 doi: 10.1016/j.patcog.2017.10.003 – ident: ref25 doi: 10.1088/1741-2552/aace8c – ident: ref23 doi: 10.3389/fnins.2012.00039 – ident: ref26 doi: 10.1109/TNNLS.2018.2789927 – ident: ref9 doi: 10.1371/journal.pone.0246769 – ident: ref39 doi: 10.1109/IJCNN48605.2020.9206884 – ident: ref41 doi: 10.1109/TNSRE.2007.906956 – ident: ref32 doi: 10.1016/j.neunet.2009.06.003 – ident: ref29 doi: 10.1109/TKDE.2009.191 – ident: ref40 doi: 10.3389/fnins.2012.00055 – ident: ref18 doi: 10.1109/THMS.2016.2608931 – volume-title: arXiv:2004.11362 year: 2020 ident: ref22 article-title: Supervised contrastive learning – ident: ref48 doi: 10.1007/s00500-015-1937-5 – ident: ref33 doi: 10.1109/TBME.2013.2253608 – ident: ref47 doi: 10.1088/1741-2560/13/2/026001 – volume: 9 start-page: 2579 year: 2008 ident: ref50 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref3 doi: 10.3389/fnins.2020.595084 – volume-title: arXiv:1701.07875 year: 2017 ident: ref43 article-title: Wasserstein GAN – ident: ref2 doi: 10.1109/TMRB.2020.3025364 – ident: ref46 doi: 10.1007/s11517-018-1875-3 – start-page: 700 volume-title: Proc. NIPS ident: ref51 article-title: Are gans created equal? A large-scale study – ident: ref6 doi: 10.1371/journal.pone.0221909 – ident: ref38 doi: 10.1109/BCI51272.2021.9385322 – ident: ref17 doi: 10.1109/NER.2017.8008420 – ident: ref28 doi: 10.1088/1741-2560/14/1/016003 – ident: ref31 doi: 10.1371/journal.pone.0002967 – ident: ref19 doi: 10.1109/IWW-BCI.2019.8737340 – ident: ref4 doi: 10.1109/SMC.2017.8122608 – ident: ref7 doi: 10.3390/s21051613 – volume-title: arXiv:1409.7495 year: 2014 ident: ref14 article-title: Unsupervised domain adaptation by backpropagation – ident: ref15 doi: 10.1109/CVPR.2017.316 – ident: ref36 doi: 10.1109/TBME.2019.2913914 – ident: ref1 doi: 10.1038/nature14539 – volume: 593 start-page: 249 year: 2020 ident: ref5 article-title: High-performance brain-to-text communication via imagined handwriting publication-title: bioRxiv – ident: ref37 doi: 10.1016/j.eswa.2018.08.031 – ident: ref11 doi: 10.1186/s40537-021-00419-9 – ident: ref10 doi: 10.1088/1741-2552/abc902 – ident: ref13 doi: 10.3389/fncom.2019.00087 – volume-title: arXiv:1511.06448 year: 2016 ident: ref27 article-title: Learning representations from eeg with deep recurrent-convolutional neural networks – ident: ref49 doi: 10.1109/ICCV.2017.304 – ident: ref12 doi: 10.3389/fnhum.2015.00308 – ident: ref21 doi: 10.1109/TNSRE.2020.3023761 – ident: ref35 doi: 10.1109/TBME.2010.2082539 – ident: ref20 doi: 10.1109/TNNLS.2020.3010780 – ident: ref34 doi: 10.1109/LSP.2009.2022557 – start-page: 938 volume-title: Proc. ICML ident: ref44 article-title: Support matrix machines – start-page: 2672 volume-title: Proc. NIPS ident: ref42 article-title: Generative adversarial nets – start-page: 6670 volume-title: Proc. NIPS ident: ref16 article-title: Few-shot adversarial domain adaptation – ident: ref30 doi: 10.1109/MCI.2015.2501545 – ident: ref8 doi: 10.1016/j.mayocp.2011.12.008 |
SSID | ssj0000816957 |
Score | 2.3624167 |
Snippet | Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57255 |
SubjectTerms | Adaptation Brain modeling Brain-computer interface Brain-computer interfaces Classifiers Convolution Data mining domain adaptation Electroencephalography Feature extraction few-shot learning Human-computer interface Learning motor imagery representation learning Statistical methods Training |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEsFOQDx2aJHcd2ju2WVYu0XKCiN8sfE1qVblY0q6r8esaON6oAVT0kiizbcjRjj9_Y84aQD1VQ1krpC-GFiK-mQCsXY2UED7LxLtgY77z4Io9Pxeez-myL7I-xMACQLp_BNH6ms_zQ-XV0lUU2WLRGiHUeIXAbYrVGf0pMINHUKhMLsbL5eDCb4T8gBOQckanSLEax3TE-iaM_J1X5ZyVO5mX-jCw2AxtulVxO172b-t9_cTY-dOTPydO8z6QHg2LskC1YviBP7rAP7pJwBLCiKSPztY16SI-6K3uxxCK7Gk7o6feL_pzO4ab4et71NJOx_qC406WLDuF6cXIVSTBu6WFMNVFsckTQ5GhsrYeX5HT-6dvsuMhJFwqPaLUvAOq6wgdaaGtnRdBKAYMqUrWrkjvJnGu1Uw0w2zBbM4dLgNWl8rhYaGiqV2R72S3hNaFOB6G5L0WwSgSJVkFr3C_5qi5lKys5IXwjDeMzI3lMjPHTJGRSNmYQoYkiNFmEE7I_NloNhBz3Vz-MYh6rRjbtVIDiMXlyGsHboBnUPngQXjldQdX61nEmHfbjJmQ3inTsJEtzQvY2SmPyzL82XCrEyIi6xZv_t3pLHscBDm6cPbLd_1rDO9zY9O590ug_Fo302A priority: 102 providerName: IEEE |
Title | Deep Adversarial Domain Adaptation With Few-Shot Learning for Motor-Imagery Brain-Computer Interface |
URI | https://ieeexplore.ieee.org/document/9782441 https://www.proquest.com/docview/2674075494 https://doaj.org/article/42fd81e5cdce4c7b83e3fcfb216b317b |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQp3JAtIBISZEPHLti7fXa3mMIjdJKcCkIbpYfswSpJBFZhPrvO_Y6UaRK7YXD7sHyPjwez8zn3fmGkPMqKGul9IXwQsRTU6CXi7kyggfZeBdszHe-vpHTO_HjoX7YKvUV_wnr6YF7wV0I3gbNoPbBg_DK6Qqq1reOM-nQ97lofdHnbYGpZIM1k02tMs0QK5uL0XiMI0JAyDniVKVZzGnbckWJsT-XWPnLLidnMzkg-zlKpKP-7T6SHZh_Intb3IGHJFwBLGmqp7yyUYvo1eIZYT422WX_fZ3eP3UzOoG34uds0dFMpfpIMU6l1wsE28X350hh8ZtexkIRxbrCA03bhK31cETuJt9ux9Mil0woPGLNrgCo6woPaKGtnRVBKwUMqki0rkruJHOu1U41wGzDbM0cLmCrS-VxqWtoqmOyO1_M4YRQp4PQ3JciWCWCRJuuNUY7vqpL2cpKDghfS8_4zCcey1r8MglXlI3pRW6iyE0W-YB83Vy07Ok0_t39Mk7Lpmvkwk4NqCEma4j5n4YMyGGc1M1NEDdjTMMGZLieZJPX7cpwqRDhImYWn9_j0afkQxxOv2UzJLvdyyt8wSCmc2dJX89SvuEf-9rt4Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcgAOFCiIpS34wLFZYsexnWO7ZbWFbi-0ojfLH5O2gm5WNCsEv77jxBtVgBCHRJFlW45m7PEbe94Q8q4IylopfSa8EPFVZWjlYqyM4EFW3gUb453np3J2Lj5elBcbZH-IhQGA7vIZjONnd5YfGr-KrrLIBovWCLHOA7T7JeujtQaPSkwhUZUqUQuxvHp_MJngXyAI5ByxqdIsxrHdMz8dS39Kq_LHWtwZmOkWma-H1t8r-TpetW7sf_3G2vi_Y39KnqSdJj3oVeMZ2YDFc_L4Hv_gNglHAEva5WS-tVET6VFzY68XWGSX_Rk9_XLdXtEp_Mg-XzUtTXSslxT3unTeIGDPjm8iDcZPehiTTWTrLBG0czXW1sMLcj79cDaZZSntQuYRr7YZQFkW-EANdemsCFopYFBEsnaVcyeZc7V2qgJmK2ZL5nARsDpXHpcLDVXxkmwumgW8ItTpIDT3uQhWiSDRLmiNOyZflLmsZSFHhK-lYXziJI-pMb6ZDpvklelFaKIITRLhiOwPjZY9Jce_qx9GMQ9VI592V4DiMWl6GsHroBmUPngQXjldQFH72nEmHfbjRmQ7inToJElzRHbXSmPS3L81XCpEyYi7xeu_t3pLHs7O5ifm5Pj00w55FAfbO3V2yWb7fQV7uM1p3ZtOu-8A_wv4IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Adversarial+Domain+Adaptation+With+Few-Shot+Learning+for+Motor-Imagery+Brain-Computer+Interface&rft.jtitle=IEEE+access&rft.au=Phunruangsakao%2C+Chatrin&rft.au=Achanccaray%2C+David&rft.au=Hayashibe%2C+Mitsuhiro&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=57255&rft.epage=57265&rft_id=info:doi/10.1109%2FACCESS.2022.3178100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3178100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |