Deep Adversarial Domain Adaptation With Few-Shot Learning for Motor-Imagery Brain-Computer Interface

Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 57255 - 57265
Main Authors Phunruangsakao, Chatrin, Achanccaray, David, Hayashibe, Mitsuhiro
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a large number of recordings may alleviate this issue, it is often impractical and not user-friendly. This study proposes the integration of deep domain adaptation with few-shot learning to address the challenge by leveraging the knowledge from multiple source subjects to enhance the performance of a single target subject. The framework incorporated 3 modules: a feature extractor, domain discriminator, and classifier. The feature extractor utilized the available labeled samples with supervised contrastive loss to map the discriminate features onto a deep representation space, where the features from the same class were more similar than those from different classes. The domain discriminator was used to reduce domain drift, through adversarial training. The classifier predicted the user motor intention, based on EEG features. The framework was extensively evaluated through the BCI Competition IV Datasets 2a and 2b. The results of this study indicate that the framework is capable of enhancing the BCI performance and potentially decreases the calibration effort compared to the traditional approach, but the major limitation of this method is that it requires meticulous selection of source subjects.
AbstractList Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of EEG data varies across subjects and sessions, resulting in poor generalization of the domain-specific classifier. Although the collection of a large number of recordings may alleviate this issue, it is often impractical and not user-friendly. This study proposes the integration of deep domain adaptation with few-shot learning to address the challenge by leveraging the knowledge from multiple source subjects to enhance the performance of a single target subject. The framework incorporated 3 modules: a feature extractor, domain discriminator, and classifier. The feature extractor utilized the available labeled samples with supervised contrastive loss to map the discriminate features onto a deep representation space, where the features from the same class were more similar than those from different classes. The domain discriminator was used to reduce domain drift, through adversarial training. The classifier predicted the user motor intention, based on EEG features. The framework was extensively evaluated through the BCI Competition IV Datasets 2a and 2b. The results of this study indicate that the framework is capable of enhancing the BCI performance and potentially decreases the calibration effort compared to the traditional approach, but the major limitation of this method is that it requires meticulous selection of source subjects.
Author Phunruangsakao, Chatrin
Achanccaray, David
Hayashibe, Mitsuhiro
Author_xml – sequence: 1
  givenname: Chatrin
  orcidid: 0000-0002-2448-8464
  surname: Phunruangsakao
  fullname: Phunruangsakao, Chatrin
  email: phunruangsakao.chatrin.p8@dc.tohoku.ac.jp
  organization: Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
– sequence: 2
  givenname: David
  surname: Achanccaray
  fullname: Achanccaray, David
  organization: Hiroshi Ishiguro Laboratory, Presence Media Research Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
– sequence: 3
  givenname: Mitsuhiro
  surname: Hayashibe
  fullname: Hayashibe, Mitsuhiro
  organization: Neuro-Robotics Laboratory, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
BookMark eNqFUU1rGzEUFCWFpml-QS6CntfV11rS0d0krcElB7f0KCTtkyNjr7ZaOSX_vko3hNJLBE96DG_miZn36GxIAyB0RcmCUqI_rbruZrtdMMLYglOpKCFv0DmjS93wli_P_unfoctp2pN6VIVaeY76a4ARr_oHyJPN0R7wdTraOFTIjsWWmAb8M5Z7fAu_m-19KngDNg9x2OGQMv6WSsrN-mh3kB_x51yZTZeO46lAxuuh3sF6-IDeBnuY4PL5vUA_bm--d1-bzd2XdbfaNJ5zVRqAtuW1IEBonRW9khIocMK0koS5JXUuKCc1UKupbakTSllFpCeSK9D8Aq1n3T7ZvRlzPNr8aJKN5i-Q8s7YXKI_gBEs9IpC63sPwkunOPDgg6tWuWqiq1ofZ60xp18nmIrZp1Me6vcNW0pBZCu0qFN8nvI5TVOG8LKVEvOUjpnTMU_pmOd0Kkv_x_Jx9rpUBw-vcK9mbgSAl21aKiYE5X8AFaifUA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107122
crossref_primary_10_1109_TNSRE_2023_3241846
crossref_primary_10_3390_computers12070145
crossref_primary_10_1016_j_bspc_2023_105786
crossref_primary_10_1016_j_bspc_2023_105359
crossref_primary_10_3389_fnbot_2024_1343249
crossref_primary_10_1016_j_bspc_2023_105154
crossref_primary_10_1109_ACCESS_2024_3421569
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_3389_fnhum_2022_1032724
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1016_j_neunet_2024_106497
crossref_primary_10_3389_fnins_2025_1543508
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_1109_TIM_2024_3420350
crossref_primary_10_1109_JSEN_2022_3223338
crossref_primary_10_1109_TNSRE_2024_3522168
Cites_doi 10.1002/hbm.23730
10.1016/j.patcog.2017.10.003
10.1088/1741-2552/aace8c
10.3389/fnins.2012.00039
10.1109/TNNLS.2018.2789927
10.1371/journal.pone.0246769
10.1109/IJCNN48605.2020.9206884
10.1109/TNSRE.2007.906956
10.1016/j.neunet.2009.06.003
10.1109/TKDE.2009.191
10.3389/fnins.2012.00055
10.1109/THMS.2016.2608931
10.1007/s00500-015-1937-5
10.1109/TBME.2013.2253608
10.1088/1741-2560/13/2/026001
10.3389/fnins.2020.595084
10.1109/TMRB.2020.3025364
10.1007/s11517-018-1875-3
10.1371/journal.pone.0221909
10.1109/BCI51272.2021.9385322
10.1109/NER.2017.8008420
10.1088/1741-2560/14/1/016003
10.1371/journal.pone.0002967
10.1109/IWW-BCI.2019.8737340
10.1109/SMC.2017.8122608
10.3390/s21051613
10.1109/CVPR.2017.316
10.1109/TBME.2019.2913914
10.1038/nature14539
10.1016/j.eswa.2018.08.031
10.1186/s40537-021-00419-9
10.1088/1741-2552/abc902
10.3389/fncom.2019.00087
10.1109/ICCV.2017.304
10.3389/fnhum.2015.00308
10.1109/TNSRE.2020.3023761
10.1109/TBME.2010.2082539
10.1109/TNNLS.2020.3010780
10.1109/LSP.2009.2022557
10.1109/MCI.2015.2501545
10.1016/j.mayocp.2011.12.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3178100
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 57265
ExternalDocumentID oai_doaj_org_article_42fd81e5cdce4c7b83e3fcfb216b317b
10_1109_ACCESS_2022_3178100
9782441
Genre orig-research
GrantInformation_xml – fundername: JSPS Grant-in-Aid for Scientific Research on Innovative Areas Hyper-Adaptability Project
  grantid: 22H04764
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-ee553e55efef5ba4d877e1e30298702b61bbf8b79e1a91a51b488a807c0738e93
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:50 EDT 2025
Mon Jun 30 02:35:29 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Tue Jul 01 04:21:11 EDT 2025
Wed Aug 27 02:24:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-ee553e55efef5ba4d877e1e30298702b61bbf8b79e1a91a51b488a807c0738e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2448-8464
OpenAccessLink https://doaj.org/article/42fd81e5cdce4c7b83e3fcfb216b317b
PQID 2674075494
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2674075494
doaj_primary_oai_doaj_org_article_42fd81e5cdce4c7b83e3fcfb216b317b
ieee_primary_9782441
crossref_citationtrail_10_1109_ACCESS_2022_3178100
crossref_primary_10_1109_ACCESS_2022_3178100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref19
ref18
Arjovsky (ref43) 2017
Lucic (ref51)
Ganin (ref14) 2014
ref46
ref45
ref48
Luo (ref44)
ref47
ref41
Motiian (ref16)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Khosla (ref22) 2020
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
van der Maaten (ref50) 2008; 9
ref38
Goodfellow (ref42)
Bashivan (ref27) 2016
Willett (ref5) 2020; 593
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref29
References_xml – ident: ref24
  doi: 10.1002/hbm.23730
– ident: ref45
  doi: 10.1016/j.patcog.2017.10.003
– ident: ref25
  doi: 10.1088/1741-2552/aace8c
– ident: ref23
  doi: 10.3389/fnins.2012.00039
– ident: ref26
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref9
  doi: 10.1371/journal.pone.0246769
– ident: ref39
  doi: 10.1109/IJCNN48605.2020.9206884
– ident: ref41
  doi: 10.1109/TNSRE.2007.906956
– ident: ref32
  doi: 10.1016/j.neunet.2009.06.003
– ident: ref29
  doi: 10.1109/TKDE.2009.191
– ident: ref40
  doi: 10.3389/fnins.2012.00055
– ident: ref18
  doi: 10.1109/THMS.2016.2608931
– volume-title: arXiv:2004.11362
  year: 2020
  ident: ref22
  article-title: Supervised contrastive learning
– ident: ref48
  doi: 10.1007/s00500-015-1937-5
– ident: ref33
  doi: 10.1109/TBME.2013.2253608
– ident: ref47
  doi: 10.1088/1741-2560/13/2/026001
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref50
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref3
  doi: 10.3389/fnins.2020.595084
– volume-title: arXiv:1701.07875
  year: 2017
  ident: ref43
  article-title: Wasserstein GAN
– ident: ref2
  doi: 10.1109/TMRB.2020.3025364
– ident: ref46
  doi: 10.1007/s11517-018-1875-3
– start-page: 700
  volume-title: Proc. NIPS
  ident: ref51
  article-title: Are gans created equal? A large-scale study
– ident: ref6
  doi: 10.1371/journal.pone.0221909
– ident: ref38
  doi: 10.1109/BCI51272.2021.9385322
– ident: ref17
  doi: 10.1109/NER.2017.8008420
– ident: ref28
  doi: 10.1088/1741-2560/14/1/016003
– ident: ref31
  doi: 10.1371/journal.pone.0002967
– ident: ref19
  doi: 10.1109/IWW-BCI.2019.8737340
– ident: ref4
  doi: 10.1109/SMC.2017.8122608
– ident: ref7
  doi: 10.3390/s21051613
– volume-title: arXiv:1409.7495
  year: 2014
  ident: ref14
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref15
  doi: 10.1109/CVPR.2017.316
– ident: ref36
  doi: 10.1109/TBME.2019.2913914
– ident: ref1
  doi: 10.1038/nature14539
– volume: 593
  start-page: 249
  year: 2020
  ident: ref5
  article-title: High-performance brain-to-text communication via imagined handwriting
  publication-title: bioRxiv
– ident: ref37
  doi: 10.1016/j.eswa.2018.08.031
– ident: ref11
  doi: 10.1186/s40537-021-00419-9
– ident: ref10
  doi: 10.1088/1741-2552/abc902
– ident: ref13
  doi: 10.3389/fncom.2019.00087
– volume-title: arXiv:1511.06448
  year: 2016
  ident: ref27
  article-title: Learning representations from eeg with deep recurrent-convolutional neural networks
– ident: ref49
  doi: 10.1109/ICCV.2017.304
– ident: ref12
  doi: 10.3389/fnhum.2015.00308
– ident: ref21
  doi: 10.1109/TNSRE.2020.3023761
– ident: ref35
  doi: 10.1109/TBME.2010.2082539
– ident: ref20
  doi: 10.1109/TNNLS.2020.3010780
– ident: ref34
  doi: 10.1109/LSP.2009.2022557
– start-page: 938
  volume-title: Proc. ICML
  ident: ref44
  article-title: Support matrix machines
– start-page: 2672
  volume-title: Proc. NIPS
  ident: ref42
  article-title: Generative adversarial nets
– start-page: 6670
  volume-title: Proc. NIPS
  ident: ref16
  article-title: Few-shot adversarial domain adaptation
– ident: ref30
  doi: 10.1109/MCI.2015.2501545
– ident: ref8
  doi: 10.1016/j.mayocp.2011.12.008
SSID ssj0000816957
Score 2.3624167
Snippet Electroencephalography (EEG) is the most prevalent signal acquisition technique for brain-computer interface (BCI). However, the statistical distribution of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57255
SubjectTerms Adaptation
Brain modeling
Brain-computer interface
Brain-computer interfaces
Classifiers
Convolution
Data mining
domain adaptation
Electroencephalography
Feature extraction
few-shot learning
Human-computer interface
Learning
motor imagery
representation learning
Statistical methods
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKT3AASkEsFOQDx2aJHcd2ju2WVYu0XKCiN8sfE1qVblY0q6r8esaON6oAVT0kiizbcjRjj9_Y84aQD1VQ1krpC-GFiK-mQCsXY2UED7LxLtgY77z4Io9Pxeez-myL7I-xMACQLp_BNH6ms_zQ-XV0lUU2WLRGiHUeIXAbYrVGf0pMINHUKhMLsbL5eDCb4T8gBOQckanSLEax3TE-iaM_J1X5ZyVO5mX-jCw2AxtulVxO172b-t9_cTY-dOTPydO8z6QHg2LskC1YviBP7rAP7pJwBLCiKSPztY16SI-6K3uxxCK7Gk7o6feL_pzO4ab4et71NJOx_qC406WLDuF6cXIVSTBu6WFMNVFsckTQ5GhsrYeX5HT-6dvsuMhJFwqPaLUvAOq6wgdaaGtnRdBKAYMqUrWrkjvJnGu1Uw0w2zBbM4dLgNWl8rhYaGiqV2R72S3hNaFOB6G5L0WwSgSJVkFr3C_5qi5lKys5IXwjDeMzI3lMjPHTJGRSNmYQoYkiNFmEE7I_NloNhBz3Vz-MYh6rRjbtVIDiMXlyGsHboBnUPngQXjldQdX61nEmHfbjJmQ3inTsJEtzQvY2SmPyzL82XCrEyIi6xZv_t3pLHscBDm6cPbLd_1rDO9zY9O590ug_Fo302A
  priority: 102
  providerName: IEEE
Title Deep Adversarial Domain Adaptation With Few-Shot Learning for Motor-Imagery Brain-Computer Interface
URI https://ieeexplore.ieee.org/document/9782441
https://www.proquest.com/docview/2674075494
https://doaj.org/article/42fd81e5cdce4c7b83e3fcfb216b317b
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQp3JAtIBISZEPHLti7fXa3mMIjdJKcCkIbpYfswSpJBFZhPrvO_Y6UaRK7YXD7sHyPjwez8zn3fmGkPMqKGul9IXwQsRTU6CXi7kyggfZeBdszHe-vpHTO_HjoX7YKvUV_wnr6YF7wV0I3gbNoPbBg_DK6Qqq1reOM-nQ97lofdHnbYGpZIM1k02tMs0QK5uL0XiMI0JAyDniVKVZzGnbckWJsT-XWPnLLidnMzkg-zlKpKP-7T6SHZh_Intb3IGHJFwBLGmqp7yyUYvo1eIZYT422WX_fZ3eP3UzOoG34uds0dFMpfpIMU6l1wsE28X350hh8ZtexkIRxbrCA03bhK31cETuJt9ux9Mil0woPGLNrgCo6woPaKGtnRVBKwUMqki0rkruJHOu1U41wGzDbM0cLmCrS-VxqWtoqmOyO1_M4YRQp4PQ3JciWCWCRJuuNUY7vqpL2cpKDghfS8_4zCcey1r8MglXlI3pRW6iyE0W-YB83Vy07Ok0_t39Mk7Lpmvkwk4NqCEma4j5n4YMyGGc1M1NEDdjTMMGZLieZJPX7cpwqRDhImYWn9_j0afkQxxOv2UzJLvdyyt8wSCmc2dJX89SvuEf-9rt4Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcgAOFCiIpS34wLFZYsexnWO7ZbWFbi-0ojfLH5O2gm5WNCsEv77jxBtVgBCHRJFlW45m7PEbe94Q8q4IylopfSa8EPFVZWjlYqyM4EFW3gUb453np3J2Lj5elBcbZH-IhQGA7vIZjONnd5YfGr-KrrLIBovWCLHOA7T7JeujtQaPSkwhUZUqUQuxvHp_MJngXyAI5ByxqdIsxrHdMz8dS39Kq_LHWtwZmOkWma-H1t8r-TpetW7sf_3G2vi_Y39KnqSdJj3oVeMZ2YDFc_L4Hv_gNglHAEva5WS-tVET6VFzY68XWGSX_Rk9_XLdXtEp_Mg-XzUtTXSslxT3unTeIGDPjm8iDcZPehiTTWTrLBG0czXW1sMLcj79cDaZZSntQuYRr7YZQFkW-EANdemsCFopYFBEsnaVcyeZc7V2qgJmK2ZL5nARsDpXHpcLDVXxkmwumgW8ItTpIDT3uQhWiSDRLmiNOyZflLmsZSFHhK-lYXziJI-pMb6ZDpvklelFaKIITRLhiOwPjZY9Jce_qx9GMQ9VI592V4DiMWl6GsHroBmUPngQXjldQFH72nEmHfbjRmQ7inToJElzRHbXSmPS3L81XCpEyYi7xeu_t3pLHs7O5ifm5Pj00w55FAfbO3V2yWb7fQV7uM1p3ZtOu-8A_wv4IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Adversarial+Domain+Adaptation+With+Few-Shot+Learning+for+Motor-Imagery+Brain-Computer+Interface&rft.jtitle=IEEE+access&rft.au=Phunruangsakao%2C+Chatrin&rft.au=Achanccaray%2C+David&rft.au=Hayashibe%2C+Mitsuhiro&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=57255&rft.epage=57265&rft_id=info:doi/10.1109%2FACCESS.2022.3178100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2022_3178100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon