Inferences for stress-strength reliability of Burr Type X distributions based on ranked set sampling

In this study, we consider the point and interval estimation of the stress-strength reliability based on ranked set sampling when the stress and the strength are both independent Burr Type X random variables. In the context of point estimation, we obtain the maximum likelihood (ML) estimator of usin...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 51; no. 6; pp. 3324 - 3340
Main Authors Akgül, Fatma Gül, Şenoğlu, Birdal
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.06.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we consider the point and interval estimation of the stress-strength reliability based on ranked set sampling when the stress and the strength are both independent Burr Type X random variables. In the context of point estimation, we obtain the maximum likelihood (ML) estimator of using iterative methods. We also use Mehrotra and Nanda's modified maximum likelihood methodology, which gives explicit estimator of as an alternative to the ML methodology. In view of interval estimation, we construct the asymptotic confidence interval of In addition, the bootstrap confidence intervals of are constructed based on two different resampling methods. The performance of the proposed estimators (both point and interval) is compared with their simple random sampling counterparts. A real data set from an agricultural experiment is analyzed to show the implementation of the proposed methodologies.
AbstractList In this study, we consider the point and interval estimation of the stress-strength reliability based on ranked set sampling when the stress and the strength are both independent Burr Type X random variables. In the context of point estimation, we obtain the maximum likelihood (ML) estimator of using iterative methods. We also use Mehrotra and Nanda's modified maximum likelihood methodology, which gives explicit estimator of as an alternative to the ML methodology. In view of interval estimation, we construct the asymptotic confidence interval of In addition, the bootstrap confidence intervals of are constructed based on two different resampling methods. The performance of the proposed estimators (both point and interval) is compared with their simple random sampling counterparts. A real data set from an agricultural experiment is analyzed to show the implementation of the proposed methodologies.
In this study, we consider the point and interval estimation of the stress–strength reliability based on ranked set sampling when the stress and the strength are both independent Burr Type X random variables. In the context of point estimation, we obtain the maximum likelihood (ML) estimator of using iterative methods. We also use Mehrotra and Nanda’s modified maximum likelihood methodology, which gives explicit estimator of as an alternative to the ML methodology. In view of interval estimation, we construct the asymptotic confidence interval of In addition, the bootstrap confidence intervals of are constructed based on two different resampling methods. The performance of the proposed estimators (both point and interval) is compared with their simple random sampling counterparts. A real data set from an agricultural experiment is analyzed to show the implementation of the proposed methodologies.
Author Akgül, Fatma Gül
Şenoğlu, Birdal
Author_xml – sequence: 1
  givenname: Fatma Gül
  surname: Akgül
  fullname: Akgül, Fatma Gül
  organization: Department of Computer Engineering, Artvin Çoruh University
– sequence: 2
  givenname: Birdal
  surname: Şenoğlu
  fullname: Şenoğlu, Birdal
  organization: Department of Statistics, Ankara University
BookMark eNqFkE1LAzEQhoNUsFZ_ghDwvDXZ7Ffw4gd-FApeKngL2eykpm6TmqRI_71ZWi8e9DTD8LwzzHOKRtZZQOiCkiklDbkirKKE02aakzyNakp5wY_QmJYszwpa0BEaD0w2QCfoNIQVIYQ1RTNG3cxq8GAVBKydxyF6CCEbil3Gd-yhN7I1vYk77DS-23qPF7sN4DfcmUSZdhuNswG3MkCHncVe2o_UBYg4yPWmN3Z5ho617AOcH-oEvT4-LO6fs_nL0-z-dp4pxpqYQak0LTVRhGulAFhRyY5DnreKMAINr5VSXcsYV0xXnSpZVdckgcDrHCSwCbrc791497mFEMXKbb1NJ0VecUqLMnlK1PWeUt6F4EELZaIcvoheml5QIgat4kerGLSKg9aULn-lN96spd_9m7vZ54xNntfyy_m-E1Hueud1cqZMEOzvFd-DOpLi
CitedBy_id crossref_primary_10_1007_s42081_024_00268_9
crossref_primary_10_1016_j_jrras_2024_101107
crossref_primary_10_1080_27684520_2024_2440354
crossref_primary_10_1016_j_jrras_2023_100811
crossref_primary_10_3390_appliedmath4010021
crossref_primary_10_3390_sym15051121
crossref_primary_10_1080_00949655_2021_1935947
crossref_primary_10_1080_03610918_2022_2081705
crossref_primary_10_1520_JTE20240072
crossref_primary_10_1007_s00500_021_05902_2
crossref_primary_10_1134_S1995080222010024
crossref_primary_10_1007_s13198_022_01836_6
crossref_primary_10_1007_s00170_022_10258_4
Cites_doi 10.1002/qre.1848
10.1080/16843703.2013.11673417
10.1016/j.spl.2004.04.003
10.2307/2530703
10.1007/BF02911622
10.1016/S0898-1221(98)00143-6
10.1080/03610920902912976
10.1007/s00362-003-0161-z
10.1081/STA-200056805
10.1080/02331888.2018.1477157
10.1080/02664763.2011.611488
10.1080/03610918.2012.715224
10.1016/j.spl.2013.09.014
10.1080/02331880701823271
10.1080/0266476022000030039
10.1093/biomet/61.3.601
10.1007/978-0-387-21664-5
10.2307/2556166
10.1016/S0378-3758(97)00038-4
10.1080/00401706.1988.10488363
10.1023/A:1003910408020
10.1007/s00362-016-0794-3
10.1109/TR.2006.874918
10.1080/03610918.2012.714033
10.1080/02664763.2017.1279596
10.1214/aoms/1177731607
10.1007/s00180-018-0795-x
10.1002/1521-4036(200106)43:3<357::AID-BIMJ357>3.0.CO;2-Q
10.1007/s00362-014-0584-8
10.1080/03610920008832566
10.1023/A:1022475413950
10.2298/FIL1804455M
10.1525/9780520313880-005
10.1007/s00362-011-0420-3
10.1007/s00362-006-0310-2
10.1080/00949655.2018.1498095
10.1071/AR9520385
10.1023/A:1011352923990
10.15672/HJMS.2015468581
10.1080/03610929108830633
10.1016/j.csda.2005.10.010
10.1080/03610920701693892
10.1177/0021998304042735
10.1002/env.478
10.1109/TR.1980.5220763
10.1080/16843703.2016.1226590
ContentType Journal Article
Copyright 2020 Taylor & Francis Group, LLC 2020
2020 Taylor & Francis Group, LLC
Copyright_xml – notice: 2020 Taylor & Francis Group, LLC 2020
– notice: 2020 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2020.1711949
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 3340
ExternalDocumentID 10_1080_03610918_2020_1711949
1711949
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c338t-e5cf15f0c09fccee346ad9e22bc030e897cccdb339c3f6dc536770ceee972eae3
ISSN 0361-0918
IngestDate Wed Aug 13 07:01:13 EDT 2025
Thu Apr 24 23:07:38 EDT 2025
Tue Jul 01 03:10:01 EDT 2025
Wed Dec 25 09:02:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e5cf15f0c09fccee346ad9e22bc030e897cccdb339c3f6dc536770ceee972eae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2691145109
PQPubID 186203
PageCount 17
ParticipantIDs crossref_citationtrail_10_1080_03610918_2020_1711949
crossref_primary_10_1080_03610918_2020_1711949
proquest_journals_2691145109
informaworld_taylorfrancis_310_1080_03610918_2020_1711949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 6/3/2022
PublicationDateYYYYMMDD 2022-06-03
PublicationDate_xml – month: 06
  year: 2022
  text: 6/3/2022
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_22_1
e_1_3_2_43_1
Jaheen Z. (e_1_3_2_24_1) 1996; 3
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
Mahdizadeh M. (e_1_3_2_29_1) 2017; 15
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_50_1
e_1_3_2_27_1
Murray R. A. (e_1_3_2_38_1) 2000; 57
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_40_1
Downton F. (e_1_3_2_17_1) 1973; 15
Mahdizadeh M. (e_1_3_2_28_1) 2016; 40
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_51_1
Hanley J. A. (e_1_3_2_23_1) 1989; 29
References_xml – ident: e_1_3_2_41_1
  doi: 10.1002/qre.1848
– ident: e_1_3_2_16_1
  doi: 10.1080/16843703.2013.11673417
– ident: e_1_3_2_36_1
  doi: 10.1016/j.spl.2004.04.003
– ident: e_1_3_2_46_1
  doi: 10.2307/2530703
– ident: e_1_3_2_49_1
  doi: 10.1007/BF02911622
– ident: e_1_3_2_40_1
  doi: 10.1016/S0898-1221(98)00143-6
– ident: e_1_3_2_39_1
  doi: 10.1080/03610920902912976
– ident: e_1_3_2_8_1
  doi: 10.1007/s00362-003-0161-z
– volume: 15
  start-page: 551
  year: 1973
  ident: e_1_3_2_17_1
  article-title: On the estimation of Pr⁡Y<X in the normal case
  publication-title: Technometrics
– ident: e_1_3_2_19_1
  doi: 10.1081/STA-200056805
– ident: e_1_3_2_30_1
  doi: 10.1080/02331888.2018.1477157
– ident: e_1_3_2_7_1
  doi: 10.1080/02664763.2011.611488
– volume: 3
  start-page: 281
  year: 1996
  ident: e_1_3_2_24_1
  article-title: Empirical Bayes estimation of the reliability and failure rate functions of the Burr Type X failure model
  publication-title: Journal of Applied Statistical Science
– ident: e_1_3_2_10_1
  doi: 10.1080/03610918.2012.715224
– ident: e_1_3_2_2_1
  doi: 10.1016/j.spl.2013.09.014
– ident: e_1_3_2_45_1
  doi: 10.1080/02331880701823271
– ident: e_1_3_2_53_1
  doi: 10.1080/0266476022000030039
– ident: e_1_3_2_35_1
  doi: 10.1093/biomet/61.3.601
– ident: e_1_3_2_14_1
  doi: 10.1007/978-0-387-21664-5
– ident: e_1_3_2_15_1
  doi: 10.2307/2556166
– ident: e_1_3_2_4_1
  doi: 10.1016/S0378-3758(97)00038-4
– ident: e_1_3_2_22_1
  doi: 10.1080/00401706.1988.10488363
– ident: e_1_3_2_21_1
  doi: 10.1023/A:1003910408020
– ident: e_1_3_2_32_1
  doi: 10.1007/s00362-016-0794-3
– ident: e_1_3_2_26_1
  doi: 10.1109/TR.2006.874918
– volume: 40
  start-page: 243
  year: 2016
  ident: e_1_3_2_28_1
  article-title: Kernel-based estimation of PX>Y in ranked set sampling
  publication-title: SORT
– ident: e_1_3_2_27_1
  doi: 10.1080/03610918.2012.714033
– ident: e_1_3_2_51_1
  doi: 10.1080/02664763.2017.1279596
– ident: e_1_3_2_13_1
  doi: 10.1214/aoms/1177731607
– ident: e_1_3_2_31_1
  doi: 10.1007/s00180-018-0795-x
– ident: e_1_3_2_42_1
  doi: 10.1002/1521-4036(200106)43:3<357::AID-BIMJ357>3.0.CO;2-Q
– ident: e_1_3_2_20_1
  doi: 10.1007/s00362-014-0584-8
– ident: e_1_3_2_18_1
  doi: 10.1080/03610920008832566
– volume: 57
  start-page: 141
  year: 2000
  ident: e_1_3_2_38_1
  article-title: The use of ranked set sampling in spray deposit assessment
  publication-title: Aspects of Applied Biology
– ident: e_1_3_2_52_1
  doi: 10.1023/A:1022475413950
– volume: 15
  start-page: 565
  year: 2017
  ident: e_1_3_2_29_1
  article-title: Reliability estimation in multistage ranked set sampling
  publication-title: REVSTAT
– ident: e_1_3_2_33_1
  doi: 10.2298/FIL1804455M
– ident: e_1_3_2_12_1
  doi: 10.1525/9780520313880-005
– ident: e_1_3_2_3_1
  doi: 10.1007/s00362-011-0420-3
– ident: e_1_3_2_25_1
  doi: 10.1007/s00362-006-0310-2
– ident: e_1_3_2_5_1
  doi: 10.1080/00949655.2018.1498095
– ident: e_1_3_2_34_1
  doi: 10.1071/AR9520385
– ident: e_1_3_2_48_1
  doi: 10.1023/A:1011352923990
– volume: 29
  start-page: 307
  issue: 3
  year: 1989
  ident: e_1_3_2_23_1
  article-title: Receiver operating characteristic (ROC) methodology: The state of the art
  publication-title: Critical Reviews in Diagnostic Imaging
– ident: e_1_3_2_50_1
  doi: 10.15672/HJMS.2015468581
– ident: e_1_3_2_43_1
  doi: 10.1080/03610929108830633
– ident: e_1_3_2_37_1
  doi: 10.1016/j.csda.2005.10.010
– ident: e_1_3_2_44_1
  doi: 10.1080/03610920701693892
– ident: e_1_3_2_47_1
  doi: 10.1177/0021998304042735
– ident: e_1_3_2_9_1
  doi: 10.1002/env.478
– ident: e_1_3_2_11_1
  doi: 10.1109/TR.1980.5220763
– ident: e_1_3_2_6_1
  doi: 10.1080/16843703.2016.1226590
SSID ssj0003848
Score 2.3441765
Snippet In this study, we consider the point and interval estimation of the stress-strength reliability based on ranked set sampling when the stress and the strength...
In this study, we consider the point and interval estimation of the stress–strength reliability based on ranked set sampling when the stress and the strength...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3324
SubjectTerms Asymptotic methods
Burr Type X distribution
Confidence intervals
Efficiency
Iterative methods
Maximum likelihood estimators
Modified maximum likelihood
Random sampling
Random variables
Ranked set sampling
Reliability
Resampling
Stress-strength reliability
Title Inferences for stress-strength reliability of Burr Type X distributions based on ranked set sampling
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2020.1711949
https://www.proquest.com/docview/2691145109
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6FcikHfgKIQkF7oCfLkdfjvz22UUNBai9tpdws73q3RG2dKrEvnHgHXoRn4knYXzchFaVcLGdlbxzPl5nZnZlvEPqYsBRqRopQANRhIkUd0iyNQ0mAMQ5MRCbQfnySHZ0nX6bpdDD4uZK11LVsxL_dWVfyP1JVY0quukr2AZLtJ1UD6lzJVx2VhNXxn2T82VfrGVIFV_fh0xdAf2wu2q-6XmVm6bhNOP2gWywCvf4Mpjo-07e8WgbapNU6fKA7uauzpWiDZaVzzp1985QGq1UlJqFW1yVZyudRcDq7dj3BfNHcTbce8N-_vNAB-oOx2X-eVO11FXxyI_6avXG6Rw9FM9fuLp1cdQaJs0XtXorbqVCLXL1ZASsKDTISKv_E6lvhFW4cJsSSX3mN7ChoZxvqFcAWXDtTDWCpnjbMgMubBM0lT3QCX6wGc0KopUddp93-wxz2SYrEs6e6aUo9TemmeYQex2phojUrRCe97YfC9Gvrf6mvGdNs7nc9zZo3tMaVu-EbGIfn7Dl66lYqeN_C7gUaiGaInvkuINgZhSF6ctwz_y6HaPu0R8JLJG8BitV3YgvQX99_eGjiFWjiucQamlhDE0_xGjSxgSaeN9hCEytoYg_NV-h8cng2PgpdY4-QAxRtKFIuSSojHlHJlZcGSVbVVMQx48rmiILmnPOaAVAOMqt5ClmeR-pCQfNYVAJeo61m3og3CMeJJJGMMlGTOiGVLCRjLM7jlBecVjnfQYl_wSV3rPe6-cpV-Vfx7qBRf9uNpX257wa6Kr2yNftt0jbHKeGee3e9qEunXZZlnCk3JFEWk7596LO8Q9u3f79dtNUuOvFeuc4t-2DQ-ht-rbuB
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcqAcKCwgSgv4AEcviZ2XDz1AS7VLu3tqpb2F-NWiVtlqk1VVfhZ_hT-EJ7FXFIR6QD1wShTFkTXvcWa-AXibyJRrGRfUcK5pYo2mIksZtTGXUnFpou5H-2SajU6Sz7N0tgbfQy8MllViDm17oIjOVqNy42F0KIl776wu4lliZRZzj_LYZeLCF1Yemusrl7Y1u-N9x-N3jB18Ot4bUT9ZgCqXkrXUpMrGqY1UJKxyboInWaWFYUwqJ_SmELlSSkvOheI20yrlWZ5H7kUjcmYqw91378H9VGQ56haPpivrz4tuYhdukeIeQ9fQ37Z9wx_eQEv9wzt0Lu9gE34EYvWVLufDZSuH6ttvOJL_FzUfwyMfgZMPvco8gTVTD2AzTLcg3tgN4OFkhWjbDGADo_Ie1Pop6HFok2yIoyTpG24oXurT9owszMXXHv_8mswt-bhcLAgm_GRGNAIV-xljDcEYQpN5TVzEcO7uGtOSpsIi__r0GZzcCRmew3o9r80LICyxcWSjzOhYJ3FlCyulZDlLVaFElastSILQlMpjueNIkYsyDpCvnqklMrX0TN2C4WrZZQ9mctsC8atElm13imT7kS8lv2XtThDf0tvFpmSZc66J8wPi5T98-g08GB1Pjsqj8fRwGzYYdqTgwRjfgfV2sTSvXJzYytedYhL4ctey-xOJU28N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIqFyoLCAKBTwAY5eEjsvHzgAZdWldMWBSnsz8augVtlqkxUq_4q_wi_Ck9grCkI9oB44JYpiy5oZz8Oe-QbgWaZyblRaUcu5oZmzhooiZ9SlXCnNlU36i_bDWbF_lL2b5_MN-B5rYTCtEmNoNwBF9LoaN_eZcTEj7oVXughniYlZzH8qUx-Ii5BXeWDPv_qorX053fMsfs7Y5O3HN_s0NBag2kdkHbW5dmnuEp0Ip72V4FlRG2EZU9rLvK1EqbU2inOhuSuMznlRlon_0YqS2dpyP-81uF5gYSdWjSSztfLnVd-wC5dIcY2xaOhvy75gDi-Apf5hHHqLN9mGH5FWQ6LLyXjVqbH-9huM5H9FzNtwK_jf5NWwYe7Ahm1GsB17W5Cg6kZw83CNZ9uOYAt98gHS-i6YaSySbIknJBnKbSg-muPuM1na0y8D-vk5WTjyerVcEgz3yZwYhCkOHcZagh6EIYuGeH_hxL-1tiNtjSn-zfE9OLoSMtyHzWbR2AdAWObSxCWFNanJ0tpVTinFSpbrSou61DuQRZmROiC5Y0ORU5lGwNfAVIlMlYGpOzBeDzsboEwuGyB-FUjZ9WdIbmj4IvklY3ej9MqgFVvJCm9aM28FxMN_mPop3PiwN5Hvp7ODR7DFsBwFT8X4Lmx2y5V97J3ETj3ptyWBT1ctuj8BialtsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferences+for+stress%E2%80%93strength+reliability+of+Burr+Type+X+distributions+based+on+ranked+set+sampling&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Akg%C3%BCl%2C+Fatma+G%C3%BCl&rft.au=%C5%9Eeno%C4%9Flu%2C+Birdal&rft.date=2022-06-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=51&rft.issue=6&rft.spage=3324&rft.epage=3340&rft_id=info:doi/10.1080%2F03610918.2020.1711949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2020_1711949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon