Evaluating the transferability of airborne laser scanning derived stem size prediction models for Pinus taeda L. stem size estimation to two different locations and acquisition specifications

Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods....

Full description

Saved in:
Bibliographic Details
Published inInternational journal of remote sensing Vol. 45; no. 16; pp. 5267 - 5294
Main Authors Sumnall, Matthew J., Carter, David R., Albaugh, Timothy J., Platt, Erik, Host, Trevor, Cook, Rachel L., Campoe, Otávio C., Rubilar, Rafael A.
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 17.08.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0143-1161
1366-5901
DOI10.1080/01431161.2024.2370499

Cover

Abstract Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R 2 0.7-0.8; NRMSE 10-12%; mean DBH: R 2 0.4-0.7; NRMSE 10-17%; plot basal area: R 2 0.7-0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R 2 0.4-0.7; NRMSE 12-16%; mean DBH: R 2 0.4-0.5; NRMSE 18-20%; plot basal area: R 2 0.5-0.6; NRMSE 22-40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS's ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted. Novel LiDAR-based allometric models were tested using new LiDAR acquisitions; LiDAR predictions were based on tree crown size and immediate neighbourhood metrics; Model inputs were derived from drone and crewed aircraft LiDAR acquisitions; Model predictions were most accurate when applied to similar stand structures as the original model; Normalized root means square error for stem volume and diameter in pine stands with no thinning was <15%; Stem size estimates in thinned stands were consistently overestimated.
AbstractList Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R2 0.7–0.8; NRMSE 10–12%; mean DBH: R2 0.4–0.7; NRMSE 10–17%; plot basal area: R2 0.7–0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R2 0.4–0.7; NRMSE 12–16%; mean DBH: R2 0.4–0.5; NRMSE 18–20%; plot basal area: R2 0.5–0.6; NRMSE 22–40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS’s ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted.
Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R 2 0.7-0.8; NRMSE 10-12%; mean DBH: R 2 0.4-0.7; NRMSE 10-17%; plot basal area: R 2 0.7-0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R 2 0.4-0.7; NRMSE 12-16%; mean DBH: R 2 0.4-0.5; NRMSE 18-20%; plot basal area: R 2 0.5-0.6; NRMSE 22-40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS's ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted. Novel LiDAR-based allometric models were tested using new LiDAR acquisitions; LiDAR predictions were based on tree crown size and immediate neighbourhood metrics; Model inputs were derived from drone and crewed aircraft LiDAR acquisitions; Model predictions were most accurate when applied to similar stand structures as the original model; Normalized root means square error for stem volume and diameter in pine stands with no thinning was <15%; Stem size estimates in thinned stands were consistently overestimated.
Author Sumnall, Matthew J.
Rubilar, Rafael A.
Carter, David R.
Host, Trevor
Cook, Rachel L.
Campoe, Otávio C.
Platt, Erik
Albaugh, Timothy J.
Author_xml – sequence: 1
  givenname: Matthew J.
  orcidid: 0009-0006-4717-9337
  surname: Sumnall
  fullname: Sumnall, Matthew J.
  email: msumnall@vt.edu
  organization: Virginia Polytechnic Institute and State University
– sequence: 2
  givenname: David R.
  surname: Carter
  fullname: Carter, David R.
  organization: Virginia Polytechnic Institute and State University
– sequence: 3
  givenname: Timothy J.
  surname: Albaugh
  fullname: Albaugh, Timothy J.
  organization: Virginia Polytechnic Institute and State University
– sequence: 4
  givenname: Erik
  surname: Platt
  fullname: Platt, Erik
  organization: Virginia Polytechnic Institute and State University
– sequence: 5
  givenname: Trevor
  surname: Host
  fullname: Host, Trevor
  organization: Inc. Forest Research Center
– sequence: 6
  givenname: Rachel L.
  orcidid: 0000-0001-7309-3971
  surname: Cook
  fullname: Cook, Rachel L.
  organization: North Carolina State University
– sequence: 7
  givenname: Otávio C.
  surname: Campoe
  fullname: Campoe, Otávio C.
  organization: Universidade Federal de Lavras
– sequence: 8
  givenname: Rafael A.
  surname: Rubilar
  fullname: Rubilar, Rafael A.
  organization: Universidad de Concepción
BookMark eNqFkU-LFDEQxYOs4OzqRxAKPPeYdPpPGi_Ksv6BAT3ouckkFa2lJ5lN0rvMfjm_mumZEcSDnupQv1f1eO-SXfjgkbGXgq8FV_w1F40UohPrmtfNupY9b4bhCVsJ2XVVO3BxwVYLUy3QM3aZ0i3nvOvbfsV-3tzradaZ_HfIPxBy1D45jHpLE-UDBAea4jZEjzDphBGS0d4vuMVI92ghZdxBokeEfURLJlPwsAsWpwQuRPhCfk6QNVoNm_UfOKZMO33Ec4D8EMCSK7_RZ5iCOW4SaG9Bm7uZEh3RtEdDjs7r5-yp01PCF-d5xb69v_l6_bHafP7w6frdpjJSqlxh2_Tcbeta2EbWiislhODSDtaqGqVVg5bC8bZVyggurNwaxbUzteuxbxXKK_bqdHcfw91cnI-3YY6-vBwlV-0g-0Z0hXpzokwMKUV0o6F8NFpypWkUfFwaG383Ni6NjefGirr9S72PJaB4-K_u7UlHvuS90w8hTnbM-jCF6EqfhorJf5_4Bd5Es6s
CitedBy_id crossref_primary_10_3390_rs17020229
Cites_doi 10.3390/f8070254
10.3390/rs4040950
10.3390/fire5050126
10.1016/S0378-1127(02)00047-6
10.1016/j.rse.2020.112061
10.14214/sf.10179
10.14358/PERS.77.7.733
10.1016/j.rse.2005.07.012
10.32614/RJ-2018-009
10.3390/rs12132115
10.3390/rs13142796
10.1139/cjfr-2018-0128
10.3390/rs12193260
10.1093/sjaf/33.3.109
10.3390/rs12091513
10.1080/07038992.2018.1461557
10.18637/jss.v036.i11
10.1590/0001-3765201820160071
10.1139/x03-045
10.14214/sf.68
10.1007/978-0-387-21706-2
10.1016/j.agrformet.2018.09.016
10.1139/x96-100
10.3390/rs13030352
10.1016/j.rse.2018.10.035
10.1371/journal.pone.0054776
10.1007/978-94-017-8663-8_1
10.1016/S0378-1127(99)00340-0
10.1080/07038992.2016.1196582
10.1080/01431161.2021.2023229
10.1016/0304-3800(94)00081-R
10.3390/rs12172865
10.1016/j.rse.2019.04.006
10.1093/forestscience/43.4.529
10.1139/cjfr-2014-0405
10.1016/j.isprsjprs.2020.08.013
10.3390/rs8060501
10.5721/EuJRS20164919
10.1007/s10342-010-0381-4
10.1080/01431161.2022.2161853
10.1029/2023EA003306
10.1016/j.rse.2006.03.003
10.1016/j.foreco.2018.11.017
10.1093/sjaf/21.3.146
10.3390/f9120759
10.1016/j.rse.2012.03.027
10.1016/j.rse.2017.09.007
10.18637/jss.v091.i01
10.3390/rs8040333
10.1016/j.foreco.2022.120581
10.1007/978-94-017-8663-8_12
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1080/01431161.2024.2370499
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1366-5901
EndPage 5294
ExternalDocumentID 10_1080_01431161_2024_2370499
2370499
Genre Research Article
GrantInformation_xml – fundername: Forest Productivity Cooperative
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABRLO
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEXLP
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
H13
HF~
IPNFZ
J.P
KYCEM
LJTGL
M4Z
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
TASJS
ID FETCH-LOGICAL-c338t-e5470fb221d432808811103d9dd82e3d89a31f05588c101d3bc80afc2f7e758e3
ISSN 0143-1161
IngestDate Wed Aug 13 09:05:55 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 04:05:05 EDT 2025
Wed Dec 25 09:02:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e5470fb221d432808811103d9dd82e3d89a31f05588c101d3bc80afc2f7e758e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-4717-9337
0000-0001-7309-3971
PQID 3085937416
PQPubID 2045515
PageCount 28
ParticipantIDs crossref_citationtrail_10_1080_01431161_2024_2370499
crossref_primary_10_1080_01431161_2024_2370499
proquest_journals_3085937416
informaworld_taylorfrancis_310_1080_01431161_2024_2370499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of remote sensing
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_3_1
Hegyi F. (e_1_3_4_14_1) 1974
e_1_3_4_61_1
e_1_3_4_63_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_46_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_36_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
R Core Team (e_1_3_4_37_1) 2021
e_1_3_4_62_1
Vasilescu M. M. (e_1_3_4_55_1) 2013; 6
e_1_3_4_64_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_60_1
e_1_3_4_24_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Strub M. R. (e_1_3_4_45_1) 2021; 13
Silva A. D. (e_1_3_4_41_1) 2017; 9
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_33_1
Turner M. G. (e_1_3_4_50_1) 2001
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_56_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_43_1
  doi: 10.3390/f8070254
– volume: 13
  start-page: 29
  issue: 1
  year: 2021
  ident: e_1_3_4_45_1
  article-title: Correcting Tree Count Bias for Objects Segmented from Lidar Point Clouds
  publication-title: Mathematical and Computational Forestry & Natural Resource Sciences
– ident: e_1_3_4_16_1
  doi: 10.3390/rs4040950
– volume-title: Landscape Ecology in Theory and Practice
  year: 2001
  ident: e_1_3_4_50_1
– ident: e_1_3_4_28_1
  doi: 10.3390/fire5050126
– ident: e_1_3_4_36_1
  doi: 10.1016/S0378-1127(02)00047-6
– ident: e_1_3_4_39_1
  doi: 10.1016/j.rse.2020.112061
– ident: e_1_3_4_20_1
  doi: 10.14214/sf.10179
– ident: e_1_3_4_7_1
  doi: 10.14358/PERS.77.7.733
– ident: e_1_3_4_31_1
  doi: 10.1016/j.rse.2005.07.012
– ident: e_1_3_4_33_1
  doi: 10.32614/RJ-2018-009
– ident: e_1_3_4_5_1
  doi: 10.3390/rs12132115
– volume: 9
  start-page: 45241
  issue: 1
  year: 2017
  ident: e_1_3_4_41_1
  article-title: Determination of Maximum Curvature Point with the R Package Soilphysics
  publication-title: International Journal of Current Research
– ident: e_1_3_4_53_1
  doi: 10.3390/rs13142796
– ident: e_1_3_4_19_1
  doi: 10.1139/cjfr-2018-0128
– ident: e_1_3_4_21_1
  doi: 10.3390/rs12193260
– ident: e_1_3_4_6_1
  doi: 10.1093/sjaf/33.3.109
– ident: e_1_3_4_26_1
  doi: 10.3390/rs12091513
– ident: e_1_3_4_11_1
  doi: 10.1080/07038992.2018.1461557
– ident: e_1_3_4_24_1
  doi: 10.18637/jss.v036.i11
– ident: e_1_3_4_44_1
  doi: 10.1590/0001-3765201820160071
– ident: e_1_3_4_30_1
  doi: 10.1139/x03-045
– ident: e_1_3_4_58_1
  doi: 10.14214/sf.68
– ident: e_1_3_4_57_1
  doi: 10.1007/978-0-387-21706-2
– volume: 6
  start-page: 75
  issue: 2
  year: 2013
  ident: e_1_3_4_55_1
  article-title: Standard Error of Tree Height Using Vertex III. Bulletin of the Transilvania University of Brasov
  publication-title: Forestry, Wood Industry, Agricultural Food Engineering Series II
– ident: e_1_3_4_22_1
  doi: 10.1016/j.agrformet.2018.09.016
– ident: e_1_3_4_3_1
  doi: 10.1139/x96-100
– ident: e_1_3_4_32_1
  doi: 10.3390/rs13030352
– ident: e_1_3_4_40_1
  doi: 10.1016/j.rse.2018.10.035
– ident: e_1_3_4_60_1
  doi: 10.1371/journal.pone.0054776
– ident: e_1_3_4_56_1
  doi: 10.1007/978-94-017-8663-8_1
– ident: e_1_3_4_4_1
  doi: 10.1016/S0378-1127(99)00340-0
– ident: e_1_3_4_42_1
  doi: 10.1080/07038992.2016.1196582
– ident: e_1_3_4_46_1
  doi: 10.1080/01431161.2021.2023229
– ident: e_1_3_4_52_1
  doi: 10.1016/0304-3800(94)00081-R
– ident: e_1_3_4_29_1
  doi: 10.3390/rs12172865
– ident: e_1_3_4_49_1
  doi: 10.1016/j.rse.2019.04.006
– ident: e_1_3_4_34_1
  doi: 10.1093/forestscience/43.4.529
– ident: e_1_3_4_10_1
  doi: 10.1139/cjfr-2014-0405
– ident: e_1_3_4_62_1
  doi: 10.1016/j.isprsjprs.2020.08.013
– ident: e_1_3_4_63_1
  doi: 10.3390/rs8060501
– ident: e_1_3_4_18_1
  doi: 10.5721/EuJRS20164919
– ident: e_1_3_4_54_1
  doi: 10.1007/s10342-010-0381-4
– ident: e_1_3_4_47_1
  doi: 10.1080/01431161.2022.2161853
– ident: e_1_3_4_9_1
  doi: 10.1029/2023EA003306
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2021
  ident: e_1_3_4_37_1
– ident: e_1_3_4_12_1
  doi: 10.1016/j.rse.2006.03.003
– ident: e_1_3_4_17_1
  doi: 10.1016/j.foreco.2018.11.017
– ident: e_1_3_4_48_1
  doi: 10.1093/sjaf/21.3.146
– ident: e_1_3_4_59_1
  doi: 10.3390/f9120759
– start-page: 74
  volume-title: Growth models for tree and stand simulation
  year: 1974
  ident: e_1_3_4_14_1
– ident: e_1_3_4_61_1
  doi: 10.1016/j.rse.2012.03.027
– ident: e_1_3_4_64_1
  doi: 10.1016/j.rse.2017.09.007
– ident: e_1_3_4_35_1
  doi: 10.18637/jss.v091.i01
– ident: e_1_3_4_65_1
  doi: 10.3390/rs8040333
– ident: e_1_3_4_2_1
  doi: 10.1016/j.foreco.2022.120581
– ident: e_1_3_4_27_1
  doi: 10.1007/978-94-017-8663-8_12
SSID ssj0006757
Score 2.4459617
Snippet Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5267
SubjectTerms Accuracy
Airborne lasers
ALS
Area
Biometrics
Biometry
Data acquisition
Datasets
Environmental conditions
Equipment specifications
Estimation
Evergreen trees
Forest management
Forests
ITC
Laser applications
Lasers
LIDAR
loblolly pine
Pine
Pine trees
Pinus elliottii
Pinus taeda
Prediction models
Predictions
Size estimation
Specifications
Stems
Training
UAV
Uncertainty
Title Evaluating the transferability of airborne laser scanning derived stem size prediction models for Pinus taeda L. stem size estimation to two different locations and acquisition specifications
URI https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2370499
https://www.proquest.com/docview/3085937416
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELb2cYAL4ikWFjQHblGixM6rxwoWqtWCVqgrVlwix3GkQmmhTUHaP8dfY8Z2HqUrLY9LFCVxbGk-e2bsmW8Ye5GnpdBxmfkjrYUf63Tk51zX6PNIdB6UqEaCspHfvksnF_HpZXK5t78_iFraNGWgrq7NK_kXqeIzlCtlyf6FZLuf4gO8R_niFSWM1z-S8Ymj6nYZT40xQvXKUm-bo3M5W6GQ0ZBEI5l4m5UtUeRVOLzvaGsSjbO3nl1RuhQd2Rg0mOo4hqfBO58tNmuvkbqS3lkw-JzIOWzWo7Fefyy7UiuNR_rRBtgZJlj1bTOzkWEe5XVSbNJgm_BTH0rf70wO-CxWGsGkvTUF2jsta86wvuD7uc02MhXLvdOgP09ZuXIjJmLfe9-9Gc9LubGnSg6kg2bnc2lPylA3fB7uhvCYtndt8qfB73SnMMnW3qnwo8hyvwfarvciTX1Kvx0qBMtv2QJ_uLwn3NYOcaZCwm2B5h015OI2sUPqL6CBBlxk5F72ereLhnRv9tkhzzKKNTgcT159_NAZFOjT2ax_N_42EY0o4q_rYsvE2iLg3TE4jBU1vcvuOPcHxhbL99ieXtxnt95oR5z-gP3sMQ0oVvgN07CsocU0GExDi2lwmAYCKRBIocc0WEwDDhIMpsFgGs6Cwec9pqFZAmIaOkxDh2lATMMA07CN6Yfs4vXJ9OXEd0VGfCVE3vg6ibOwLjmPqljwHJUuav8Q16iqwkVLVPlIiqgOkyTPFaqvSpQqD2WteJ1p9LW1eMQOFsuFfswgyXmchCoOVSZjriNZZVkmpCKKxTRS1RGLW7kUyjHwUyGYeRG1RL1OnAWJs3DiPGJB1-yrpaC5qcFoKPSiMZOitvOhEDe0PW4RUri5jk0MKyL5bk_-49dP2e1-xh6zg2a10c_Qom_K5w7xvwCszPk7
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMqFb9TSAnPgmpDYziY5VqjVAtsVh1bqLXLsCaxA2TbrBbV_jr_GTJxUWxDqoedkrCR-Hr9xZt4I8a6Y1Ap1nUclooo0TsqokNhQzGMoeLDKlYqrkY_nk-mp_nSWnW3UwnBaJcfQTRCK6H01L24-jB5T4t6zJl1KVIXCO6ljqXLm7ffFg4y4O6NcJfNrb0yEOJRMsxQn2YxVPP8b5sb-dEO99B9v3W9BR4-FHR8-ZJ58j9e-ju3VX7qOd3u7J-LRwFDhIEDqqbiH7TOxPTRL_3b5XPw-HBTC269A9BF8z32xC4rfl7BswCw6wlaLQNwcO1jZ0BkJHOH9Jzpg9WhYLa4Qzjv-U8TogL4pzwroU8CXRbtegTfoDMzijdtZEyQUW4Jfgv-1hLHDiwfelvtVBPTuYOzFehES0oDLSTklKlx-IU6PDk8-TKOhD0RkKYD2EWY6T5paytRpJQvyi-SgE4KRc4Qr5YrSqLRJsqwoLHkYp2pbJKaxssmRwiFUL8VWu2xxR0BWSJ0lVic2N1pialye58pYVsGbpNbtCj3OfmUHkXTu1fGjSkct1WF2Kp6dapidXRFfm50HlZDbDMpNaFW-P55pQi-VSt1iuz_isBocDpn0wnVMr1_dYei3Ynt6cjyrZh_nn_fEQ77E5-dpvi-2fLfG10TAfP2mX2F_ANKVJKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL5akWWpgD14TEdl5HBF21UFY9UIlb5PhBV6DsknhB7Z_jrzETJ1VbhHro2RkrzozH3zgz3zD2pswbYWVTRJW1IpI2r6KSW4cxj8LgQQtTCapG_jzPD07kx6_ZlE3Yj2mVFEO7QBQx-Gra3Cvjpoy4t0RJlyJSweiOy5iLgmD7XXYvR3hCWX0imV84Y8TDoWKamDhRZiri-d80V46nK-Sl_zjr4QSabbFmeveQePI9Xvsm1ufXaB1vtbhH7OGIT-FdMKjH7I5tn7AHY6v007On7M_-yA_efgMEj-AH5Gu7wPd9BksHatGhZbUWEJnbDnod-iKBQWv_ZQ0QdzT0i3MLq47-E5FtwNCSpwf8EnC8aNc9eGWNgqP40uPECBJKLcEvwf9ewtTfxQMdysMeAlw6KP1zvQjpaEDFpJQQFYafsZPZ_pf3B9HYBSLSGD77yGaySFzDeWqk4CV6RXTPCRqRMWhVwpSVEqlLsqwsNfoXIxpdJspp7gqLwZAVz9lGu2ztNoOs5DJLtEx0oSS3qTJFUQiliQMvT7XZYXJSfq1HinTq1PGjTicm1VE7NWmnHrWzw-ILsVXgCLlJoLpsWbUfLmdc6KRSixtkdyczrEd3gyIDbR2B6xe3mPo1u3_8YVYfHc4_vWSbNEKX52mxyzZ8t7Z7iL5882rYX38BGCIjTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+transferability+of+airborne+laser+scanning+derived+stem+size+prediction+models+for+Pinus+taeda+L.+stem+size+estimation+to+two+different+locations+and+acquisition+specifications&rft.jtitle=International+journal+of+remote+sensing&rft.au=Sumnall%2C+Matthew+J.&rft.au=Carter%2C+David+R.&rft.au=Albaugh%2C+Timothy+J.&rft.au=Platt%2C+Erik&rft.date=2024-08-17&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=45&rft.issue=16&rft.spage=5267&rft.epage=5294&rft_id=info:doi/10.1080%2F01431161.2024.2370499&rft.externalDocID=2370499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon