Evaluating the transferability of airborne laser scanning derived stem size prediction models for Pinus taeda L. stem size estimation to two different locations and acquisition specifications
Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods....
Saved in:
Published in | International journal of remote sensing Vol. 45; no. 16; pp. 5267 - 5294 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
17.08.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0143-1161 1366-5901 |
DOI | 10.1080/01431161.2024.2370499 |
Cover
Abstract | Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R
2
0.7-0.8; NRMSE 10-12%; mean DBH: R
2
0.4-0.7; NRMSE 10-17%; plot basal area: R
2
0.7-0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R
2
0.4-0.7; NRMSE 12-16%; mean DBH: R
2
0.4-0.5; NRMSE 18-20%; plot basal area: R
2
0.5-0.6; NRMSE 22-40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS's ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted.
Novel LiDAR-based allometric models were tested using new LiDAR acquisitions;
LiDAR predictions were based on tree crown size and immediate neighbourhood metrics;
Model inputs were derived from drone and crewed aircraft LiDAR acquisitions;
Model predictions were most accurate when applied to similar stand structures as the original model;
Normalized root means square error for stem volume and diameter in pine stands with no thinning was <15%;
Stem size estimates in thinned stands were consistently overestimated. |
---|---|
AbstractList | Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R2 0.7–0.8; NRMSE 10–12%; mean DBH: R2 0.4–0.7; NRMSE 10–17%; plot basal area: R2 0.7–0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R2 0.4–0.7; NRMSE 12–16%; mean DBH: R2 0.4–0.5; NRMSE 18–20%; plot basal area: R2 0.5–0.6; NRMSE 22–40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS’s ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted. Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a topic of research due to differences in timing, flight parameters, equipment specifications, environmental conditions, and processing methods. The transferability of predictive models therefore is subject to uncertainty. This paper presents an evaluation of the transferability of models for the estimation of stem volume and diameter at breast height (DBH) based on individual tree crown size and competitive neighbourhood metrics derived for managed loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) forest in the Southern USA. Two predictive models types were tested: multiple linear regression (MLR) and Rand Forest (RF). We also evaluated the inclusion of additional training data to model development. Models were able to be transferred to other locations with similar structural and management conditions as the original training dataset with little decrease in accuracy, specifically unthinned stands, despite different ALS acquisitions (Plot stem volume: R 2 0.7-0.8; NRMSE 10-12%; mean DBH: R 2 0.4-0.7; NRMSE 10-17%; plot basal area: R 2 0.7-0.8; NRMSE 12%). Increases in structural differences between the training and test data, driven by age or thinning status, introduced unacceptable levels of uncertainty (Stem volume: R 2 0.4-0.7; NRMSE 12-16%; mean DBH: R 2 0.4-0.5; NRMSE 18-20%; plot basal area: R 2 0.5-0.6; NRMSE 22-40%). Generally, RF models most accuracy estimated DBH, and MLR for stem volume. Improvements to estimate accuracy can be achieved through the addition of relatively small datasets, representing features which were not present in the original data. ALS's ability to provide accurate and near-complete inventories of forests hold a great deal of potential for forest management. The existence of a transferable model that can be used across different acquisitions represents a saving in terms of cost and time, we would argue that future research is therefore warranted. Novel LiDAR-based allometric models were tested using new LiDAR acquisitions; LiDAR predictions were based on tree crown size and immediate neighbourhood metrics; Model inputs were derived from drone and crewed aircraft LiDAR acquisitions; Model predictions were most accurate when applied to similar stand structures as the original model; Normalized root means square error for stem volume and diameter in pine stands with no thinning was <15%; Stem size estimates in thinned stands were consistently overestimated. |
Author | Sumnall, Matthew J. Rubilar, Rafael A. Carter, David R. Host, Trevor Cook, Rachel L. Campoe, Otávio C. Platt, Erik Albaugh, Timothy J. |
Author_xml | – sequence: 1 givenname: Matthew J. orcidid: 0009-0006-4717-9337 surname: Sumnall fullname: Sumnall, Matthew J. email: msumnall@vt.edu organization: Virginia Polytechnic Institute and State University – sequence: 2 givenname: David R. surname: Carter fullname: Carter, David R. organization: Virginia Polytechnic Institute and State University – sequence: 3 givenname: Timothy J. surname: Albaugh fullname: Albaugh, Timothy J. organization: Virginia Polytechnic Institute and State University – sequence: 4 givenname: Erik surname: Platt fullname: Platt, Erik organization: Virginia Polytechnic Institute and State University – sequence: 5 givenname: Trevor surname: Host fullname: Host, Trevor organization: Inc. Forest Research Center – sequence: 6 givenname: Rachel L. orcidid: 0000-0001-7309-3971 surname: Cook fullname: Cook, Rachel L. organization: North Carolina State University – sequence: 7 givenname: Otávio C. surname: Campoe fullname: Campoe, Otávio C. organization: Universidade Federal de Lavras – sequence: 8 givenname: Rafael A. surname: Rubilar fullname: Rubilar, Rafael A. organization: Universidad de Concepción |
BookMark | eNqFkU-LFDEQxYOs4OzqRxAKPPeYdPpPGi_Ksv6BAT3ouckkFa2lJ5lN0rvMfjm_mumZEcSDnupQv1f1eO-SXfjgkbGXgq8FV_w1F40UohPrmtfNupY9b4bhCVsJ2XVVO3BxwVYLUy3QM3aZ0i3nvOvbfsV-3tzradaZ_HfIPxBy1D45jHpLE-UDBAea4jZEjzDphBGS0d4vuMVI92ghZdxBokeEfURLJlPwsAsWpwQuRPhCfk6QNVoNm_UfOKZMO33Ec4D8EMCSK7_RZ5iCOW4SaG9Bm7uZEh3RtEdDjs7r5-yp01PCF-d5xb69v_l6_bHafP7w6frdpjJSqlxh2_Tcbeta2EbWiislhODSDtaqGqVVg5bC8bZVyggurNwaxbUzteuxbxXKK_bqdHcfw91cnI-3YY6-vBwlV-0g-0Z0hXpzokwMKUV0o6F8NFpypWkUfFwaG383Ni6NjefGirr9S72PJaB4-K_u7UlHvuS90w8hTnbM-jCF6EqfhorJf5_4Bd5Es6s |
CitedBy_id | crossref_primary_10_3390_rs17020229 |
Cites_doi | 10.3390/f8070254 10.3390/rs4040950 10.3390/fire5050126 10.1016/S0378-1127(02)00047-6 10.1016/j.rse.2020.112061 10.14214/sf.10179 10.14358/PERS.77.7.733 10.1016/j.rse.2005.07.012 10.32614/RJ-2018-009 10.3390/rs12132115 10.3390/rs13142796 10.1139/cjfr-2018-0128 10.3390/rs12193260 10.1093/sjaf/33.3.109 10.3390/rs12091513 10.1080/07038992.2018.1461557 10.18637/jss.v036.i11 10.1590/0001-3765201820160071 10.1139/x03-045 10.14214/sf.68 10.1007/978-0-387-21706-2 10.1016/j.agrformet.2018.09.016 10.1139/x96-100 10.3390/rs13030352 10.1016/j.rse.2018.10.035 10.1371/journal.pone.0054776 10.1007/978-94-017-8663-8_1 10.1016/S0378-1127(99)00340-0 10.1080/07038992.2016.1196582 10.1080/01431161.2021.2023229 10.1016/0304-3800(94)00081-R 10.3390/rs12172865 10.1016/j.rse.2019.04.006 10.1093/forestscience/43.4.529 10.1139/cjfr-2014-0405 10.1016/j.isprsjprs.2020.08.013 10.3390/rs8060501 10.5721/EuJRS20164919 10.1007/s10342-010-0381-4 10.1080/01431161.2022.2161853 10.1029/2023EA003306 10.1016/j.rse.2006.03.003 10.1016/j.foreco.2018.11.017 10.1093/sjaf/21.3.146 10.3390/f9120759 10.1016/j.rse.2012.03.027 10.1016/j.rse.2017.09.007 10.18637/jss.v091.i01 10.3390/rs8040333 10.1016/j.foreco.2022.120581 10.1007/978-94-017-8663-8_12 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1080/01431161.2024.2370499 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1366-5901 |
EndPage | 5294 |
ExternalDocumentID | 10_1080_01431161_2024_2370499 2370499 |
Genre | Research Article |
GrantInformation_xml | – fundername: Forest Productivity Cooperative |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABLJU ABPAQ ABPEM ABRLO ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEXLP AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P H13 HF~ IPNFZ J.P KYCEM LJTGL M4Z P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M TASJS |
ID | FETCH-LOGICAL-c338t-e5470fb221d432808811103d9dd82e3d89a31f05588c101d3bc80afc2f7e758e3 |
ISSN | 0143-1161 |
IngestDate | Wed Aug 13 09:05:55 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 04:05:05 EDT 2025 Wed Dec 25 09:02:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-e5470fb221d432808811103d9dd82e3d89a31f05588c101d3bc80afc2f7e758e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-4717-9337 0000-0001-7309-3971 |
PQID | 3085937416 |
PQPubID | 2045515 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1080_01431161_2024_2370499 crossref_primary_10_1080_01431161_2024_2370499 proquest_journals_3085937416 informaworld_taylorfrancis_310_1080_01431161_2024_2370499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-17 |
PublicationDateYYYYMMDD | 2024-08-17 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of remote sensing |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_3_1 Hegyi F. (e_1_3_4_14_1) 1974 e_1_3_4_61_1 e_1_3_4_63_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_46_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_36_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_2_1 R Core Team (e_1_3_4_37_1) 2021 e_1_3_4_62_1 Vasilescu M. M. (e_1_3_4_55_1) 2013; 6 e_1_3_4_64_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_60_1 e_1_3_4_24_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 Strub M. R. (e_1_3_4_45_1) 2021; 13 Silva A. D. (e_1_3_4_41_1) 2017; 9 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_33_1 Turner M. G. (e_1_3_4_50_1) 2001 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_56_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_43_1 doi: 10.3390/f8070254 – volume: 13 start-page: 29 issue: 1 year: 2021 ident: e_1_3_4_45_1 article-title: Correcting Tree Count Bias for Objects Segmented from Lidar Point Clouds publication-title: Mathematical and Computational Forestry & Natural Resource Sciences – ident: e_1_3_4_16_1 doi: 10.3390/rs4040950 – volume-title: Landscape Ecology in Theory and Practice year: 2001 ident: e_1_3_4_50_1 – ident: e_1_3_4_28_1 doi: 10.3390/fire5050126 – ident: e_1_3_4_36_1 doi: 10.1016/S0378-1127(02)00047-6 – ident: e_1_3_4_39_1 doi: 10.1016/j.rse.2020.112061 – ident: e_1_3_4_20_1 doi: 10.14214/sf.10179 – ident: e_1_3_4_7_1 doi: 10.14358/PERS.77.7.733 – ident: e_1_3_4_31_1 doi: 10.1016/j.rse.2005.07.012 – ident: e_1_3_4_33_1 doi: 10.32614/RJ-2018-009 – ident: e_1_3_4_5_1 doi: 10.3390/rs12132115 – volume: 9 start-page: 45241 issue: 1 year: 2017 ident: e_1_3_4_41_1 article-title: Determination of Maximum Curvature Point with the R Package Soilphysics publication-title: International Journal of Current Research – ident: e_1_3_4_53_1 doi: 10.3390/rs13142796 – ident: e_1_3_4_19_1 doi: 10.1139/cjfr-2018-0128 – ident: e_1_3_4_21_1 doi: 10.3390/rs12193260 – ident: e_1_3_4_6_1 doi: 10.1093/sjaf/33.3.109 – ident: e_1_3_4_26_1 doi: 10.3390/rs12091513 – ident: e_1_3_4_11_1 doi: 10.1080/07038992.2018.1461557 – ident: e_1_3_4_24_1 doi: 10.18637/jss.v036.i11 – ident: e_1_3_4_44_1 doi: 10.1590/0001-3765201820160071 – ident: e_1_3_4_30_1 doi: 10.1139/x03-045 – ident: e_1_3_4_58_1 doi: 10.14214/sf.68 – ident: e_1_3_4_57_1 doi: 10.1007/978-0-387-21706-2 – volume: 6 start-page: 75 issue: 2 year: 2013 ident: e_1_3_4_55_1 article-title: Standard Error of Tree Height Using Vertex III. Bulletin of the Transilvania University of Brasov publication-title: Forestry, Wood Industry, Agricultural Food Engineering Series II – ident: e_1_3_4_22_1 doi: 10.1016/j.agrformet.2018.09.016 – ident: e_1_3_4_3_1 doi: 10.1139/x96-100 – ident: e_1_3_4_32_1 doi: 10.3390/rs13030352 – ident: e_1_3_4_40_1 doi: 10.1016/j.rse.2018.10.035 – ident: e_1_3_4_60_1 doi: 10.1371/journal.pone.0054776 – ident: e_1_3_4_56_1 doi: 10.1007/978-94-017-8663-8_1 – ident: e_1_3_4_4_1 doi: 10.1016/S0378-1127(99)00340-0 – ident: e_1_3_4_42_1 doi: 10.1080/07038992.2016.1196582 – ident: e_1_3_4_46_1 doi: 10.1080/01431161.2021.2023229 – ident: e_1_3_4_52_1 doi: 10.1016/0304-3800(94)00081-R – ident: e_1_3_4_29_1 doi: 10.3390/rs12172865 – ident: e_1_3_4_49_1 doi: 10.1016/j.rse.2019.04.006 – ident: e_1_3_4_34_1 doi: 10.1093/forestscience/43.4.529 – ident: e_1_3_4_10_1 doi: 10.1139/cjfr-2014-0405 – ident: e_1_3_4_62_1 doi: 10.1016/j.isprsjprs.2020.08.013 – ident: e_1_3_4_63_1 doi: 10.3390/rs8060501 – ident: e_1_3_4_18_1 doi: 10.5721/EuJRS20164919 – ident: e_1_3_4_54_1 doi: 10.1007/s10342-010-0381-4 – ident: e_1_3_4_47_1 doi: 10.1080/01431161.2022.2161853 – ident: e_1_3_4_9_1 doi: 10.1029/2023EA003306 – volume-title: R: A Language and Environment for Statistical Computing year: 2021 ident: e_1_3_4_37_1 – ident: e_1_3_4_12_1 doi: 10.1016/j.rse.2006.03.003 – ident: e_1_3_4_17_1 doi: 10.1016/j.foreco.2018.11.017 – ident: e_1_3_4_48_1 doi: 10.1093/sjaf/21.3.146 – ident: e_1_3_4_59_1 doi: 10.3390/f9120759 – start-page: 74 volume-title: Growth models for tree and stand simulation year: 1974 ident: e_1_3_4_14_1 – ident: e_1_3_4_61_1 doi: 10.1016/j.rse.2012.03.027 – ident: e_1_3_4_64_1 doi: 10.1016/j.rse.2017.09.007 – ident: e_1_3_4_35_1 doi: 10.18637/jss.v091.i01 – ident: e_1_3_4_65_1 doi: 10.3390/rs8040333 – ident: e_1_3_4_2_1 doi: 10.1016/j.foreco.2022.120581 – ident: e_1_3_4_27_1 doi: 10.1007/978-94-017-8663-8_12 |
SSID | ssj0006757 |
Score | 2.4459617 |
Snippet | Airborne laser scanning (ALS) datasets are used widely for estimating forest biometrics. The transferability of predictive models among ALS acquisitions is a... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5267 |
SubjectTerms | Accuracy Airborne lasers ALS Area Biometrics Biometry Data acquisition Datasets Environmental conditions Equipment specifications Estimation Evergreen trees Forest management Forests ITC Laser applications Lasers LIDAR loblolly pine Pine Pine trees Pinus elliottii Pinus taeda Prediction models Predictions Size estimation Specifications Stems Training UAV Uncertainty |
Title | Evaluating the transferability of airborne laser scanning derived stem size prediction models for Pinus taeda L. stem size estimation to two different locations and acquisition specifications |
URI | https://www.tandfonline.com/doi/abs/10.1080/01431161.2024.2370499 https://www.proquest.com/docview/3085937416 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELb2cYAL4ikWFjQHblGixM6rxwoWqtWCVqgrVlwix3GkQmmhTUHaP8dfY8Z2HqUrLY9LFCVxbGk-e2bsmW8Ye5GnpdBxmfkjrYUf63Tk51zX6PNIdB6UqEaCspHfvksnF_HpZXK5t78_iFraNGWgrq7NK_kXqeIzlCtlyf6FZLuf4gO8R_niFSWM1z-S8Ymj6nYZT40xQvXKUm-bo3M5W6GQ0ZBEI5l4m5UtUeRVOLzvaGsSjbO3nl1RuhQd2Rg0mOo4hqfBO58tNmuvkbqS3lkw-JzIOWzWo7Fefyy7UiuNR_rRBtgZJlj1bTOzkWEe5XVSbNJgm_BTH0rf70wO-CxWGsGkvTUF2jsta86wvuD7uc02MhXLvdOgP09ZuXIjJmLfe9-9Gc9LubGnSg6kg2bnc2lPylA3fB7uhvCYtndt8qfB73SnMMnW3qnwo8hyvwfarvciTX1Kvx0qBMtv2QJ_uLwn3NYOcaZCwm2B5h015OI2sUPqL6CBBlxk5F72ereLhnRv9tkhzzKKNTgcT159_NAZFOjT2ax_N_42EY0o4q_rYsvE2iLg3TE4jBU1vcvuOPcHxhbL99ieXtxnt95oR5z-gP3sMQ0oVvgN07CsocU0GExDi2lwmAYCKRBIocc0WEwDDhIMpsFgGs6Cwec9pqFZAmIaOkxDh2lATMMA07CN6Yfs4vXJ9OXEd0VGfCVE3vg6ibOwLjmPqljwHJUuav8Q16iqwkVLVPlIiqgOkyTPFaqvSpQqD2WteJ1p9LW1eMQOFsuFfswgyXmchCoOVSZjriNZZVkmpCKKxTRS1RGLW7kUyjHwUyGYeRG1RL1OnAWJs3DiPGJB1-yrpaC5qcFoKPSiMZOitvOhEDe0PW4RUri5jk0MKyL5bk_-49dP2e1-xh6zg2a10c_Qom_K5w7xvwCszPk7 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHMqFb9TSAnPgmpDYziY5VqjVAtsVh1bqLXLsCaxA2TbrBbV_jr_GTJxUWxDqoedkrCR-Hr9xZt4I8a6Y1Ap1nUclooo0TsqokNhQzGMoeLDKlYqrkY_nk-mp_nSWnW3UwnBaJcfQTRCK6H01L24-jB5T4t6zJl1KVIXCO6ljqXLm7ffFg4y4O6NcJfNrb0yEOJRMsxQn2YxVPP8b5sb-dEO99B9v3W9BR4-FHR8-ZJ58j9e-ju3VX7qOd3u7J-LRwFDhIEDqqbiH7TOxPTRL_3b5XPw-HBTC269A9BF8z32xC4rfl7BswCw6wlaLQNwcO1jZ0BkJHOH9Jzpg9WhYLa4Qzjv-U8TogL4pzwroU8CXRbtegTfoDMzijdtZEyQUW4Jfgv-1hLHDiwfelvtVBPTuYOzFehES0oDLSTklKlx-IU6PDk8-TKOhD0RkKYD2EWY6T5paytRpJQvyi-SgE4KRc4Qr5YrSqLRJsqwoLHkYp2pbJKaxssmRwiFUL8VWu2xxR0BWSJ0lVic2N1pialye58pYVsGbpNbtCj3OfmUHkXTu1fGjSkct1WF2Kp6dapidXRFfm50HlZDbDMpNaFW-P55pQi-VSt1iuz_isBocDpn0wnVMr1_dYei3Ynt6cjyrZh_nn_fEQ77E5-dpvi-2fLfG10TAfP2mX2F_ANKVJKg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNAL5akWWpgD14TEdl5HBF21UFY9UIlb5PhBV6DsknhB7Z_jrzETJ1VbhHro2RkrzozH3zgz3zD2pswbYWVTRJW1IpI2r6KSW4cxj8LgQQtTCapG_jzPD07kx6_ZlE3Yj2mVFEO7QBQx-Gra3Cvjpoy4t0RJlyJSweiOy5iLgmD7XXYvR3hCWX0imV84Y8TDoWKamDhRZiri-d80V46nK-Sl_zjr4QSabbFmeveQePI9Xvsm1ufXaB1vtbhH7OGIT-FdMKjH7I5tn7AHY6v007On7M_-yA_efgMEj-AH5Gu7wPd9BksHatGhZbUWEJnbDnod-iKBQWv_ZQ0QdzT0i3MLq47-E5FtwNCSpwf8EnC8aNc9eGWNgqP40uPECBJKLcEvwf9ewtTfxQMdysMeAlw6KP1zvQjpaEDFpJQQFYafsZPZ_pf3B9HYBSLSGD77yGaySFzDeWqk4CV6RXTPCRqRMWhVwpSVEqlLsqwsNfoXIxpdJspp7gqLwZAVz9lGu2ztNoOs5DJLtEx0oSS3qTJFUQiliQMvT7XZYXJSfq1HinTq1PGjTicm1VE7NWmnHrWzw-ILsVXgCLlJoLpsWbUfLmdc6KRSixtkdyczrEd3gyIDbR2B6xe3mPo1u3_8YVYfHc4_vWSbNEKX52mxyzZ8t7Z7iL5882rYX38BGCIjTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+transferability+of+airborne+laser+scanning+derived+stem+size+prediction+models+for+Pinus+taeda+L.+stem+size+estimation+to+two+different+locations+and+acquisition+specifications&rft.jtitle=International+journal+of+remote+sensing&rft.au=Sumnall%2C+Matthew+J.&rft.au=Carter%2C+David+R.&rft.au=Albaugh%2C+Timothy+J.&rft.au=Platt%2C+Erik&rft.date=2024-08-17&rft.pub=Taylor+%26+Francis&rft.issn=0143-1161&rft.eissn=1366-5901&rft.volume=45&rft.issue=16&rft.spage=5267&rft.epage=5294&rft_id=info:doi/10.1080%2F01431161.2024.2370499&rft.externalDocID=2370499 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-1161&client=summon |