Construction of reduced chemical mechanisms orientated toward specific applications: a case study of primary reference fuel

Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction...

Full description

Saved in:
Bibliographic Details
Published inCombustion theory and modelling Vol. 26; no. 3; pp. 560 - 589
Main Authors Niu, Bo, Jia, Ming, Chang, Yachao, Dong, Xue, Wang, Pengzhi, Cao, Jingjie
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 16.04.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1364-7830
1741-3559
DOI10.1080/13647830.2022.2035824

Cover

Abstract Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0-C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0-C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O 2 , CO, and CO 2 ) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including Model ST with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), Model JSR with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and Model LPF with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications.
AbstractList Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0-C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0-C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O 2 , CO, and CO 2 ) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including Model ST with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), Model JSR with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and Model LPF with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications.
Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0–C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0–C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O2, CO, and CO2) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including ModelST with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), ModelJSR with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and ModelLPF with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications.
Author Chang, Yachao
Niu, Bo
Dong, Xue
Wang, Pengzhi
Cao, Jingjie
Jia, Ming
Author_xml – sequence: 1
  givenname: Bo
  surname: Niu
  fullname: Niu, Bo
  organization: Dalian University of Technology
– sequence: 2
  givenname: Ming
  surname: Jia
  fullname: Jia, Ming
  email: jiaming@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 3
  givenname: Yachao
  surname: Chang
  fullname: Chang, Yachao
  organization: Dalian University of Technology
– sequence: 4
  givenname: Xue
  surname: Dong
  fullname: Dong, Xue
  organization: Dalian University of Technology
– sequence: 5
  givenname: Pengzhi
  surname: Wang
  fullname: Wang, Pengzhi
  organization: Dalian University of Technology
– sequence: 6
  givenname: Jingjie
  surname: Cao
  fullname: Cao, Jingjie
  organization: Dalian University of Technology
BookMark eNqFkE1rFTEUhgepYFv7EwoB11PzMZnM6Ea5qBUKbuw65J6c0JSZZEwylIt_3kzvdePCbpJAnvdJznvRnIUYsGmuGb1hdKDvmeg7NQh6wynndRFy4N2r5pypjrVCyvGsnivTbtCb5iLnR0opV7w7b37vYsglrVB8DCQ6ktCugJbAA84ezERmhAcTfJ4zicljKKbU6xKfTLIkLwjeeSBmWaaKb5b8gRgCJiPJZbWHTbokP5t0qHKHCQMgcStOb5vXzkwZr077ZXP_9cvP3W179-Pb993nuxaEGEqL3CnWMdXDyN0o9pJKYdDsDUrKJAPuLNBxLxwHxazq7WgHGJ2ygnV0j0JcNu-O3iXFXyvmoh_jmkJ9UvNejXJkfScr9fFIQYo5159q8OV5oJKMnzSjemtb_21bb23rU9s1Lf9Jn2Z-MffpmPPBxTSbp5gmq4s5TDG5ZAL4rMX_FX8AL-eazw
CitedBy_id crossref_primary_10_1016_j_fuel_2024_131171
crossref_primary_10_1016_j_proci_2022_07_203
crossref_primary_10_1016_j_combustflame_2022_112351
crossref_primary_10_1016_j_combustflame_2024_113359
Cites_doi 10.1016/j.combustflame.2018.03.021
10.1016/j.combustflame.2016.12.029
10.1016/j.proci.2018.06.139
10.1021/acs.energyfuels.0c03086
10.1016/j.combustflame.2014.12.001
10.1016/j.combustflame.2016.12.027
10.1016/j.combustflame.2016.12.018
10.1115/1.2900729
10.1016/j.combustflame.2012.07.008
10.1016/j.combustflame.2008.05.002
10.1016/S0082-0784(98)80442-6
10.1039/B614712G
10.1016/j.combustflame.2017.11.024
10.1021/acs.energyfuels.8b00356
10.1016/S0010-2180(97)00049-7
10.1016/j.combustflame.2015.10.013
10.1016/j.proci.2008.08.001
10.1016/j.fuel.2019.116217
10.1016/j.combustflame.2008.06.001
10.1016/j.combustflame.2019.11.019
10.1016/j.combustflame.2018.06.035
10.1016/j.fuel.2018.11.020
10.1016/j.proci.2004.08.004
10.1016/j.combustflame.2015.10.018
10.1016/j.combustflame.2016.06.028
10.1016/j.combustflame.2009.12.022
10.1016/j.combustflame.2018.03.019
10.1016/S0010-2180(01)00373-X
10.1016/j.fuel.2013.05.049
10.1016/j.proci.2010.06.074
10.1016/j.proci.2004.08.145
10.1007/s00193-010-0262-2
10.1016/j.engappai.2005.02.006
10.2514/2.5942
10.1021/acs.energyfuels.0c04064
10.1016/j.combustflame.2012.11.002
10.1016/j.combustflame.2017.07.006
10.1016/j.enconman.2014.01.020
10.1021/ie403272f
10.1016/j.combustflame.2014.11.018
10.1016/j.fuel.2012.12.084
10.1021/ef700515f
10.1016/j.proci.2004.07.008
10.1016/S0010-2180(03)00057-9
10.1016/j.combustflame.2012.06.008
10.1080/00102209408907701
10.1016/j.combustflame.2004.08.011
10.1016/j.pecs.2012.03.004
10.1016/j.pecs.2008.10.002
10.1016/S0082-0784(00)80558-5
10.1016/j.proci.2006.07.182
10.1016/j.fuel.2011.04.029
10.1016/j.combustflame.2020.03.022
10.1080/13647830.2018.1470333
10.1016/j.ces.2009.09.073
10.1016/j.envsoft.2006.10.004
10.1016/j.proci.2008.06.018
10.1016/j.combustflame.2015.01.004
10.1016/j.combustflame.2015.02.005
10.1016/j.combustflame.2011.12.004
10.4271/2018-01-0191
10.1016/j.combustflame.2007.10.020
10.1016/j.combustflame.2018.04.012
10.1016/j.combustflame.2004.08.015
10.1016/j.pecs.2011.03.003
10.1016/j.combustflame.2010.03.006
10.1021/ef301242b
10.1080/00401706.1991.10484804
10.2514/1.24391
10.1016/j.proci.2004.08.001
10.1016/j.combustflame.2021.111534
10.1016/j.fuel.2014.12.058
10.1016/j.combustflame.2009.06.011
10.1016/j.combustflame.2020.07.034
10.1016/j.combustflame.2007.11.013
10.1016/j.proci.2010.05.058
10.1016/j.combustflame.2015.07.016
10.1017/CBO9780511612701
10.4271/2004-01-0558
10.1016/j.combustflame.2013.08.024
10.1021/ef401992e
10.1021/ef8011036
10.1016/j.fuel.2011.10.062
10.3389/fmech.2015.00011
10.1016/j.combustflame.2014.03.006
10.1002/(SICI)1097-4601(2000)32:1<36::AID-JCK5>3.0.CO;2-0
10.1080/13647830.2012.680502
10.1016/j.proci.2008.06.064
10.1109/4235.996017
10.1021/ef501392k
10.1016/0010-2180(93)90142-P
10.1016/j.combustflame.2011.06.012
10.1177/0954407016661448
10.1080/13647830.2020.1820577
10.1016/j.proci.2018.07.006
10.1515/1542-6580.2691
10.1016/j.enconman.2015.11.061
10.1016/j.proci.2014.05.122
10.1115/1.4032713
10.1080/00102209408935336
10.1016/S0082-0784(06)80019-6
10.1080/13647830.2020.1869309
10.1016/j.combustflame.2010.08.005
10.1016/0010-2180(90)90122-8
10.1021/jp064482y
10.1039/b109154a
10.1016/0010-2180(94)00184-T
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1080/13647830.2022.2035824
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-3559
EndPage 589
ExternalDocumentID 10_1080_13647830_2022_2035824
2035824
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
J9A
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
RIG
RNANH
RNS
RO9
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UCJ
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7TB
8FD
FR3
H8D
L7M
TASJS
ID FETCH-LOGICAL-c338t-e2f714176c92f93b5053aeabae50151c2fdc09b3f2c71d76d9d8c9f7d3140be33
ISSN 1364-7830
IngestDate Fri Jul 25 05:41:49 EDT 2025
Thu Apr 24 23:03:00 EDT 2025
Tue Jul 01 01:27:46 EDT 2025
Wed Dec 25 09:06:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e2f714176c92f93b5053aeabae50151c2fdc09b3f2c71d76d9d8c9f7d3140be33
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
PQID 2679591645
PQPubID 2045308
PageCount 30
ParticipantIDs crossref_citationtrail_10_1080_13647830_2022_2035824
crossref_primary_10_1080_13647830_2022_2035824
proquest_journals_2679591645
informaworld_taylorfrancis_310_1080_13647830_2022_2035824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-16
PublicationDateYYYYMMDD 2022-04-16
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-16
  day: 16
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Combustion theory and modelling
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0074
CIT0073
CIT0076
CIT0075
CIT0078
CIT0077
CIT0070
CIT0079
CIT0083
CIT0082
CIT0085
CIT0084
CIT0087
CIT0086
CIT0001
CIT0089
CIT0088
CIT0081
CIT0080
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0094
CIT0093
CIT0096
CIT0095
CIT0010
CIT0098
CIT0097
CIT0012
CIT0011
CIT0099
CIT0090
CIT0092
CIT0091
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
Turányi T. (CIT0062) 2016
CIT0028
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0045
CIT0044
CIT0047
CIT0046
CIT0049
CIT0048
CIT0050
CIT0052
CIT0051
CIT0054
CIT0053
CIT0056
CIT0055
CIT0058
CIT0057
CIT0059
CIT0061
CIT0060
CIT0063
CIT0065
CIT0064
CIT0067
CIT0100
CIT0066
CIT0109
CIT0069
CIT0102
CIT0068
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
CIT0108
CIT0107
References_xml – ident: CIT0037
  doi: 10.1016/j.combustflame.2018.03.021
– ident: CIT0040
  doi: 10.1016/j.combustflame.2016.12.029
– ident: CIT0034
  doi: 10.1016/j.proci.2018.06.139
– ident: CIT0074
  doi: 10.1021/acs.energyfuels.0c03086
– ident: CIT0077
  doi: 10.1016/j.combustflame.2014.12.001
– ident: CIT0090
  doi: 10.1016/j.combustflame.2016.12.027
– ident: CIT0030
  doi: 10.1016/j.combustflame.2016.12.018
– ident: CIT0072
  doi: 10.1115/1.2900729
– ident: CIT0092
  doi: 10.1016/j.combustflame.2012.07.008
– ident: CIT0050
  doi: 10.1016/j.combustflame.2008.05.002
– ident: CIT0101
  doi: 10.1016/S0082-0784(98)80442-6
– ident: CIT0057
  doi: 10.1039/B614712G
– ident: CIT0059
  doi: 10.1016/j.combustflame.2017.11.024
– ident: CIT0043
  doi: 10.1021/acs.energyfuels.8b00356
– ident: CIT0079
  doi: 10.1016/S0010-2180(97)00049-7
– ident: CIT0010
  doi: 10.1016/j.combustflame.2015.10.013
– ident: CIT0068
  doi: 10.1016/j.proci.2008.08.001
– ident: CIT0027
  doi: 10.1016/j.fuel.2019.116217
– ident: CIT0088
  doi: 10.1016/j.combustflame.2008.06.001
– ident: CIT0041
  doi: 10.1016/j.combustflame.2019.11.019
– ident: CIT0047
  doi: 10.1016/j.combustflame.2018.06.035
– ident: CIT0035
  doi: 10.1016/j.fuel.2018.11.020
– ident: CIT0087
  doi: 10.1016/j.proci.2004.08.004
– ident: CIT0044
  doi: 10.1016/j.combustflame.2015.10.018
– ident: CIT0094
  doi: 10.1016/j.combustflame.2016.06.028
– ident: CIT0007
  doi: 10.1016/j.combustflame.2009.12.022
– ident: CIT0017
  doi: 10.1016/j.combustflame.2018.03.019
– ident: CIT0071
  doi: 10.1016/S0010-2180(01)00373-X
– ident: CIT0100
  doi: 10.1016/j.fuel.2013.05.049
– ident: CIT0099
  doi: 10.1016/j.proci.2010.06.074
– ident: CIT0004
  doi: 10.1016/j.proci.2004.08.145
– ident: CIT0083
  doi: 10.1007/s00193-010-0262-2
– ident: CIT0051
  doi: 10.1016/j.engappai.2005.02.006
– ident: CIT0082
  doi: 10.2514/2.5942
– ident: CIT0042
  doi: 10.1021/acs.energyfuels.0c04064
– ident: CIT0002
  doi: 10.1016/j.combustflame.2012.11.002
– ident: CIT0091
  doi: 10.1016/j.combustflame.2017.07.006
– ident: CIT0003
  doi: 10.1016/j.enconman.2014.01.020
– ident: CIT0016
  doi: 10.1021/ie403272f
– ident: CIT0046
  doi: 10.1016/j.combustflame.2014.11.018
– ident: CIT0102
  doi: 10.1016/j.fuel.2012.12.084
– ident: CIT0066
  doi: 10.1021/ef700515f
– ident: CIT0085
  doi: 10.1016/j.proci.2004.07.008
– ident: CIT0063
  doi: 10.1016/S0010-2180(03)00057-9
– ident: CIT0104
  doi: 10.1016/j.combustflame.2012.06.008
– ident: CIT0097
  doi: 10.1080/00102209408907701
– ident: CIT0106
  doi: 10.1016/j.combustflame.2004.08.011
– ident: CIT0109
  doi: 10.1016/j.pecs.2012.03.004
– ident: CIT0060
  doi: 10.1016/j.pecs.2008.10.002
– ident: CIT0023
  doi: 10.1016/S0082-0784(00)80558-5
– ident: CIT0005
  doi: 10.1016/j.proci.2006.07.182
– ident: CIT0108
  doi: 10.1016/j.fuel.2011.04.029
– ident: CIT0026
  doi: 10.1016/j.combustflame.2020.03.022
– ident: CIT0061
  doi: 10.1080/13647830.2018.1470333
– volume-title: Analysis of kinetic reaction mechanisms
  year: 2016
  ident: CIT0062
– ident: CIT0013
  doi: 10.1016/j.ces.2009.09.073
– ident: CIT0049
  doi: 10.1016/j.envsoft.2006.10.004
– ident: CIT0064
  doi: 10.1016/j.proci.2008.06.018
– ident: CIT0107
  doi: 10.1016/j.combustflame.2015.01.004
– ident: CIT0033
  doi: 10.1016/j.combustflame.2015.02.005
– ident: CIT0105
  doi: 10.1016/j.combustflame.2011.12.004
– ident: CIT0028
  doi: 10.4271/2018-01-0191
– ident: CIT0006
  doi: 10.1016/j.combustflame.2007.10.020
– ident: CIT0029
  doi: 10.1016/j.combustflame.2018.04.012
– ident: CIT0080
  doi: 10.1016/j.combustflame.2004.08.015
– ident: CIT0001
  doi: 10.1016/j.pecs.2011.03.003
– ident: CIT0008
  doi: 10.1016/j.combustflame.2010.03.006
– ident: CIT0069
  doi: 10.1021/ef301242b
– ident: CIT0054
– ident: CIT0048
  doi: 10.1080/00401706.1991.10484804
– ident: CIT0098
  doi: 10.2514/1.24391
– ident: CIT0015
  doi: 10.1016/j.proci.2004.08.001
– ident: CIT0075
  doi: 10.1016/j.combustflame.2021.111534
– ident: CIT0095
  doi: 10.1016/j.fuel.2014.12.058
– ident: CIT0038
  doi: 10.1016/j.combustflame.2009.06.011
– ident: CIT0073
  doi: 10.1016/j.combustflame.2020.07.034
– ident: CIT0025
  doi: 10.1016/j.combustflame.2007.11.013
– ident: CIT0103
  doi: 10.1016/j.proci.2010.05.058
– ident: CIT0018
  doi: 10.1016/j.combustflame.2015.07.016
– ident: CIT0055
  doi: 10.1017/CBO9780511612701
– ident: CIT0058
  doi: 10.4271/2004-01-0558
– ident: CIT0053
  doi: 10.1016/j.combustflame.2013.08.024
– ident: CIT0067
  doi: 10.1021/ef401992e
– ident: CIT0084
  doi: 10.1021/ef8011036
– ident: CIT0086
  doi: 10.1016/j.fuel.2011.10.062
– ident: CIT0070
  doi: 10.3389/fmech.2015.00011
– ident: CIT0076
  doi: 10.1016/j.combustflame.2014.03.006
– ident: CIT0014
  doi: 10.1002/(SICI)1097-4601(2000)32:1<36::AID-JCK5>3.0.CO;2-0
– ident: CIT0024
  doi: 10.1080/13647830.2012.680502
– ident: CIT0021
  doi: 10.1016/j.proci.2008.06.064
– ident: CIT0039
  doi: 10.1109/4235.996017
– ident: CIT0052
  doi: 10.1021/ef501392k
– ident: CIT0078
  doi: 10.1016/0010-2180(93)90142-P
– ident: CIT0012
  doi: 10.1016/j.combustflame.2011.06.012
– ident: CIT0056
  doi: 10.1177/0954407016661448
– ident: CIT0009
  doi: 10.1080/13647830.2020.1820577
– ident: CIT0036
  doi: 10.1016/j.proci.2018.07.006
– ident: CIT0065
  doi: 10.1515/1542-6580.2691
– ident: CIT0032
  doi: 10.1016/j.enconman.2015.11.061
– ident: CIT0089
  doi: 10.1016/j.proci.2014.05.122
– ident: CIT0031
  doi: 10.1115/1.4032713
– ident: CIT0096
  doi: 10.1080/00102209408935336
– ident: CIT0022
  doi: 10.1016/S0082-0784(06)80019-6
– ident: CIT0019
  doi: 10.1080/13647830.2020.1869309
– ident: CIT0081
  doi: 10.1016/j.combustflame.2010.08.005
– ident: CIT0011
  doi: 10.1016/0010-2180(90)90122-8
– ident: CIT0020
  doi: 10.1021/jp064482y
– ident: CIT0045
  doi: 10.1039/b109154a
– ident: CIT0093
  doi: 10.1016/0010-2180(94)00184-T
SSID ssj0002724
Score 2.3112643
Snippet Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 560
SubjectTerms Delay time
Error analysis
Flames
Fuels
genetic algorithm
Genetic algorithms
global sensitivity analysis
Ignition
Lumping
path sensitivity analysis
Premixed flames
Reactors
Reduced mechanism
Reduction
Sensitivity analysis
Shock tubes
specific applications
Title Construction of reduced chemical mechanisms orientated toward specific applications: a case study of primary reference fuel
URI https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2035824
https://www.proquest.com/docview/2679591645
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZCe4ED4ikKBfnALdqwu16vvdyqFhQhlVMqApfV2mtLSE0itZsL_BT-LDPrR1ylUnlcrMi7fiTzxTO2v5kh5C1nXdlbVmVclioDfSwzyaouU7Iz6JHA8h4dhc8_1_OL6tOSLyeTXwlraTuomf5xq1_Jv0gV6kCu6CX7F5KNnUIFfAb5QgkShvKPZIzZNkP8V7T6rjAOK1iQOkQBWBl07P1-vULe-ej5iAbmMFJlp-hkiUShaXqJ7ZyfNeg2F3l2ZET7iBQxJcnUbj3TPsQ42KwUpgVzNw94bY_n8WOWncugG8fLj-2Ip03k7Tiq7nnyzmk4wf7awdzjm2eeOrzcmvSgAva4GBGxjtBa7OUMSZZdVleZkP6Gxrg6sHUysIaadK123vUekyxZeHmdJzqcu7REe-rB8SlxNBxshrOEAp2Fq50-jCxF_-QeOSyFQA7A4cn87NuXqOhL4XMm-8kHBzGZv7t1iBumz43AuHuGwGjdLB6Rh35bQk8cxh6TiVk_IQ-SYJVPyc8UbXRjqUcbDWijO7TRHdqoQxsNaKMp2t7TjiLW6Ig17NRjjUasUcTaM3Lx8cPidJ751B2ZZkwOmSmtKKpC1LopbcMU2NmsM53qDAf7s9Cl7XXeKGZLLYpe1H3TS91Y0TPY8CvD2HNysN6szQtCJevqHrMQFb2srMkVBx0EmxYwnQ3ThToiVfhVW-3j2mN6lcu28OFvgzBaFEbrhXFEZrGZ_2p3NWhSkbXDiGfroNyyO9oeB_m2fv24bstaNBx2ZxV_-R9dvyL3d3-2Y3IAODCvwU4e1BuP198m1rn5
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1JbbzZEOIqkDp1ErdrPglIfpAbbrAn8eXOFUBoQ6do7Ni53z-zrnvO4RuQpZRZVjghQkVnj2PEy9hQeaJJNPASGC-AqLwazdq94PnQThY4sJAWSXk0KYUiihiNWxuuIyuSuJuCYieJ8y36R0FMhWwPYNNtBVa7A5ezvzuIhrT2DW2jQIPbCoWz3_D_DiffqiX_onWxRHU2keyevmy8uS9Oc9FU37-0nVcb3YHaM8hVHxfutQh2tDjI7S7pFt4jL6gzWclPIsnBk9BAFYrLJ38AB5pYBS_zUYzPJkWlEuLbHFe1OhiYHdChRJe_nt-hzMs7ZGKC8FbGPSjFMLAi04o2Mz18AT1W4-9h7bnujh40qa_uaepiUlA4kim1KRMWMjFMp2JTIcWihBJjZJ-KpihMiYqjlSqEpmaWDGb-wnN2CmqjSdjfYZwwrJIQUMaopLAaF-ENhxZ_GpRlGaSiDoKqm_HpZM4h04bQ06cEmq1thzWlru1raPmwsxNbZVBuuwYPC8uV0zZCYWzFbaNyou4CxczTiNo-W4z1_B8jaGv0Xa799rhnafuywXagUfw34tEDVSzPqEvLXzKxVWxP74BDhwL_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7IhCAR-4psR2Vm4IqMpWcaASNyveJEQ3tekFfh5P4lQtCHHoORordsbjmXjeewhdhCyjyrDACxMqPHseJ17CgswTSaYBkcB8BUDh507U7gYPb2HVTThxbZVQQ5uSKKKI1bC5R8pUHXGXBDjPE-bb6o4ClgrAnsEqWotsegJdfczvzIIxjZ2ubRR4YFOBeP4aZuF4WiAv_RWsixOotY1E9e5l48lHc5qLpvz8Qeu41OR20JbLT_F16VC7aEUP9tDmHGvhPvoCkc-KdhYPDR4D_atWWDryAdzXgCd-n_QneDguAJc2r8V50aGLAdsJ_Ul4_u78CmdY2gMVF3S3MOiopMHAMx0UbKa6d4C6rbvXm7bnNBw8aYvf3NPUxCQgcSRTalImbMLFMp2JTIc2ESGSGiX9VDBDZUxUHKlUJTI1sWK28hOasUNUGwwH-gjhhGWRAjkaopLAaF-ENhjZ7NXmUJpJIuooqD4dl47gHHQ2epw4HtRqbTmsLXdrW0fNmZmb2n8G6bxf8Lz4tWJKHRTO_rFtVE7EXbCYcBqB4LutW8PjJYY-R-svty3-dN95PEEb8AQuvUjUQDXrEvrU5k65OCt2xzevHQqj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+reduced+chemical+mechanisms+orientated+toward+specific+applications%3A+a+case+study+of+primary+reference+fuel&rft.jtitle=Combustion+theory+and+modelling&rft.au=Niu%2C+Bo&rft.au=Jia%2C+Ming&rft.au=Chang%2C+Yachao&rft.au=Dong%2C+Xue&rft.date=2022-04-16&rft.pub=Taylor+%26+Francis&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=26&rft.issue=3&rft.spage=560&rft.epage=589&rft_id=info:doi/10.1080%2F13647830.2022.2035824&rft.externalDocID=2035824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon