Construction of reduced chemical mechanisms orientated toward specific applications: a case study of primary reference fuel
Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction...
Saved in:
Published in | Combustion theory and modelling Vol. 26; no. 3; pp. 560 - 589 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
16.04.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1364-7830 1741-3559 |
DOI | 10.1080/13647830.2022.2035824 |
Cover
Abstract | Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0-C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0-C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O
2
, CO, and CO
2
) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including Model
ST
with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), Model
JSR
with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and Model
LPF
with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications. |
---|---|
AbstractList | Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0-C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0-C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O
2
, CO, and CO
2
) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including Model
ST
with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), Model
JSR
with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and Model
LPF
with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications. Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually needed. A systematic method for chemical mechanism reduction orientated toward specific applications is proposed in this work. The reduction process is divided into two parts for large-molecule fuels, including the reduction of the fuel-specific sub-mechanism and the reduction of the C0–C4 sub-mechanisms. In the first part, path sensitivity analysis and global sensitivity analysis are used to identify the key reaction classes in the fuel-specific sub-mechanism, and then the rate of production (ROP) analysis and genetic algorithm are utilised to recognise the representative reactions with the maximum flux in the key reaction classes and optimise the reaction rate coefficients within their uncertainties. For the second part, the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is employed to reduce the C0–C4 sub-mechanisms. And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O2, CO, and CO2) profiles in jet-stirred reactors, and laminar flame speeds, respectively. Finally, reaction lumping is conducted by identifying the quasi-steady-state (QSS) species. Based on a detailed mechanism of primary reference fuel (PRF) consisting of 2,870 species and 9,233 reactions, three reduced models orientated toward specific applications, including ModelST with 42 species and 82 reactions targeted at the ignition timings in shock tubes (ST), ModelJSR with 43 species and 79 reactions targeted at the major species concentrations in jet-stirred reactors (JSR), and ModelLPF with 41 species and 69 reactions targeted at laminar flame speeds in laminar premixed flames (LPF) are constructed, respectively. The validation results indicate that all the three reduced mechanisms can achieve good predictions in their featured specific applications. |
Author | Chang, Yachao Niu, Bo Dong, Xue Wang, Pengzhi Cao, Jingjie Jia, Ming |
Author_xml | – sequence: 1 givenname: Bo surname: Niu fullname: Niu, Bo organization: Dalian University of Technology – sequence: 2 givenname: Ming surname: Jia fullname: Jia, Ming email: jiaming@dlut.edu.cn organization: Dalian University of Technology – sequence: 3 givenname: Yachao surname: Chang fullname: Chang, Yachao organization: Dalian University of Technology – sequence: 4 givenname: Xue surname: Dong fullname: Dong, Xue organization: Dalian University of Technology – sequence: 5 givenname: Pengzhi surname: Wang fullname: Wang, Pengzhi organization: Dalian University of Technology – sequence: 6 givenname: Jingjie surname: Cao fullname: Cao, Jingjie organization: Dalian University of Technology |
BookMark | eNqFkE1rFTEUhgepYFv7EwoB11PzMZnM6Ea5qBUKbuw65J6c0JSZZEwylIt_3kzvdePCbpJAnvdJznvRnIUYsGmuGb1hdKDvmeg7NQh6wynndRFy4N2r5pypjrVCyvGsnivTbtCb5iLnR0opV7w7b37vYsglrVB8DCQ6ktCugJbAA84ezERmhAcTfJ4zicljKKbU6xKfTLIkLwjeeSBmWaaKb5b8gRgCJiPJZbWHTbokP5t0qHKHCQMgcStOb5vXzkwZr077ZXP_9cvP3W179-Pb993nuxaEGEqL3CnWMdXDyN0o9pJKYdDsDUrKJAPuLNBxLxwHxazq7WgHGJ2ygnV0j0JcNu-O3iXFXyvmoh_jmkJ9UvNejXJkfScr9fFIQYo5159q8OV5oJKMnzSjemtb_21bb23rU9s1Lf9Jn2Z-MffpmPPBxTSbp5gmq4s5TDG5ZAL4rMX_FX8AL-eazw |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_131171 crossref_primary_10_1016_j_proci_2022_07_203 crossref_primary_10_1016_j_combustflame_2022_112351 crossref_primary_10_1016_j_combustflame_2024_113359 |
Cites_doi | 10.1016/j.combustflame.2018.03.021 10.1016/j.combustflame.2016.12.029 10.1016/j.proci.2018.06.139 10.1021/acs.energyfuels.0c03086 10.1016/j.combustflame.2014.12.001 10.1016/j.combustflame.2016.12.027 10.1016/j.combustflame.2016.12.018 10.1115/1.2900729 10.1016/j.combustflame.2012.07.008 10.1016/j.combustflame.2008.05.002 10.1016/S0082-0784(98)80442-6 10.1039/B614712G 10.1016/j.combustflame.2017.11.024 10.1021/acs.energyfuels.8b00356 10.1016/S0010-2180(97)00049-7 10.1016/j.combustflame.2015.10.013 10.1016/j.proci.2008.08.001 10.1016/j.fuel.2019.116217 10.1016/j.combustflame.2008.06.001 10.1016/j.combustflame.2019.11.019 10.1016/j.combustflame.2018.06.035 10.1016/j.fuel.2018.11.020 10.1016/j.proci.2004.08.004 10.1016/j.combustflame.2015.10.018 10.1016/j.combustflame.2016.06.028 10.1016/j.combustflame.2009.12.022 10.1016/j.combustflame.2018.03.019 10.1016/S0010-2180(01)00373-X 10.1016/j.fuel.2013.05.049 10.1016/j.proci.2010.06.074 10.1016/j.proci.2004.08.145 10.1007/s00193-010-0262-2 10.1016/j.engappai.2005.02.006 10.2514/2.5942 10.1021/acs.energyfuels.0c04064 10.1016/j.combustflame.2012.11.002 10.1016/j.combustflame.2017.07.006 10.1016/j.enconman.2014.01.020 10.1021/ie403272f 10.1016/j.combustflame.2014.11.018 10.1016/j.fuel.2012.12.084 10.1021/ef700515f 10.1016/j.proci.2004.07.008 10.1016/S0010-2180(03)00057-9 10.1016/j.combustflame.2012.06.008 10.1080/00102209408907701 10.1016/j.combustflame.2004.08.011 10.1016/j.pecs.2012.03.004 10.1016/j.pecs.2008.10.002 10.1016/S0082-0784(00)80558-5 10.1016/j.proci.2006.07.182 10.1016/j.fuel.2011.04.029 10.1016/j.combustflame.2020.03.022 10.1080/13647830.2018.1470333 10.1016/j.ces.2009.09.073 10.1016/j.envsoft.2006.10.004 10.1016/j.proci.2008.06.018 10.1016/j.combustflame.2015.01.004 10.1016/j.combustflame.2015.02.005 10.1016/j.combustflame.2011.12.004 10.4271/2018-01-0191 10.1016/j.combustflame.2007.10.020 10.1016/j.combustflame.2018.04.012 10.1016/j.combustflame.2004.08.015 10.1016/j.pecs.2011.03.003 10.1016/j.combustflame.2010.03.006 10.1021/ef301242b 10.1080/00401706.1991.10484804 10.2514/1.24391 10.1016/j.proci.2004.08.001 10.1016/j.combustflame.2021.111534 10.1016/j.fuel.2014.12.058 10.1016/j.combustflame.2009.06.011 10.1016/j.combustflame.2020.07.034 10.1016/j.combustflame.2007.11.013 10.1016/j.proci.2010.05.058 10.1016/j.combustflame.2015.07.016 10.1017/CBO9780511612701 10.4271/2004-01-0558 10.1016/j.combustflame.2013.08.024 10.1021/ef401992e 10.1021/ef8011036 10.1016/j.fuel.2011.10.062 10.3389/fmech.2015.00011 10.1016/j.combustflame.2014.03.006 10.1002/(SICI)1097-4601(2000)32:1<36::AID-JCK5>3.0.CO;2-0 10.1080/13647830.2012.680502 10.1016/j.proci.2008.06.064 10.1109/4235.996017 10.1021/ef501392k 10.1016/0010-2180(93)90142-P 10.1016/j.combustflame.2011.06.012 10.1177/0954407016661448 10.1080/13647830.2020.1820577 10.1016/j.proci.2018.07.006 10.1515/1542-6580.2691 10.1016/j.enconman.2015.11.061 10.1016/j.proci.2014.05.122 10.1115/1.4032713 10.1080/00102209408935336 10.1016/S0082-0784(06)80019-6 10.1080/13647830.2020.1869309 10.1016/j.combustflame.2010.08.005 10.1016/0010-2180(90)90122-8 10.1021/jp064482y 10.1039/b109154a 10.1016/0010-2180(94)00184-T |
ContentType | Journal Article |
Copyright | 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 2022 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022 – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1080/13647830.2022.2035824 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-3559 |
EndPage | 589 |
ExternalDocumentID | 10_1080_13647830_2022_2035824 2035824 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P J9A KYCEM LJTGL M4Z NA5 O9- P2P RIG RNANH RNS RO9 ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UCJ UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION 7TB 8FD FR3 H8D L7M TASJS |
ID | FETCH-LOGICAL-c338t-e2f714176c92f93b5053aeabae50151c2fdc09b3f2c71d76d9d8c9f7d3140be33 |
ISSN | 1364-7830 |
IngestDate | Fri Jul 25 05:41:49 EDT 2025 Thu Apr 24 23:03:00 EDT 2025 Tue Jul 01 01:27:46 EDT 2025 Wed Dec 25 09:06:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-e2f714176c92f93b5053aeabae50151c2fdc09b3f2c71d76d9d8c9f7d3140be33 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
PQID | 2679591645 |
PQPubID | 2045308 |
PageCount | 30 |
ParticipantIDs | crossref_citationtrail_10_1080_13647830_2022_2035824 crossref_primary_10_1080_13647830_2022_2035824 proquest_journals_2679591645 informaworld_taylorfrancis_310_1080_13647830_2022_2035824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-16 |
PublicationDateYYYYMMDD | 2022-04-16 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Combustion theory and modelling |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0072 CIT0071 CIT0074 CIT0073 CIT0076 CIT0075 CIT0078 CIT0077 CIT0070 CIT0079 CIT0083 CIT0082 CIT0085 CIT0084 CIT0087 CIT0086 CIT0001 CIT0089 CIT0088 CIT0081 CIT0080 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0012 CIT0011 CIT0099 CIT0090 CIT0092 CIT0091 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 Turányi T. (CIT0062) 2016 CIT0028 CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0045 CIT0044 CIT0047 CIT0046 CIT0049 CIT0048 CIT0050 CIT0052 CIT0051 CIT0054 CIT0053 CIT0056 CIT0055 CIT0058 CIT0057 CIT0059 CIT0061 CIT0060 CIT0063 CIT0065 CIT0064 CIT0067 CIT0100 CIT0066 CIT0109 CIT0069 CIT0102 CIT0068 CIT0101 CIT0104 CIT0103 CIT0106 CIT0105 CIT0108 CIT0107 |
References_xml | – ident: CIT0037 doi: 10.1016/j.combustflame.2018.03.021 – ident: CIT0040 doi: 10.1016/j.combustflame.2016.12.029 – ident: CIT0034 doi: 10.1016/j.proci.2018.06.139 – ident: CIT0074 doi: 10.1021/acs.energyfuels.0c03086 – ident: CIT0077 doi: 10.1016/j.combustflame.2014.12.001 – ident: CIT0090 doi: 10.1016/j.combustflame.2016.12.027 – ident: CIT0030 doi: 10.1016/j.combustflame.2016.12.018 – ident: CIT0072 doi: 10.1115/1.2900729 – ident: CIT0092 doi: 10.1016/j.combustflame.2012.07.008 – ident: CIT0050 doi: 10.1016/j.combustflame.2008.05.002 – ident: CIT0101 doi: 10.1016/S0082-0784(98)80442-6 – ident: CIT0057 doi: 10.1039/B614712G – ident: CIT0059 doi: 10.1016/j.combustflame.2017.11.024 – ident: CIT0043 doi: 10.1021/acs.energyfuels.8b00356 – ident: CIT0079 doi: 10.1016/S0010-2180(97)00049-7 – ident: CIT0010 doi: 10.1016/j.combustflame.2015.10.013 – ident: CIT0068 doi: 10.1016/j.proci.2008.08.001 – ident: CIT0027 doi: 10.1016/j.fuel.2019.116217 – ident: CIT0088 doi: 10.1016/j.combustflame.2008.06.001 – ident: CIT0041 doi: 10.1016/j.combustflame.2019.11.019 – ident: CIT0047 doi: 10.1016/j.combustflame.2018.06.035 – ident: CIT0035 doi: 10.1016/j.fuel.2018.11.020 – ident: CIT0087 doi: 10.1016/j.proci.2004.08.004 – ident: CIT0044 doi: 10.1016/j.combustflame.2015.10.018 – ident: CIT0094 doi: 10.1016/j.combustflame.2016.06.028 – ident: CIT0007 doi: 10.1016/j.combustflame.2009.12.022 – ident: CIT0017 doi: 10.1016/j.combustflame.2018.03.019 – ident: CIT0071 doi: 10.1016/S0010-2180(01)00373-X – ident: CIT0100 doi: 10.1016/j.fuel.2013.05.049 – ident: CIT0099 doi: 10.1016/j.proci.2010.06.074 – ident: CIT0004 doi: 10.1016/j.proci.2004.08.145 – ident: CIT0083 doi: 10.1007/s00193-010-0262-2 – ident: CIT0051 doi: 10.1016/j.engappai.2005.02.006 – ident: CIT0082 doi: 10.2514/2.5942 – ident: CIT0042 doi: 10.1021/acs.energyfuels.0c04064 – ident: CIT0002 doi: 10.1016/j.combustflame.2012.11.002 – ident: CIT0091 doi: 10.1016/j.combustflame.2017.07.006 – ident: CIT0003 doi: 10.1016/j.enconman.2014.01.020 – ident: CIT0016 doi: 10.1021/ie403272f – ident: CIT0046 doi: 10.1016/j.combustflame.2014.11.018 – ident: CIT0102 doi: 10.1016/j.fuel.2012.12.084 – ident: CIT0066 doi: 10.1021/ef700515f – ident: CIT0085 doi: 10.1016/j.proci.2004.07.008 – ident: CIT0063 doi: 10.1016/S0010-2180(03)00057-9 – ident: CIT0104 doi: 10.1016/j.combustflame.2012.06.008 – ident: CIT0097 doi: 10.1080/00102209408907701 – ident: CIT0106 doi: 10.1016/j.combustflame.2004.08.011 – ident: CIT0109 doi: 10.1016/j.pecs.2012.03.004 – ident: CIT0060 doi: 10.1016/j.pecs.2008.10.002 – ident: CIT0023 doi: 10.1016/S0082-0784(00)80558-5 – ident: CIT0005 doi: 10.1016/j.proci.2006.07.182 – ident: CIT0108 doi: 10.1016/j.fuel.2011.04.029 – ident: CIT0026 doi: 10.1016/j.combustflame.2020.03.022 – ident: CIT0061 doi: 10.1080/13647830.2018.1470333 – volume-title: Analysis of kinetic reaction mechanisms year: 2016 ident: CIT0062 – ident: CIT0013 doi: 10.1016/j.ces.2009.09.073 – ident: CIT0049 doi: 10.1016/j.envsoft.2006.10.004 – ident: CIT0064 doi: 10.1016/j.proci.2008.06.018 – ident: CIT0107 doi: 10.1016/j.combustflame.2015.01.004 – ident: CIT0033 doi: 10.1016/j.combustflame.2015.02.005 – ident: CIT0105 doi: 10.1016/j.combustflame.2011.12.004 – ident: CIT0028 doi: 10.4271/2018-01-0191 – ident: CIT0006 doi: 10.1016/j.combustflame.2007.10.020 – ident: CIT0029 doi: 10.1016/j.combustflame.2018.04.012 – ident: CIT0080 doi: 10.1016/j.combustflame.2004.08.015 – ident: CIT0001 doi: 10.1016/j.pecs.2011.03.003 – ident: CIT0008 doi: 10.1016/j.combustflame.2010.03.006 – ident: CIT0069 doi: 10.1021/ef301242b – ident: CIT0054 – ident: CIT0048 doi: 10.1080/00401706.1991.10484804 – ident: CIT0098 doi: 10.2514/1.24391 – ident: CIT0015 doi: 10.1016/j.proci.2004.08.001 – ident: CIT0075 doi: 10.1016/j.combustflame.2021.111534 – ident: CIT0095 doi: 10.1016/j.fuel.2014.12.058 – ident: CIT0038 doi: 10.1016/j.combustflame.2009.06.011 – ident: CIT0073 doi: 10.1016/j.combustflame.2020.07.034 – ident: CIT0025 doi: 10.1016/j.combustflame.2007.11.013 – ident: CIT0103 doi: 10.1016/j.proci.2010.05.058 – ident: CIT0018 doi: 10.1016/j.combustflame.2015.07.016 – ident: CIT0055 doi: 10.1017/CBO9780511612701 – ident: CIT0058 doi: 10.4271/2004-01-0558 – ident: CIT0053 doi: 10.1016/j.combustflame.2013.08.024 – ident: CIT0067 doi: 10.1021/ef401992e – ident: CIT0084 doi: 10.1021/ef8011036 – ident: CIT0086 doi: 10.1016/j.fuel.2011.10.062 – ident: CIT0070 doi: 10.3389/fmech.2015.00011 – ident: CIT0076 doi: 10.1016/j.combustflame.2014.03.006 – ident: CIT0014 doi: 10.1002/(SICI)1097-4601(2000)32:1<36::AID-JCK5>3.0.CO;2-0 – ident: CIT0024 doi: 10.1080/13647830.2012.680502 – ident: CIT0021 doi: 10.1016/j.proci.2008.06.064 – ident: CIT0039 doi: 10.1109/4235.996017 – ident: CIT0052 doi: 10.1021/ef501392k – ident: CIT0078 doi: 10.1016/0010-2180(93)90142-P – ident: CIT0012 doi: 10.1016/j.combustflame.2011.06.012 – ident: CIT0056 doi: 10.1177/0954407016661448 – ident: CIT0009 doi: 10.1080/13647830.2020.1820577 – ident: CIT0036 doi: 10.1016/j.proci.2018.07.006 – ident: CIT0065 doi: 10.1515/1542-6580.2691 – ident: CIT0032 doi: 10.1016/j.enconman.2015.11.061 – ident: CIT0089 doi: 10.1016/j.proci.2014.05.122 – ident: CIT0031 doi: 10.1115/1.4032713 – ident: CIT0096 doi: 10.1080/00102209408935336 – ident: CIT0022 doi: 10.1016/S0082-0784(06)80019-6 – ident: CIT0019 doi: 10.1080/13647830.2020.1869309 – ident: CIT0081 doi: 10.1016/j.combustflame.2010.08.005 – ident: CIT0011 doi: 10.1016/0010-2180(90)90122-8 – ident: CIT0020 doi: 10.1021/jp064482y – ident: CIT0045 doi: 10.1039/b109154a – ident: CIT0093 doi: 10.1016/0010-2180(94)00184-T |
SSID | ssj0002724 |
Score | 2.3112643 |
Snippet | Due to the specific prediction requirements in combustion simulations, the reduced chemical mechanism developed focusing on particular applications is usually... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 560 |
SubjectTerms | Delay time Error analysis Flames Fuels genetic algorithm Genetic algorithms global sensitivity analysis Ignition Lumping path sensitivity analysis Premixed flames Reactors Reduced mechanism Reduction Sensitivity analysis Shock tubes specific applications |
Title | Construction of reduced chemical mechanisms orientated toward specific applications: a case study of primary reference fuel |
URI | https://www.tandfonline.com/doi/abs/10.1080/13647830.2022.2035824 https://www.proquest.com/docview/2679591645 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZCe4ED4ikKBfnALdqwu16vvdyqFhQhlVMqApfV2mtLSE0itZsL_BT-LDPrR1ylUnlcrMi7fiTzxTO2v5kh5C1nXdlbVmVclioDfSwzyaouU7Iz6JHA8h4dhc8_1_OL6tOSLyeTXwlraTuomf5xq1_Jv0gV6kCu6CX7F5KNnUIFfAb5QgkShvKPZIzZNkP8V7T6rjAOK1iQOkQBWBl07P1-vULe-ej5iAbmMFJlp-hkiUShaXqJ7ZyfNeg2F3l2ZET7iBQxJcnUbj3TPsQ42KwUpgVzNw94bY_n8WOWncugG8fLj-2Ip03k7Tiq7nnyzmk4wf7awdzjm2eeOrzcmvSgAva4GBGxjtBa7OUMSZZdVleZkP6Gxrg6sHUysIaadK123vUekyxZeHmdJzqcu7REe-rB8SlxNBxshrOEAp2Fq50-jCxF_-QeOSyFQA7A4cn87NuXqOhL4XMm-8kHBzGZv7t1iBumz43AuHuGwGjdLB6Rh35bQk8cxh6TiVk_IQ-SYJVPyc8UbXRjqUcbDWijO7TRHdqoQxsNaKMp2t7TjiLW6Ig17NRjjUasUcTaM3Lx8cPidJ751B2ZZkwOmSmtKKpC1LopbcMU2NmsM53qDAf7s9Cl7XXeKGZLLYpe1H3TS91Y0TPY8CvD2HNysN6szQtCJevqHrMQFb2srMkVBx0EmxYwnQ3ThToiVfhVW-3j2mN6lcu28OFvgzBaFEbrhXFEZrGZ_2p3NWhSkbXDiGfroNyyO9oeB_m2fv24bstaNBx2ZxV_-R9dvyL3d3-2Y3IAODCvwU4e1BuP198m1rn5 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1Eo4IE1JbbzZEOIqkDp1ErdrPglIfpAbbrAn8eXOFUBoQ6do7Ni53z-zrnvO4RuQpZRZVjghQkVnj2PEy9hQeaJJNPASGC-AqLwazdq94PnQThY4sJAWSXk0KYUiihiNWxuuIyuSuJuCYieJ8y36R0FMhWwPYNNtBVa7A5ezvzuIhrT2DW2jQIPbCoWz3_D_DiffqiX_onWxRHU2keyevmy8uS9Oc9FU37-0nVcb3YHaM8hVHxfutQh2tDjI7S7pFt4jL6gzWclPIsnBk9BAFYrLJ38AB5pYBS_zUYzPJkWlEuLbHFe1OhiYHdChRJe_nt-hzMs7ZGKC8FbGPSjFMLAi04o2Mz18AT1W4-9h7bnujh40qa_uaepiUlA4kim1KRMWMjFMp2JTIcWihBJjZJ-KpihMiYqjlSqEpmaWDGb-wnN2CmqjSdjfYZwwrJIQUMaopLAaF-ENhxZ_GpRlGaSiDoKqm_HpZM4h04bQ06cEmq1thzWlru1raPmwsxNbZVBuuwYPC8uV0zZCYWzFbaNyou4CxczTiNo-W4z1_B8jaGv0Xa799rhnafuywXagUfw34tEDVSzPqEvLXzKxVWxP74BDhwL_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7IhCAR-4psR2Vm4IqMpWcaASNyveJEQ3tekFfh5P4lQtCHHoORordsbjmXjeewhdhCyjyrDACxMqPHseJ17CgswTSaYBkcB8BUDh507U7gYPb2HVTThxbZVQQ5uSKKKI1bC5R8pUHXGXBDjPE-bb6o4ClgrAnsEqWotsegJdfczvzIIxjZ2ubRR4YFOBeP4aZuF4WiAv_RWsixOotY1E9e5l48lHc5qLpvz8Qeu41OR20JbLT_F16VC7aEUP9tDmHGvhPvoCkc-KdhYPDR4D_atWWDryAdzXgCd-n_QneDguAJc2r8V50aGLAdsJ_Ul4_u78CmdY2gMVF3S3MOiopMHAMx0UbKa6d4C6rbvXm7bnNBw8aYvf3NPUxCQgcSRTalImbMLFMp2JTIc2ESGSGiX9VDBDZUxUHKlUJTI1sWK28hOasUNUGwwH-gjhhGWRAjkaopLAaF-ENhjZ7NXmUJpJIuooqD4dl47gHHQ2epw4HtRqbTmsLXdrW0fNmZmb2n8G6bxf8Lz4tWJKHRTO_rFtVE7EXbCYcBqB4LutW8PjJYY-R-svty3-dN95PEEb8AQuvUjUQDXrEvrU5k65OCt2xzevHQqj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+reduced+chemical+mechanisms+orientated+toward+specific+applications%3A+a+case+study+of+primary+reference+fuel&rft.jtitle=Combustion+theory+and+modelling&rft.au=Niu%2C+Bo&rft.au=Jia%2C+Ming&rft.au=Chang%2C+Yachao&rft.au=Dong%2C+Xue&rft.date=2022-04-16&rft.pub=Taylor+%26+Francis&rft.issn=1364-7830&rft.eissn=1741-3559&rft.volume=26&rft.issue=3&rft.spage=560&rft.epage=589&rft_id=info:doi/10.1080%2F13647830.2022.2035824&rft.externalDocID=2035824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-7830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-7830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-7830&client=summon |