Simultaneous detection of lead (II) and mercury (II) ions using nucleic acid aptamer molecular beacons

We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg 2+ and Pb 2+ based on nucleic acid aptamer molecular beacon (MB) probes. In this analytical method, two MB probes for Hg 2+ (P Hg ) and Pb 2+ (P Pb ) were designed. The carboxyl fluorescein (FAM) and t...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental analytical chemistry Vol. 101; no. 13; pp. 1922 - 1934
Main Authors Lu, Zijing, Xiong, Weiwei, Wang, Peng, Li, Xin, Zhai, Kun, Shi, Rujie, Xiang, Dongshan
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 21.10.2021
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg 2+ and Pb 2+ based on nucleic acid aptamer molecular beacon (MB) probes. In this analytical method, two MB probes for Hg 2+ (P Hg ) and Pb 2+ (P Pb ) were designed. The carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were selected as fluorophores of P Hg and P Pb , Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were selected as organic quenchers, and several continuous nucleotides with guanine (G base) were connected to organic quenchers. The aptamers are put in as a part of stem and loop. In general, the fluorescence of fluorophores was dually quenched by BHQ and G bases, so the fluorescence signals were weak. In the presence of Hg 2+ and Pb 2+ , P Hg and P Pb bonded with them, and the stem-loop structure of MB was destroyed and the fluorescence recovered. Under the optimal conditions, the fluorescence intensity of FAM had a good linear relationship with the concentration of Hg 2+ in the range from 0.7 nmol/L to 84 nmol/L, and that of TAMRA and Pb 2+ in the range from 0.2 nmol/L to 24 nmol/L. The detection limit of Hg 2+ is 0.36 nmol/L and that of Pb 2+ is 0.16 nmol/L (3σ, n = 11). The relative standard deviations (RSD) for determination of Hg 2+ and Pb 2+ were both lower than 5%, the average recoveries of this method in real samples were 96.55-102.78%, which indicated that the method had a high accuracy.
AbstractList We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg 2+ and Pb 2+ based on nucleic acid aptamer molecular beacon (MB) probes. In this analytical method, two MB probes for Hg 2+ (P Hg ) and Pb 2+ (P Pb ) were designed. The carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were selected as fluorophores of P Hg and P Pb , Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were selected as organic quenchers, and several continuous nucleotides with guanine (G base) were connected to organic quenchers. The aptamers are put in as a part of stem and loop. In general, the fluorescence of fluorophores was dually quenched by BHQ and G bases, so the fluorescence signals were weak. In the presence of Hg 2+ and Pb 2+ , P Hg and P Pb bonded with them, and the stem-loop structure of MB was destroyed and the fluorescence recovered. Under the optimal conditions, the fluorescence intensity of FAM had a good linear relationship with the concentration of Hg 2+ in the range from 0.7 nmol/L to 84 nmol/L, and that of TAMRA and Pb 2+ in the range from 0.2 nmol/L to 24 nmol/L. The detection limit of Hg 2+ is 0.36 nmol/L and that of Pb 2+ is 0.16 nmol/L (3σ, n = 11). The relative standard deviations (RSD) for determination of Hg 2+ and Pb 2+ were both lower than 5%, the average recoveries of this method in real samples were 96.55-102.78%, which indicated that the method had a high accuracy.
We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg2+ and Pb2+ based on nucleic acid aptamer molecular beacon (MB) probes. In this analytical method, two MB probes for Hg2+ (PHg) and Pb2+ (PPb) were designed. The carboxyl fluorescein (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) were selected as fluorophores of PHg and PPb, Black Hole Quencher 1 (BHQ-1) and Black Hole Quencher 2 (BHQ-2) were selected as organic quenchers, and several continuous nucleotides with guanine (G base) were connected to organic quenchers. The aptamers are put in as a part of stem and loop. In general, the fluorescence of fluorophores was dually quenched by BHQ and G bases, so the fluorescence signals were weak. In the presence of Hg2+ and Pb2+, PHg and PPb bonded with them, and the stem-loop structure of MB was destroyed and the fluorescence recovered. Under the optimal conditions, the fluorescence intensity of FAM had a good linear relationship with the concentration of Hg2+ in the range from 0.7 nmol/L to 84 nmol/L, and that of TAMRA and Pb2+ in the range from 0.2 nmol/L to 24 nmol/L. The detection limit of Hg2+ is 0.36 nmol/L and that of Pb2+ is 0.16 nmol/L (3σ, n = 11). The relative standard deviations (RSD) for determination of Hg2+ and Pb2+ were both lower than 5%, the average recoveries of this method in real samples were 96.55–102.78%, which indicated that the method had a high accuracy.
Author Wang, Peng
Xiong, Weiwei
Zhai, Kun
Shi, Rujie
Lu, Zijing
Xiang, Dongshan
Li, Xin
Author_xml – sequence: 1
  givenname: Zijing
  surname: Lu
  fullname: Lu, Zijing
  organization: Hubei Minzu University
– sequence: 2
  givenname: Weiwei
  surname: Xiong
  fullname: Xiong, Weiwei
  organization: Hubei Minzu University
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Hubei Minzu University
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Hubei Minzu University
– sequence: 5
  givenname: Kun
  surname: Zhai
  fullname: Zhai, Kun
  organization: Hubei Minzu University
– sequence: 6
  givenname: Rujie
  surname: Shi
  fullname: Shi, Rujie
  email: 281926472@qq.com
  organization: Chongqing Three Gorges University
– sequence: 7
  givenname: Dongshan
  surname: Xiang
  fullname: Xiang, Dongshan
  email: zk3100@sohu.com
  organization: Hubei Minzu University
BookMark eNp9kE1LAzEQhoNUsK3-BCHgRQ9bk802Hzel-FEoeFDPYTY7K1t2k5rsIv33bmm9epmB4XnfgWdGJj54JOSaswVnmt0zwaQS3CxyNg4uDedanJEpZ7nJmDBqQqYHJjtAF2SW0pYxLpZaTEn93nRD24PHMCRaYY-ub4KnoaYtQkVv1-s7Cr6iHUY3xP3xMBKJDqnxX9QPrsXGUXBNRWHXwwjSLrTohhYiLRHcCF-S8xrahFenPSefz08fq9ds8_ayXj1uMieE7jPMXSEkKzQWpXQCmEGpjXbIcq4KhaDK0vBCiVqKWkteALpliUpq4IYLFHNyc-zdxfA9YOrtNgzRjy9tvlQ6V9LkaqSWR8rFkFLE2u5i00HcW87sQan9U2oPSu1J6Zh7OOYaX4fYwU-IbWV72Lch1hG8a5IV_1f8AqDmfiw
CitedBy_id crossref_primary_10_1186_s12951_021_00914_4
crossref_primary_10_1021_acsabm_2c00368
crossref_primary_10_1002_slct_202203178
crossref_primary_10_1016_j_ccr_2022_214676
crossref_primary_10_1016_j_arabjc_2023_105482
Cites_doi 10.1039/C8CP01718B
10.1289/ehp.1002720
10.1093/nar/gkv1320
10.1016/j.bios.2012.07.045
10.2116/analsci.33.275
10.1016/j.talanta.2011.01.016
10.1016/j.microc.2018.03.017
10.1038/355850a0
10.1021/ac8022185
10.1016/j.microc.2017.09.007
10.1016/j.trac.2007.12.004
10.1016/j.talanta.2013.09.013
10.1016/j.talanta.2018.01.061
10.1016/j.scitotenv.2017.09.126
10.1080/19393210.2012.680612
10.1021/ja0446202
10.1016/j.sab.2016.02.017
10.1039/C6AN00879H
10.1016/j.talanta.2017.06.020
10.1002/marc.200500837
10.1016/j.aca.2012.04.020
10.1016/j.envres.2013.07.005
10.1016/j.microc.2018.06.019
10.3390/s19030599
10.1006/abio.1996.0477
10.1016/j.ccr.2012.05.012
10.1021/acs.analchem.6b02466
10.1007/s12011-017-1090-3
10.1016/j.snb.2017.11.110
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7QH
7SN
7ST
7TN
7U7
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1080/03067319.2019.1691183
DatabaseName CrossRef
Aqualine
Ecology Abstracts
Environment Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Oceanic Abstracts
Toxicology Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Environmental Sciences
EISSN 1029-0397
EndPage 1934
ExternalDocumentID 10_1080_03067319_2019_1691183
1691183
Genre Original Articles
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFRAH
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
LJTGL
M4Z
NA5
NW0
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TCY
TFL
TFT
TFW
TN5
TTHFI
TWF
UT5
UU3
V1K
WH7
ZGOLN
~02
~KM
~S~
AAHBH
AAYXX
ABPAQ
AHDZW
CITATION
TBQAZ
TDBHL
TUROJ
7QH
7SN
7ST
7TN
7U7
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c338t-e2c436048e4b6c3a09e6898ce021747ea7bb91473f63f8614aec5be768a1913e3
ISSN 0306-7319
IngestDate Thu Oct 10 18:48:10 EDT 2024
Fri Aug 23 01:31:08 EDT 2024
Wed Nov 01 04:21:34 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e2c436048e4b6c3a09e6898ce021747ea7bb91473f63f8614aec5be768a1913e3
PQID 2578276927
PQPubID 53212
PageCount 13
ParticipantIDs informaworld_taylorfrancis_310_1080_03067319_2019_1691183
crossref_primary_10_1080_03067319_2019_1691183
proquest_journals_2578276927
PublicationCentury 2000
PublicationDate 2021-10-21
PublicationDateYYYYMMDD 2021-10-21
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-21
  day: 21
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of environmental analytical chemistry
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – ident: e_1_3_2_26_1
  doi: 10.1039/C8CP01718B
– ident: e_1_3_2_3_1
  doi: 10.1289/ehp.1002720
– ident: e_1_3_2_28_1
  doi: 10.1093/nar/gkv1320
– ident: e_1_3_2_19_1
  doi: 10.1016/j.bios.2012.07.045
– ident: e_1_3_2_23_1
  doi: 10.2116/analsci.33.275
– ident: e_1_3_2_5_1
  doi: 10.1016/j.talanta.2011.01.016
– ident: e_1_3_2_12_1
  doi: 10.1016/j.microc.2018.03.017
– ident: e_1_3_2_15_1
  doi: 10.1038/355850a0
– ident: e_1_3_2_22_1
  doi: 10.1021/ac8022185
– ident: e_1_3_2_8_1
  doi: 10.1016/j.microc.2017.09.007
– ident: e_1_3_2_16_1
  doi: 10.1016/j.trac.2007.12.004
– ident: e_1_3_2_6_1
  doi: 10.1016/j.talanta.2013.09.013
– ident: e_1_3_2_20_1
  doi: 10.1016/j.talanta.2018.01.061
– ident: e_1_3_2_2_1
  doi: 10.1016/j.scitotenv.2017.09.126
– ident: e_1_3_2_13_1
  doi: 10.1080/19393210.2012.680612
– ident: e_1_3_2_25_1
  doi: 10.1021/ja0446202
– ident: e_1_3_2_9_1
  doi: 10.1016/j.sab.2016.02.017
– ident: e_1_3_2_14_1
  doi: 10.1039/C6AN00879H
– ident: e_1_3_2_24_1
  doi: 10.1016/j.talanta.2017.06.020
– ident: e_1_3_2_30_1
  doi: 10.1002/marc.200500837
– ident: e_1_3_2_17_1
  doi: 10.1016/j.aca.2012.04.020
– ident: e_1_3_2_7_1
  doi: 10.1016/j.envres.2013.07.005
– ident: e_1_3_2_11_1
  doi: 10.1016/j.microc.2018.06.019
– ident: e_1_3_2_21_1
  doi: 10.3390/s19030599
– ident: e_1_3_2_27_1
  doi: 10.1006/abio.1996.0477
– ident: e_1_3_2_4_1
  doi: 10.1016/j.ccr.2012.05.012
– ident: e_1_3_2_29_1
  doi: 10.1021/acs.analchem.6b02466
– ident: e_1_3_2_10_1
  doi: 10.1007/s12011-017-1090-3
– ident: e_1_3_2_18_1
  doi: 10.1016/j.snb.2017.11.110
SSID ssj0013583
Score 2.3446832
Snippet We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg 2+ and Pb 2+ based on nucleic acid aptamer molecular beacon...
We have developed a fluorescence quantitative analysis method for the simultaneous detection of Hg2+ and Pb2+ based on nucleic acid aptamer molecular beacon...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1922
SubjectTerms Acoustic transponders
aptamer
Aptamers
Bonding strength
Chemical compounds
Detection
Fluorescein
Fluorescence
Fluorophores
Guanine
Ion probes
Lead
Lead (II)
Mercury
Mercury (II)
Mercury (metal)
Nucleic acids
Nucleotides
Probes
Sensors
simultaneous detection
Title Simultaneous detection of lead (II) and mercury (II) ions using nucleic acid aptamer molecular beacons
URI https://www.tandfonline.com/doi/abs/10.1080/03067319.2019.1691183
https://www.proquest.com/docview/2578276927
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZK9wAvCAYTg4H8wAOoSpXESRw_TmOoRYCQ6LSKl8h2j6VMWzZtqdD2o_iNHDvOZawSt5eoOk0T1d8Xn0s-HxPyOtaSGWN4wGVogkTHMsiViIPI5CFw9ImwsnXIT5-z2VHyYZkuR6MfA9XSulZTfbNxXcm_oIo2xNWukv0LZLuLogE_I754RITx-EcYfy2tHlBWYHWsK6hBt_HfKULngse5TfttcfwMLjWOX290Cri1KxVUtqmxbdyqy9VEXtQST56ctRvnTpSdNn1V76RXvveFxEH7icHCOdeFQJ5eN9Vy3e4s10mA1u7FSHnSOk-0LUuvED6G8juUfbW_sX6B_tSPToaw9I3Dfd0idsK5uK9bLO5sITKY-TCPCTjzcyk0M7PV6YSsEfN2U7cvhHiOssFMjJFrPPDqGKcmGz2Gl1jazAlvaLV-YmobCEXN_jq_NOP239wjWzEXaTomW_uzd9-O-_dWadP4tf0D7Zox28190y1uRUO3euXeiQ1cwLN4RB76TIXuN7R7TEZQbZP7By2M22TncIg19V7i6gkxQ17Sjpf03FDLS_pmPn9LkZPUc7IxWD5Sx0fq-UgtH6nnI-34SD0fn5Kj94eLg1ng9_MINGN5HUCsE5ahy4BEZZrJUECWi1yDy4s5SK6UiBLOTMZMjnGjBJ0qwIRYRsJW63fIuDqv4BmhHLNwYBCZUKdJlqUik4qtFAbzOUv0Ktol03Zci4umbUsRtd1wPRCFBaLwQOwSMRz9onb0NA0zC_ab3-61UBX-gbsqrCuMeSZi_vw_Lv2CPOifnT0yri_X8BKj4Fq98tT7CS-3rM8
link.rule.ids 315,786,790,27955,27956,60239,61028
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cKCX8mgRlJcPPbSHbJM4sZNjhUC7FPZSkLhZtjOuVkAWsdlLf31n8hDQquLANbItxx7Pw_7mG4DPqbcyhKAjbeMQZT61UeHKNEpCEaMmm4gV30NeTNX4Kju7zq-f5MIwrJJj6NARRbS6mg83X0YPkLhvrZ9LssPIrHLEdC8kmG9hVXGmJqdxxNPHl4S8o-KkLhH3GbJ4_jfMM_v0jL30H23dmqDTdfDD5Dvkyc1o2biR__0Xr-Pr_m4D3vceqvjeidQmvMF6C9aOh8JwW7B98pgcRw177bD4AOHnjPGJtsb5ciEqbFqYVy3mQdySKIkvk8lXQfMSd_jgaS-7Dyz3guH3v0TN5MozL6yfVcLeN5YairuhgK9wrL7rxUe4Oj25PB5HfR2HyFMA3ESY-kwqUhWYOeWljUtURVl4bOMhjVY7VyaZlkHJUJC_YNHnDikQshRNSpTbsFLPa9wBoSn6QolJiH2eKZWXyjpZOXLiCpn5KtmF0bB75r6j6zDJwILar6vhdTX9uu5C-XSPTdPek4SuqImRL_TdHwTC9Cd_YVgFplqVqf70iqGPYG18eXFuzifTH3vwLmUgDRnMNNmHleZhiQfkCTXusBX1PzAR-i0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iRWK7ABtMDAbzgQMcUpI4sZMjKqtWNqpJoxI3y3aeUQVLqyW97K_nOYlVBkIcdo1sy7E_vx_J5-8BvE2t5s45GUkduyizqY4KU6ZR4ooYJflErPx3yC9zcbbIPn_LA5uwGWiVPod2vVBEZ6v94V5XLjDiPnRhLkHHE7PKsVd7IVzuwEPhnaW_xRHPtz8S8l6Jk7pEvk-4xPOvYe64pzvipX8Z684DTZ-ACXPviSc_xpvWjO3tH7KO93q5p_B4iE_Zxx5Q-_AA6wPYnYSycAdweLq9GkcNB9vQPAN3tfTsRF3jatOwCtuO5FWzlWM_CUjs3Wz2ntG02DXeWNrJ_oFHPfPk---s9tLKS8u0XVZMr1tNDdl1KN_LjDfedfMcFtPTr5OzaKjiEFlKf9sIU5txQYYCMyMs13GJoigLi102JFFLY8okk9wJ7gqKFjTa3CClQZpySY78EEb1qsYXwCTlXsgxcbHNMyHyUmjDK0MhXMEzWyVHMA6bp9a9WIdKggbqsK7Kr6sa1vUIyt-3WLXdVxLXlzRR_D99jwMe1HDuG-UNYCpFmcqX9xj6BB5dfpqqi9n8_BXspZ5FQ94yTY5h1N5s8DWFQa150wH9FzDi-No
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+detection+of+lead+%28II%29+and+mercury+%28II%29+ions+using+nucleic+acid+aptamer+molecular+beacons&rft.jtitle=International+journal+of+environmental+analytical+chemistry&rft.au=Lu%2C+Zijing&rft.au=Xiong%2C+Weiwei&rft.au=Wang%2C+Peng&rft.au=Li%2C+Xin&rft.date=2021-10-21&rft.pub=Taylor+%26+Francis&rft.issn=0306-7319&rft.eissn=1029-0397&rft.volume=101&rft.issue=13&rft.spage=1922&rft.epage=1934&rft_id=info:doi/10.1080%2F03067319.2019.1691183&rft.externalDocID=1691183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7319&client=summon