A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles

•A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery pa...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 113; pp. 463 - 476
Main Authors Xiong, Rui, Sun, Fengchun, Chen, Zheng, He, Hongwen
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery parameter, capacity and SoC concurrently.•The robustness of the proposed approach against different aging levels is evaluated. Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach.
AbstractList Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach.
•A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery parameter, capacity and SoC concurrently.•The robustness of the proposed approach against different aging levels is evaluated. Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach.
Author Sun, Fengchun
He, Hongwen
Chen, Zheng
Xiong, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Xiong
  fullname: Xiong, Rui
  email: rxiong6@gmail.com, rxiong@ieee.org
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Fengchun
  surname: Sun
  fullname: Sun, Fengchun
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Zheng
  surname: Chen
  fullname: Chen, Zheng
  organization: DOE GATE Center for Electric Drive Transportation, Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA
– sequence: 4
  givenname: Hongwen
  surname: He
  fullname: He, Hongwen
  organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27927957$$DView record in Pascal Francis
BookMark eNqFkUuLFDEUhYOMYM_jL0g2gpsqb1JvcOEw-MKB2TjrcCt1azpNKlUm6cb-If5fU_bowk1DIHA53-FwziW7cLMjxl4LyAWI-t0ux4Uc-adjLkEUOTQ51OIF24i2kVknRHvBNlBAncladK_YZQg7AJBCwob9uuUDRswGbw7k-LS30WRBoyVOPyO5gQb-De2Ejo_GRvLGPfEeQzov6HGidOLoBh4ixsSEaCaMZnYcl8XPqLd8Hrk1cWv2U7bel9kepwT1GBN75MZxsqSjN5ofaGu0pXDNXo5oA908_1fs8dPH73dfsvuHz1_vbu8zXRRtzAbqpG4FyKKqACtZNk3b19g1UkMjSyGKauwABkElatl1ra56HFsJHZRS9mVxxd6efFPUH_sUXk0maLIWHc37oGQquBCtkM1ZqaigLlIWIZP0zbMU1yZHj06boBafqvFHJZsuvWq1rE867ecQPI3_JALUOq3aqb_TqnVaBY1K0ybw_X-gNvFP69GjsefxDyecUrUHQ14FbchpGoxPQ6hhNucsfgMlNcfX
CODEN APENDX
CitedBy_id crossref_primary_10_1149_2754_2734_ad58f7
crossref_primary_10_1007_s40435_023_01230_5
crossref_primary_10_1016_j_apenergy_2016_07_005
crossref_primary_10_3390_en13071785
crossref_primary_10_1016_j_apenergy_2013_09_006
crossref_primary_10_3390_batteries10080263
crossref_primary_10_1016_j_apenergy_2016_08_044
crossref_primary_10_3390_en18010042
crossref_primary_10_1109_TVT_2018_2842820
crossref_primary_10_1016_j_apenergy_2019_113520
crossref_primary_10_1115_1_4062385
crossref_primary_10_1016_j_apenergy_2017_02_016
crossref_primary_10_1109_TCST_2022_3196474
crossref_primary_10_1109_TSTE_2017_2699288
crossref_primary_10_1109_TIE_2020_2972468
crossref_primary_10_1016_j_egypro_2017_03_621
crossref_primary_10_1155_2015_104673
crossref_primary_10_1109_JPROC_2022_3175614
crossref_primary_10_1109_TIE_2021_3091920
crossref_primary_10_1007_s10586_018_2175_2
crossref_primary_10_3390_en7128076
crossref_primary_10_1109_TITS_2024_3361807
crossref_primary_10_1115_1_4042987
crossref_primary_10_1016_j_est_2022_104472
crossref_primary_10_3390_en11113180
crossref_primary_10_3390_en12030446
crossref_primary_10_1016_j_est_2018_07_006
crossref_primary_10_1016_j_est_2018_07_004
crossref_primary_10_1109_TVT_2017_2709326
crossref_primary_10_1016_j_jpowsour_2017_11_094
crossref_primary_10_3389_fenrg_2022_933240
crossref_primary_10_1016_j_apenergy_2019_113619
crossref_primary_10_1016_j_apenergy_2017_03_079
crossref_primary_10_3390_en10020206
crossref_primary_10_1109_ACCESS_2019_2930680
crossref_primary_10_1177_0020294020944952
crossref_primary_10_1186_s10033_018_0268_8
crossref_primary_10_1016_j_apenergy_2015_06_063
crossref_primary_10_3390_s21175698
crossref_primary_10_1109_TPEL_2024_3492714
crossref_primary_10_3901_CJME_2016_0111_005
crossref_primary_10_1016_j_apenergy_2018_12_071
crossref_primary_10_1016_j_energy_2025_135548
crossref_primary_10_1016_j_jpowsour_2017_09_063
crossref_primary_10_3390_en10030364
crossref_primary_10_1155_2019_8784154
crossref_primary_10_1016_j_egypro_2014_11_932
crossref_primary_10_1007_s43236_022_00410_4
crossref_primary_10_1016_j_est_2023_109071
crossref_primary_10_3390_en11061481
crossref_primary_10_1146_annurev_control_053018_023643
crossref_primary_10_1109_ACCESS_2018_2847323
crossref_primary_10_1109_ACCESS_2019_2943558
crossref_primary_10_3390_app112411797
crossref_primary_10_1016_j_est_2023_106901
crossref_primary_10_1016_j_ijthermalsci_2017_03_006
crossref_primary_10_1007_s00170_025_15169_8
crossref_primary_10_1016_j_egypro_2016_11_305
crossref_primary_10_1007_s11356_021_17148_4
crossref_primary_10_1109_ACCESS_2018_2837652
crossref_primary_10_1155_2018_5218205
crossref_primary_10_1016_j_egypro_2016_11_303
crossref_primary_10_1016_j_apenergy_2016_01_010
crossref_primary_10_1016_j_apenergy_2016_01_125
crossref_primary_10_1109_TIE_2019_2952825
crossref_primary_10_1016_j_apenergy_2014_04_077
crossref_primary_10_3390_en11010064
crossref_primary_10_1016_j_energy_2017_12_061
crossref_primary_10_1007_s11581_021_04021_0
crossref_primary_10_1016_j_apenergy_2013_12_046
crossref_primary_10_1016_j_jpowsour_2017_11_056
crossref_primary_10_1155_2014_261085
crossref_primary_10_1016_j_est_2022_105648
crossref_primary_10_1186_s10033_023_00846_0
crossref_primary_10_1016_j_apenergy_2019_113817
crossref_primary_10_1016_j_est_2020_101250
crossref_primary_10_1109_TVT_2017_2765670
crossref_primary_10_1016_j_geits_2022_100020
crossref_primary_10_1016_j_energy_2022_123222
crossref_primary_10_1016_j_jpowsour_2014_02_100
crossref_primary_10_1016_j_apenergy_2016_10_020
crossref_primary_10_1016_j_energy_2017_11_079
crossref_primary_10_1016_j_ijepes_2018_08_015
crossref_primary_10_1016_j_apenergy_2017_05_081
crossref_primary_10_1149_1945_7111_aca2ee
crossref_primary_10_1109_ACCESS_2018_2854224
crossref_primary_10_4271_13_06_01_0007
crossref_primary_10_1002_er_7350
crossref_primary_10_1002_er_5058
crossref_primary_10_1016_j_jechem_2022_04_013
crossref_primary_10_1109_TMECH_2023_3348519
crossref_primary_10_3390_en10081121
crossref_primary_10_1155_2015_485216
crossref_primary_10_3390_en12040681
crossref_primary_10_1016_j_est_2023_107072
crossref_primary_10_1109_TAES_2019_2958161
crossref_primary_10_1631_jzus_A2100006
crossref_primary_10_1016_j_apenergy_2016_10_026
crossref_primary_10_1109_TPEL_2019_2945513
crossref_primary_10_3233_JCM_204537
crossref_primary_10_1016_j_energy_2013_10_027
crossref_primary_10_1016_j_est_2022_104666
crossref_primary_10_1016_j_apenergy_2014_03_086
crossref_primary_10_1007_s43236_019_00023_4
crossref_primary_10_1016_j_energy_2024_130555
crossref_primary_10_1016_j_jpowsour_2016_09_123
crossref_primary_10_3390_en15197226
crossref_primary_10_1016_j_est_2024_111524
crossref_primary_10_1016_j_jpowsour_2017_01_054
crossref_primary_10_3390_en12203960
crossref_primary_10_1016_j_energy_2021_121233
crossref_primary_10_1016_j_apenergy_2017_05_183
crossref_primary_10_1016_j_est_2023_108197
crossref_primary_10_1016_j_energy_2021_122206
crossref_primary_10_1016_j_jpowsour_2018_10_019
crossref_primary_10_3390_app8060925
crossref_primary_10_1109_ACCESS_2020_3030260
crossref_primary_10_1016_j_apenergy_2016_10_011
crossref_primary_10_1016_j_apenergy_2019_113339
crossref_primary_10_1109_TIE_2017_2733475
crossref_primary_10_1016_j_ijepes_2021_106944
crossref_primary_10_1016_j_apenergy_2017_03_111
crossref_primary_10_3390_fire6030087
crossref_primary_10_1016_j_jpowsour_2014_10_006
crossref_primary_10_3390_en10060792
crossref_primary_10_1007_s11581_021_04165_z
crossref_primary_10_1134_S1023193518140033
crossref_primary_10_1109_TPEL_2018_2861730
crossref_primary_10_1016_j_rser_2014_10_047
crossref_primary_10_1016_j_egypro_2016_12_063
crossref_primary_10_3390_s22155536
crossref_primary_10_1016_j_apenergy_2015_02_064
crossref_primary_10_1016_j_est_2021_103485
crossref_primary_10_1016_j_apenergy_2016_10_065
crossref_primary_10_1109_TIE_2016_2645166
crossref_primary_10_1016_j_energy_2019_04_126
crossref_primary_10_3390_en14071797
crossref_primary_10_1108_RIA_04_2024_0091
crossref_primary_10_1016_j_jclepro_2018_05_074
crossref_primary_10_3390_vehicles4010001
crossref_primary_10_1080_15435075_2014_891512
crossref_primary_10_1016_j_est_2023_108373
crossref_primary_10_1016_j_neucom_2015_10_075
crossref_primary_10_1360_nso_20240037
crossref_primary_10_1016_j_apenergy_2016_10_059
crossref_primary_10_1016_j_jpowsour_2022_231900
crossref_primary_10_1016_j_jpowsour_2014_10_119
crossref_primary_10_1016_j_apenergy_2021_117022
crossref_primary_10_1016_j_est_2022_104860
crossref_primary_10_1016_j_est_2021_102387
crossref_primary_10_1631_jzus_A1600251
crossref_primary_10_1109_ACCESS_2017_2780258
crossref_primary_10_1109_TPEL_2018_2877294
crossref_primary_10_3390_en17010272
crossref_primary_10_1177_09544070221104893
crossref_primary_10_1109_TTE_2022_3162164
crossref_primary_10_1002_er_4391
crossref_primary_10_54097_ije_v3i1_10144
crossref_primary_10_1016_j_apenergy_2014_08_013
crossref_primary_10_1016_j_jpowsour_2016_08_018
crossref_primary_10_1016_j_ijepes_2025_110618
crossref_primary_10_1016_j_est_2023_108128
crossref_primary_10_1016_j_est_2022_104950
crossref_primary_10_3390_wevj15060248
crossref_primary_10_1016_j_apenergy_2017_05_139
crossref_primary_10_1016_j_jpowsour_2020_229248
crossref_primary_10_1051_e3sconf_202126801021
crossref_primary_10_1016_j_apenergy_2020_114817
crossref_primary_10_1016_j_apenergy_2015_01_120
crossref_primary_10_1016_j_compchemeng_2023_108275
crossref_primary_10_1109_ACCESS_2019_2959396
crossref_primary_10_1016_j_apenergy_2016_04_047
crossref_primary_10_1016_j_apenergy_2017_04_002
crossref_primary_10_1016_j_etran_2023_100283
crossref_primary_10_1016_j_egypro_2016_06_061
crossref_primary_10_3390_en9110865
crossref_primary_10_1109_TIM_2023_3334377
crossref_primary_10_1115_1_4064666
crossref_primary_10_1016_j_apenergy_2014_01_066
crossref_primary_10_1109_TTE_2020_2969811
crossref_primary_10_1016_j_est_2023_110221
crossref_primary_10_1109_TSG_2015_2512925
crossref_primary_10_1155_2015_765362
crossref_primary_10_1016_j_apenergy_2021_117034
crossref_primary_10_1016_j_jpowsour_2018_07_018
crossref_primary_10_1007_s40843_023_2665_8
crossref_primary_10_1016_j_apenergy_2016_03_103
crossref_primary_10_1016_j_apenergy_2018_01_068
crossref_primary_10_3390_batteries3020018
crossref_primary_10_1016_j_apenergy_2015_09_015
crossref_primary_10_1109_TCST_2018_2819965
crossref_primary_10_20964_2020_09_84
crossref_primary_10_3390_en12010183
crossref_primary_10_1016_j_microrel_2014_12_016
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1002_int_22309
crossref_primary_10_1016_j_est_2021_103204
crossref_primary_10_3390_en15041529
crossref_primary_10_1016_j_apenergy_2016_05_065
crossref_primary_10_3390_en10040412
crossref_primary_10_3390_en10040533
crossref_primary_10_3390_en13030540
crossref_primary_10_1016_j_est_2023_109890
crossref_primary_10_1088_1757_899X_677_3_032077
crossref_primary_10_1016_j_energy_2017_06_109
crossref_primary_10_1016_j_apenergy_2016_12_133
crossref_primary_10_3390_app13021154
crossref_primary_10_1016_j_jpowsour_2015_11_087
crossref_primary_10_1007_s11431_015_5843_y
crossref_primary_10_1149_2_1051904jes
crossref_primary_10_3390_en8053661
crossref_primary_10_1016_j_est_2020_102093
crossref_primary_10_1016_j_jpowsour_2014_02_095
crossref_primary_10_1155_2014_958239
crossref_primary_10_1016_j_electacta_2018_08_076
crossref_primary_10_1016_j_energy_2020_119236
crossref_primary_10_1049_pel2_12175
crossref_primary_10_1016_j_segan_2022_100603
crossref_primary_10_1016_j_apenergy_2016_05_059
crossref_primary_10_1016_j_apenergy_2018_08_022
crossref_primary_10_1016_j_est_2024_114078
crossref_primary_10_1109_TFUZZ_2019_2906577
crossref_primary_10_3390_en11071810
crossref_primary_10_3390_en15218172
crossref_primary_10_1016_j_jpowsour_2016_11_007
crossref_primary_10_1016_j_apenergy_2017_05_109
crossref_primary_10_1080_15435075_2023_2196328
crossref_primary_10_1002_oca_2375
crossref_primary_10_1016_j_apenergy_2016_05_042
crossref_primary_10_1016_j_jpowsour_2015_01_002
crossref_primary_10_1002_ese3_694
crossref_primary_10_3390_en10040441
crossref_primary_10_1109_TCST_2016_2624143
crossref_primary_10_3390_batteries8090112
crossref_primary_10_3390_en8065538
crossref_primary_10_1016_j_egyr_2022_02_026
crossref_primary_10_1049_iet_est_2015_0030
crossref_primary_10_1016_j_est_2021_102325
crossref_primary_10_3390_en11051033
crossref_primary_10_1016_j_egypro_2018_09_203
crossref_primary_10_1109_TTE_2023_3314050
crossref_primary_10_1007_s42154_019_00080_2
crossref_primary_10_3390_electronics10131588
crossref_primary_10_1016_j_apenergy_2016_05_040
crossref_primary_10_3390_en14113284
crossref_primary_10_1016_j_apenergy_2019_114019
crossref_primary_10_1109_ACCESS_2020_2995899
crossref_primary_10_1016_j_est_2021_102559
crossref_primary_10_1016_j_apenergy_2015_08_129
crossref_primary_10_1109_JESTIE_2020_3033544
crossref_primary_10_3390_en11051144
crossref_primary_10_3390_en8087729
crossref_primary_10_3390_en13236366
crossref_primary_10_1016_j_apenergy_2015_08_119
crossref_primary_10_1016_j_egypro_2018_09_213
crossref_primary_10_1016_j_ijhydene_2014_03_035
crossref_primary_10_1016_j_apenergy_2017_07_030
crossref_primary_10_1016_j_jpowsour_2014_07_103
crossref_primary_10_1155_etep_2242749
crossref_primary_10_1109_TIE_2019_2955413
crossref_primary_10_3390_en7106783
crossref_primary_10_1016_j_energy_2018_01_024
crossref_primary_10_1007_s42154_023_00271_y
crossref_primary_10_1016_j_est_2022_104904
crossref_primary_10_1149_1945_7111_abb34d
crossref_primary_10_1016_j_apenergy_2016_06_069
crossref_primary_10_3390_s16081328
crossref_primary_10_2478_amns_2023_1_00005
crossref_primary_10_1016_j_jpowsour_2016_03_054
crossref_primary_10_1109_TITS_2024_3469890
crossref_primary_10_3390_en10010060
crossref_primary_10_1016_j_energy_2021_122881
crossref_primary_10_1109_TIE_2018_2795521
crossref_primary_10_3390_en14185989
crossref_primary_10_1016_j_etran_2019_100028
crossref_primary_10_1016_j_apenergy_2014_06_016
crossref_primary_10_3390_batteries9110544
crossref_primary_10_3390_wevj12030123
crossref_primary_10_1109_ACCESS_2020_3033451
crossref_primary_10_1002_asjc_2093
crossref_primary_10_1016_j_apenergy_2015_10_025
crossref_primary_10_1088_0256_307X_38_11_118201
crossref_primary_10_1016_j_measurement_2024_116263
crossref_primary_10_3389_fenrg_2021_790295
crossref_primary_10_1016_j_apenergy_2017_07_003
crossref_primary_10_3390_s23125457
crossref_primary_10_1016_j_apenergy_2016_09_010
crossref_primary_10_1016_j_apenergy_2019_113924
crossref_primary_10_1109_TTE_2019_2956350
crossref_primary_10_1049_iet_pel_2014_0523
crossref_primary_10_3390_su16167180
crossref_primary_10_3390_electronics10020122
crossref_primary_10_1016_j_jpowsour_2014_09_146
crossref_primary_10_1002_asjc_1959
crossref_primary_10_1016_j_apenergy_2023_121970
crossref_primary_10_1016_j_est_2025_115716
crossref_primary_10_1016_j_est_2019_101124
crossref_primary_10_1016_j_apenergy_2016_06_031
crossref_primary_10_1016_j_jpowsour_2015_04_166
crossref_primary_10_3233_JIFS_169549
crossref_primary_10_1016_j_apenergy_2016_05_109
crossref_primary_10_1016_j_apenergy_2016_09_001
crossref_primary_10_1016_j_est_2022_106283
crossref_primary_10_1016_j_egyr_2022_03_036
crossref_primary_10_1016_j_apenergy_2018_09_126
crossref_primary_10_1088_1361_6420_ad5f53
crossref_primary_10_1016_j_energy_2023_127305
crossref_primary_10_3390_batteries8110229
crossref_primary_10_1016_j_rser_2020_110480
crossref_primary_10_1016_j_apenergy_2024_123508
crossref_primary_10_1155_2019_7452079
crossref_primary_10_1016_j_apenergy_2016_06_022
crossref_primary_10_1109_ACCESS_2019_2921794
crossref_primary_10_1520_JTE20170558
crossref_primary_10_3390_wevj14090247
crossref_primary_10_3390_en10070919
crossref_primary_10_1016_j_jpowsour_2014_01_129
crossref_primary_10_20964_2020_03_47
crossref_primary_10_1016_j_cnsns_2022_107059
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_1016_j_jpowsour_2015_04_148
crossref_primary_10_1016_j_energy_2018_06_116
crossref_primary_10_1016_j_energy_2018_06_113
crossref_primary_10_3390_app12031398
crossref_primary_10_1002_er_4503
crossref_primary_10_1016_j_jpowsour_2022_231568
crossref_primary_10_1016_j_apenergy_2016_08_103
crossref_primary_10_1016_j_est_2021_102852
crossref_primary_10_1016_j_jpowsour_2018_09_034
crossref_primary_10_1016_j_apenergy_2015_12_063
crossref_primary_10_3390_en14217386
crossref_primary_10_1016_j_measurement_2020_107637
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118576
crossref_primary_10_1080_15435075_2022_2163852
crossref_primary_10_1016_j_est_2021_102840
crossref_primary_10_1016_j_jpowsour_2017_08_058
crossref_primary_10_1016_j_est_2020_101973
crossref_primary_10_1016_j_est_2021_102841
crossref_primary_10_1016_j_jfranklin_2020_03_033
crossref_primary_10_3390_en11010209
crossref_primary_10_1016_j_est_2022_106478
crossref_primary_10_1109_TPEL_2017_2670081
crossref_primary_10_1088_2631_8695_adac2e
crossref_primary_10_1016_j_energy_2016_05_047
crossref_primary_10_1177_09544070231153440
crossref_primary_10_1109_TIE_2017_2736480
crossref_primary_10_3390_en9090710
crossref_primary_10_1016_j_est_2020_101629
crossref_primary_10_1016_j_etran_2021_100149
crossref_primary_10_1049_iet_rpg_2017_0346
crossref_primary_10_1016_j_apenergy_2017_08_124
crossref_primary_10_3390_en10010005
crossref_primary_10_1016_j_jclepro_2023_137220
crossref_primary_10_1016_j_apenergy_2018_01_008
crossref_primary_10_1016_j_est_2024_112004
crossref_primary_10_3390_en9090720
crossref_primary_10_1115_1_4051941
crossref_primary_10_1016_j_apenergy_2013_10_044
crossref_primary_10_1016_j_apenergy_2016_08_138
crossref_primary_10_1016_j_rser_2017_03_138
crossref_primary_10_20964_2022_01_05
crossref_primary_10_1016_j_apenergy_2015_06_003
crossref_primary_10_1016_j_energy_2017_06_141
crossref_primary_10_3390_en16166013
crossref_primary_10_1016_j_jpowsour_2020_227984
crossref_primary_10_1016_j_apenergy_2018_02_128
crossref_primary_10_1109_ACCESS_2018_2817655
crossref_primary_10_1016_j_apenergy_2018_03_053
crossref_primary_10_3390_en11020472
crossref_primary_10_1016_j_est_2021_102814
crossref_primary_10_1155_2019_5327319
crossref_primary_10_1155_2017_6342170
crossref_primary_10_1016_j_apenergy_2016_08_140
crossref_primary_10_1016_j_energy_2021_121712
crossref_primary_10_1177_1687814017730757
crossref_primary_10_3390_electronics8060709
crossref_primary_10_3390_electronics11020181
crossref_primary_10_1016_j_egypro_2015_07_228
crossref_primary_10_1016_j_apenergy_2014_12_081
crossref_primary_10_1016_j_jpowsour_2017_05_110
crossref_primary_10_1109_TTE_2020_2980153
crossref_primary_10_1016_j_energy_2025_134848
crossref_primary_10_3390_app14209569
crossref_primary_10_1007_s42791_019_00020_5
crossref_primary_10_1109_TTE_2022_3170230
crossref_primary_10_1016_j_jpowsour_2014_02_064
Cites_doi 10.1016/j.jpowsour.2013.05.071
10.1016/j.jpowsour.2004.02.033
10.1109/TII.2012.2222650
10.1016/j.apenergy.2011.08.002
10.1109/TCST.2009.2027023
10.1016/j.enconman.2009.12.015
10.1016/j.jpowsour.2006.06.004
10.1016/j.jpowsour.2011.09.058
10.4236/sgre.2012.31007
10.1016/j.jpowsour.2004.02.032
10.1109/TIE.2012.2186771
10.1016/j.jpowsour.2007.03.072
10.3390/en5051455
10.1016/j.jpowsour.2012.10.001
10.1007/s12239-008-0090-x
10.1016/j.enconman.2012.04.014
10.1109/IECON.2010.5675408
10.1109/TVT.2012.2222684
10.1016/j.apm.2012.04.029
10.1016/j.jpowsour.2012.12.057
10.1016/S0378-7753(99)00079-8
10.1016/j.apenergy.2012.08.031
10.1016/j.jpowsour.2013.06.076
10.1016/j.jpowsour.2012.12.003
10.1016/j.apenergy.2013.05.001
10.1016/j.jpowsour.2008.08.103
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7SR
7TA
7TB
8FD
F28
FR3
JG9
L7M
7S9
L.6
DOI 10.1016/j.apenergy.2013.07.061
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 476
ExternalDocumentID 27927957
10_1016_j_apenergy_2013_07_061
S0306261913006284
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8W4
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
7SP
7SR
7TA
7TB
8FD
F28
FR3
JG9
L7M
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c338t-de92c81023550a524778b6a972c07241135f900d1e4ac2998c5baf82090422b43
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Mon Jul 21 10:23:54 EDT 2025
Fri Jul 11 04:53:45 EDT 2025
Fri Nov 25 01:07:34 EST 2022
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 03:05:20 EDT 2025
Fri Feb 23 02:36:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electric vehicles
Lithium-ion polymer battery
Battery capacity
Data-driven
Multi-scale
State-of-Charge
Parameter estimation
Battery
Lithium
Polymer
Kalman filtering
Electric vehicle
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-de92c81023550a524778b6a972c07241135f900d1e4ac2998c5baf82090422b43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1506381012
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_2101318127
proquest_miscellaneous_1506381012
pascalfrancis_primary_27927957
crossref_primary_10_1016_j_apenergy_2013_07_061
crossref_citationtrail_10_1016_j_apenergy_2013_07_061
elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_07_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
2014
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zenati A, Desprez P, Razik H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78.
Xiong, Gong, Mi, Sun (b0155) 2013; 243
Xiong, He, Sun, Zhao (b0030) 2013; 62
ELECTRIC VEHICLE BATTERY TEST PROCEDURES MANUAL.
Plett (b0110) 2004; 134
Plett GL. Dual and joint EKF for simultaneous SOC and SOH estimation. In CD-ROM Proc 21st electric vehicle symposium (EVS21), Monaco; April 2005.
Lee, Nam, Cho (b0015) 2007; 174
Xiong, He, Sun, Zhao (b0085) 2012; 5
Salkind, Fennie, Singh, Atwater, Reisner (b0070) 1999; 80
He, Liu, Zhang, Chen (b0040) 2013; 101
He, Xiong, Guo, Li (b0090) 2012; 64
Shi, Zhang, Cui (b0080) 2008; 9
Smith, Rahn, Wang (b0050) 2010; 18
Zenati A, Desprez Ph, Razik H. Estimation of the SOC and the SOH of Li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78.
Waag, Sauer (b0035) 2013; 111
Lin, Liang, Chen (b0100) 2013; 9
Hu, Youn, Chung (b0130) 2012; 92
Hu, Yurkovich (b0010) 2012; 198
Lee, Kim, Lee, Cho (b0020) 2008; 185
Plett (b0115) 2004; 134
Xiong, He, Sun, Liu, Liu (b0025) 2012; 229
.
Shen (b0055) 2010; 51
Plett (b0120) 2006; 161
Andre, Appel, Soczka-Guth, Sauer (b0135) 2012; 224
Wan, Nelson (b0140) 2001
Shahriari, Farrokhi (b0095) 2013; 60
Xiong, Sun, Gong, He (b0145) 2013; 242
Meyer, Komsiyska, Lenz, Agert (b0045) 2013; 37
Wu, Wang, Xiao, Wang (b0060) 2012; 3
Eddahech, Briat, Vinassa (b0065) 2012; 2012
Li, Barillas, Guenther, Danzer (b0005) 2013; 230
Shi (10.1016/j.apenergy.2013.07.061_b0080) 2008; 9
Plett (10.1016/j.apenergy.2013.07.061_b0110) 2004; 134
Xiong (10.1016/j.apenergy.2013.07.061_b0155) 2013; 243
Xiong (10.1016/j.apenergy.2013.07.061_b0145) 2013; 242
Xiong (10.1016/j.apenergy.2013.07.061_b0030) 2013; 62
Smith (10.1016/j.apenergy.2013.07.061_b0050) 2010; 18
Hu (10.1016/j.apenergy.2013.07.061_b0130) 2012; 92
Hu (10.1016/j.apenergy.2013.07.061_b0010) 2012; 198
Xiong (10.1016/j.apenergy.2013.07.061_b0085) 2012; 5
Lee (10.1016/j.apenergy.2013.07.061_b0020) 2008; 185
Eddahech (10.1016/j.apenergy.2013.07.061_b0065) 2012; 2012
Shahriari (10.1016/j.apenergy.2013.07.061_b0095) 2013; 60
Xiong (10.1016/j.apenergy.2013.07.061_b0025) 2012; 229
Plett (10.1016/j.apenergy.2013.07.061_b0115) 2004; 134
Waag (10.1016/j.apenergy.2013.07.061_b0035) 2013; 111
10.1016/j.apenergy.2013.07.061_b0150
Plett (10.1016/j.apenergy.2013.07.061_b0120) 2006; 161
He (10.1016/j.apenergy.2013.07.061_b0040) 2013; 101
Salkind (10.1016/j.apenergy.2013.07.061_b0070) 1999; 80
10.1016/j.apenergy.2013.07.061_b0075
Lee (10.1016/j.apenergy.2013.07.061_b0015) 2007; 174
He (10.1016/j.apenergy.2013.07.061_b0090) 2012; 64
10.1016/j.apenergy.2013.07.061_b0125
Li (10.1016/j.apenergy.2013.07.061_b0005) 2013; 230
Meyer (10.1016/j.apenergy.2013.07.061_b0045) 2013; 37
10.1016/j.apenergy.2013.07.061_b0105
Wu (10.1016/j.apenergy.2013.07.061_b0060) 2012; 3
Andre (10.1016/j.apenergy.2013.07.061_b0135) 2012; 224
Wan (10.1016/j.apenergy.2013.07.061_b0140) 2001
Shen (10.1016/j.apenergy.2013.07.061_b0055) 2010; 51
Lin (10.1016/j.apenergy.2013.07.061_b0100) 2013; 9
References_xml – volume: 64
  start-page: 113
  year: 2012
  end-page: 121
  ident: b0090
  article-title: Comparison study on the battery models used for the energy management of batteries in electric vehicles
  publication-title: Energy Convers Manage
– volume: 60
  start-page: 191
  year: 2013
  end-page: 202
  ident: b0095
  article-title: Online State-of-Health estimation of VRLA batteries using state of charge
  publication-title: IEEE T Ind Electron
– volume: 230
  start-page: 244
  year: 2013
  end-page: 250
  ident: b0005
  article-title: A comparative study of state of charge estimation algorithms for LiFePO
  publication-title: J Power Sources
– reference: Zenati A, Desprez P, Razik H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78.
– volume: 161
  start-page: 1369
  year: 2006
  end-page: 1384
  ident: b0120
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation
  publication-title: J Power Sources
– volume: 18
  start-page: 654
  year: 2010
  end-page: 663
  ident: b0050
  article-title: Model-Based electrochemical estimation and constraint management for pulse operation of lithium ion batteries
  publication-title: IEEE T Control Syst Technol
– volume: 174
  start-page: 9
  year: 2007
  end-page: 15
  ident: b0015
  article-title: Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering
  publication-title: J Power Sources
– reference: Plett GL. Dual and joint EKF for simultaneous SOC and SOH estimation. In CD-ROM Proc 21st electric vehicle symposium (EVS21), Monaco; April 2005.
– volume: 224
  start-page: 20
  year: 2012
  end-page: 27
  ident: b0135
  article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
  publication-title: J Power Sources
– volume: 62
  start-page: 108
  year: 2013
  end-page: 117
  ident: b0030
  article-title: Evaluation on State of Charge Estimation of Batteries with Adaptive Extended Kalman Filter by Experiment Approach
  publication-title: IEEE T VEH Technol
– volume: 185
  start-page: 1367
  year: 2008
  end-page: 1373
  ident: b0020
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J Power Sources
– volume: 51
  start-page: 1093
  year: 2010
  end-page: 1098
  ident: b0055
  article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network
  publication-title: Energy Conver Manage
– volume: 3
  start-page: 51
  year: 2012
  end-page: 55
  ident: b0060
  article-title: The SOC estimation of power Li-ion battery based on ANFIS model
  publication-title: Smart Grid Renew Energy
– volume: 80
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0070
  article-title: Determination of State-of-Charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
– volume: 229
  start-page: 159
  year: 2012
  end-page: 169
  ident: b0025
  article-title: Model-based State of Charge and peak power capability joint estimation of Lithium-Ion battery in plug-in hybrid electric vehicles
  publication-title: J Power Sources
– start-page: 123
  year: 2001
  end-page: 164
  ident: b0140
  article-title: Dual extended Kalman filter methods
  publication-title: Kalman filtering and neural networks
– volume: 243
  start-page: 805
  year: 2013
  end-page: 816
  ident: b0155
  article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter
  publication-title: J Power Sources
– reference: Zenati A, Desprez Ph, Razik H. Estimation of the SOC and the SOH of Li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78.
– volume: 198
  start-page: 338
  year: 2012
  end-page: 350
  ident: b0010
  article-title: Battery cell state-of-charge estimation using linear parameter varying system techniques
  publication-title: J Power Sources
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: b0115
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3: State and parameter estimation
  publication-title: J Power Sources
– reference: ELECTRIC VEHICLE BATTERY TEST PROCEDURES MANUAL. <
– volume: 101
  start-page: 808
  year: 2013
  end-page: 814
  ident: b0040
  article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl Energy
– reference: >.
– volume: 5
  start-page: 1455
  year: 2012
  end-page: 1469
  ident: b0085
  article-title: Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach
  publication-title: Energies
– volume: 37
  start-page: 2016
  year: 2013
  end-page: 2027
  ident: b0045
  article-title: Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation
  publication-title: Appl Math Mode
– volume: 9
  start-page: 679
  year: 2013
  end-page: 685
  ident: b0100
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE T Ind Inform
– volume: 2012
  start-page: 1318
  year: 2012
  end-page: 1324
  ident: b0065
  article-title: Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter
  publication-title: IEEE Int Sympos Indust Electron (ISIE)
– volume: 111
  start-page: 416
  year: 2013
  end-page: 427
  ident: b0035
  article-title: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
  publication-title: Appl Energy
– volume: 242
  start-page: 699
  year: 2013
  end-page: 713
  ident: b0145
  article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
  publication-title: J Power Sources
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: b0110
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Modeling and identification
  publication-title: J Power Sources
– volume: 9
  start-page: 759
  year: 2008
  end-page: 764
  ident: b0080
  article-title: Estimation of battery state-of-charge using v-support vector regression algorithm
  publication-title: Int J Automot Technol
– volume: 92
  start-page: 694
  year: 2012
  end-page: 704
  ident: b0130
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl Energy
– volume: 242
  start-page: 699
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0145
  article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.05.071
– volume: 134
  start-page: 277
  year: 2004
  ident: 10.1016/j.apenergy.2013.07.061_b0115
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3: State and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 9
  start-page: 679
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0100
  article-title: Estimation of battery state of health using probabilistic neural network
  publication-title: IEEE T Ind Inform
  doi: 10.1109/TII.2012.2222650
– volume: 92
  start-page: 694
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0130
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.002
– volume: 18
  start-page: 654
  year: 2010
  ident: 10.1016/j.apenergy.2013.07.061_b0050
  article-title: Model-Based electrochemical estimation and constraint management for pulse operation of lithium ion batteries
  publication-title: IEEE T Control Syst Technol
  doi: 10.1109/TCST.2009.2027023
– volume: 51
  start-page: 1093
  year: 2010
  ident: 10.1016/j.apenergy.2013.07.061_b0055
  article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network
  publication-title: Energy Conver Manage
  doi: 10.1016/j.enconman.2009.12.015
– ident: 10.1016/j.apenergy.2013.07.061_b0125
– volume: 161
  start-page: 1369
  year: 2006
  ident: 10.1016/j.apenergy.2013.07.061_b0120
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2006.06.004
– volume: 198
  start-page: 338
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0010
  article-title: Battery cell state-of-charge estimation using linear parameter varying system techniques
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.09.058
– volume: 3
  start-page: 51
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0060
  article-title: The SOC estimation of power Li-ion battery based on ANFIS model
  publication-title: Smart Grid Renew Energy
  doi: 10.4236/sgre.2012.31007
– volume: 134
  start-page: 262
  year: 2004
  ident: 10.1016/j.apenergy.2013.07.061_b0110
  article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Modeling and identification
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 60
  start-page: 191
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0095
  article-title: Online State-of-Health estimation of VRLA batteries using state of charge
  publication-title: IEEE T Ind Electron
  doi: 10.1109/TIE.2012.2186771
– volume: 174
  start-page: 9
  year: 2007
  ident: 10.1016/j.apenergy.2013.07.061_b0015
  article-title: Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.03.072
– volume: 5
  start-page: 1455
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0085
  article-title: Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach
  publication-title: Energies
  doi: 10.3390/en5051455
– volume: 224
  start-page: 20
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0135
  article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.001
– volume: 9
  start-page: 759
  year: 2008
  ident: 10.1016/j.apenergy.2013.07.061_b0080
  article-title: Estimation of battery state-of-charge using v-support vector regression algorithm
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-008-0090-x
– volume: 64
  start-page: 113
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0090
  article-title: Comparison study on the battery models used for the energy management of batteries in electric vehicles
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2012.04.014
– ident: 10.1016/j.apenergy.2013.07.061_b0105
  doi: 10.1109/IECON.2010.5675408
– ident: 10.1016/j.apenergy.2013.07.061_b0150
– volume: 62
  start-page: 108
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0030
  article-title: Evaluation on State of Charge Estimation of Batteries with Adaptive Extended Kalman Filter by Experiment Approach
  publication-title: IEEE T VEH Technol
  doi: 10.1109/TVT.2012.2222684
– volume: 37
  start-page: 2016
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0045
  article-title: Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation
  publication-title: Appl Math Mode
  doi: 10.1016/j.apm.2012.04.029
– volume: 230
  start-page: 244
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0005
  article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.057
– volume: 80
  start-page: 293
  year: 1999
  ident: 10.1016/j.apenergy.2013.07.061_b0070
  article-title: Determination of State-of-Charge and state-of-health of batteries by fuzzy logic methodology
  publication-title: J Power Sources
  doi: 10.1016/S0378-7753(99)00079-8
– start-page: 123
  year: 2001
  ident: 10.1016/j.apenergy.2013.07.061_b0140
  article-title: Dual extended Kalman filter methods
– volume: 101
  start-page: 808
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0040
  article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.08.031
– volume: 243
  start-page: 805
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0155
  article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.06.076
– volume: 2012
  start-page: 1318
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0065
  article-title: Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter
  publication-title: IEEE Int Sympos Indust Electron (ISIE)
– volume: 229
  start-page: 159
  year: 2012
  ident: 10.1016/j.apenergy.2013.07.061_b0025
  article-title: Model-based State of Charge and peak power capability joint estimation of Lithium-Ion battery in plug-in hybrid electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.12.003
– volume: 111
  start-page: 416
  year: 2013
  ident: 10.1016/j.apenergy.2013.07.061_b0035
  article-title: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.05.001
– ident: 10.1016/j.apenergy.2013.07.061_b0075
  doi: 10.1109/IECON.2010.5675408
– volume: 185
  start-page: 1367
  year: 2008
  ident: 10.1016/j.apenergy.2013.07.061_b0020
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.08.103
SSID ssj0002120
Score 2.5819366
Snippet •A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been...
Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 463
SubjectTerms Algorithms
Applied sciences
batteries
Battery capacity
commercialization
Data-driven
Direct energy conversion and energy accumulation
Electric potential
electric power
Electric vehicles
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
electrochemistry
equations
Estimates
Exact sciences and technology
Kalman filtering
Lithium batteries
Lithium-ion polymer battery
Mathematical models
Multi-scale
polymers
State-of-Charge
Voltage
Title A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles
URI https://dx.doi.org/10.1016/j.apenergy.2013.07.061
https://www.proquest.com/docview/1506381012
https://www.proquest.com/docview/2101318127
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CemkppU0bun0sU-hV2bUtW9ZxCQnbhubSBnITsi0Rh12vye4Gcum_6P_tjGznQQk59Gh5ZBvNaOaTNfMJ4KtVmc0rmwsZSnJs4kSuIyso3JRkAN7ngcD0x2k2P5Pfz9PzHTgcamE4rbL3_Z1PD966b5n0ozlp63ryk9Eu43_ekMnIy3IFu1Rs5Qe_79I84p6akYQFS9-rEr48sK0LFXac4pUEEs8seixAvWztmobNd-dd_OO6Qzw6fg2veiCJs-5b38COa_bgxT16wT3YP7qrYiPRfhqv38KfGXJmqKiu2NdhSCoU_FqHw09xPLGLpW3Q17ydTo9DjncVMlX4klNo0DYVhnIkZKKOrgISB4pyXHkkgH9Rb5eC29vV4mZJnYpA53mDdYPdATx1idfuIuTmvYOz46Nfh3PRn88gSlrYbkTldFzmzP1AyxybxlKpvMisVnE5VYQMoiT1ejqtIidtSWEvL9PCeoIcmonHCpnsw26zatx7wKRK6FaivS1iSc_VRZ76QlNUUI5AhRxBOijFlD15OZ-hsTBDltqlGZRpWJlmqgwpcwST235tR9_xZA896Nw8MERDMebJvuMHRnL7SmZpVDpVI_gyWI2hacx7M7Zxq-3aMNFjR7b2uAytzqOEEZn68B8f-RGe05XsfiN9gt3N1dZ9JmC1KcZh5ozh2ezbyfz0LzmcJsM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6x8rBNaNrYEGWDedJevTY_HT9WCFRW6MtA4s1yElsEtWlE20n8Ift_d-c4HQghHvbq-BIrd777bN99BviuRaqzUmc8diU5OjI8k4HmGG4KNABrM0dgejFNx1fxz-vkeguOu1oYSqv0vr_16c5b-5aB_5uDpqoGvwjtEv6nA5kUvewr2CZ2qqQH26OzyXi6ccihZ2fE_pwEHhQK3_7QjXFFdpTlFTkezzR4LkbtNHqJf862V1488d4uJJ2-h3ceS7JRO9wPsGXqXXj7gGFwF_ZO_hWyYVc_k5cf4c-IUXIoL-_I3TGXV8jps4Z1--JsomdzXTNb0Yk6vo5RyCsZsYXPKYuG6bpkriKJEVdHWwTJOpZytrAMMf5NtZ5zam8Ws_s5CuWO0fOeVTVr7-CpCvbb3Lj0vE9wdXpyeTzm_ooGXuDadsVLI8MiI_oHXOnoJIyFyPJUSxEWQ4HgIIgSK4fDMjCxLjDyZUWSa4uoQxL3WB5He9CrF7XZBxaVET6KpNV5GON7ZZ4lNpcYGIRBXBH3IemUogrPX07XaMxUl6h2qzplKlKmGgqFyuzDYCPXtAweL0rITufqkS0qDDMvyh49MpLNJ4moUchE9OFbZzUKZzIdz-jaLNZLRVyPLd_a831wgR5EBMrEwX8M8iu8Hl9enKvzs-nkM7zBJ3G7q_QFequ7tTlEnLXKj_w8-gsxMil0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+multi-scale+extended+Kalman+filtering+based+parameter+and+state+estimation+approach+of+lithium-ion+polymer+battery+in+electric+vehicles&rft.jtitle=Applied+energy&rft.au=RUI+XIONG&rft.au=FENGCHUN+SUN&rft.au=ZHENG+CHEN&rft.au=HONGWEN+HE&rft.date=2014&rft.pub=Elsevier&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=113&rft.spage=463&rft.epage=476&rft_id=info:doi/10.1016%2Fj.apenergy.2013.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=27927957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon