A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles
•A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery pa...
Saved in:
Published in | Applied energy Vol. 113; pp. 463 - 476 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery parameter, capacity and SoC concurrently.•The robustness of the proposed approach against different aging levels is evaluated.
Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach. |
---|---|
AbstractList | Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach. •A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been proposed.•The proposed approach has less computation efficiency but higher estimation accuracy.•The proposed approach can estimate battery parameter, capacity and SoC concurrently.•The robustness of the proposed approach against different aging levels is evaluated. Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make three contributions to the existing literatures through advanced time scale separation algorithm. (1) A lumped parameter battery model was improved for achieving accurate voltage estimate against different battery aging levels through an electrochemical equation, which has enhanced the relationship of battery voltage to its State-of-Charge (SoC) and capacity. (2) A multi-scale extended Kalman filtering was proposed and employed to execute the online measured data driven-based battery parameter and SoC estimation with dual time scales in regarding that the slow-varying characteristic on battery parameter and fast-varying characteristic on battery SoC, thus the battery parameter was estimated with macro scale and battery SoC was estimated with micro scale. (3) The accurate estimate of battery capacity and SoC were obtained in real-time through a data-driven multi-scale extended Kalman filtering algorithm. Experimental results on various degradation states of lithium-ion polymer battery cells further verified the feasibility of the proposed approach. |
Author | Sun, Fengchun He, Hongwen Chen, Zheng Xiong, Rui |
Author_xml | – sequence: 1 givenname: Rui surname: Xiong fullname: Xiong, Rui email: rxiong6@gmail.com, rxiong@ieee.org organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Fengchun surname: Sun fullname: Sun, Fengchun organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Zheng surname: Chen fullname: Chen, Zheng organization: DOE GATE Center for Electric Drive Transportation, Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128, USA – sequence: 4 givenname: Hongwen surname: He fullname: He, Hongwen organization: National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27927957$$DView record in Pascal Francis |
BookMark | eNqFkUuLFDEUhYOMYM_jL0g2gpsqb1JvcOEw-MKB2TjrcCt1azpNKlUm6cb-If5fU_bowk1DIHA53-FwziW7cLMjxl4LyAWI-t0ux4Uc-adjLkEUOTQ51OIF24i2kVknRHvBNlBAncladK_YZQg7AJBCwob9uuUDRswGbw7k-LS30WRBoyVOPyO5gQb-De2Ejo_GRvLGPfEeQzov6HGidOLoBh4ixsSEaCaMZnYcl8XPqLd8Hrk1cWv2U7bel9kepwT1GBN75MZxsqSjN5ofaGu0pXDNXo5oA908_1fs8dPH73dfsvuHz1_vbu8zXRRtzAbqpG4FyKKqACtZNk3b19g1UkMjSyGKauwABkElatl1ra56HFsJHZRS9mVxxd6efFPUH_sUXk0maLIWHc37oGQquBCtkM1ZqaigLlIWIZP0zbMU1yZHj06boBafqvFHJZsuvWq1rE867ecQPI3_JALUOq3aqb_TqnVaBY1K0ybw_X-gNvFP69GjsefxDyecUrUHQ14FbchpGoxPQ6hhNucsfgMlNcfX |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1149_2754_2734_ad58f7 crossref_primary_10_1007_s40435_023_01230_5 crossref_primary_10_1016_j_apenergy_2016_07_005 crossref_primary_10_3390_en13071785 crossref_primary_10_1016_j_apenergy_2013_09_006 crossref_primary_10_3390_batteries10080263 crossref_primary_10_1016_j_apenergy_2016_08_044 crossref_primary_10_3390_en18010042 crossref_primary_10_1109_TVT_2018_2842820 crossref_primary_10_1016_j_apenergy_2019_113520 crossref_primary_10_1115_1_4062385 crossref_primary_10_1016_j_apenergy_2017_02_016 crossref_primary_10_1109_TCST_2022_3196474 crossref_primary_10_1109_TSTE_2017_2699288 crossref_primary_10_1109_TIE_2020_2972468 crossref_primary_10_1016_j_egypro_2017_03_621 crossref_primary_10_1155_2015_104673 crossref_primary_10_1109_JPROC_2022_3175614 crossref_primary_10_1109_TIE_2021_3091920 crossref_primary_10_1007_s10586_018_2175_2 crossref_primary_10_3390_en7128076 crossref_primary_10_1109_TITS_2024_3361807 crossref_primary_10_1115_1_4042987 crossref_primary_10_1016_j_est_2022_104472 crossref_primary_10_3390_en11113180 crossref_primary_10_3390_en12030446 crossref_primary_10_1016_j_est_2018_07_006 crossref_primary_10_1016_j_est_2018_07_004 crossref_primary_10_1109_TVT_2017_2709326 crossref_primary_10_1016_j_jpowsour_2017_11_094 crossref_primary_10_3389_fenrg_2022_933240 crossref_primary_10_1016_j_apenergy_2019_113619 crossref_primary_10_1016_j_apenergy_2017_03_079 crossref_primary_10_3390_en10020206 crossref_primary_10_1109_ACCESS_2019_2930680 crossref_primary_10_1177_0020294020944952 crossref_primary_10_1186_s10033_018_0268_8 crossref_primary_10_1016_j_apenergy_2015_06_063 crossref_primary_10_3390_s21175698 crossref_primary_10_1109_TPEL_2024_3492714 crossref_primary_10_3901_CJME_2016_0111_005 crossref_primary_10_1016_j_apenergy_2018_12_071 crossref_primary_10_1016_j_energy_2025_135548 crossref_primary_10_1016_j_jpowsour_2017_09_063 crossref_primary_10_3390_en10030364 crossref_primary_10_1155_2019_8784154 crossref_primary_10_1016_j_egypro_2014_11_932 crossref_primary_10_1007_s43236_022_00410_4 crossref_primary_10_1016_j_est_2023_109071 crossref_primary_10_3390_en11061481 crossref_primary_10_1146_annurev_control_053018_023643 crossref_primary_10_1109_ACCESS_2018_2847323 crossref_primary_10_1109_ACCESS_2019_2943558 crossref_primary_10_3390_app112411797 crossref_primary_10_1016_j_est_2023_106901 crossref_primary_10_1016_j_ijthermalsci_2017_03_006 crossref_primary_10_1007_s00170_025_15169_8 crossref_primary_10_1016_j_egypro_2016_11_305 crossref_primary_10_1007_s11356_021_17148_4 crossref_primary_10_1109_ACCESS_2018_2837652 crossref_primary_10_1155_2018_5218205 crossref_primary_10_1016_j_egypro_2016_11_303 crossref_primary_10_1016_j_apenergy_2016_01_010 crossref_primary_10_1016_j_apenergy_2016_01_125 crossref_primary_10_1109_TIE_2019_2952825 crossref_primary_10_1016_j_apenergy_2014_04_077 crossref_primary_10_3390_en11010064 crossref_primary_10_1016_j_energy_2017_12_061 crossref_primary_10_1007_s11581_021_04021_0 crossref_primary_10_1016_j_apenergy_2013_12_046 crossref_primary_10_1016_j_jpowsour_2017_11_056 crossref_primary_10_1155_2014_261085 crossref_primary_10_1016_j_est_2022_105648 crossref_primary_10_1186_s10033_023_00846_0 crossref_primary_10_1016_j_apenergy_2019_113817 crossref_primary_10_1016_j_est_2020_101250 crossref_primary_10_1109_TVT_2017_2765670 crossref_primary_10_1016_j_geits_2022_100020 crossref_primary_10_1016_j_energy_2022_123222 crossref_primary_10_1016_j_jpowsour_2014_02_100 crossref_primary_10_1016_j_apenergy_2016_10_020 crossref_primary_10_1016_j_energy_2017_11_079 crossref_primary_10_1016_j_ijepes_2018_08_015 crossref_primary_10_1016_j_apenergy_2017_05_081 crossref_primary_10_1149_1945_7111_aca2ee crossref_primary_10_1109_ACCESS_2018_2854224 crossref_primary_10_4271_13_06_01_0007 crossref_primary_10_1002_er_7350 crossref_primary_10_1002_er_5058 crossref_primary_10_1016_j_jechem_2022_04_013 crossref_primary_10_1109_TMECH_2023_3348519 crossref_primary_10_3390_en10081121 crossref_primary_10_1155_2015_485216 crossref_primary_10_3390_en12040681 crossref_primary_10_1016_j_est_2023_107072 crossref_primary_10_1109_TAES_2019_2958161 crossref_primary_10_1631_jzus_A2100006 crossref_primary_10_1016_j_apenergy_2016_10_026 crossref_primary_10_1109_TPEL_2019_2945513 crossref_primary_10_3233_JCM_204537 crossref_primary_10_1016_j_energy_2013_10_027 crossref_primary_10_1016_j_est_2022_104666 crossref_primary_10_1016_j_apenergy_2014_03_086 crossref_primary_10_1007_s43236_019_00023_4 crossref_primary_10_1016_j_energy_2024_130555 crossref_primary_10_1016_j_jpowsour_2016_09_123 crossref_primary_10_3390_en15197226 crossref_primary_10_1016_j_est_2024_111524 crossref_primary_10_1016_j_jpowsour_2017_01_054 crossref_primary_10_3390_en12203960 crossref_primary_10_1016_j_energy_2021_121233 crossref_primary_10_1016_j_apenergy_2017_05_183 crossref_primary_10_1016_j_est_2023_108197 crossref_primary_10_1016_j_energy_2021_122206 crossref_primary_10_1016_j_jpowsour_2018_10_019 crossref_primary_10_3390_app8060925 crossref_primary_10_1109_ACCESS_2020_3030260 crossref_primary_10_1016_j_apenergy_2016_10_011 crossref_primary_10_1016_j_apenergy_2019_113339 crossref_primary_10_1109_TIE_2017_2733475 crossref_primary_10_1016_j_ijepes_2021_106944 crossref_primary_10_1016_j_apenergy_2017_03_111 crossref_primary_10_3390_fire6030087 crossref_primary_10_1016_j_jpowsour_2014_10_006 crossref_primary_10_3390_en10060792 crossref_primary_10_1007_s11581_021_04165_z crossref_primary_10_1134_S1023193518140033 crossref_primary_10_1109_TPEL_2018_2861730 crossref_primary_10_1016_j_rser_2014_10_047 crossref_primary_10_1016_j_egypro_2016_12_063 crossref_primary_10_3390_s22155536 crossref_primary_10_1016_j_apenergy_2015_02_064 crossref_primary_10_1016_j_est_2021_103485 crossref_primary_10_1016_j_apenergy_2016_10_065 crossref_primary_10_1109_TIE_2016_2645166 crossref_primary_10_1016_j_energy_2019_04_126 crossref_primary_10_3390_en14071797 crossref_primary_10_1108_RIA_04_2024_0091 crossref_primary_10_1016_j_jclepro_2018_05_074 crossref_primary_10_3390_vehicles4010001 crossref_primary_10_1080_15435075_2014_891512 crossref_primary_10_1016_j_est_2023_108373 crossref_primary_10_1016_j_neucom_2015_10_075 crossref_primary_10_1360_nso_20240037 crossref_primary_10_1016_j_apenergy_2016_10_059 crossref_primary_10_1016_j_jpowsour_2022_231900 crossref_primary_10_1016_j_jpowsour_2014_10_119 crossref_primary_10_1016_j_apenergy_2021_117022 crossref_primary_10_1016_j_est_2022_104860 crossref_primary_10_1016_j_est_2021_102387 crossref_primary_10_1631_jzus_A1600251 crossref_primary_10_1109_ACCESS_2017_2780258 crossref_primary_10_1109_TPEL_2018_2877294 crossref_primary_10_3390_en17010272 crossref_primary_10_1177_09544070221104893 crossref_primary_10_1109_TTE_2022_3162164 crossref_primary_10_1002_er_4391 crossref_primary_10_54097_ije_v3i1_10144 crossref_primary_10_1016_j_apenergy_2014_08_013 crossref_primary_10_1016_j_jpowsour_2016_08_018 crossref_primary_10_1016_j_ijepes_2025_110618 crossref_primary_10_1016_j_est_2023_108128 crossref_primary_10_1016_j_est_2022_104950 crossref_primary_10_3390_wevj15060248 crossref_primary_10_1016_j_apenergy_2017_05_139 crossref_primary_10_1016_j_jpowsour_2020_229248 crossref_primary_10_1051_e3sconf_202126801021 crossref_primary_10_1016_j_apenergy_2020_114817 crossref_primary_10_1016_j_apenergy_2015_01_120 crossref_primary_10_1016_j_compchemeng_2023_108275 crossref_primary_10_1109_ACCESS_2019_2959396 crossref_primary_10_1016_j_apenergy_2016_04_047 crossref_primary_10_1016_j_apenergy_2017_04_002 crossref_primary_10_1016_j_etran_2023_100283 crossref_primary_10_1016_j_egypro_2016_06_061 crossref_primary_10_3390_en9110865 crossref_primary_10_1109_TIM_2023_3334377 crossref_primary_10_1115_1_4064666 crossref_primary_10_1016_j_apenergy_2014_01_066 crossref_primary_10_1109_TTE_2020_2969811 crossref_primary_10_1016_j_est_2023_110221 crossref_primary_10_1109_TSG_2015_2512925 crossref_primary_10_1155_2015_765362 crossref_primary_10_1016_j_apenergy_2021_117034 crossref_primary_10_1016_j_jpowsour_2018_07_018 crossref_primary_10_1007_s40843_023_2665_8 crossref_primary_10_1016_j_apenergy_2016_03_103 crossref_primary_10_1016_j_apenergy_2018_01_068 crossref_primary_10_3390_batteries3020018 crossref_primary_10_1016_j_apenergy_2015_09_015 crossref_primary_10_1109_TCST_2018_2819965 crossref_primary_10_20964_2020_09_84 crossref_primary_10_3390_en12010183 crossref_primary_10_1016_j_microrel_2014_12_016 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1002_int_22309 crossref_primary_10_1016_j_est_2021_103204 crossref_primary_10_3390_en15041529 crossref_primary_10_1016_j_apenergy_2016_05_065 crossref_primary_10_3390_en10040412 crossref_primary_10_3390_en10040533 crossref_primary_10_3390_en13030540 crossref_primary_10_1016_j_est_2023_109890 crossref_primary_10_1088_1757_899X_677_3_032077 crossref_primary_10_1016_j_energy_2017_06_109 crossref_primary_10_1016_j_apenergy_2016_12_133 crossref_primary_10_3390_app13021154 crossref_primary_10_1016_j_jpowsour_2015_11_087 crossref_primary_10_1007_s11431_015_5843_y crossref_primary_10_1149_2_1051904jes crossref_primary_10_3390_en8053661 crossref_primary_10_1016_j_est_2020_102093 crossref_primary_10_1016_j_jpowsour_2014_02_095 crossref_primary_10_1155_2014_958239 crossref_primary_10_1016_j_electacta_2018_08_076 crossref_primary_10_1016_j_energy_2020_119236 crossref_primary_10_1049_pel2_12175 crossref_primary_10_1016_j_segan_2022_100603 crossref_primary_10_1016_j_apenergy_2016_05_059 crossref_primary_10_1016_j_apenergy_2018_08_022 crossref_primary_10_1016_j_est_2024_114078 crossref_primary_10_1109_TFUZZ_2019_2906577 crossref_primary_10_3390_en11071810 crossref_primary_10_3390_en15218172 crossref_primary_10_1016_j_jpowsour_2016_11_007 crossref_primary_10_1016_j_apenergy_2017_05_109 crossref_primary_10_1080_15435075_2023_2196328 crossref_primary_10_1002_oca_2375 crossref_primary_10_1016_j_apenergy_2016_05_042 crossref_primary_10_1016_j_jpowsour_2015_01_002 crossref_primary_10_1002_ese3_694 crossref_primary_10_3390_en10040441 crossref_primary_10_1109_TCST_2016_2624143 crossref_primary_10_3390_batteries8090112 crossref_primary_10_3390_en8065538 crossref_primary_10_1016_j_egyr_2022_02_026 crossref_primary_10_1049_iet_est_2015_0030 crossref_primary_10_1016_j_est_2021_102325 crossref_primary_10_3390_en11051033 crossref_primary_10_1016_j_egypro_2018_09_203 crossref_primary_10_1109_TTE_2023_3314050 crossref_primary_10_1007_s42154_019_00080_2 crossref_primary_10_3390_electronics10131588 crossref_primary_10_1016_j_apenergy_2016_05_040 crossref_primary_10_3390_en14113284 crossref_primary_10_1016_j_apenergy_2019_114019 crossref_primary_10_1109_ACCESS_2020_2995899 crossref_primary_10_1016_j_est_2021_102559 crossref_primary_10_1016_j_apenergy_2015_08_129 crossref_primary_10_1109_JESTIE_2020_3033544 crossref_primary_10_3390_en11051144 crossref_primary_10_3390_en8087729 crossref_primary_10_3390_en13236366 crossref_primary_10_1016_j_apenergy_2015_08_119 crossref_primary_10_1016_j_egypro_2018_09_213 crossref_primary_10_1016_j_ijhydene_2014_03_035 crossref_primary_10_1016_j_apenergy_2017_07_030 crossref_primary_10_1016_j_jpowsour_2014_07_103 crossref_primary_10_1155_etep_2242749 crossref_primary_10_1109_TIE_2019_2955413 crossref_primary_10_3390_en7106783 crossref_primary_10_1016_j_energy_2018_01_024 crossref_primary_10_1007_s42154_023_00271_y crossref_primary_10_1016_j_est_2022_104904 crossref_primary_10_1149_1945_7111_abb34d crossref_primary_10_1016_j_apenergy_2016_06_069 crossref_primary_10_3390_s16081328 crossref_primary_10_2478_amns_2023_1_00005 crossref_primary_10_1016_j_jpowsour_2016_03_054 crossref_primary_10_1109_TITS_2024_3469890 crossref_primary_10_3390_en10010060 crossref_primary_10_1016_j_energy_2021_122881 crossref_primary_10_1109_TIE_2018_2795521 crossref_primary_10_3390_en14185989 crossref_primary_10_1016_j_etran_2019_100028 crossref_primary_10_1016_j_apenergy_2014_06_016 crossref_primary_10_3390_batteries9110544 crossref_primary_10_3390_wevj12030123 crossref_primary_10_1109_ACCESS_2020_3033451 crossref_primary_10_1002_asjc_2093 crossref_primary_10_1016_j_apenergy_2015_10_025 crossref_primary_10_1088_0256_307X_38_11_118201 crossref_primary_10_1016_j_measurement_2024_116263 crossref_primary_10_3389_fenrg_2021_790295 crossref_primary_10_1016_j_apenergy_2017_07_003 crossref_primary_10_3390_s23125457 crossref_primary_10_1016_j_apenergy_2016_09_010 crossref_primary_10_1016_j_apenergy_2019_113924 crossref_primary_10_1109_TTE_2019_2956350 crossref_primary_10_1049_iet_pel_2014_0523 crossref_primary_10_3390_su16167180 crossref_primary_10_3390_electronics10020122 crossref_primary_10_1016_j_jpowsour_2014_09_146 crossref_primary_10_1002_asjc_1959 crossref_primary_10_1016_j_apenergy_2023_121970 crossref_primary_10_1016_j_est_2025_115716 crossref_primary_10_1016_j_est_2019_101124 crossref_primary_10_1016_j_apenergy_2016_06_031 crossref_primary_10_1016_j_jpowsour_2015_04_166 crossref_primary_10_3233_JIFS_169549 crossref_primary_10_1016_j_apenergy_2016_05_109 crossref_primary_10_1016_j_apenergy_2016_09_001 crossref_primary_10_1016_j_est_2022_106283 crossref_primary_10_1016_j_egyr_2022_03_036 crossref_primary_10_1016_j_apenergy_2018_09_126 crossref_primary_10_1088_1361_6420_ad5f53 crossref_primary_10_1016_j_energy_2023_127305 crossref_primary_10_3390_batteries8110229 crossref_primary_10_1016_j_rser_2020_110480 crossref_primary_10_1016_j_apenergy_2024_123508 crossref_primary_10_1155_2019_7452079 crossref_primary_10_1016_j_apenergy_2016_06_022 crossref_primary_10_1109_ACCESS_2019_2921794 crossref_primary_10_1520_JTE20170558 crossref_primary_10_3390_wevj14090247 crossref_primary_10_3390_en10070919 crossref_primary_10_1016_j_jpowsour_2014_01_129 crossref_primary_10_20964_2020_03_47 crossref_primary_10_1016_j_cnsns_2022_107059 crossref_primary_10_1016_j_rser_2020_110015 crossref_primary_10_1016_j_jpowsour_2015_04_148 crossref_primary_10_1016_j_energy_2018_06_116 crossref_primary_10_1016_j_energy_2018_06_113 crossref_primary_10_3390_app12031398 crossref_primary_10_1002_er_4503 crossref_primary_10_1016_j_jpowsour_2022_231568 crossref_primary_10_1016_j_apenergy_2016_08_103 crossref_primary_10_1016_j_est_2021_102852 crossref_primary_10_1016_j_jpowsour_2018_09_034 crossref_primary_10_1016_j_apenergy_2015_12_063 crossref_primary_10_3390_en14217386 crossref_primary_10_1016_j_measurement_2020_107637 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118576 crossref_primary_10_1080_15435075_2022_2163852 crossref_primary_10_1016_j_est_2021_102840 crossref_primary_10_1016_j_jpowsour_2017_08_058 crossref_primary_10_1016_j_est_2020_101973 crossref_primary_10_1016_j_est_2021_102841 crossref_primary_10_1016_j_jfranklin_2020_03_033 crossref_primary_10_3390_en11010209 crossref_primary_10_1016_j_est_2022_106478 crossref_primary_10_1109_TPEL_2017_2670081 crossref_primary_10_1088_2631_8695_adac2e crossref_primary_10_1016_j_energy_2016_05_047 crossref_primary_10_1177_09544070231153440 crossref_primary_10_1109_TIE_2017_2736480 crossref_primary_10_3390_en9090710 crossref_primary_10_1016_j_est_2020_101629 crossref_primary_10_1016_j_etran_2021_100149 crossref_primary_10_1049_iet_rpg_2017_0346 crossref_primary_10_1016_j_apenergy_2017_08_124 crossref_primary_10_3390_en10010005 crossref_primary_10_1016_j_jclepro_2023_137220 crossref_primary_10_1016_j_apenergy_2018_01_008 crossref_primary_10_1016_j_est_2024_112004 crossref_primary_10_3390_en9090720 crossref_primary_10_1115_1_4051941 crossref_primary_10_1016_j_apenergy_2013_10_044 crossref_primary_10_1016_j_apenergy_2016_08_138 crossref_primary_10_1016_j_rser_2017_03_138 crossref_primary_10_20964_2022_01_05 crossref_primary_10_1016_j_apenergy_2015_06_003 crossref_primary_10_1016_j_energy_2017_06_141 crossref_primary_10_3390_en16166013 crossref_primary_10_1016_j_jpowsour_2020_227984 crossref_primary_10_1016_j_apenergy_2018_02_128 crossref_primary_10_1109_ACCESS_2018_2817655 crossref_primary_10_1016_j_apenergy_2018_03_053 crossref_primary_10_3390_en11020472 crossref_primary_10_1016_j_est_2021_102814 crossref_primary_10_1155_2019_5327319 crossref_primary_10_1155_2017_6342170 crossref_primary_10_1016_j_apenergy_2016_08_140 crossref_primary_10_1016_j_energy_2021_121712 crossref_primary_10_1177_1687814017730757 crossref_primary_10_3390_electronics8060709 crossref_primary_10_3390_electronics11020181 crossref_primary_10_1016_j_egypro_2015_07_228 crossref_primary_10_1016_j_apenergy_2014_12_081 crossref_primary_10_1016_j_jpowsour_2017_05_110 crossref_primary_10_1109_TTE_2020_2980153 crossref_primary_10_1016_j_energy_2025_134848 crossref_primary_10_3390_app14209569 crossref_primary_10_1007_s42791_019_00020_5 crossref_primary_10_1109_TTE_2022_3170230 crossref_primary_10_1016_j_jpowsour_2014_02_064 |
Cites_doi | 10.1016/j.jpowsour.2013.05.071 10.1016/j.jpowsour.2004.02.033 10.1109/TII.2012.2222650 10.1016/j.apenergy.2011.08.002 10.1109/TCST.2009.2027023 10.1016/j.enconman.2009.12.015 10.1016/j.jpowsour.2006.06.004 10.1016/j.jpowsour.2011.09.058 10.4236/sgre.2012.31007 10.1016/j.jpowsour.2004.02.032 10.1109/TIE.2012.2186771 10.1016/j.jpowsour.2007.03.072 10.3390/en5051455 10.1016/j.jpowsour.2012.10.001 10.1007/s12239-008-0090-x 10.1016/j.enconman.2012.04.014 10.1109/IECON.2010.5675408 10.1109/TVT.2012.2222684 10.1016/j.apm.2012.04.029 10.1016/j.jpowsour.2012.12.057 10.1016/S0378-7753(99)00079-8 10.1016/j.apenergy.2012.08.031 10.1016/j.jpowsour.2013.06.076 10.1016/j.jpowsour.2012.12.003 10.1016/j.apenergy.2013.05.001 10.1016/j.jpowsour.2008.08.103 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 7SR 7TA 7TB 8FD F28 FR3 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.apenergy.2013.07.061 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 476 |
ExternalDocumentID | 27927957 10_1016_j_apenergy_2013_07_061 S0306261913006284 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8W4 AALMO AAPBV ABPIF ABPTK ADALY IPNFZ IQODW 7SP 7SR 7TA 7TB 8FD F28 FR3 JG9 L7M 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c338t-de92c81023550a524778b6a972c07241135f900d1e4ac2998c5baf82090422b43 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Mon Jul 21 10:23:54 EDT 2025 Fri Jul 11 04:53:45 EDT 2025 Fri Nov 25 01:07:34 EST 2022 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 03:05:20 EDT 2025 Fri Feb 23 02:36:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electric vehicles Lithium-ion polymer battery Battery capacity Data-driven Multi-scale State-of-Charge Parameter estimation Battery Lithium Polymer Kalman filtering Electric vehicle |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c338t-de92c81023550a524778b6a972c07241135f900d1e4ac2998c5baf82090422b43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1506381012 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2101318127 proquest_miscellaneous_1506381012 pascalfrancis_primary_27927957 crossref_primary_10_1016_j_apenergy_2013_07_061 crossref_citationtrail_10_1016_j_apenergy_2013_07_061 elsevier_sciencedirect_doi_10_1016_j_apenergy_2013_07_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 2014-01-00 2014 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zenati A, Desprez P, Razik H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78. Xiong, Gong, Mi, Sun (b0155) 2013; 243 Xiong, He, Sun, Zhao (b0030) 2013; 62 ELECTRIC VEHICLE BATTERY TEST PROCEDURES MANUAL. Plett (b0110) 2004; 134 Plett GL. Dual and joint EKF for simultaneous SOC and SOH estimation. In CD-ROM Proc 21st electric vehicle symposium (EVS21), Monaco; April 2005. Lee, Nam, Cho (b0015) 2007; 174 Xiong, He, Sun, Zhao (b0085) 2012; 5 Salkind, Fennie, Singh, Atwater, Reisner (b0070) 1999; 80 He, Liu, Zhang, Chen (b0040) 2013; 101 He, Xiong, Guo, Li (b0090) 2012; 64 Shi, Zhang, Cui (b0080) 2008; 9 Smith, Rahn, Wang (b0050) 2010; 18 Zenati A, Desprez Ph, Razik H. Estimation of the SOC and the SOH of Li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78. Waag, Sauer (b0035) 2013; 111 Lin, Liang, Chen (b0100) 2013; 9 Hu, Youn, Chung (b0130) 2012; 92 Hu, Yurkovich (b0010) 2012; 198 Lee, Kim, Lee, Cho (b0020) 2008; 185 Plett (b0115) 2004; 134 Xiong, He, Sun, Liu, Liu (b0025) 2012; 229 . Shen (b0055) 2010; 51 Plett (b0120) 2006; 161 Andre, Appel, Soczka-Guth, Sauer (b0135) 2012; 224 Wan, Nelson (b0140) 2001 Shahriari, Farrokhi (b0095) 2013; 60 Xiong, Sun, Gong, He (b0145) 2013; 242 Meyer, Komsiyska, Lenz, Agert (b0045) 2013; 37 Wu, Wang, Xiao, Wang (b0060) 2012; 3 Eddahech, Briat, Vinassa (b0065) 2012; 2012 Li, Barillas, Guenther, Danzer (b0005) 2013; 230 Shi (10.1016/j.apenergy.2013.07.061_b0080) 2008; 9 Plett (10.1016/j.apenergy.2013.07.061_b0110) 2004; 134 Xiong (10.1016/j.apenergy.2013.07.061_b0155) 2013; 243 Xiong (10.1016/j.apenergy.2013.07.061_b0145) 2013; 242 Xiong (10.1016/j.apenergy.2013.07.061_b0030) 2013; 62 Smith (10.1016/j.apenergy.2013.07.061_b0050) 2010; 18 Hu (10.1016/j.apenergy.2013.07.061_b0130) 2012; 92 Hu (10.1016/j.apenergy.2013.07.061_b0010) 2012; 198 Xiong (10.1016/j.apenergy.2013.07.061_b0085) 2012; 5 Lee (10.1016/j.apenergy.2013.07.061_b0020) 2008; 185 Eddahech (10.1016/j.apenergy.2013.07.061_b0065) 2012; 2012 Shahriari (10.1016/j.apenergy.2013.07.061_b0095) 2013; 60 Xiong (10.1016/j.apenergy.2013.07.061_b0025) 2012; 229 Plett (10.1016/j.apenergy.2013.07.061_b0115) 2004; 134 Waag (10.1016/j.apenergy.2013.07.061_b0035) 2013; 111 10.1016/j.apenergy.2013.07.061_b0150 Plett (10.1016/j.apenergy.2013.07.061_b0120) 2006; 161 He (10.1016/j.apenergy.2013.07.061_b0040) 2013; 101 Salkind (10.1016/j.apenergy.2013.07.061_b0070) 1999; 80 10.1016/j.apenergy.2013.07.061_b0075 Lee (10.1016/j.apenergy.2013.07.061_b0015) 2007; 174 He (10.1016/j.apenergy.2013.07.061_b0090) 2012; 64 10.1016/j.apenergy.2013.07.061_b0125 Li (10.1016/j.apenergy.2013.07.061_b0005) 2013; 230 Meyer (10.1016/j.apenergy.2013.07.061_b0045) 2013; 37 10.1016/j.apenergy.2013.07.061_b0105 Wu (10.1016/j.apenergy.2013.07.061_b0060) 2012; 3 Andre (10.1016/j.apenergy.2013.07.061_b0135) 2012; 224 Wan (10.1016/j.apenergy.2013.07.061_b0140) 2001 Shen (10.1016/j.apenergy.2013.07.061_b0055) 2010; 51 Lin (10.1016/j.apenergy.2013.07.061_b0100) 2013; 9 |
References_xml | – volume: 64 start-page: 113 year: 2012 end-page: 121 ident: b0090 article-title: Comparison study on the battery models used for the energy management of batteries in electric vehicles publication-title: Energy Convers Manage – volume: 60 start-page: 191 year: 2013 end-page: 202 ident: b0095 article-title: Online State-of-Health estimation of VRLA batteries using state of charge publication-title: IEEE T Ind Electron – volume: 230 start-page: 244 year: 2013 end-page: 250 ident: b0005 article-title: A comparative study of state of charge estimation algorithms for LiFePO publication-title: J Power Sources – reference: Zenati A, Desprez P, Razik H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78. – volume: 161 start-page: 1369 year: 2006 end-page: 1384 ident: b0120 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation publication-title: J Power Sources – volume: 18 start-page: 654 year: 2010 end-page: 663 ident: b0050 article-title: Model-Based electrochemical estimation and constraint management for pulse operation of lithium ion batteries publication-title: IEEE T Control Syst Technol – volume: 174 start-page: 9 year: 2007 end-page: 15 ident: b0015 article-title: Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering publication-title: J Power Sources – reference: Plett GL. Dual and joint EKF for simultaneous SOC and SOH estimation. In CD-ROM Proc 21st electric vehicle symposium (EVS21), Monaco; April 2005. – volume: 224 start-page: 20 year: 2012 end-page: 27 ident: b0135 article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries publication-title: J Power Sources – volume: 62 start-page: 108 year: 2013 end-page: 117 ident: b0030 article-title: Evaluation on State of Charge Estimation of Batteries with Adaptive Extended Kalman Filter by Experiment Approach publication-title: IEEE T VEH Technol – volume: 185 start-page: 1367 year: 2008 end-page: 1373 ident: b0020 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J Power Sources – volume: 51 start-page: 1093 year: 2010 end-page: 1098 ident: b0055 article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network publication-title: Energy Conver Manage – volume: 3 start-page: 51 year: 2012 end-page: 55 ident: b0060 article-title: The SOC estimation of power Li-ion battery based on ANFIS model publication-title: Smart Grid Renew Energy – volume: 80 start-page: 293 year: 1999 end-page: 300 ident: b0070 article-title: Determination of State-of-Charge and state-of-health of batteries by fuzzy logic methodology publication-title: J Power Sources – volume: 229 start-page: 159 year: 2012 end-page: 169 ident: b0025 article-title: Model-based State of Charge and peak power capability joint estimation of Lithium-Ion battery in plug-in hybrid electric vehicles publication-title: J Power Sources – start-page: 123 year: 2001 end-page: 164 ident: b0140 article-title: Dual extended Kalman filter methods publication-title: Kalman filtering and neural networks – volume: 243 start-page: 805 year: 2013 end-page: 816 ident: b0155 article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter publication-title: J Power Sources – reference: Zenati A, Desprez Ph, Razik H. Estimation of the SOC and the SOH of Li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In: IECON 2010–36th annual conference on IEEE industrial electronics society; 2010. p. 1773–78. – volume: 198 start-page: 338 year: 2012 end-page: 350 ident: b0010 article-title: Battery cell state-of-charge estimation using linear parameter varying system techniques publication-title: J Power Sources – volume: 134 start-page: 277 year: 2004 end-page: 292 ident: b0115 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3: State and parameter estimation publication-title: J Power Sources – reference: ELECTRIC VEHICLE BATTERY TEST PROCEDURES MANUAL. < – volume: 101 start-page: 808 year: 2013 end-page: 814 ident: b0040 article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl Energy – reference: >. – volume: 5 start-page: 1455 year: 2012 end-page: 1469 ident: b0085 article-title: Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach publication-title: Energies – volume: 37 start-page: 2016 year: 2013 end-page: 2027 ident: b0045 article-title: Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation publication-title: Appl Math Mode – volume: 9 start-page: 679 year: 2013 end-page: 685 ident: b0100 article-title: Estimation of battery state of health using probabilistic neural network publication-title: IEEE T Ind Inform – volume: 2012 start-page: 1318 year: 2012 end-page: 1324 ident: b0065 article-title: Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter publication-title: IEEE Int Sympos Indust Electron (ISIE) – volume: 111 start-page: 416 year: 2013 end-page: 427 ident: b0035 article-title: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination publication-title: Appl Energy – volume: 242 start-page: 699 year: 2013 end-page: 713 ident: b0145 article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles publication-title: J Power Sources – volume: 134 start-page: 262 year: 2004 end-page: 276 ident: b0110 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Modeling and identification publication-title: J Power Sources – volume: 9 start-page: 759 year: 2008 end-page: 764 ident: b0080 article-title: Estimation of battery state-of-charge using v-support vector regression algorithm publication-title: Int J Automot Technol – volume: 92 start-page: 694 year: 2012 end-page: 704 ident: b0130 article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation publication-title: Appl Energy – volume: 242 start-page: 699 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0145 article-title: Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.05.071 – volume: 134 start-page: 277 year: 2004 ident: 10.1016/j.apenergy.2013.07.061_b0115 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3: State and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.033 – volume: 9 start-page: 679 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0100 article-title: Estimation of battery state of health using probabilistic neural network publication-title: IEEE T Ind Inform doi: 10.1109/TII.2012.2222650 – volume: 92 start-page: 694 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0130 article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.08.002 – volume: 18 start-page: 654 year: 2010 ident: 10.1016/j.apenergy.2013.07.061_b0050 article-title: Model-Based electrochemical estimation and constraint management for pulse operation of lithium ion batteries publication-title: IEEE T Control Syst Technol doi: 10.1109/TCST.2009.2027023 – volume: 51 start-page: 1093 year: 2010 ident: 10.1016/j.apenergy.2013.07.061_b0055 article-title: Adaptive online state-of-charge determination based on neuro-controller and neural network publication-title: Energy Conver Manage doi: 10.1016/j.enconman.2009.12.015 – ident: 10.1016/j.apenergy.2013.07.061_b0125 – volume: 161 start-page: 1369 year: 2006 ident: 10.1016/j.apenergy.2013.07.061_b0120 article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Simultaneous state and parameter estimation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.06.004 – volume: 198 start-page: 338 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0010 article-title: Battery cell state-of-charge estimation using linear parameter varying system techniques publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.09.058 – volume: 3 start-page: 51 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0060 article-title: The SOC estimation of power Li-ion battery based on ANFIS model publication-title: Smart Grid Renew Energy doi: 10.4236/sgre.2012.31007 – volume: 134 start-page: 262 year: 2004 ident: 10.1016/j.apenergy.2013.07.061_b0110 article-title: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: Modeling and identification publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.02.032 – volume: 60 start-page: 191 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0095 article-title: Online State-of-Health estimation of VRLA batteries using state of charge publication-title: IEEE T Ind Electron doi: 10.1109/TIE.2012.2186771 – volume: 174 start-page: 9 year: 2007 ident: 10.1016/j.apenergy.2013.07.061_b0015 article-title: Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.03.072 – volume: 5 start-page: 1455 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0085 article-title: Online estimation of peak power capability of Li-Ion batteries in electric vehicles by a hardware-in-loop approach publication-title: Energies doi: 10.3390/en5051455 – volume: 224 start-page: 20 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0135 article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.001 – volume: 9 start-page: 759 year: 2008 ident: 10.1016/j.apenergy.2013.07.061_b0080 article-title: Estimation of battery state-of-charge using v-support vector regression algorithm publication-title: Int J Automot Technol doi: 10.1007/s12239-008-0090-x – volume: 64 start-page: 113 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0090 article-title: Comparison study on the battery models used for the energy management of batteries in electric vehicles publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2012.04.014 – ident: 10.1016/j.apenergy.2013.07.061_b0105 doi: 10.1109/IECON.2010.5675408 – ident: 10.1016/j.apenergy.2013.07.061_b0150 – volume: 62 start-page: 108 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0030 article-title: Evaluation on State of Charge Estimation of Batteries with Adaptive Extended Kalman Filter by Experiment Approach publication-title: IEEE T VEH Technol doi: 10.1109/TVT.2012.2222684 – volume: 37 start-page: 2016 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0045 article-title: Study of the local SOC distribution in a lithium-ion battery by physical and electrochemical modeling and simulation publication-title: Appl Math Mode doi: 10.1016/j.apm.2012.04.029 – volume: 230 start-page: 244 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0005 article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.057 – volume: 80 start-page: 293 year: 1999 ident: 10.1016/j.apenergy.2013.07.061_b0070 article-title: Determination of State-of-Charge and state-of-health of batteries by fuzzy logic methodology publication-title: J Power Sources doi: 10.1016/S0378-7753(99)00079-8 – start-page: 123 year: 2001 ident: 10.1016/j.apenergy.2013.07.061_b0140 article-title: Dual extended Kalman filter methods – volume: 101 start-page: 808 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0040 article-title: A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.08.031 – volume: 243 start-page: 805 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0155 article-title: A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.06.076 – volume: 2012 start-page: 1318 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0065 article-title: Adaptive voltage estimation for EV Li-ion cell based on artificial neural networks state-of-charge meter publication-title: IEEE Int Sympos Indust Electron (ISIE) – volume: 229 start-page: 159 year: 2012 ident: 10.1016/j.apenergy.2013.07.061_b0025 article-title: Model-based State of Charge and peak power capability joint estimation of Lithium-Ion battery in plug-in hybrid electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.12.003 – volume: 111 start-page: 416 year: 2013 ident: 10.1016/j.apenergy.2013.07.061_b0035 article-title: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.05.001 – ident: 10.1016/j.apenergy.2013.07.061_b0075 doi: 10.1109/IECON.2010.5675408 – volume: 185 start-page: 1367 year: 2008 ident: 10.1016/j.apenergy.2013.07.061_b0020 article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.08.103 |
SSID | ssj0002120 |
Score | 2.5819366 |
Snippet | •A data-driven multi-scale extended Kalman filtering is developed for battery system.•A lumped parameter battery model against different aging levels has been... Accurate estimations of battery parameter and state play an important role in promoting the commercialization of electric vehicles. This paper tries to make... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 463 |
SubjectTerms | Algorithms Applied sciences batteries Battery capacity commercialization Data-driven Direct energy conversion and energy accumulation Electric potential electric power Electric vehicles Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells electrochemistry equations Estimates Exact sciences and technology Kalman filtering Lithium batteries Lithium-ion polymer battery Mathematical models Multi-scale polymers State-of-Charge Voltage |
Title | A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles |
URI | https://dx.doi.org/10.1016/j.apenergy.2013.07.061 https://www.proquest.com/docview/1506381012 https://www.proquest.com/docview/2101318127 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CemkppU0bun0sU-hV2bUtW9ZxCQnbhubSBnITsi0Rh12vye4Gcum_6P_tjGznQQk59Gh5ZBvNaOaTNfMJ4KtVmc0rmwsZSnJs4kSuIyso3JRkAN7ngcD0x2k2P5Pfz9PzHTgcamE4rbL3_Z1PD966b5n0ozlp63ryk9Eu43_ekMnIy3IFu1Rs5Qe_79I84p6akYQFS9-rEr48sK0LFXac4pUEEs8seixAvWztmobNd-dd_OO6Qzw6fg2veiCJs-5b38COa_bgxT16wT3YP7qrYiPRfhqv38KfGXJmqKiu2NdhSCoU_FqHw09xPLGLpW3Q17ydTo9DjncVMlX4klNo0DYVhnIkZKKOrgISB4pyXHkkgH9Rb5eC29vV4mZJnYpA53mDdYPdATx1idfuIuTmvYOz46Nfh3PRn88gSlrYbkTldFzmzP1AyxybxlKpvMisVnE5VYQMoiT1ejqtIidtSWEvL9PCeoIcmonHCpnsw26zatx7wKRK6FaivS1iSc_VRZ76QlNUUI5AhRxBOijFlD15OZ-hsTBDltqlGZRpWJlmqgwpcwST235tR9_xZA896Nw8MERDMebJvuMHRnL7SmZpVDpVI_gyWI2hacx7M7Zxq-3aMNFjR7b2uAytzqOEEZn68B8f-RGe05XsfiN9gt3N1dZ9JmC1KcZh5ozh2ezbyfz0LzmcJsM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6x8rBNaNrYEGWDedJevTY_HT9WCFRW6MtA4s1yElsEtWlE20n8Ift_d-c4HQghHvbq-BIrd777bN99BviuRaqzUmc8diU5OjI8k4HmGG4KNABrM0dgejFNx1fxz-vkeguOu1oYSqv0vr_16c5b-5aB_5uDpqoGvwjtEv6nA5kUvewr2CZ2qqQH26OzyXi6ccihZ2fE_pwEHhQK3_7QjXFFdpTlFTkezzR4LkbtNHqJf862V1488d4uJJ2-h3ceS7JRO9wPsGXqXXj7gGFwF_ZO_hWyYVc_k5cf4c-IUXIoL-_I3TGXV8jps4Z1--JsomdzXTNb0Yk6vo5RyCsZsYXPKYuG6bpkriKJEVdHWwTJOpZytrAMMf5NtZ5zam8Ws_s5CuWO0fOeVTVr7-CpCvbb3Lj0vE9wdXpyeTzm_ooGXuDadsVLI8MiI_oHXOnoJIyFyPJUSxEWQ4HgIIgSK4fDMjCxLjDyZUWSa4uoQxL3WB5He9CrF7XZBxaVET6KpNV5GON7ZZ4lNpcYGIRBXBH3IemUogrPX07XaMxUl6h2qzplKlKmGgqFyuzDYCPXtAweL0rITufqkS0qDDMvyh49MpLNJ4moUchE9OFbZzUKZzIdz-jaLNZLRVyPLd_a831wgR5EBMrEwX8M8iu8Hl9enKvzs-nkM7zBJ3G7q_QFequ7tTlEnLXKj_w8-gsxMil0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+multi-scale+extended+Kalman+filtering+based+parameter+and+state+estimation+approach+of+lithium-ion+polymer+battery+in+electric+vehicles&rft.jtitle=Applied+energy&rft.au=RUI+XIONG&rft.au=FENGCHUN+SUN&rft.au=ZHENG+CHEN&rft.au=HONGWEN+HE&rft.date=2014&rft.pub=Elsevier&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=113&rft.spage=463&rft.epage=476&rft_id=info:doi/10.1016%2Fj.apenergy.2013.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=27927957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |